

1 Influenza A virus RNA Polymerase targets the chromatin of innate 2 immune response genes

3 Jia Yi^{1,3}, Jessica Morel^{4,5}, Mickaël Costallat^{1,2}, Nathalie Lejal⁵, Bernard Delmas⁵, Christian
4 Muchardt^{1,2}, Eric Batsché^{1,2*},

5

6 Jia Yi: 0000-0003-4795-471X

7 Jessica Morel: 0000-0002-2978-6823

8 Mickaël Costallat: 0000-0002-3048-7038

9 Nathalie Lejal

10 Bernard Delmas: 0000-0002-2713-4768

11 Christian Muchardt: 0000-0003-0145-4023

12 Eric Batsché: 0000-0002-5145-5270

13

14

15 1 Epigenetics and RNA metabolism in human diseases. CNRS UMR8256 - Biological Adaptation and
16 Ageing. Institut de Biologie Paris-Seine. Université Sciences Sorbonne. 7-9 Quai Saint Bernard,
17 75005 Paris, France

18 2 UMR8256, CNRS, Paris, France

19 3 Doctoral School Life science complexity (ED515), University Sorbonne, Paris, France

20 4 Doctoral School Structure and dynamics of living systems (ED577), University Paris-Saclay

21 5 INRAE, Unité de Virologie et Immunologie moléculaires (VIM), UMR 0892, UVSQ, Université
22 Paris-Saclay, Centre de Recherche Île-de-France – Jouy-en-Josas – Antony, F-78352 Jouy-en-Josas,
23 France

24

25 * corresponding author. Tel: +33 144273477; E-mail: eric.batsche@cnrs.fr

26

27

28

29 **3 KEY POINTS (<100 characters by point)**

30

- 31 • FluPol is linked to RNAs in gene body and 3'-downstream regions
- 32 • FluPol Chromatin-targets are involved in the cell defense
- 33 • Cap-snatching could occur everywhere during transcription elongation

34

35 **Abstract (< 300 words)**

36 The influenza A virus (IAV) RNA polymerase (FluPol) primes the viral transcription by using capped
37 5'-ends « snatched » from host nascent RNAs. However, the exact localization of the FluPol on the
38 genome or the timing of its snatching activity remains poorly characterized. Here, we have monitored
39 IAV infection from the perspective of the FluPol interaction with the host chromatin template.

40 Quantification of chromatin-bound RNAs shows a significant perturbation in host transcription that
41 correlates with a relocalization of RNA polymerase II (RNAPII) from the gene bodies to downstream
42 intergenic regions. This extended transcription leading to the production of RNA downstream of genes
43 (DoGs) was previously linked to the NS1-mediated inhibition of the transcriptional termination.

44 However, immunoprecipitation of FluPol-bound RNA in the chromatin fraction revealed that FluPol
45 remains linked to nascent host transcripts during phases of transcriptional elongation and termination,

46 thereby extending the window of opportunity in which cap-snatching may occur. In addition,
47 chromatin-associated FluPol was enriched at transcription termination sites, suggesting that it may
48 participate in the virus-induced termination defects. Finally, we observed that, rather than targeting
49 just highly expressed genes, the FluPol was preferentially recruited to promoters activated by the viral
50 infection and enhancers. Together, these observations suggest the FluPol uses the early immune
51 response to target regulatory elements of defense-related genes at which it interferes with the fate of
52 the transcripts, and possibly also limits RNAPII re-initiation by impairing the termination process.

53 **Author Summary (150-200 word non-technical summary)**

54 The influenza A virus (IAV) exploits the transcriptional machinery of the infected cells to generate its
55 own RNAs with the viral polymerase (FluPol) hijacking cap structures from host mRNAs. This “cap
56 snatching” requires an interaction between FluPol and the cellular RNA polymerase (RNAPII)
57 accumulating at transcription start sites (TSS) of genes. In parallel, another IAV factor interferes the
58 termination of gene transcription, resulting in frequent transcription downstream of genes and reduced
59 recycling of the RNAPII. Here, employing genome-wide ChIP assays, we show that FluPol selectively
60 targets the TSS of infection-activated genes often associated with cellular defense mechanisms, and
61 thereby contributing to their downregulation. In addition, we show that FluPol is not only recruited to
62 promoters and enhancers, but also within genes, where it interacts with nascent RNAs during
63 transcription and splicing. It is further detected beyond the 3' end of the genes, suggesting that FluPol
64 exerts a broad influence on host transcription by affecting both transcription initiation through cap-
65 snatching and transcription re-initiation via its involvement in the virus-induced transcription-
66 termination defect at the end of genes

67 **Introduction**

68 Influenza A virus (IAV) is an RNA virus whose replication occurs in the nucleus of infected cells
69 (Herz et al. 1981) and its own transcription is dependent on activity of the cell RNA-polymerase II
70 (RNAPII) [1]. This feature, atypical for RNA viruses arise from the activity of the viral RNA
71 polymerase complex (FluPol) formed by the intricate association of the PA, PB1 and PB2 subunits.
72 Specifically, FluPol requires RNA primers originating from the endonucleotidic cleavage of the 5'-end
73 of capped cellular transcripts by the PA subunit to produce viral transcripts [2–4]. This process called
74 “cap snatching” allows FluPol to produce viral translation-competent mRNAs by combining the 10-
75 15 first nucleotides from a capped host RNA with a viral RNA sequence generated by copying the
76 negative sense genomic vRNA (-). Deep-sequencing of the host-encoded portion of these chimeric
77 mRNAs has indicated that about half of these sequences matches 5'-ends of mRNAs [5] or snRNAs in
78 proportion to their transcription level [6].

79 Several observations suggest that FluPol steals capped RNAs in the early phases of transcription
80 elongation, close to the promoters, in the region where RNAPII is pausing before entering the gene

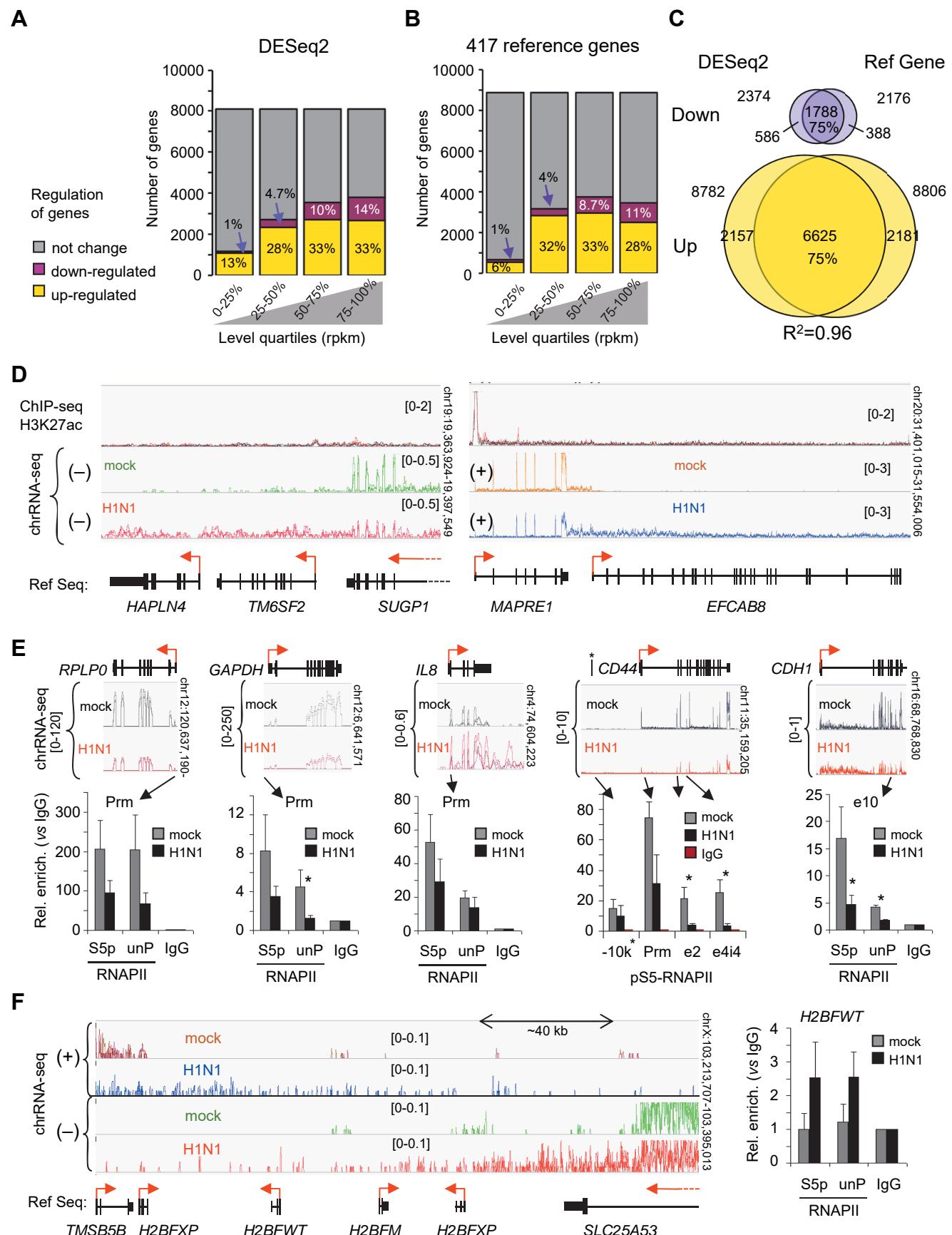
81 [7]. Firstly, FluPol preferentially interacts with RNAPII phosphorylated at the serine-5 (S5p) within
82 the repeated motifs of the C-terminal domain (CTD) [8–10]. Analysis by mNET-seq of viral RNAs co-
83 immunoprecipitated with the RNAPII has further shown a 1000-fold enrichment in S5p-RNAPII
84 compared to the total pool of RNAPII, suggesting that FluPol generating the vRNA segments requires
85 the association with S5p-RNAPII [11]. This form is enriched at promoters as the S5 phosphorylation
86 event activates the capping reaction, a required maturation step preceding the elongation of nascent
87 RNAs [12–15]. Furthermore, in mass-spectrometry-based approaches, FluPol was found to interact
88 with transcriptional co-regulators enriched at promoters, such as DDX5, coAA/RBM14, PSF/SFPQ or
89 HDAC1/2, and with the cap-promoting elongation factor DSIF (SPT4/5) [16–19]. Likewise, FluPol
90 interacts with CHD1 [20], a chromatin remodeler involved in transcriptional elongation and binding to
91 histone 3 tri-methylated at lysine 4 (H3K4me3), an epigenetic hallmark of active promoters [21].
92 Finally, an interaction between FluPol and the nuclear RNA exosome complex was reported to favor
93 the recruitment to promoters [22]. Cap-snatching at early phases of transcription also provides an
94 attractive explanation for the coupling of the vRNAs synthesis with the activity of the RNAPII [9],
95 ensuring FluPol to find the capped-RNA primers. Existing observations suggest only minimal or no
96 specificity in the selection of promoters that act as cap-snatching sites and, as a result of a basic rule of
97 probability, it seems to occur more frequently in highly transcribed mRNAs [5,22], U snRNA and
98 snoRNA genes [6,23].

99 Some observations suggest however that the model of “non-specific, promoter-only targeting” may
100 not entirely reflect the complexity of the interaction between the viral and the cellular transcription
101 machineries. Firstly, the limited depth of the RNA sequencing and the challenge of unambiguously
102 map the very short snatched host primers (10-15 nucleotides) may be a major source of bias that could
103 explain, at least in part, the apparent tropism of FluPol for highly expressed genes. Next, while S5p-
104 RNAPII is enriched at promoters, it is not absent from the body of genes. Likewise, capping enzymes
105 are not only recruited at transcription start sites (TSS), but are also present inside genes at the
106 transcriptional termination sites (TSEs) and in the 3' flanking downstream regions [24]. Capping
107 factors could, therefore, produce capped RNAs not only at TSSs but potentially at any location where
108 RNAPII is transcriptionally active, as evidenced by the capping of short non-coding pervasive
109 transcripts detected within genes and at both 5' and 3' ends [25,26]. Capped RNAs are also produced
110 by enhancers, which are actually more abundant on the genome than promoters [27–29]. Thus, if the
111 sole purpose of FluPol recruitment to chromatin is cap-snatching, then a wider distribution than just
112 promoters would be expected. Finally, the cap-snatching activity of FluPol is considered a component
113 of the viral strategy to evade host cell defense, as cap loss leads to mRNA destabilization and altered
114 protein synthesis. Yet, IAV also interferes globally with host transcription by causing a termination
115 defect. By inhibiting the RNAPII termination complexes through the action of its NS1 factor [11,30],
116 it disrupts the cohesin/CTCF-anchored chromatin loops [31], resulting in the opening of host

117 topologically associating domains (TADs). This causes long run-through events of RNAPII in
118 intergenic regions, technically capturing the polymerase on chromatin and preventing re-initiation at
119 promoters. This extended transcription leads to the production of RNA downstream of genes (DoGs),
120 a phenomenon also observed in cell undergoing stress [32,33]. Like the cap-snatching, this strategy
121 also occurs on the chromatin and involves the transcription machinery, and it is tempting to speculate
122 that these seemingly separate strategies could be two facets of a same mechanism.

123 We therefore deemed it necessary to reinvestigate the crosstalk between the host- and viral-
124 transcription machineries. To this end, we have monitored the evolution of chromatin-associated
125 transcripts upon IAV infection, while also following the recruitment of FluPol to the chromatin. For
126 the latter, we performed a series of chromatin immunoprecipitations (ChIPs) using different antibodies
127 recognizing the FluPol subunits PA, PB1 and PB2. We also transduced a FluPol PA subunit labeled
128 with a highly efficient V5 epitope to perform ChIP assays and analysis of chromatin-bound RNAs.
129 This unprecedented approach surprisingly revealed that FluPol remains linked to the nascent
130 transcripts (probably through the RNAPII association) during phases of transcriptional elongation and
131 termination. Additionally, we found that genes recruiting FluPol to their TSS, TES, gene body, or
132 enhancers were more frequently involved in cellular defense than expected by chance. Thus, our
133 findings collectively indicate that FluPol associates with virus-activated genes starting from their TSS
134 and extending all the way to their downstream 3' end region. We therefore propose an impact of
135 FluPol on host cell transcription not only at the initiation phase, but also during elongation and
136 termination, thereby maximizing its dampening effect on host cell defense mechanisms.

137


138 **Results**

139 **High-throughput sequencing of chromatin-associated RNAs in IAV-infected cells revealed 140 extensive transcriptional perturbations**

141 To examine the impact of influenza virus infection on host transcription without the confounding
142 effects of RNA maturation, we sequenced chromatin bound RNA in human lung epithelial A549 cells
143 infected at a high MOI (MOI = 5) with an H1N1 influenza virus (A/WSN/33). At 6 hours post
144 infection (hpi), we observed that up to 40% of the 75% most expressed genes were differentially
145 regulated, as evaluated by the DESeq2 package. (**Fig 1A and S1A Fig**). Thus, the number of
146 dysregulated genes was even greater than what has been previously reported with total RNA extracts
147 at early times of infection [11,31,30,34–36].

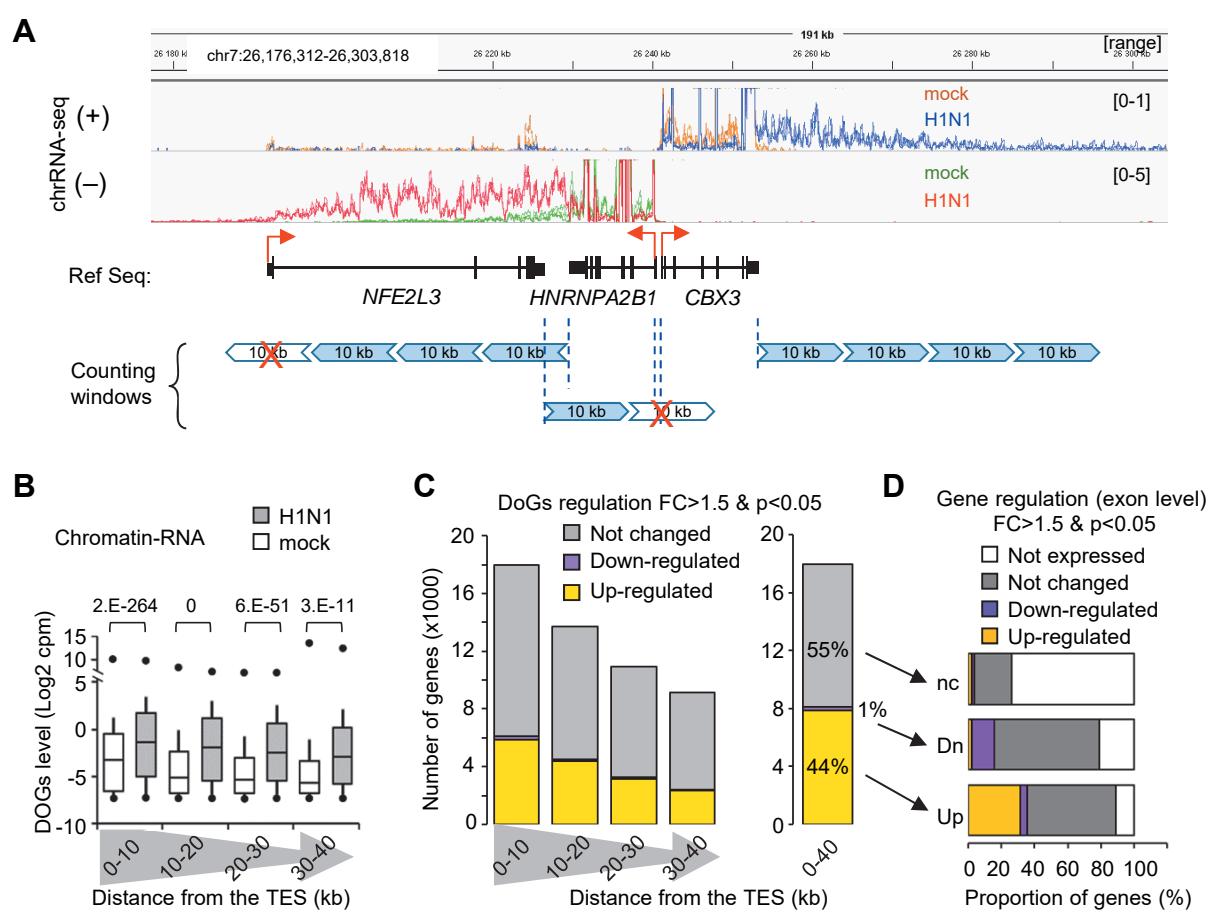
148

Figure 1

155 **Figure 1: Chromatin-associated RNAs illustrate cell transcriptional changes induced by 6 h**
156 **of IAV H1N1 infection in A549 cells.**

157 A) Differential RNA levels between H1N1-infected cells and uninfected cells (mock) using DESeq2
158 package. Genes were considered regulated if the fold change was >1.5 and the adjusted p-value was
159 <0.05 . Genes were ranked in quartiles as indicated. B) Differential RNA levels using normalization
160 based on the average variation of 417 reference genes expressing higher levels (> 300 rpk) of
161 transcripts and with long half-lives (> 15 h) [37] from a paired t-test (two-tailed). Genes were ranked
162 in quartiles from the mean of the two conditions. C) Venn diagram for up- and down-regulated genes
163 evaluated by the two methods. R2 is the Pearson's correlation coefficient comparing the two methods.
164 D) Examples illustrating the variation in read distribution in H1N1 infected cells from IGV
165 visualization of indicated loci. The RNA-seq independent triplicates have been overlaid in the same
166 color as indicated for each strand orientation. Top track shows H3K27ac enrichment on chromatin
167 from infected or mock cells. Track scale ranges are indicated in brackets. The bottom track (Ref Seq)
168 shows the position of the genes and their orientation as indicated by the red arrows. E, F) ChIP assays
169 using antibodies against S5 phosphorylated (S5p) or unphosphorylated (unP) RNAPII from infected
170 and uninfected cells. Immunoprecipitated DNA was quantified by qPCR using primers targeting the
171 indicated regions. Enrichment is expressed relative to the signal obtained for ChIP with negative IgG
172 control. Values are mean (\pm deviation) of at least three independent experiments. Statistical
173 significance of differential levels between infected and non-infected cells was evaluated by Student's t-
174 test (two-tailed), with $P < 0.05$ (*).

175
176
177 As previously reported, the strong perturbation of the cellular transcriptome induced by the IAV
178 infection results in a substantial redistribution of RNA-seq reads both in-between genes and between
179 genes and intergenic regions [11,30]. Such a heterogeneous transcript distributions is known to affect
180 the performance of statistical normalization [38–40]. Therefore, we used an alternative normalization
181 method based on a set of reference genes. We reasoned that pools of transcripts with long half-time
182 would remain largely unchanged after only 6 hours of infection. Thus, considering that the 20% most
183 expressed transcripts (> 300 rpk) with long half-lives (> 15 h) [37], we identified that approximately
184 40% of the 75% most expressed genes were differentially regulated (Fig 1B, S1B Fig), but with only a
185 75% overlap with the genes identified by DESeq2 pipeline (Fig 1C, and S1 Table). A gene ontology
186 analysis on genes up-regulated at least 4-fold (p-value <0.05) upon infection confirmed the anticipated
187 enrichment in pathways involving type-I interferon, cytokines, and OAS ribonuclease family members
188 (S1C Fig, S2 Table).


189
190 Earlier studies have shown that IAV-dependent transcriptional termination defects result in the
191 production of “Downstream-of-Gene” transcripts (DoGs) at many active genes [11,30,31].
192 Sequencing chromatin-bound RNAs proved very efficient at visualizing DoGs and RNAPII terminal
193 read-through was detected at essentially all genes relying on the canonical polyadenylation complex,
194 including several genes previously reported as unaffected (*LY6E*, *APOL1*, *DEFB1* and *IFI6*) [30] (S1D
195 Fig). Consistent with a role of the polyadenylation complex, and in agreement with earlier
196 observations [41,11], replication-dependent histone genes did not produce DoGs (S1E Fig). This very
197 general termination defect may largely contribute to the bias we corrected above, as we observed a

198 general decrease in apparent exon coverage associated with an increase in the abundance of reads
199 beyond the site of polyadenylation (**S1F Fig** and **Fig 1D**).
200 To gain further understanding of the mechanisms perturbing transcription, we carried out RNAPII
201 ChIP on infected cells. This revealed that the decreased exon coverage in the RNA-seq data was
202 concomitant with a decreased RNAPII accumulation at the promoters of highly expressed genes either
203 unaffected (*GAPDH*, *RPLP0*) or induced (*IL8*) upon infection, and on the transcribed region of genes
204 moderately expressed (*CD44*, *CDH1*) (**Fig 1E**). Inversely, we noted an increased accumulation of
205 RNAPII at loci corresponding to genes not expressed in A549 cells even after IAV infection, such as
206 *H2BFWT*, possibly as a consequence of a read-through from neighboring genes (**Fig 1F**). Re-analysis
207 of publicly available ChIP-seq data from primary human monocyte-derived macrophages (MDMs)
208 infected with IAV and harvested at 6 hpi [31] revealed a very similar decrease in RNAPII recruitment
209 at expressed genes associated with an increased accumulation on intergenic regions and at genes not
210 expressed in these cells (**S1G Fig**).
211
212

213 **Quantification of chromatin-bound RNAs confirms that the IAV infection induced defects of**
214 **transcriptional termination.**

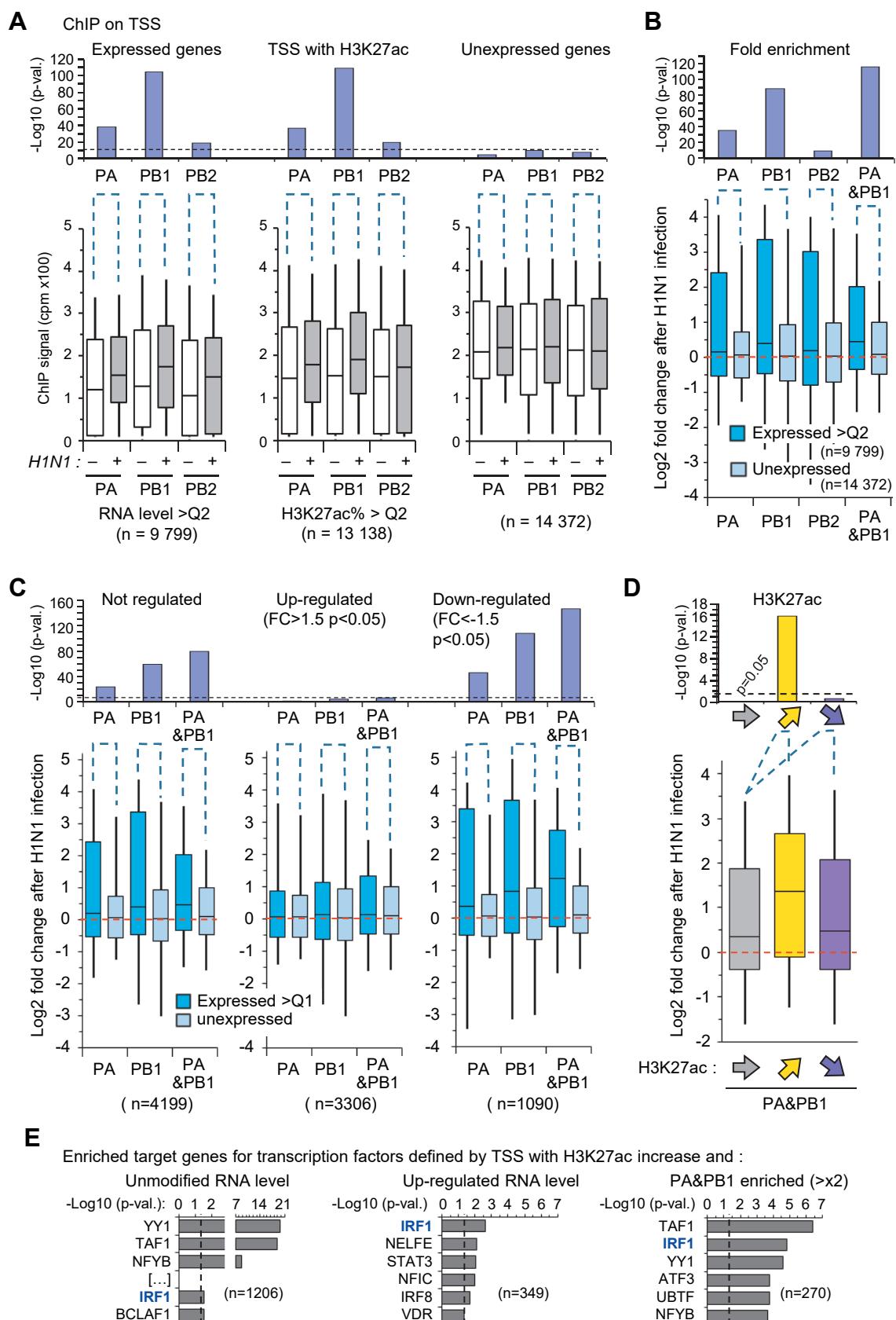
215 We next reexamined the DoGs in the light of their improved detection offered by the sequencing of
216 chromatin-associated RNA. Visual examination in a genome browser showed that numerous genes
217 produced DoGs in the absence of IAV infection, illustrating the intrinsic imperfections of the
218 termination machinery (see examples **Fig 1D**, **S1D S1F Figs**). As production of DoGs has been
219 proposed to participate in the global reduction in host cell transcription, we examined the
220 correspondence between gene expression and production of DoGs. To assess alterations in DoG
221 production in infected cells, we quantified the density of oriented reads in 10-kb windows within a 40
222 kb region downstream of TESs (**Fig 2A**). This quantification showed a robust overall upregulation of
223 DoGs even at sites distal from the TESs within the 40kb region under scrutiny (**Fig 2B**). In total, 44%
224 of the asserted downstream regions displayed transcription upregulated 1.5-fold or more, while down-
225 regulation was observed at less than 1% of the regions (**Fig 2C**). Upregulated DoGs originated from
226 up-regulated genes in approximately 30% of the cases, suggesting that production of DoGs does not
227 *per se* prevent gene activation, at least at early times of infection. Yet, the majority of the upregulated
228 DoGs (~55%) were located downstream of genes unaffected by IAV infection (grey proportion of up
229 in **Fig 2D**), strongly arguing in favor of the previously suggested impact on termination. Finally, we
230 surprisingly noted that approximately 10% of the upregulated DoGs, as well as 70% of the non-
231 significantly modified DoGs, were associated with silent genes. Through visual verification, we were
232 able to provide an explanation for this phenomenon, as we observed that these particular cases
233 involved genes that were entirely traversed by DoGs originating from neighboring genes.

Figure 2

237 **Figure 2 : chromatin RNAs were enriched in DoGs within the 3'-end region of the genes**
238 **after IAV infection**

239 A) Strategy to quantify the 3'-end transcripts downstream of the termination sites (TES). Oriented
240 reads were counted in 10 kb windows downstream to the TES extending until 40 kb. The downstream-
241 10 kb windows which overlapped with the transcription start site of another Ensembl gene in both
242 orientation were not taken in account (red crosses). B) For each selected gene, the indicated 10-kb
243 windows from the TES were quantified for their DoGs levels evaluated in Log2(cpm). Data are
244 presented in box plots where the bottom line is the 1st centile, the box corresponds to the 2nd and 3rd
245 quartiles, the top line is the 9th centile, and the middle line in the box is the median. Small circles
246 indicate the minimum and maximum values. P-values indicated at the top evaluate the statistical
247 significance of the difference in levels between infected and uninfected cells as calculated by Student's
248 t-test (two-tailed). C) Number of genes for which a 10-kb window downstream of the 3'-end showed a
249 differential transcription level. These windows were considered modified for a p-value<0.05 (paired t-
250 test, two-tailed) and a fold change >1.5. The right panel shows the same quantification for all pooled
251 windows. Transcription downstream of TES covering the 40 kb was considered upregulated if the
252 majority of the 10-kb windows were upregulated (yellow), and vice versa for downregulation
253 (magenta). The 40 kb region was considered unchanged (gray) if the 10 kb windows themselves were
254 found to be unchanged, or if there was no significant difference in the level of DoGs on the four 10 kb
255 windows, as evaluated by a paired t-test (two-tailed, p<0.05). D) For each regulated category (not
256 changed nc, down-regulated Dn, up-regulated Up) of the 3'-end downstream region, the regulation of
257 the corresponding genes (as evaluated in **Fig 1B**) is indicated in proportion.

258
259


260 **Genome wide Analysis revealed recruitment of FluPol at innate immune genes**

261 We next explored the genome-wide recruitment of FluPol by chromatin immunoprecipitation-
262 sequencing (ChIP-seq) using antibodies directed against the PA, PB1, and PB2 subunits of the viral
263 polymerase. These antibodies, when tested on extracts from infected cells, all co-immunoprecipitated
264 phosphorylated RNAPII (**S2A Fig**), consistent with earlier observations documenting an interaction of
265 the FluPol with the pS5-RNAPII) [8–10].

266 To avoid interference from neighboring genes, we focused our analysis of the ChIP-seq data at genes
267 located at least 5 kb away from other genes. Specific examination of the ChIP signals on 500 bp-
268 windows centered on promoter TSSs, showed a significantly increased signal upon viral infection,
269 which was more robust at expressed genes (as selected on the read-count from the RNA-seq) than at
270 unexpressed genes (**Fig 3A**). The specificity of the assay was further supported by the increased signal
271 observed at active promoters harboring H3K27ac marks, that was more important than at TSS of
272 unexpressed genes (compare middle graph to the right one, **Fig 3A**). The differential enrichment at
273 TSS induced by the infection for each subunit was significantly greater on expressed than on
274 unexpressed genes (above the red line, **Fig 3B**).

275

Figure 3

279 **Figure 3 : Enrichment of FluPol subunits on the chromatin**

280 Chromatin from uninfected (-) or infected (+) A549 cells was immunoprecipitated with the indicated
281 subunits of FluPol and analyzed by deep sequencing. For each 500 bp window centered on annotated
282 transcription start sites (TSS), DNA enrichment was the mean of replicates expressed in cpm
283 (multiplied by 100 for ease of presentation). Only TSSs separated from other TSSs by 5 kb were
284 considered to avoid potential bias from close neighbors or overlapping genes. **A)** Bottom box plots
285 illustrate the distribution of TSS from genes expressed above the median ($> Q2$), TSS with H3K27ac
286 signal greater than the median of H3K27ac signals, or TSS from non-expressed genes. The bottom and
287 top lines of the box plots indicate the 1st and 9th centiles, respectively. The upper graphs show the p-
288 values evaluated on log₂ normalized cpm by a paired t-test (two-tailed) assessing the enrichment
289 induced by H1N1 infection on each TSS in the indicated categories. The dotted line indicates the p-
290 value threshold based on the unexpressed genes. **B)** The fold change of enrichment for the indicated
291 TSS categories are the averages of the TSS ratio of infected versus non-infected cells for the signal of
292 FluPol subunits. Statistical analysis was performed on log₂ fold change using Student t-test (two-
293 tailed) to compare enrichment on TSS of unexpressed genes (light blue) and genes expressed above
294 the median (blue). The dashed red line indicates no change. The p-values are given above the box
295 plots. In each case, the number (n) of TSS tested is indicated. PA&PB1 analyses were performed by
296 combining their ChIP-seq signals..**C)** Fold change of enrichment for TSS of genes in indicated
297 categories. As described in B) Enrichment of the indicated FluPol subunits on the TSS of the 75% of
298 the most highly expressed genes that are regulated by more than 50% ($p<0.05$) or are not regulated.
299 Enrichments were compared to the signal of FluPol subunits on TSSs of unexpressed genes using a
300 Student t test (two-tailed) to calculate p-values. **D)** Fold change of enrichment of combined PA&PB1
301 signals on TSS with increase (yellow, n=804) or decrease (violet, n=716) of H3K27ac content.
302 H3K27ac levels were normalised to H3 levels and were considered regulated when the 75% most
303 enriched TSS/H3K27ac changed by more or less than 20% with $p<0.05$. These enrichments were
304 compared to those for TSS with unmodified (grey) H3K27ac with the same H3K27ac levels to
305 calculate p-values by unpaired student t-test (two-tailed). **E)** Enrichment of genes with consensus of
306 indicated transcription factors in ENCODE and ChEA, which are ChIP-seq enrichment analysis tools
307 built from gene set libraries generated from published ChIP-seq data extracted from multiple sources.
308 Genes were selected based on their TSS containing H3K27ac up-regulated by more than 20% ($p<0.05$)
309 and either their RNA level change as indicated or PA&PB1 recruitment in infected cells (2-fold more
310 than mock cells, $p<0.05$). P-values of these gene enrichments were evaluated using Enrichr and the
311 threshold of $p<0.05$ is indicated by the dotted line.

312
313

314 We further noted that the combination of PA and PB1 signals was more efficient at detecting
315 expressed genes than each signal taken individually, designating this combination as a good approach
316 for detection of FluPol (right bars in **Fig 3B**). In contrast, the anti-PB2 antibody behaved relatively
317 poorly in discriminating the specific signal induced by the infection on expressed genes versus
318 unexpressed genes (**Figs 3A, 3B**). Finally, in introns, we observed no difference in the recruitment of
319 FluPol subunits between expressed and silent genes (**S2B Fig**). Together, these observations were
320 consistent with a recruitment of the FluPol subunits to sites of transcriptional initiation.

321

322 To investigate whether FluPol recruitment was also governed by criteria other than transcriptional
323 activity, we further carried out a Gene Ontology analysis on the genes recruiting PA and PB1 by at
324 least 4-folds on TSS. This revealed a significant enrichment in genes associated with cell signaling,
325 including kinase and membrane trafficking factors. More importantly FluPol was found on the TSS of

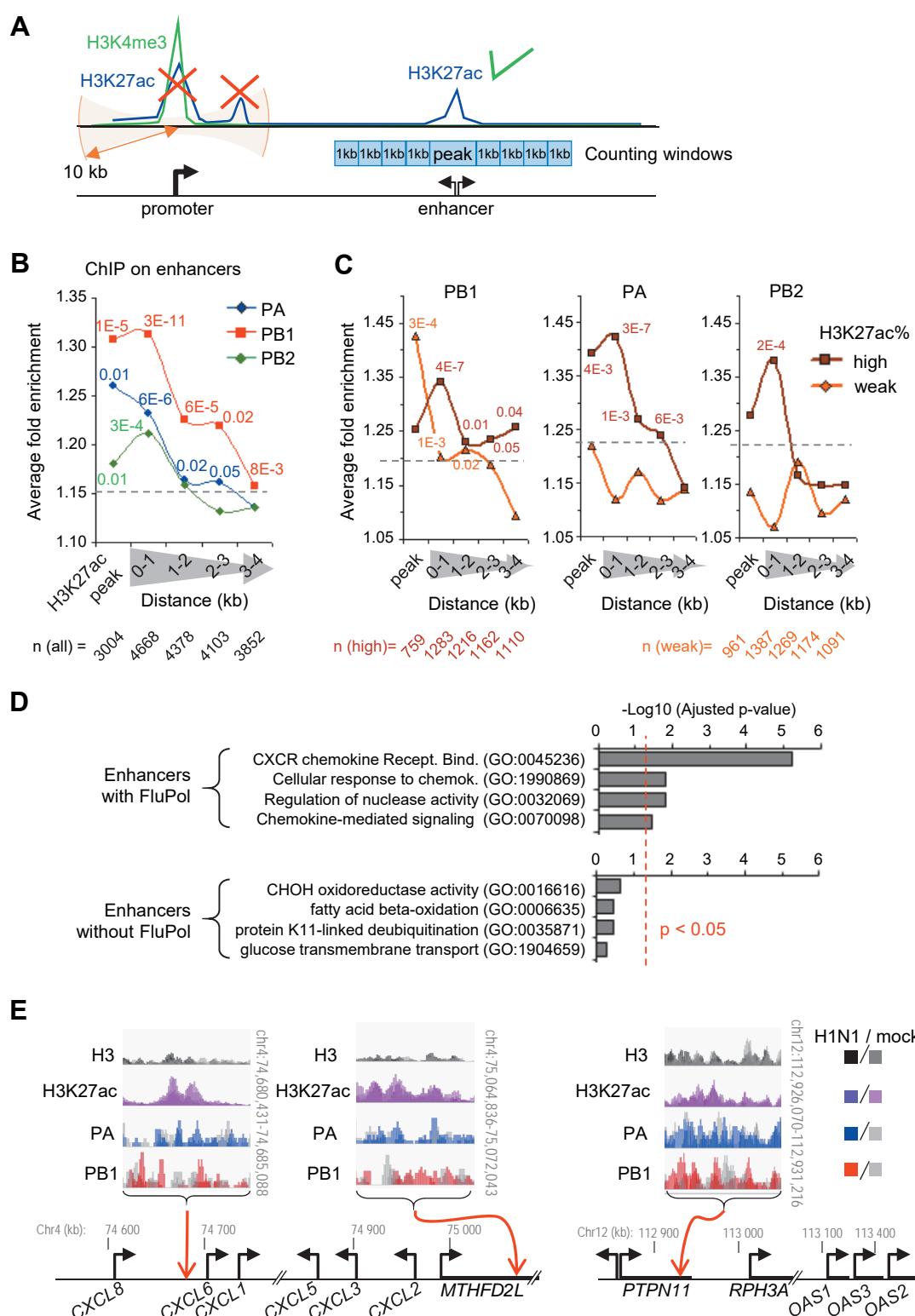
326 several genes of the innate immune system such as *ILF2*, *MTDH* enabling NFkB activity and factors
327 with double-strand RNA-binding activity [42] (**S2C Fig**), *SIDT2* mediating the long dsRNA entry in
328 lysosomes for degradation [43], and other dsRNA detectors such as *OAS1/2/L*, *DDX58/RIG-I*, *DDX60*,
329 *DHX36* and *DHX30* (**S2G Fig** and **S3A Table** for a full list). The outcome of the pathway analysis of
330 FluPol target genes (**S2F Fig**, **S3A Table**) diverged at least in part from that reached when examining
331 highly expressed genes, which were identified based on either an elevated H3K27ac levels at their
332 promoter (upper centile, **S2D Fig**), or a high RNA-seq signal (upper quartile, **S2E Fig**). The pathways
333 defined as RNA binding (GO:0003723) and double-stranded RNA binding (GO:0003725) were
334 commonly shared between lists of FluPol-bound and highly expressed genes (**S2F Fig**, **S3A Table**).
335 However, comparison of the GO term enrichments revealed 17 specific pathways significantly
336 enriched for FluPol genes and not significantly enriched for genes with the highest H3K27ac or RNA
337 levels. (**S2F Fig**). For instance, FluPol preferentially targeted TSSs of genes related to tRNA
338 modifications (GO:0140101, such as *TARS2* and *DUS1L* for example, **Fig 3G**). This suggested that
339 FluPol enrichment at TSS can only in part be accounted for by promoter activity, while gene function
340 also seems to play a role particularly at genes involved in cell defense and protein synthesis.

341 To investigate the potential impact of FluPol recruitment on gene expression, we compared the
342 TSSs enriched in viral polymerase with genes categorized by their differential expression upon IAV
343 infection. Surprisingly, up-regulated genes were the less significantly enriched in FluPol, being out
344 performed by downregulated or unaffected genes (**Fig 3C**). This observation supported the hypothesis
345 that FluPol's Cap-snatching function reduces gene expression since up-regulated genes had low FluPol
346 recruitment while down-regulated genes had high recruitment. Hence, the set of genes that did not
347 show significant changes might contain those that are typically upregulated upon activation of cellular
348 defense mechanisms but effectively suppressed by FluPol. Accordingly, the FluPol recruitment was
349 higher on TSS with increased H3K27ac levels compared to the recruitment on promoters with
350 decreased H3K27ac levels (**Fig 3D**). This suggested that FluPol may exhibit a better affinity for
351 activated promoters (with H3K27ac increase) and this may contribute to the decrease in gene
352 expression, especially at genes involved in the innate immune response. It is noteworthy that among
353 the FluPol targeted promoters showing an increase in H3K27ac, only the IRF1 target genes were
354 enriched in upregulated genes and in unchanged genes. (**Fig 3E**, **S3B Table**). This shows that although
355 the promoter of IRF1 and its target genes are induced (with IRF1 itself exhibiting a 2.3-fold
356 upregulation, as shown in Supplementary Table 1A), the presence of FluPol at the promoters of these
357 IRF1 target genes inhibits their mRNA production.

358

359 **FluPol is recruited to enhancers in regions close to immune response genes.**

360 Like promoters, enhancers are sites of RNAPII transcription and produce capped RNAs (eRNAs). We
361 therefore investigated whether these regulatory elements would also be sites of FluPol recruitment. To


362 this end, we identified a series of isolated enhancers active in infected cells, based on the presence of
363 the H3K27ac histone mark characteristic of enhancers, and the absence of H3K4me3, enriched at
364 promoters (**Fig 4A** and bioinformatics section in method). FluPol recruitment at these enhancers was
365 then estimated by quantifying the ChIP-seq signal for each subunit in bins of 1 kb around the
366 H3K27ac peak (**Fig 4A**, blue boxes). This approach revealed that, upon infection, all FluPol subunits
367 displayed a significantly increased accumulation within the first 1kb from the center of the enhancer,
368 rapidly decreasing as a function of the distance to the center (**Fig 4B** – in the shown graphics, left and
369 right windows are considered together). As observed for promoters, the anti-PB2 antibody seemed the
370 less efficiently at detecting enhancers. We noted also that the recruitment of FluPol subunits to
371 enhancers could be positively correlated with the extent of their H3K27 acetylation (**Fig 4C**). This
372 suggests the FluPol enrichment on enhancers is dependent on the activity of enhancers.
373

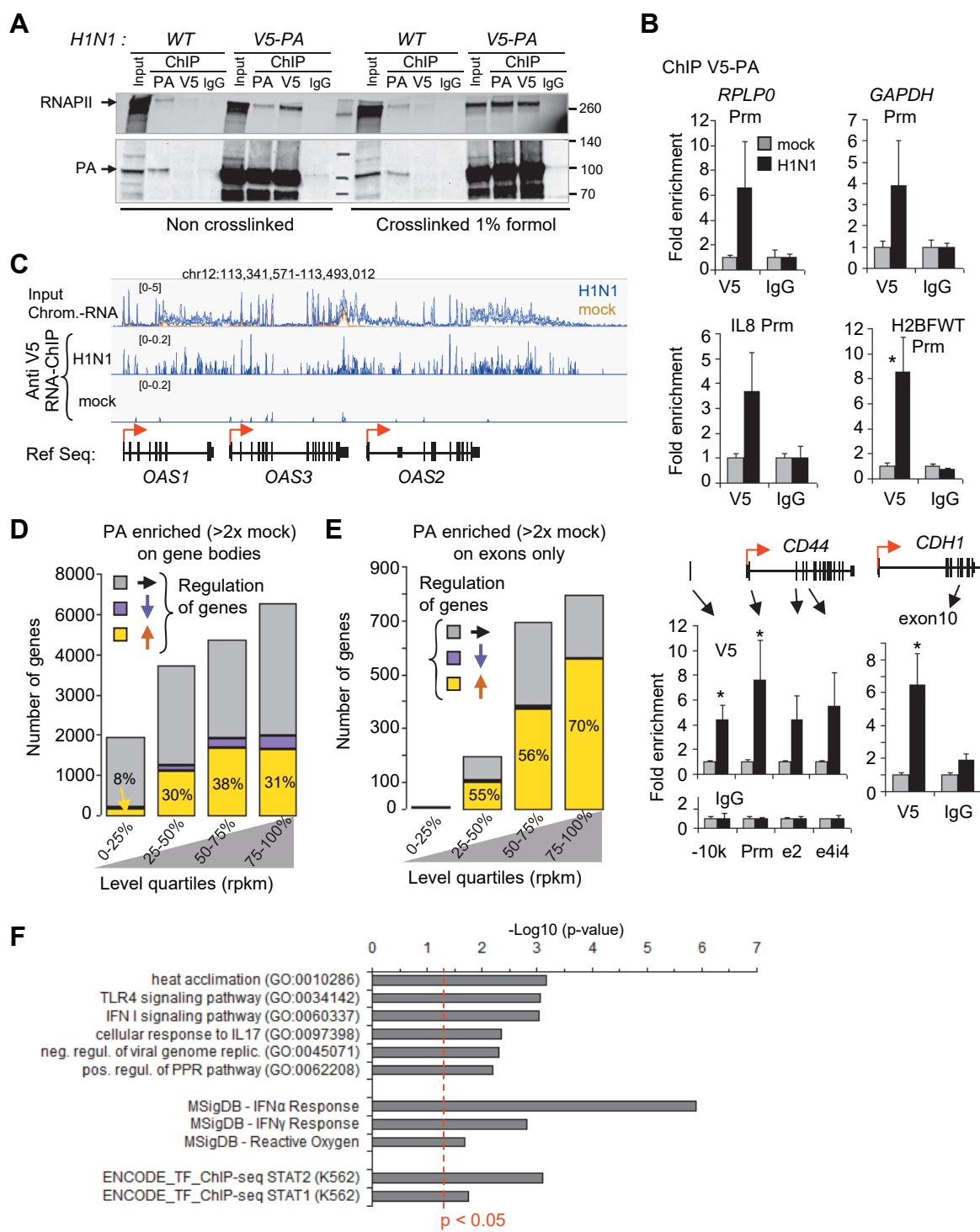
374 **Figure 4 : FluPol subunits on chromatin are enriched at the enhancer sites.**

375 **A)** Strategy to quantify FluPol enrichment around H3K27ac peaks defining enhancers. Reads were
376 counted in the H3K27ac window and in four 1 kb windows downstream and upstream of the
377 boundaries of the H3K27ac peaks. For each counting window, the fold change enrichment between
378 infected cells vs. mock cells of the indicated FluPol subunits was calculated. The H3K27ac peaks
379 overlapping the 10kb region around the H3H4me3 peaks were not considered (red crosses). **B)** Peaks
380 of H3K27ac detected in infected cells and not overlapping with H3K4me3 peaks \pm 10kb defined the
381 first counting windows (named "peak"). Upstream and downstream windows were pooled for each
382 indicated distance. The average of the enrichment ratio between infected cells vs mock cells of the
383 indicated FluPol subunits were shown. **C)** The same calculation was performed for the enhancers with
384 high or low percentage of H3K27ac (versus H3). The enhancer peaks were separated into quartiles of
385 H3K27ac% and the relative enrichment of FluPol subunits is shown for the 4th quartile (high level in
386 brown) and for the 2nd quartile (low level in orange). **B** and **C**) Differences between infected and
387 mock cells were evaluated by paired t-test and significant p-values are indicated. The number of loci
388 considered is indicated above. The height of the dashed lines indicates the fold enrichment limit at
389 which differences are significant. **D)** Analysis of gene regulatory pathways in 1 Mbp regions centered
390 on H3K27ac peaks with enrichment for PA and PB1 subunits (top graph) or without enrichment for
391 PA and PB1 (bottom graph). 603 expressed genes were found around the 97 selected enhancers for
392 which the individual PA and PB1 ChIP signal was significantly increased by at least 50% either on the
393 peaks or on the neighboring windows (0-1 kb) (**S4C Table**). 3208 expressed genes were found around
394 the 1391 selected enhancers to have a percentage of H3K27ac above the median level of all peaks and
395 for the combined enrichment of PA and PB1 to be less than 10% (on peaks and on the 0-1kb windows)
396 (**S4B Table**). Expressed genes from the first 5 genes 500 kbp upstream and from the first 5 genes 500
397 kbp downstream of the peaks were used for pathway analysis with Enrichr. The adjusted p-value of
398 the significant GO pathways is shown for the FluPol-enriched enhancers, and the first five ranked GO
399 terms are shown for the enhancers without FluPol. The threshold of $p < 0.05$ is indicated by the dotted
400 red line. **E)** Localization of enhancers enriched by FluPol. Examples of enhancers with their indicated
401 neighboring genes to illustrate the pathways in **D**). The ChIP-seq independent replicates performed
402 with antibodies against the indicated proteins in infected or mock cells are overlaid in the indicated
403 color. The black arrows indicate the position of the TSS and the orientation of the gene. Red arrows
404 indicate the localization of the enhancer regions where FluPol enrichment was detected.
405

406

Figure 4

409
410 We then examined whether enhancers recruiting FluPol were linked to genes with particular functions.
411 To this end, we performed genomic region enrichment analysis, listing genes located in the
412 neighborhood of enhancers recruiting FluPol subunits. When considering enhancers displaying PA and
413 PB1 combined signal at least 20% above background inside the region framed by the 2 first 1kb-
414 windows (a total of 500 enhancers), we identified 1966 expressed genes within a 1 Mbp regions
415 centered on H3K27ac peaks. Ontology analysis on these genes revealed an enrichment in several
416 immune system signaling KEGG pathways found, including the IL-17 signaling pathway (Adjusted p-
417 value = 9E-3) (**S4A Table**). These regulatory pathways were not observed when examining genes
418 located near active enhancers that did not exhibit enrichment of FluPol (**S4B Table**). With a more
419 stringent selection, retaining only enhancers displaying a 50% or more increase in PA and PB1 signals
420 in between the 1kb-windows (a total of 97 enhancers), we identified 603 expressed genes, associated
421 with chemokine-mediated signaling pathways and defense genes with nuclease activity (**Fig 4D** and
422 **S4C Table**). Visual examination of the data also identified PA and PB1-enriched enhancers in the
423 neighborhood of CXCL and OAS genes (**Fig 4E**). These data suggest that the FluPol recruitment on
424 enhancers targets specific regions that could contribute to the immune response by limiting their
425 transcriptional action.


426

427

428 **FluPol is associated with intragenic chromatin-bound RNAs.**

429 As an alternative approach to study FluPol recruitment to the host genome, we next implemented an
430 RNA-ChIP approach exploring the range of chromatin-bound RNA species associating with the viral
431 polymerase. As available antibodies were of insufficient quality for this more demanding approach,
432 we generated a V5-tagged version of the PA subunit of FluPol. The resulting recombinant H1N1-
433 derived IAV retained its ability to infect the A549 cells. Immunoprecipitation with an anti-V5
434 antibody under conditions used for RNA-ChIP (see Material &Methods) on cells infected with the V5-
435 tagged virus, resulted in efficient immunoprecipitation of the tagged-PA (**Fig 5A** and **S3 Fig**).
436

Figure 5

439 **Figure 5 : FluPol subunits on the chromatin are associated with nascent RNAs from the**
440 **host cell.**

441 A) A549 cells infected with WT IAV or V5-PA engineered IAV were cross-linked by 1%
442 formaldehyde or not. Chromatin fractions were subjected to immunoprecipitation with PA, V5
443 antibodies or non-immune IgG. Eluates and 10% of extracts were resolved by Western blot. The lower
444 part of the membranes was detected with PA antibodies and the upper part with phospho-RNAPII
445 antibodies.. B) ChIP assays using anti-V5 and IgG antibodies from infected and uninfected cells.
446 Immunoprecipitated DNA was quantified by qPCR using primers targeting the indicated regions.
447 Enrichment is expressed relative to the signal obtained for ChIP in uninfected cells. Values are the
448 mean (\pm dev.) of three independent experiments. Statistical significance of differential levels was
449 evaluated by Student's t-test (two-tailed), with $P < 0.05$ (*). C) Example of PA-enriched RNAs bound
450 to chromatin with IGV. The RNA-seq independent triplicates have been overlaid in the same color as
451 indicated for the (+) strand. The scale range of the tracks is indicated in brackets. The bottom track
452 (Ref Seq) indicates the position of the genes and their orientation by the red arrows. D) RNAs from
453 ChIP of V5-PA in V5-PA H1N1 infected cells or in mock cells were analyzed by deep sequencing.
454 PA-enriched RNAs spanning gene bodies were evaluated against IgG and were considered significant
455 if the mean change subtracted from the triplicate deviation was greater than two times that of IgG. The
456 number of enriched genes that were upregulated (yellow), downregulated (magenta) or unchanged
457 (gray) was plotted as a function of gene expression as determined in **Fig 1B** and ranked in quartiles. E)
458 The same analysis as in **D**) was conducted for RNAs covering the exons only. F) Pathway analysis of
459 1696 genes on which PA was 4-fold enriched on exonic RNAs between infected and mock cells. P-
460 values of Gene Ontology (GO) biological function 2021, Molecular Signatures Database 2020
461 (MSigDB), and ENCODE ChIP-seq 2015 were evaluated by Enrichr, and the threshold of $p < 0.05$ is
462 indicated by the dotted red line.

463
464

465 In control ChIP-PCR experiments, the recombinant FluPol containing V5-PA was efficiently detected
466 at the DNA of promoters identified above as recruiting the native version of the viral polymerase,
467 including genes either genuinely expressed at moderate to strong levels (RPLP0, GAPDH, CD44), or
468 induced by the infection (IL8) (**Fig 5B**). Yet, the more efficient immunoprecipitation assays reached
469 with the anti-V5 antibody revealed that V5-PA was also present within the coding region genes (CD44
470 and CDH1) (**Fig 5B**) or within a read-through region by run-away RNAPII having initiated at
471 promoters of upstream genes (H2BFWT) (**Figs 5B, 1F**).

472 Implementing RNA ChIP-seq with V5-tagged virus and anti-V5 antibody revealed that chromatin-
473 RNAs associating with V5-PA extensively distributed to the coding region of a large set of expressed
474 genes (a total of 15299 genes, corresponding to 55% of the examined genes; see example of the OAS
475 genes **Fig 5C**).

476 Quantification further documented that the immunoprecipitated chromatin-bound RNAs were
477 preferentially originating from the most expressed genes, although genes expressed at low levels were
478 also contributing (compare quartiles in **Fig 5D**).

479 We also identified a smaller set of genes (1809 genes) at which V5-PA-bound RNAs were enriched at
480 exonic sequences (**Fig 5E**). This was indicative of an association of PA with pre-mRNAs having
481 undergone full or partial co-transcriptional splicing, and we will refer to these species as “spliced
482 chromatin-RNAs”. Interestingly, this set of genes was enriched in genes up-regulated by the infection

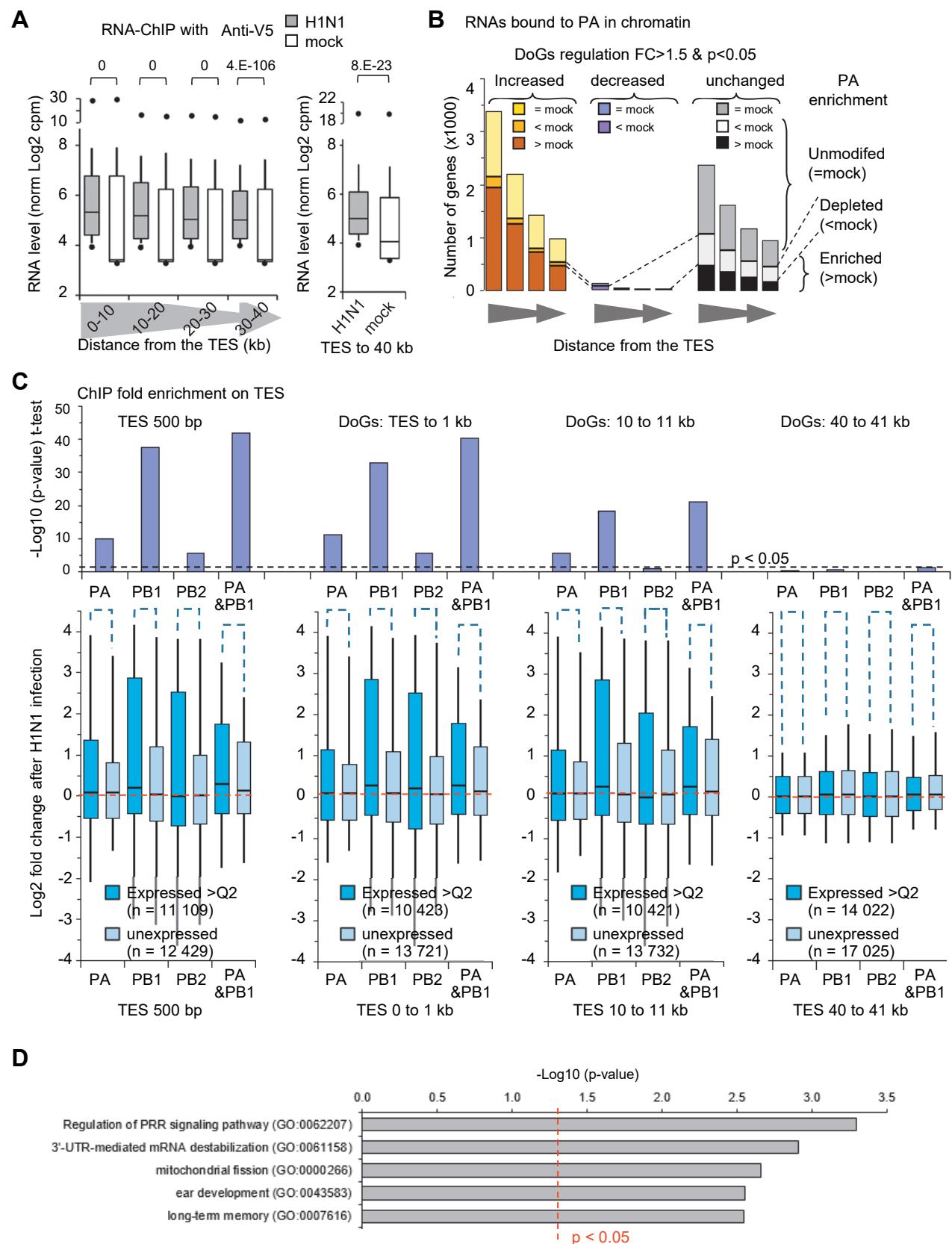
483 (compare yellow segments in all quartiles in **Figs 5E** and **5D**), in a proportion that was greater than
484 among genes displaying chromatin-bound RNAs covering the exons (compare **Fig 5E** to **Fig 1B**). This
485 suggested that the association between FluPol and RNA could not be solely attributed to the higher
486 transcriptional activity of these genes.

487

488 Furthermore, gene ontology analysis on the genes at which PA was binding spliced chromatin-RNAs
489 revealed an enrichment in host-cell defense pathways, consistent with the analysis of all upregulated
490 genes (**Fig 5F**). Yet, we noted that the enrichment scores for Toll-like receptor (TLR) and IFN
491 pathways were improved (**Fig 5F** and compare with **S1C Fig**). Finally, we noted an enrichment of the
492 V5-PA subunit on the transcripts bound to the chromatin matched genes recruiting FluPol at their
493 promoters, as documented by our DNA-ChIP assay, including the *OAS* genes, *DDX58/60*,
494 *IFIT2/3/M1/M2*, and *ISG15/20* genes (**S5 Table**). Together, these observations suggested a degree of
495 specificity in the targeting of FluPol, with a preference for genes upregulated by the infection, rather
496 than genes highly expressed before and after the infection. In particular, we found that the IFN α/γ
497 pathway was a target of FluPol, indicating that the binding of FluPol to nascent and possibly partially
498 mature, mRNAs may play a role in the viral strategy to suppress the host-cell defense mechanisms.

499

500


501 **FluPol is associated with chromatin-bound RNAs originating from gene termination sites and**
502 **downstream regions.**

503

504 We next used the V5-PA RNA ChIP-seq data to examine in more details the association of the FluPol
505 with DoGs. The distribution of RNAs bound to the V5-PA subunit suggested an enrichment at the
506 3'end of genes (TES) and at regions covered by DoGs (**Fig 5C**). This was verified quantitatively by
507 counting reads in the regions extending 40kb downstream of the TES of all genes, in bins of 10 kb
508 (Left panel, **Fig 6A**). When consolidating reads over the entirety of the 40kb-regions, the median
509 density of V5-PA-associated RNAs was 2-fold higher than that observed in the negative control (right
510 panel, **Fig 6A**). Within the set of V5-PA-associated DoGs, the number of upregulated genes was 3- to
511 4-fold higher than the number of unmodified DoGs (compare the brown and black bars in **Fig 6B**),
512 while there were very few, if any, downregulated genes. Importantly, the proportion of increased
513 DoGs in the V5-PA-bound RNA ChIP-seq data were greater than the proportion of increased DoGs in
514 the chromatin RNA-seq data (compare **Fig 6B** with **Fig 2C**), and V5-PA-bound DoGs were greatly
515 enriched at upregulated DoGs (47%-55%) compared to unmodified DoGs (6%-12%) or
516 downregulated DoGs (0-7%) (**Fig 6B**). This strongly suggested that the FluPol may participated in the
517 viral complex involved in the inhibition termination processes and could be an active player in the
518 mechanism causing the production of DoGs in infected cells.

519

Figure 6

522 **Figure 6 : Enrichment of FluPol subunits on chromatin downstream of the 3' ends of genes**
523 **A)** RNA bound to the chromatin of infected A549 cells and immunoprecipitated with the indicated
524 antibodies was analyzed by deep sequencing. For each selected gene, the indicated 10-kb windows
525 from the TES were quantified for their DoGs levels evaluated in Log2(cpm). Data are shown in box
526 plots as in **Fig 2B**. The right panel is the same quantification for all pooled windows..**B)** Counts of V5-
527 PA enriched DoG regions and their differential transcription levels upon infection. Regions were
528 considered enriched in PA (>mock, brown and black) when the average of the ChIP V5-PA signals
529 minus the deviation was greater than twice the level in mock cells. Regions were considered depleted
530 in PA (<mock, orange, purple, white) when the PA signal plus deviation was weaker than twice the
531 signal obtained in mock cells. DoG levels were considered modified for a p-value <0.05 (paired t-test,
532 two-tailed) and a fold change >1.5.. **C)** Fold change in enrichment for categories of the indicated
533 terminal region relative to TES. These were the average differences between log2 cpm from infected
534 and uninfected cells. Statistical analysis was performed on log2 fold change using Student t-test (two-
535 tailed) to compare DoGs regions of unexpressed genes (light blue) and genes expressed above the
536 median (blue). The dashed red line indicates no change. The p-values are shown above the box plots.
537 The dashed line indicates the limit of p-value=0.05. In each case, the number (n) of TSS tested is
538 indicated. PA&PB1 analyses were performed by combining their ChIP-seq signals. **D)** Pathway
539 analysis of 1084 expressed genes (greater than the first quartile) for which the 1 kb windows
540 downstream of the TES were significantly (p<0.05) enriched at least 2-fold for PA+PB1 between
541 infected and control cells. P-values of Gene Ontology (GO) biological process 2021 were evaluated by
542 Enrichr, and the threshold of p<0.05 is indicated by the dotted red line. The first five pathways are
543 shown below.
544

545 To further document the presence of the FluPol in the DoG regions, we mined the DNA ChIP-seq data
546 obtained with the antibodies against FluPol subunits, to quantify enrichment of individual subunits at
547 TESs and at downstream regions. To avoid interference from overlapping, neighboring or converging
548 genes, we selected genes separated from each other by at least 10 kb. PA and PB1 were most
549 efficiently enriched at downstream regions of expressed genes, using silent genes to define the
550 background signal (**Fig 6C**). The recruitment of these FluPol subunits was in average strongest at
551 regions proximal to the TES (compare quantifications at 500bp, 1kb, 10kb and 40 kb away from the
552 TES), suggesting that coding regions and proximal terminal downstream region were preferential sites
553 for FluPol binding to nascent transcripts.

554 Gene ontology analysis on genes at which the FluPol was enriched on the 3' -ends revealed an
555 enrichment in genes involved in cell defenses, in particular in the pathways of the pattern recognition
556 receptors (with *BIRC2*, *GFI*, *ZDHHC5*) and mRNA stabilization (with *MOV10*, *DHX36*) (**Fig 6D, S6**
557 **Table**).

558

559 **Discussion**

560 Examining the chromatin compartment has allowed us to gain clearer appreciation of the extensive
561 impact of IAV infection on the host transcription machinery, altering both gene activity (**Fig. 1C**) and
562 RNAPII distribution (**Fig. 2**). Monitoring of the distribution of the 3 subunits of FluPol on the
563 chromatin of infected cells further suggested that the viral RNA polymerase could be a significant
564 contributor to these alterations.

565
566 This inhibition of gene termination results in a general decrease of the RNAPII at promoters and in
567 gene bodies, and an increase in intergenic regions (**Figs 1D-F, S1D-S1G Figs**).
568 By using the presence of the 3 subunits of the viral RNA polymerase in the chromatin of infected
569 cells, we showed that FluPol is not solely associated with promoters or enhancers where it is thought
570 to snatch the caps of RNAPII-initiated RNAs (**Figs 3, 4**). In fact, our observations suggest that FluPol
571 remains associated with RNAPII during elongation, at transcriptional termination sites and also in
572 downstream regions where RNAPII continues to run in intergenic regions (**Figs 5, 6**). FluPol was not
573 only bound to the DNA of transcriptionally active genes but remains associated with host nascent
574 transcripts (**Figs 5C-E, 6AB**), with a concentration to DoGs. To our knowledge, this is the first time
575 that FluPol has been localized on a large scale across the genome and observed along the gene bodies
576 and beyond. The association with DoGs suggests that FluPol could, in addition to NS1, also participate
577 in the process of transcriptional termination inhibition.
578 Analysis of the regulatory pathways defined by the genes for which FluPol is most strongly enriched
579 indicates that FluPol particularly targets genes of the anti-viral innate response. The participation of
580 FluPol in the inhibition of transcriptional termination particularly on cellular defense genes would add
581 a function of FluPol, in addition to cap-snatching, to participate in the viral escape strategy.
582
583 **FluPol genomic recruitment favors targets involved in cellular defense.**
584 Pioneering approaches to study the "cap snatching" process genome-wide have suggested that FluPol
585 passively takes advantage of the most abundantly expressed genes [5]. Our observations suggest
586 however that the targeting of FluPol may involve a more intricate process that includes some level of
587 gene selectivity not solely dependent on expression levels. In this regard, a significant finding in our
588 study is that FluPol is preferentially recruited to promoters undergoing H3K27 acetylation upon
589 infection. This epigenetic mark serves as an indicator of increased promoter activity, implying that
590 IAV exploits the host's transcription activation machinery for FluPol recruitment. Interestingly, as this
591 recruitment translates into transcriptional repression, the virus achieves a decoupling of the acetylation
592 mark from gene activity. This serves as a remarkable demonstration of viral adaptation. Since the cell
593 is naturally inclined to activate defense genes during an attack, selectively targeting these activated
594 genes provides specificity towards defense-related genes. Consequently, FluPol is consistently found
595 accumulating at TSSs (**Fig 3E, S2C Fig**), gene bodies (**Fig 5F**), TESs (**Fig 6D**) or enhancers (**Fig 4D**),
596 associated with genes enriched in pathways related to the innate immune response.
597 This FluPol selectivity may be attained through interactions with host transcription factors
598 induced by the infection, as for example IRF1 (**Fig 3E**). But FluPol may also target more general
599 component of the transcription machinery, such as co-regulators previously identified by mass-

600 spectrometry [16–19]. Further studies will be needed to fully understand this potential mechanism of
601 FluPol recruitment.

602
603 **Transcriptional changes during viral infection confound the analysis of differential gene**
604 **expression.**

605 It was known the IAV-induced terminal defects allowed the production of “downstream-of-gene”
606 transcripts (DoGs) [11,30]. These DoGs, which extend beyond the poly-A termination signal, are
607 typically transient RNA species and are usually not observed at high levels in standard RNA-seq
608 experiments. However, in the case of IAV-infected cells, the DoGs and the associated pervasive
609 transcription become significantly elevated, posing a challenge for accurate mRNA quantification
610 using RNA-seq data. This challenge lies in the extensively modified distribution of the RNA-seq reads
611 upon infection, a phenomenon known to partially defeat the assessment of differential gene expression
612 by algorithms such as DeSeq2 [38,39]. In fact, the large redistribution of the RNAPII relocalization
613 after the viral infection may also bias the evaluation of RNAPII presence in gene bodies as evaluated
614 by ChIP-seq methods (**S1G fig** and [31]). We therefore confirmed by ChIP-PCR that accumulation of
615 RNAPII is decreased within gene bodies upon IAV infection (**Fig 1E**). Our proposed RNA-seq
616 normalization method, which involved utilizing reference genes with mRNAs possessing a half-life
617 significantly longer than the duration of the infection, and hence assumed to maintain constant levels,
618 unveiled an assessment uncertainty with DeSeq2 for approximately 25% of the genes designated as
619 differentially expressed (**Fig 1C**), with many errors arising from the confusion between gene-specific
620 reads and reads accounting for DoGs originating from upstream genes (**Figs 1D, 1F, S1D Fig**). This
621 highlighted the utmost significance of selecting an appropriate normalization method when studying
622 biological phenomena, such as viral infection by IAV, which not only impacts the expression level of
623 genes, but also disrupts the distribution of RNAs (and RNAPII) across the genome. Lastly, it is worth
624 noting that assessment of chromatin-bound RNAs allowed the observation of many transcriptional
625 changes well-aligned with those obtained with more intricate techniques such as NET-Seq [11].

626
627 **FluPol's chromatin association suggests Cap snatching is not limited to TSSs.**

628 Although we noted a certain inefficiency in ChIP with antibodies directed against the PA, PB1
629 subunits and even worse with the anti-PB2 antibody, the observed enrichment of FluPol on
630 transcriptionally active genes versus silent genes documented the reliability of the data (**Fig 3, 6C**). In
631 addition, the gene-wide distribution of FluPol was further supported by the RNA-ChIP using an anti-
632 V5-tag antibody designed to recognize a V5-tagged variant of PA introduced into the virus (**Figs 5A**
633 **5B**).

634 Interactions between FluPol and the Ser5 phosphorylated form of RNAPII [8–10], as well as
635 interaction with transcriptional coactivators [16–19] and the chromatin reader CHD1 that recognizes

636 the promoter-specific H3K4me3 marks [20] have suggested that the process of cap-snatching was
637 likely to occur when nascent RNAs exit from RNAPII paused at promoters [44]. While our
638 examination of FluPol localization on chromatin did not challenge the recruitment of FluPol at the
639 promoter level, it did cast uncertainty on the necessity of cap-snatching exclusively from polymerases
640 awaiting promoter escape, and significantly expanded the spatial context in which this reaction could
641 take place.

642 PA-associated RNAs are more often found up-regulated and significantly involved in the
643 cellular response when they were exonic RNAs than when considering RNAs spanning the entire gene
644 body (**Figs 5D 5E**). This suggested a potential association of PA with spliced RNAs in addition to the
645 DoGs at the 3'-end of genes. Based on this and on the observations mentioned above, we propose a
646 model where FluPol is recruited to TSSs but remains attached to RNAPII during elongation. As a
647 result of co-transcriptional splicing, the pre-mRNA will undergo a least partial maturation by the time
648 RNAPII and the accompanying FluPol reach the 3' end of the transcribed gene. At the TES,
649 termination inhibition causes transcription to continue beyond the poly-adenylation site, FluPol
650 remaining associated with the elongating complex and the spliced mRNA (**Fig 7**).

651
652
653
654
655
656
657
658
659
660

661 **Figure 7 Working model of the functional association of FluPol with RNAPII**

662 The FluPol is initially recruited at the level of the TSS and PB2 can bind the cap of the nascent RNA.
663 During elongation, FluPol can remain bound to RNAPII either through its interaction with the S5p of
664 the CTD, which remain present throughout the elongation process, through other RNAPII subunits
665 (such as RPB4) or through the binding by the nascent transcript. Splicing of the nascent transcript
666 occurs during elongation, producing intermediate spliced forms that remain associated to FluPol
667 through the RNAPII in elongation. During these steps, potential re-capping through the capping
668 enzyme and methyltransferase (CET) may provide new capped RNA primers for the FluPol. At the 3'
669 end of the genes, FluPol could be involved in the inhibition of termination complex (CPSF is also
670 targeted by NS1) and also in the inhibition of the RNA exosome, thereby promoting the stabilisation
671 of DoGs. The cap-snatching reaction of the nascent RNA by the PA subunit (scissors) could occur at
672 any time during these steps. The nascent RNA remains bound to RNAPII in elongation until the 3'-end
673 region, where RNAPII continues after TES due to termination inhibition. This proposed model could
674 explain why FluPol is enriched at DoGs and exonic RNAs on chromatin.

Figure 7

677 This extended window of opportunity to steal caps may account for the preferential stealing of mRNA
678 caps over those of enhancer RNAs or promoter antisense RNAs (PROMPT or antisense TSS) [22].
679 Indeed, as we have shown the presence of FluPol on enhancers (**Fig 4**), it was conceivable that
680 enhancers, much more numerous than promoters could constitute an important source of capped
681 transcripts to initiate vmRNA transcription. Apparently, this is not the case since eRNAs would
682 represent only 3-5% of these sources compared to more than 70% for protein coding transcripts [22].
683 Similarly, it is surprising to note that although there are as many sites producing PROMPTs as sites
684 producing mRNAs, i.e. promoters, PROMPTs are 12- to 40-fold less used as cap sources than
685 mRNAs. Alternatively, the reduced stability of these eRNA/PROMPTs may reduce their availability
686 for cap-snatching, although we note that inhibiting the RNA exosome to stabilize these transcripts
687 resulted in only a modest 2-fold increase in PROMPT usage, while the usage of eRNA and antisense
688 TSS remained unaffected [22].
689 This suggests that transcript lifetime is not the major cause of mRNA-use as a source of cap by FluPol.
690 This and our results regarding the presence of FluPol along the entire length of transcribed genes and
691 even beyond, leads us to propose the hypothesis that if cap stealing occurs predominantly on mRNAs
692 it is because it does not occur immediately after transcriptional initiation when RNAPII is paused at
693 the promoter (otherwise the proportion of cap source between antisense and sense transcripts would be
694 equivalent). The ability of FluPol to remain attached to the elongating RNAPII gives it the opportunity
695 to act on the cap after transcriptional initiation, at the time, when steric hindrance between the
696 transcriptional complex and the nascent RNA could be reduced. Such cap-snatching taking place at
697 any stage of pre-mRNA transcription would align with the observation that cap-snatching occurs co-
698 transcriptionally [22].
699 It is noteworthy that capping enzymes maintain their association with the RNAPII CTD during
700 transcript elongation and even beyond the site of polyadenylation [24]. Additionally, the capping
701 activity is not confined to promoters [45]. Thus, by remaining associated with the elongating RNAPII,
702 FluPol may be offered multiple opportunities for cap-snatching since nascent transcripts can be
703 theoretically recapped during elongation [46].
704 The interaction with pS5-RNAPII would then primarily facilitate FluPol's entry onto the genes. It is
705 also noteworthy that pS5-RNAPII does not disappear during elongation since this phosphorylation
706 correlates with cotranscriptional splicing process [47]. In addition, other interactions with the
707 transcription machinery, including RBP4 [48] would be required for the prolonged residence of FluPol
708 on the transcribing gene and the improved probability of cap-snatching.
709
710

711 **FluPol's association with the elongating RNAPII may help the virus evade cellular defense.**

712 A FluPol-RNAPII association spanning from transcription start to termination may provide the virus
713 with multiple advantages. Firstly, it may improve access to host mRNA maturation end export factors,
714 possibly facilitating the splicing of genomic segments 1, 7 and 8 (which are partially spliced to
715 generate PB2-S1, M2, M42, NS3 and NS2 viral proteins), for terminal cleavage and polyadenylation
716 [49] and for nuclear export [1,50]. Next, it may allow concentrating the virus-induced transcription
717 termination defect on the genes involved in cellular defense. Indeed, the presence of FluPol on
718 termination and downstream regions (**Fig. 5F, 6C**) and its association with DoGs (**Fig. 6A**) strongly
719 suggest that FluPol participates in the inhibition of termination. Thus, a sustained association of FluPol
720 with RNAPII may allow combining the selective recruitment of FluPol with termination defects,
721 thereby impeding the expression of genes activated by the viral attack. We note also that an
722 implication of both FluPol and NS1 in impairing RNAPII termination may explain why termination
723 defects that are still observed in IAV mutants lacking NS1 expression [11].

724

725 Reducing the pool of RNAPIIs available for transcription re-initiate at defense genes may,
726 however, not be the sole benefit of DoGs. Because the intergenic regions crossed by DoGs are rich in
727 repeated sequences (SINE, LINE, LTR), transcription beyond gene boundaries will result in the
728 production of RNA species prone to fold into double-stranded structures and potentially recognized by
729 intracellular PRRs [51]. The robust increase in DoG accumulation during viral infection, along with
730 the transcriptional repression of genes related to the PRR pathway, may therefore result in the
731 saturation of the double-stranded RNA detection system. In that context, we have recently shown
732 DOG accumulation is also observed in association with cellular senescence, along with accumulation
733 of promoter RNAs [52]. In this case, this accumulation of intergenic transcripts appeared to be a
734 consequence of their reduced degradation rather than their increased production, with a clearly
735 reduced expression of one or more subunits of the RNA exosome. This latter complex, involved in the
736 degradation of a large range of RNA species, has been reported to associate with FluPol for the benefit
737 of viral multiplication [22]. This positive effect may in part be mediated by an inhibitory effect of
738 FluPol on the activity of RNA exosome. Collectively, these different processes may facilitate the
739 establishment of an optimal environment for viral activities, including the formation of cellular:viral
740 RNA hybrids that are indispensable for unhindered viral transcription.

741

742

743 **Material and Methods**

744 **H1N1 virus construction and preparation**

745 This study uses Influenza virus A/WSN/1933 (H1N1). Wild-type and V5-tagged PA versions of the
746 viruses were generated by reverse genetics using the 12-plasmid reverse genetics system as described
747 previously [53]. The V5-epitope (amino acid sequence NH2-GKPIPPLLGLDST) nucleotide
748 sequence was fused in frame at the 3' end of the PA gene through a three glycine-long linker. To
749 generate the PA-V5 plasmid used for virus rescue, a silent Nco1 restriction site was first introduced at
750 nucleotide position 2116-2121 to allow introduction of exogenous sequences in this PA 3' domain. To
751 preserve the PA viral incorporation signal, the PA-V5 encoding sequence was followed by a stop
752 codon and the last 116 3'-nucleotides of the PA segment.

753 **Cell culture, H1N1 infection**

754 A549 cells (CCL-185) were purchased from ATCC. Cells were maintained in Dulbecco's modified
755 Eagle's medium (Gibco) supplemented with 7% (v/v) fetal bovine serum (Thermo Scientific) and 100
756 U/ml penicillin-streptomycin (Gibco). A549 pellet of cells, infected (MOI=5, h.p.i=6h) with V5-tag-
757 PA (virusV5) or normal virus WSN H1N1. Cells have been not fixed or fixed by 0.5%, 1%, 2%
758 formaldehyde in PBS solution during 10 min at room temperature prior to harvest. Cells were pelleted
759 and frozen at -80°C prior performing the extracts.

760 **Antibodies :**

761 Antibodies were purchased from Diagenode for H3K27ac (C15410196) ; H3K4me1 (C15410037)
762 from Abcam for RNAPII (8WG16) , RNAPII pS5 (ab5131) for Western blot, RNAPII pS5 (CTD
763 4H8) for ChIP, histone H3 (Ab1791), from ThermoFisher for PA (PA5-31315), PB1 (PA5-34914) and
764 PB2 (PA5-32220); from Bethyl for anti-V5 epitope (A190-120A).

765 **Chromatin immunoprecipitation (ChIP and RNA-ChIP) and RNA-chromatin
766 extraction**

767 ChIP assays were performed as previously described [54,55]. Cells were crosslinked during 10 min at
768 room temperature in PBS with 1% (v/v) formaldehyde, followed by a 5 min wash in PBS containing
769 125 mM Glycine before harvest. Resuspended cells (10-20E6 in 1.5 mL µtube) were incubated on ice
770 5 min in 1 mL of chilled buffer A (0.25% TRITON, 10 mM TRIS pH8, 10 mM EDTA, 0.5 mM
771 EGTA), 30 min in 1 mL of buffer B (250 mM NaCl, 50 mM TRIS pH8, 1 mM EDTA, 0.5 mM
772 EGTA), and then resuspended in 100 to 200 µL of buffer C (1% SDS, 10 mM TRIS pH8, 1 mM
773 EDTA, 0.5 mM EGTA) at room temperature. All buffers were extemporaneously supplemented by 0.5
774 U/µL RNAsin (Promega), Complete protease and PhosSTOP phosphatase inhibitors (Roche). Cell
775 suspensions in 0.6 mL µtube were sonicated in water bath at 4°C during 12 min (15 sec. ON, 15 sec.
776 OFF) with a Bioruptor apparatus (Diagenode) setted on high power and then clarified by 10 min

777 centrifugation at 10 000 rpm, 4°C. Shearing of the DNA was checked after reversing the crosslinking
778 on agarose gel electrophoresis to be around 300-500 bp. Sheared chromatin was quantified by optical
779 density (260 nm) and diluted 10-fold in IP buffer to final concentrations: 1% TRITON, 0.1%
780 NaDeoxycholate, 0.1% SDS, 150 mM NaCl, 10 mM TRIS pH8, 1 mM EDTA, 0.5 mM EGTA, 1
781 U/μL RNasin, 1X protease and pshotase inhibitors). For ChIP-PCR assays 30 μg of chromatin and 2
782 μg of antibodies, in a final volume of 500 μL, were incubated at 4°C for 16 h on a wheel. For ChIP-
783 seq or RNA-ChIP-seq assays, 200 μg of chromatin was incubated with 10 μg of antibodies in a final
784 volume of 2 mL. 20 μL of saturated magnetic beads coupled to protein G (Dynabeads) per μg of
785 antibody were used to recover the immuno-complexes. After 2 h of incubation the bound complexes
786 were washed extensively 10 min at room temperature on a wheel in the following wash buffers: WBI
787 (1% TRITON, 0.1% NaDOC, 150 mM NaCl, 10 mM TRIS pH8), WBII (1% TRITON, 1% NaDOC,
788 150 mM KCl, 10 mM TRIS pH8), WBIII (0.5% TRITON, 0.1% NaDOC, 250 mM NaCl, 10 mM
789 TRIS pH8), WBIV (0.5% Igepal CA630 (Sigma), 0.5% NaDOC, 250 mM LiCl, 10 mM TRIS pH8, 1
790 mM EDTA), WBV (0.1% Igepal, 150 mM NaCl, 20 mM TRIS pH8, 1 mM EDTA), WBVI (0.001%
791 Igepal, 10 mM TRIS pH8). 20 μg of sheared chromatin used as input and ChIP beads were then boiled
792 10 min in 100 μL H2O containing 10% (V/W) chelex resin (BioRad), followed by Proteinase K (0.2
793 mg/mL)-digestion for 30 min at 55°C, and then finally incubated 10 min at 100°C. 0.5 μL was used
794 for quantitative real-time PCR assays. For RNA-chromatin extraction, supernatant from the sonicated
795 step were purified by acidic phenol/chloroform method and ethanol-precipitation with 5 μg of
796 Glycoblue (Ambion) as carrier. After resuspension these input, as well as the eluate from RNA-ChIP
797 were treated by 5 U of TURBO-DNase (Ambion) 1 h a 37°C prior purification by acidic
798 phenol/chloroform method and ethanol-precipitation with 5 μg of Glycoblue (Ambion) as carrier.
799 These samples were then checked for the absence of DNA contamination by qPCR with 1 μL of eluate
800 and primers targeting genomic repetitive elements. Another round of DNase digestion and
801 purification was performed in case of qPCR signal < 35 Ct.

802 **Library preparation and high throughput sequencing:**

803 1 to 5 nanograms of immunoprecipitated DNA were used to build DNA libraries. Libraries were
804 prepared following the instruction from NEBNext® Ultra™ II DNA Library Prep Kit for Illumina®
805 (NEB #E7645L) and indexes (NEB #7335S; #E7500S; #E7710S). No sized selections were applied.
806 The quality and size of the libraries were assessed using the 2100 Bioanalyzer (Agilent). The amount
807 of the DNA used for library preparation and the amount of DNA libraries were measured using Qubit
808 (Invitrogen). Indexed libraries were pooled according to the Illumina calculator
809 (<https://support.illumina.com/help/pooling-calculator/pooling-calculator.htm>) and deep sequenced by
810 the Illumina platform provided by Novogene (HiSeq-SE50). RNA from V5 ChIP in non-infected
811 (mock) cells in triplicate were pooled to ensure sufficient material equivalent to individual V5-PA
812 ChIP in infected cells. Libraries from ChIPed RNA and input chromatin-RNA were performed by the

813 GenomEast platform, a member of the 'France Genomique' consortium (ANR-10-INBS-0009)
814 (IGBMC, Illkirch, France). RNA-Seq libraries were generated from 100 to 300 ng of RNA using
815 TruSeq Stranded Total RNA Library Prep Gold kit and TruSeq RNA Single Indexes kits A and B
816 (Illumina, San Diego, CA), according to manufacturer's instructions. Briefly, ribosomal RNA was
817 removed by Ribo-Zero beads. After chemical fragmentation depleted RNA were reverse-transcribed
818 with random primers. After second strand synthesis by DNA Polymerase I and RNase H and blunting,
819 the cDNA were ligated to adapters and amplified by PCR for 12 cycles. Residual primers were
820 removed by AMPure XP beads and the libraries were sequenced on Illumina Hiseq 4000 sequencer as
821 Paired-End 100 base reads. Image analysis and base calling were performed using RTA 2.7.7 and
822 bcl2fastq 2.17.1.14.

823 **Data availability**

824 ChIP-seq, RNA-ChIP-seq, RNA-seq data have been deposited in the NCBI Gene Expression Omnibus
825 database under GEO accession number GSE218084: (access for reviewer: token ojmbsoigbtgrlyl into the
826 box).

827 **Protein extraction for immunoprecipitation.**

828 Pellet of frozen cells corresponding to 10E6 cells were thawed in ice and resuspended in 500 µL of
829 Buffer A with protease inhibitors (Roche). 150 µL of suspension were supplemented with 180 µL of
830 buffer B and sonicated 5 min at 4°C by BioRuptor (high power, 15 sec. ON / 15 sec. OFF). Clarified
831 supernatants were quantified by DO (260 nm). 20 µg of protein extract were incubated with 1 µg of
832 indicated antibodies during 16 h at 4°C on a wheel and then 2 h with 30 µL of anti-rabbit Dynabeads.
833 Beads were washed 5 times in wash buffer WBV, resuspended in laemmli buffer with 100 mM DTT
834 and boiled 20 min and supernatant was analyzed by western blot.

835 **Western blot.**

836 Denatured proteins were resolved by SDS-PAGE (4–12% Criterion XT Bis-Tris Protein Gel; Bio-
837 Rad), and transferred to nitrocellulose membrane (Bio-Rad). Blocked membrane were incubated with
838 1/1000 diluted first antibody as indicated in figures in PBS with 0.1% Tween-20 and 5% (V/W) non-
839 fat milk, washed 10 min 3 times in PBS-tween(0.1%), incubated 1 h at room temperature with 1/3000
840 anti-Mouse StarBright blue700 (BioRad) or 1/2000True blot HRP anti-rabbit antibodies. After 4x10
841 min washes in PBS-tween(0.1%), the membranes were revealed by chemiluminescence (for
842 HRP), and quantified using Chemidoc MP imaging system (Bio-Rad).

843 **Real-time quantitative PCR:**

844 1 µL of ChIP eluate was used for quantitative real-time PCR (qPCR) in 10 µL reactions with Brilliant
845 III Ultra Fast SYBR-Green Mix (Agilent) using a Stratagene MX3005p system. The analysis of qPCR

846 was performed using the MxPro software. The sequences of primers used for PCR are in **S7 Table**.
847 Statistical analysis and graphs were produced with Microsoft Excel.

848 **Bioinformatic analysis**

849 The human genome of reference considered for this study was hg19 homo sapiens primary assembly
850 from Ensembl. After reads alignment, the SAM files were then converted to BAM files and sorted by
851 coordinate and indexed using samtools (v1.7) [56]. For ChIP-seq data from this study, from those in
852 MDM cells (GSE103477) (Heinz et al. 2018), or from A549 H3K4me3 ENCODE track (GSE91218),
853 reads were mapped to hg19 using bowtie2 (v2.3.4) [57] (parameters: -N 0 -k 1 –very-sensitive-local).
854 We then selected reads with a MAPQ equal or higher than 30 corresponding to uniquely mapped reads
855 for further analysis. After indexing, MACS2 (v.2.1.1) [58] was used to call peaks (parameters: -p
856 0.05). For RNA-chromatin and RNA-ChIP-seq data, mapping was carried out with STAR (v2.6.0b)
857 [59] (parameters: --outFilterMismatchNmax 1 --outSAMmultNmax 1 --outMultimapperOrder
858 Random --outFilterMultimapNmax 30). Data observations were performed with the Integrative
859 Genomics Viewer software [60] using the CPM normalized BigWig files produced from the BAM
860 files by DeepTools suite (parameter: --normalizeUsing CPM) [61].
861 Evaluation of gene expression from chromatin-RNA (our study) was performed by using
862 featureCounts (v1.28.1) [62] from the Rsubread package (parameter: -s 2). These read counts were
863 analysed using the DESeq2 [63] package in order to test for the differential gene expression (DGE).
864 The normalization, the dispersion estimation and the statistical analysis were performed with DESeq2
865 using the default parameters. Raw *P*-values were adjusted for multiple testing according to the
866 Benjamini and Hochberg (BH) procedure and genes with an adjusted *P*-value lower than 0.05 and a
867 fold change greater than 50% were considered differentially expressed. The raw count from
868 featureCount were also used to produce normalized gene levels using reference genes as follow :
869 counts covering mRNAs were converted in rpkm by considering the library total count of each sample
870 and the length of each gene as defined in Ensembl. The average level of genes with half-life greater
871 than 15 h as defined in [37] and that were more expressed than 75% of all expressed genes
872 (corresponding 417 genes with level higher than 300 rpkm for chromatin-RNA) was used to calculate
873 a corrective index applied on the gene levels in infected cells. The maximum mRNA level between
874 mock and infected cells were used to draw the MA-plot (**S1B Fig**). Genes with a *P*-value from a
875 paired t test (n=3) lower than 0.05 and a fold change greater than 50% were considered differentially
876 expressed.

877 Signal evaluation of ChIP-seq, RNA-ChIPseq and RNA-seq on defined windows were performed as
878 followed. Multiple regions based on the Ensembl annotations (hg19, version 87) were generated
879 using the bedtools suite (v2.27.1) [64], 500 bp around the center of the intron that is closest to the
880 center of the gene, 500 bp around the TSS, 500 bp around the TES, from TES to 1 kb downstream
881 gene, from TES to 10 kb downstream gene and 40 kb to 41 kb downstream gene. In the case of the

882 downstream region of genes, only regions retained were those not overlapping and distant by at least
883 10 kb with any other gene from the TES to the end of the counting region. For TSS regions,
884 windows retained were those distant by at least 10 kb from both extremities of other genes.
885 Consecutive 10 kb windows were generated after TES of genes with a maximum of 40 kb as long as
886 there was no overlap with downstream genes oriented in the same direction. All previously generated
887 counting tracks were converted to the SAF format and then used as annotation file in featureCounts
888 (v1.6.1) (parameter: -s 2 for RNA-ChIP-seq or -s 0 for ChIP-seq). Regions were considered
889 differentially enriched between infected and mock cells as indicated in each figure.
890 To assess H3K27ac signal at enhancers potential locations in ChIP-seq of infected cells, we have
891 firstly excluded H3K27ac peaks from 10 kb windows around promoters regions defined by A549
892 H3K4me3 peaks from ENCODE (GSE91218) by using bedtools intersect (v2.27.1). All retained
893 H3K27ac peaks and successive regions of 1kb around the retained H3K27ac peaks were designed (up
894 to 4kb maximum) and used as counting tracks for featureCounts (v1.6.1) (default parameters for
895 paired-end data). Statistical analysis and graphs were produced with Microsoft Excel.
896 Pathway analysis with gene name were performed with Enrichr [65]. To assess Pathway analysis of
897 genes near enhancers, the proximal five genes in the regions extending 500 kbp downstream and the
898 proximal five genes in the regions extending 500 kbp upstream from the H3K27ac peaks were selected
899 as described in the text. The H3K27ac content of loci were evaluated by normalizing the H3K27ac
900 ChIP signal to the H3 ChIP signal. Genes without any reads covering the exons were not considered.
901 Gene lists were then submitted to the Enrichr website (<https://maayanlab.cloud/Enrichr/>).

902 Acknowledgments

903 We are grateful to our colleagues C. Rachez for helpful discussions, Catherine Bodin for technical
904 assistance and Edith Ollivier, Aurelie Prats, Johanne deMarchi for administrative assistance and
905 Jeanne Le Peillet (Beink) for graphic advises.

906 Author Contributions

907 Conceptualization:.EB, CM
908 Funding acquisition:.BD, CM, EB
909 Investigation:. EB, JY, MC, NL, JM
910 Project administration: EB
911 Writing – original draft: EB

912 FUNDING

913 The Centre National de Recherche Scientifique (CNRS; E.B. and C.M.). Agence Nationale de la
914 Recherche [ANR-11-BSV8-0013]; REVIVE-Investissement d’Avenir (to J.Y., C.M.). C.M. and B.D.
915 acknowledge support of the ANR-17-CE18-0006-01. Funding for open access charge: CNRS recurrent
916 funding; J.Y. is part of the Pasteur - Paris University (PPU) International PhD Program; European
917 Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie
918 [665807].

919 Conflict of interest statement. None declared.

920 **References**

- 921 1. Amorim M-J, Read EK, Dalton RM, Medcalf L, Digard P. Nuclear export of influenza A virus
922 mRNAs requires ongoing RNA polymerase II activity. *Traffic Cph Den.* 2007;8:1–11.
- 923 2. Plotch SJ, Bouloy M, Krug RM. Transfer of 5'-terminal cap of globin mRNA to influenza viral
924 complementary RNA during transcription in vitro. *Proc Natl Acad Sci U S A.* 1979;76:1618–22.
- 925 3. Dias A, Bouvier D, Crépin T, McCarthy AA, Hart DJ, Baudin F, et al. The cap-snatching
926 endonuclease of influenza virus polymerase resides in the PA subunit. *Nature.* 2009;458:914–8.
- 927 4. Reich S, Guilligay D, Pflug A, Malet H, Berger I, Crépin T, et al. Structural insight into cap-
928 snatching and RNA synthesis by influenza polymerase. *Nature.* 2014;516:361–6.
- 929 5. Sikora D, Rocheleau L, Brown EG, Pelchat M. Deep sequencing reveals the eight facets of the
930 influenza A/HongKong/1/1968 (H3N2) virus cap-snatching process. *Sci Rep.* 2014;4:6181.
- 931 6. Koppstein D, Ashour J, Bartel DP. Sequencing the cap-snatching repertoire of H1N1 influenza
932 provides insight into the mechanism of viral transcription initiation. *Nucleic Acids Res.*
933 2015;43:5052–64.
- 934 7. Whelan M, Pelchat M. Role of RNA Polymerase II Promoter-Proximal Pausing in Viral
935 Transcription. *Viruses.* 2022;14:2029.
- 936 8. Engelhardt OG, Smith M, Fodor E. Association of the Influenza A Virus RNA-Dependent RNA
937 Polymerase with Cellular RNA Polymerase II. *J Virol.* 2005;79:5812–8.
- 938 9. Martínez-Alonso M, Hengrung N, Fodor E. RNA-Free and Ribonucleoprotein-Associated Influenza
939 Virus Polymerases Directly Bind the Serine-5-Phosphorylated Carboxyl-Terminal Domain of Host
940 RNA Polymerase II. *J Virol.* 2016;90:6014–21.
- 941 10. Lukarska M, Fournier G, Pflug A, Resa-Infante P, Reich S, Naffakh N, et al. Structural basis of an
942 essential interaction between influenza polymerase and Pol II CTD. *Nature.* 2017;541:117–21.
- 943 11. Bauer DLV, Tellier M, Martínez-Alonso M, Nojima T, Proudfoot NJ, Murphy S, et al. Influenza
944 Virus Mounts a Two-Pronged Attack on Host RNA Polymerase II Transcription. *Cell Rep.*
945 2018;23:2119–2129.e3.
- 946 12. Boehm AK, Saunders A, Werner J, Lis JT. Transcription factor and polymerase recruitment,
947 modification, and movement on dhsp70 in vivo in the minutes following heat shock. *Mol Cell Biol.*
948 2003;23:7628–37.
- 949 13. Ho CK, Shuman S. Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and
950 allosteric activation of mammalian mRNA capping enzyme. *Mol Cell.* 1999;3:405–11.
- 951 14. Komarnitsky P, Cho EJ, Buratowski S. Different phosphorylated forms of RNA polymerase II and
952 associated mRNA processing factors during transcription. *Genes Dev.* 2000;14:2452–60.
- 953 15. Rambout X, Maquat LE. The nuclear cap-binding complex as choreographer of gene transcription
954 and pre-mRNA processing. *Genes Dev.* 2020;34:1113–27.
- 955 16. Jorba N, Juarez S, Torreira E, Gastaminza P, Zamarreño N, Albar JP, et al. Analysis of the
956 interaction of influenza virus polymerase complex with human cell factors. *PROTEOMICS.*
957 2008;8:2077–88.

958 17. Watanabe T, Kawakami E, Shoemaker JE, Lopes TJS, Matsuoka Y, Tomita Y, et al. Influenza
959 Virus-Host Interactome Screen as a Platform for Antiviral Drug Development. *Cell Host Microbe*.
960 2014;16:795–805.

961 18. Heaton NS, Moshkina N, Fenouil R, Gardner TJ, Aguirre S, Shah PS, et al. Targeting Viral
962 Proteostasis Limits Influenza Virus, HIV, and Dengue Virus Infection. *Immunity*. 2016;44:46–58.

963 19. Krischuns T, Lukarska M, Naffakh N, Cusack S. Influenza Virus RNA-Dependent RNA
964 Polymerase and the Host Transcriptional Apparatus. *Annu Rev Biochem*. 2021;90:321–48.

965 20. Marcos-Villar L, Pazo A, Nieto A. Influenza Virus and Chromatin: Role of the CHD1 Chromatin
966 Remodeler in the Virus Life Cycle. *J Virol*. 2016;90:3694–707.

967 21. Park D, Shivram H, Iyer VR. Chd1 co-localizes with early transcription elongation factors
968 independently of H3K36 methylation and releases stalled RNA polymerase II at introns.
969 *Epigenetics Chromatin*. 2014;7:32.

970 22. Rialdi A, Hultquist J, Jimenez-Morales D, Peralta Z, Campisi L, Fenouil R, et al. The RNA
971 Exosome Syncs IAV-RNAPII Transcription to Promote Viral Ribogenesis and Infectivity. *Cell*.
972 2017;169:679–692.e14.

973 23. Gu W, Gallagher GR, Dai W, Liu P, Li R, Trombly MI, et al. Influenza A virus preferentially
974 snatches noncoding RNA caps. *RNA*. 2015;21:2067–75.

975 24. Glover-Cutter K, Kim S, Espinosa J, Bentley DL. RNA polymerase II pauses and associates with
976 pre-mRNA processing factors at both ends of genes. *Nat Struct Mol Biol*. 2008;15:71–8.

977 25. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, et al. RNA Maps Reveal
978 New RNA Classes and a Possible Function for Pervasive Transcription. *Science*. 2007;316:1484–8.

979 26. ENCODE P, Affymetrix, Cold Spring Harbor Laboratory. Post-transcriptional processing generates
980 a diversity of 5'-modified long and short RNAs. *Nature*. 2009;457:1028–32.

981 27. ENCODE Project Consortium, Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, et al. An
982 integrated encyclopedia of DNA elements in the human genome. *Nature*. 2012;489:57–74.

983 28. Shen Y, Yue F, McCleary DF, Ye Z, Edsall L, Kuan S, et al. A map of the cis-regulatory
984 sequences in the mouse genome. *Nature*. 2012;488:116–20.

985 29. Zhu J, Adli M, Zou JY, Verstappen G, Coyne M, Zhang X, et al. Genome-wide chromatin state
986 transitions associated with developmental and environmental cues. *Cell*. 2013;152:642–54.

987 30. Zhao N, Sebastian V, Moshkina N, Mena N, Hultquist J, Jimenez-Morales D, et al. Influenza
988 virus infection causes global RNAPII termination defects. *Nat Struct Mol Biol*. 2018;25:885–93.

989 31. Heinz S, Texari L, Hayes MGB, Urbanowski M, Chang MW, Givarkes N, et al. Transcription
990 Elongation Can Affect Genome 3D Structure. *Cell*. 2018;174:1522–1536.e22.

991 32. Vilborg A, Passarelli MC, Yario TA, Tycowski KT, Steitz JA. Widespread Inducible Transcription
992 Downstream of Human Genes. *Mol Cell*. 2015;59:449–61.

993 33. Vilborg A, Steitz JA. Readthrough transcription: How are DoGs made and what do they do? *RNA*
994 *Biol*. 2017;14:632–6.

995 34. Chung M, Cho SY, Lee YS. Construction of a Transcriptome-Driven Network at the Early Stage
996 of Infection with Influenza A H1N1 in Human Lung Alveolar Epithelial Cells. *Biomol Ther.*
997 2018;26:290–7.

998 35. Wang C, Forst CV, Chou T, Geber A, Wang M, Hamou W, et al. Cell-to-Cell Variation in
999 Defective Virus Expression and Effects on Host Responses during Influenza Virus Infection. *mBio*
1000 [Internet]. 2020 [cited 2020 Feb 18];11. Available from: <https://mbio.asm.org/content/11/1/e02880-19>

1002 36. Zhou B, Li J, Liang X, Yang Z, Jiang Z. Transcriptome profiling of influenza A virus-infected
1003 lung epithelial (A549) cells with lariciresinol-4- β -D-glucopyranoside treatment. *PLOS ONE*.
1004 2017;12:e0173058.

1005 37. Tani H, Mizutani R, Salam KA, Tano K, Ijiri K, Wakamatsu A, et al. Genome-wide determination
1006 of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. *Genome Res.*
1007 2012;22:947–56.

1008 38. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential
1009 expression analysis of digital gene expression data. *Bioinformatics*. 2010;26:139–40.

1010 39. Tarazona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A. Differential expression in RNA-seq:
1011 A matter of depth. *Genome Res.* 2011;21:2213–23.

1012 40. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et al. A survey
1013 of best practices for RNA-seq data analysis. *Genome Biol.* 2016;17:13.

1014 41. Kolev NG, Steitz JA. Symplekin and multiple other polyadenylation factors participate in 3'-end
1015 maturation of histone mRNAs. *Genes Dev.* 2005;19:2583–92.

1016 42. Wang L, Zhang N, Han D, Su P, Chen B, Zhao W, et al. MTDH Promotes Intestinal Inflammation
1017 by Positively Regulating TLR Signalling. *J Crohns Colitis.* 2021;15:2103–17.

1018 43. Aizawa S, Fujiwara Y, Contu VR, Hase K, Takahashi M, Kikuchi H, et al. Lysosomal putative
1019 RNA transporter SIDT2 mediates direct uptake of RNA by lysosomes. *Autophagy*. 2016;12:565–
1020 78.

1021 44. Walker AP, Fodor E. Interplay between Influenza Virus and the Host RNA Polymerase II
1022 Transcriptional Machinery. *Trends Microbiol.* 2019;27:398–407.

1023 45. Carninci P. RNA Dust: Where are the Genes? *DNA Res.* 2010;17:51–9.

1024 46. Borden K, Culjkovic-Kraljacic B, Cowling V. To cap it all off, again: dynamic capping and
1025 recapping of coding and non-coding RNAs to control transcript fate and biological activity. *Cell
1026 Cycle.* 2021;20:1347–60.

1027 47. Nojima T, Gomes T, Carmo-Fonseca M, Proudfoot NJ. Mammalian NET-seq analysis defines
1028 nascent RNA profiles and associated RNA processing genome-wide. *Nat Protoc.* 2016;11:413–28.

1029 48. Morel J, Sedano L, Lejal N, Da Costa B, Batsché E, Muchardt C, et al. The Influenza Virus RNA-
1030 Polymerase and the Host RNA-Polymerase II: RPB4 Is Targeted by a PB2 Domain That Is
1031 Involved in Viral Transcription. *Viruses.* 2022;14:518.

1032 49. Fodor E, Mikulasova A, Mingay LJ, Poon LLM, Brownlee GG. Messenger RNAs that are not
1033 synthesized by RNA polymerase II can be 3' end cleaved and polyadenylated. *EMBO Rep.*
1034 2000;1:513–8.

1035 50. Ferhadian D, Contrant M, Printz-Schweigert A, Smyth RP, Paillart J-C, Marquet R. Structural and
1036 Functional Motifs in Influenza Virus RNAs. *Front Microbiol.* 2018;9:559.

1037 51. Chow KT, Gale M, Loo Y-M. RIG-I and Other RNA Sensors in Antiviral Immunity. *Annu Rev*
1038 *Immunol.* 2018;36:667–94.

1039 52. Mullani N, Porozhan Y, Mangelinck A, Rachez C, Costallat M, Batsché E, et al. Reduced RNA
1040 turnover as a driver of cellular senescence. *Life Sci Alliance.* 2021;4:e202000809.

1041 53. Da Costa B, Sausset A, Munier S, Ghounaris A, Naffakh N, Le Goffic R, et al. Temperature-
1042 Sensitive Mutants in the Influenza A Virus RNA Polymerase: Alterations in the PA Linker Reduce
1043 Nuclear Targeting of the PB1-PA Dimer and Result in Viral Attenuation. *J Virol.* 2015;89:6376–
1044 90.

1045 54. Ameyar-Zazoua M, Rachez C, Souidi M, Robin P, Fritsch L, Young R, et al. Argonaute proteins
1046 couple chromatin silencing to alternative splicing. *Nat Struct Mol Biol.* 2012;19:998–1004.

1047 55. Mauger O, Klinck R, Chabot B, Muchardt C, Allemand E, Batsché E. Alternative splicing
1048 regulates the expression of G9A and SUV39H2 methyltransferases, and dramatically changes
1049 SUV39H2 functions. *Nucleic Acids Res.* 2015;43:1869–82.

1050 56. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of
1051 SAMtools and BCFtools. *GigaScience.* 2021;10:giab008.

1052 57. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat Methods.* 2012;9:357–
1053 9.

1054 58. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis
1055 of ChIP-Seq (MACS). *Genome Biol.* 2008;9:R137.

1056 59. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal
1057 RNA-seq aligner. *Bioinforma Oxf Engl.* 2013;29:15–21.

1058 60. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative
1059 genomics viewer. *Nat Biotechnol.* 2011;29:24–6.

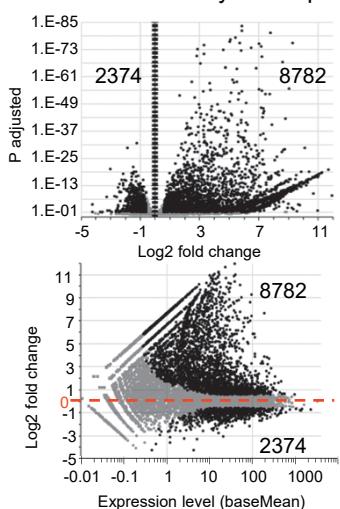
1060 61. Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, et al. deepTools2: a next
1061 generation web server for deep-sequencing data analysis. *Nucleic Acids Res.* 2016;44:W160–165.

1062 62. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning
1063 sequence reads to genomic features. *Bioinforma Oxf Engl.* 2014;30:923–30.

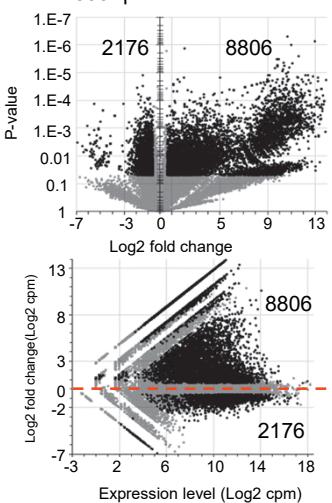
1064 63. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq
1065 data with DESeq2. *Genome Biol.* 2014;15:550.

1066 64. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features.
1067 *Bioinforma Oxf Engl.* 2010;26:841–2.

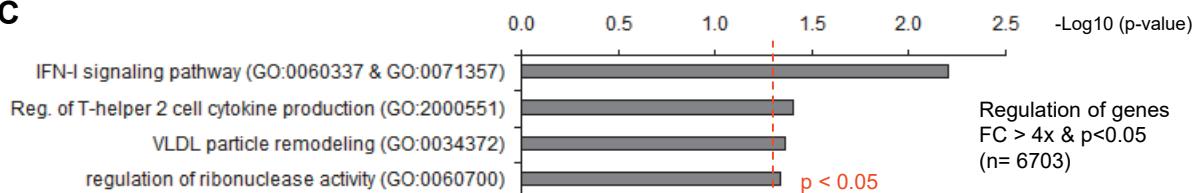
1068 65. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a
1069 comprehensive gene set enrichment analysis web server 2016 update. *Nucleic Acids Res.*
1070 2016;44:W90–97.

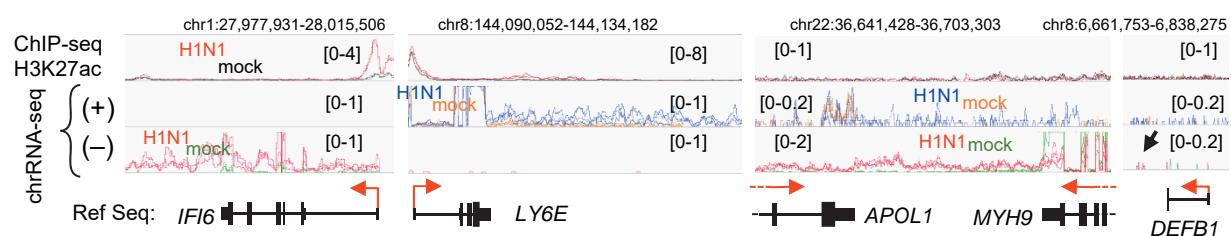

1071

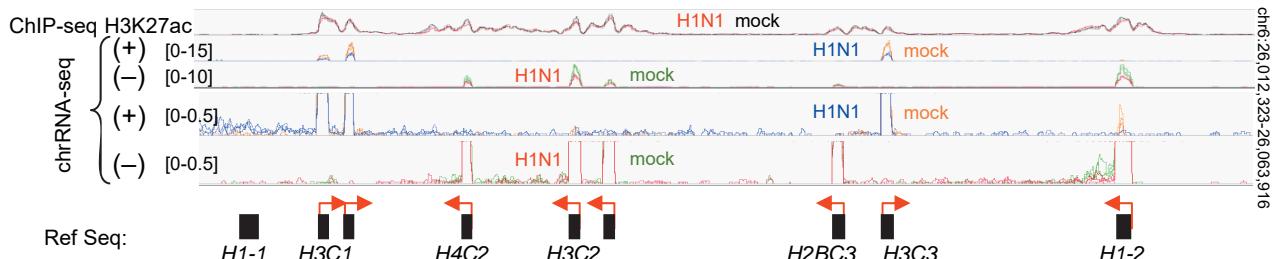
1072 [Supplementary informations](#)

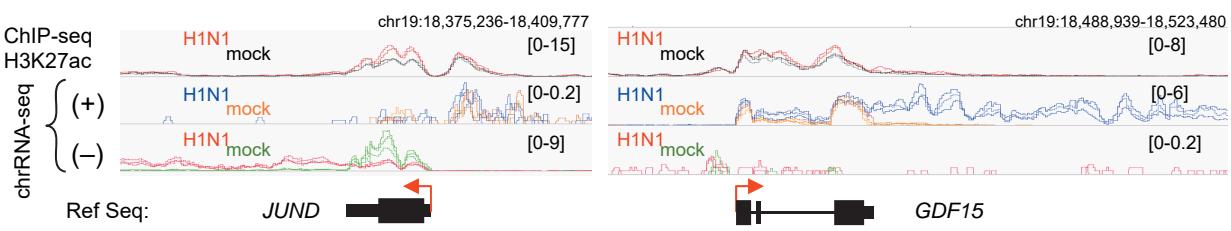

1073

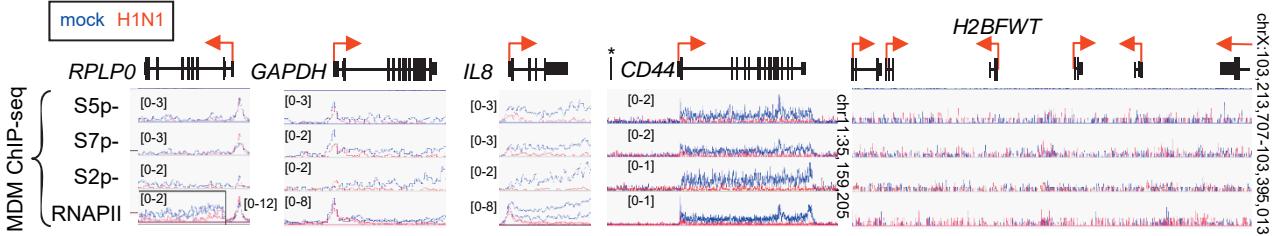
supplementary figure S1


A Normalization by DESeq2


B Normalization by 417 reference genes (Level > 300 rpkm and the half-time >15 h)


C


D

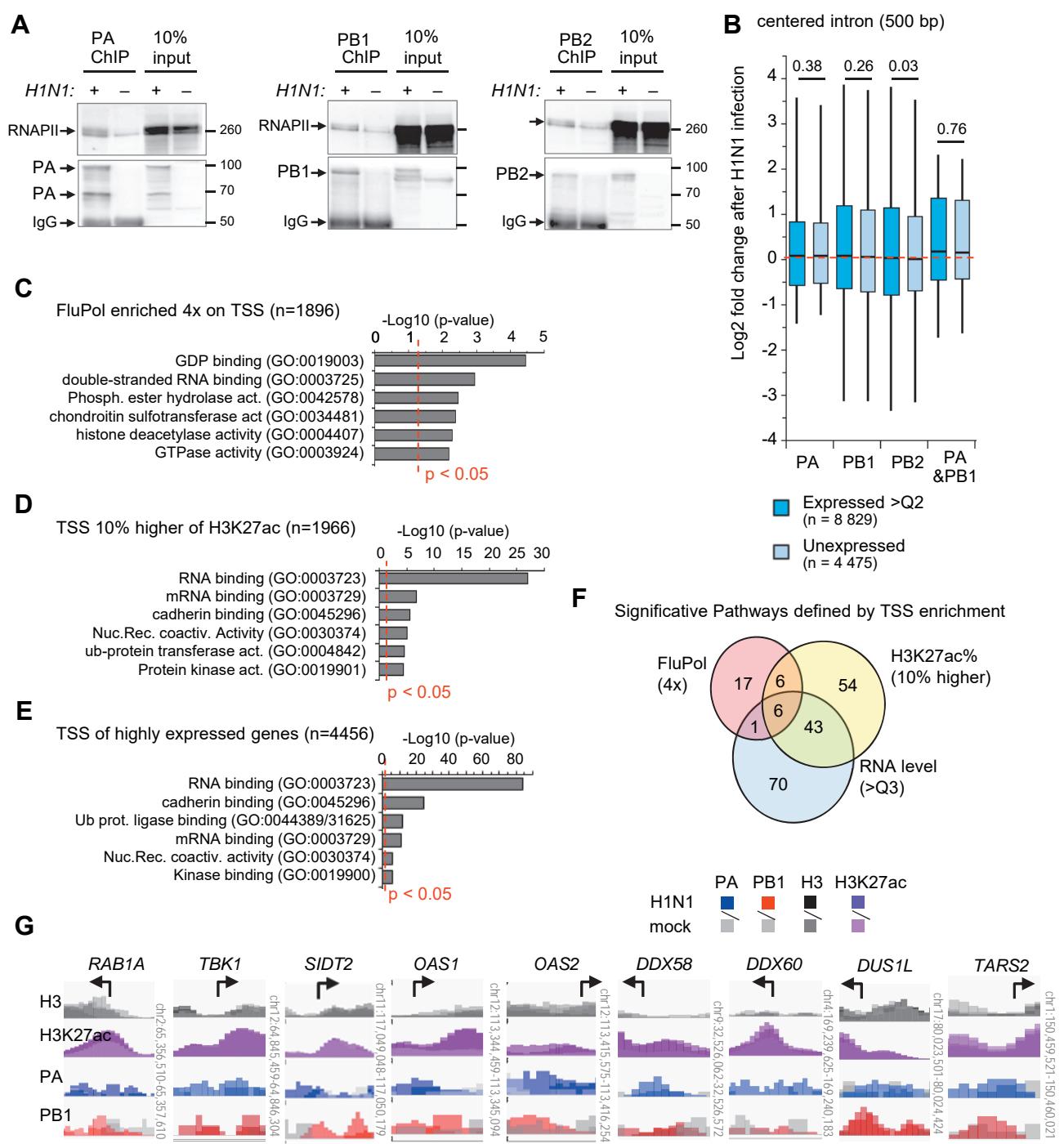

E

F

G

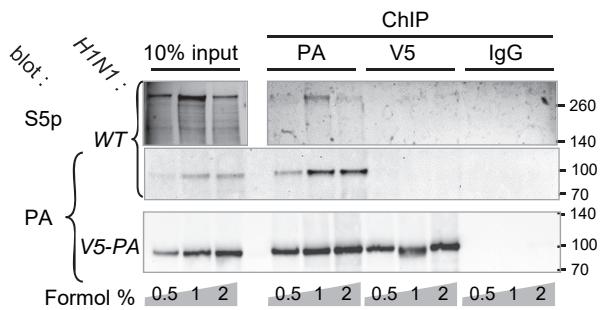
Supplementary figure S1 (related to Fig 1): Differential gene expression at 6 h in H1N1-infected A549 cells versus uninfected cells

A) Differential RNA levels between H1N1 infected and uninfected cells using DESeq2 package. Variations were considered significant (black dot) if the mean fold change (FC) was >1.5 and the adjusted p-value was <0.05 . The number of black dots is indicated..


B) Differential levels of chromatin-associated RNA using normalization based on the average variation of 417 reference genes expressing higher levels ($> 10 \log_2 \text{cpm}$) of long half-life ($> 15 \text{ h}$) transcripts [35].. Variations are considered significant (black dot) if the mean fold change is >1.5 and the p-value <0.05 calculated by paired t-test (two-tailed) on $\log_2(\text{cpm})$.

C) Pathway analysis of 6703 genes upregulated 4-fold with $p<0.05$ between infected and mock cells. P-values of Gene Ontology (GO) 2021 were evaluated by Enrichr, and the threshold of $p<0.05$ is indicated by the dotted red line.

D, E, F) Examples illustrating the variation in read distribution in H1N1 infected cells from IGV visualization of indicated loci. The RNA-seq independent triplicates have been overlaid in the same color as indicated for each strand orientation. The top trace shows the enrichment of H3K27ac on the chromatin of infected or mock cells. The scale range of the tracks is indicated in parentheses. The bottom track (Ref Seq) shows the position of the genes and their orientation as indicated by the red arrows.


G) Distribution of indicated phosphorylated (at serine 5, 7 and 2) and total RNAPII on analyzed genes Fig 1E. ChIP-seq assays using antibodies against the indicated RNAPII were performed in infected (red line) or uninfected MDM cells (blue line) from the GSE103477 dataset [31]. The range scale are indicated in brackets.

Supplementary figure S2

Supplementary figure S2 (Related to Fig 3) : immunoprecipitation efficiencies of antibodies directed against the Flu Pol subunits. **A**) Infected (+) or uninfected (-) cells were extracted and subjected to immunoprecipitation with the indicated antibodies used in the ChIP assay. The eluates and 10% of the extracts (input) were resolved by Western blot. The lower part of the membranes (50 to 120 kDa) was detected with the corresponding antibodies and the upper part (120 kDa-top) with RNAPII antibodies. **B)** The same analysis, as in **Fig 3B**, was performed for the averages of intronic coverage. For each gene, the more central intron was used to define a centered 500 bp counting windows. Only windows separated by 10 kb from the TSS were considered. **C)** Pathway analysis of 1896 expressed genes (above the first quartile) for which the average ChIP-seq signal for PA or PB1 was enriched 4-fold on TSS (with H3K27ac/H3 levels above the first quartile) in infected vs. mock cells. Only TSS separated by 5 kbp from other genes were considered. P-values of Gene Ontology (GO) molecular function 2021 were evaluated by Enrichr, and the threshold of $p < 0.05$ is indicated by the dotted red line. The first six pathways are shown and the full lists are in **S3A Table**. **D, E)** The same Gene Ontology analysis was performed on either the 1966 genes with 10% higher H3K27ac on their TSS or the 4456 genes in the upper quartile of RNA levels. **F)** Venn diagram of significant GO terms for molecular function (p -value < 0.05) obtained in **S2C,D,E Figs**. **G)** Examples of 500 bp regions around the TSS of the indicated genes selected in the pathways in **C**). The ChIP-seq independent replicates performed with antibodies against the indicated proteins in infected or mock cells are overlaid in the indicated color. The black arrows indicate the position of the TSS and the orientation of the gene.

Supplementary figure S3

Supplementary figure S3 (Related to Fig 5) :

immunoprecipitation efficiencies of Antibodies directed against the Flu Pol subunits.

A549 cells infected cells by WT H1N1 or V5-PA engineered H1N1 were crosslinked by indicated % of formaldehyde or not. Chromatin fractions were subjected to immunoprecipitation with PA, V5 antibodies or non-immune IgG. Eluates and 10% of extracts were resolved by Western blot. The lower part of the membranes was visualized with PA antibodies and the upper part with phospho-RNAPII antibodies.

1138 **Supplementary Tables 1-7**

1139 Excel spreadsheet containing, in separate sheets, the underlying numerical data, statistical analysis and
1140 Lists of genes used in pathway analysis for Figs
1141 **TabS1:** RNAs bound to chromatin and differential RNA level (related to **Figs 1A-C, S1A and S1B**)
1142 **TabS2:** Gene Ontology Analysis of 6703 genes upregulated >4 (p<0.05) (related to **S1C Fig**)
1143 **TabS3A:** Gene lists and Gene Ontology pathway for Molecular function for 1896 genes on which PA
1144 or PB1 were enriched at least 4 fold on TSS, for 1996 genes with the highest level of H3K27ac on
1145 TSS, and for 4456 genes with high RNA levels (related to **S3C-F Figs**)
1146 **TabS3B:** Enrichment of FluPol target genes, of H3K27ac-upregulated genes, and of genes with RNA
1147 level change with consensus of indicated transcription factors in ENCODE and ChEA (related to **Fig**
1148 **3E**).
1149 **TabS4A:** Pathway Analysis of 1966 expressed genes close to enhancer with more 20% FluPol
1150 enrichment (related to **Fig 4D**)
1151 **TabS4B:** Pathway Analysis of 3208 expressed genes close to enhancer without FluPol enrichment
1152 (related to **Fig 4D**)
1153 **TabS4C:** Pathway Analysis of 603 expressed genes close to enhancer with higher enrichment of
1154 FluPol (related to **Fig 4D**)
1155 **TabS5:** Pathway analysis of 1696 genes where v5-PA bound RNAs were enriched at least 4-fold
1156 (related to **Fig 5F**)
1157 **TabS6:** Pathway analysis of 1084 genes on which PA and PB1 were enriched at least 2 fold on TSE
1158 (related to **Fig 6D**)
1159 **TabS7:** list and sequences of qPCR primers