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Abstract 
 
Despite significant advances, current single-cell RNA sequencing (scRNA-seq) 
technologies often struggle with accurately detecting non-coding transcripts, achieving 
full-length RNA coverage, and/or resolving transcript-level complexity. Many are also 
difficult to implement or inaccessible without specialized liquid handlers, further limiting 
their utility. We present Single-cell TOtal RNA-seq Miniaturized (STORM-seq), a random-
hexamer primed, ribo-reduced single-cell total RNA sequencing (sc-total-RNA-seq) 
protocol using standard laboratory equipment. Adapted as a kit, STORM-seq constructs 
sequence-ready libraries in one working day, producing the highest complexity scRNA-
seq libraries to-date, robustly measuring transcript isoforms and clinically relevant gene 
fusions in single cells. STORM-seq faithfully reconstructs expression profiles of locus-
level transposable elements (TEs), and provides high-resolution profiling of transient, low-
abundance enhancer RNAs (eRNAs), offering a powerful tool to dissect single-cell gene 
regulatory networks in unprecedented detail. Applied to human fallopian tube epithelium, 
the improved transcriptional resolution reveals a putative progenitor-like population and 
intermediate cell states, shaped by TEs and non-coding RNAs.  
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Introduction 
Over the past decade, single-cell sequencing technologies have been developed to 
assess the heterogeneity of cells across organisms, tissues, cell types and states1. 
Whole-organism and tissue-level single-cell atlases have been generated using a variety 
of approaches2,3, with the most common being single-cell RNA-seq (scRNA-seq). This 
has spurred rapid development of both new library preparation techniques and associated 
computational tooling4. Recent advances in plate-based scRNA-seq have been 
developed to assess single-cell whole transcriptomes at high resolution – exemplified by 
Smart-seq3xpress (SS3x), VASA-seq, Smart-seq-total, and others5–9. Profiling 
polyadenylated and non-polyadenylated transcripts (total RNA) in single cells (sc-total-
RNA-seq) has greatly expanded our understanding of transcriptional regulation and 
coordinated gene expression changes in cell states and fates5–9. Generation of scRNA-
seq libraries has largely coalesced to a shared set of steps: isolation of single cells (e.g. 
microfluidics or flow cytometry), cell lysis, reverse transcription (RT), addition of unique 
molecular identifiers (UMIs) and cell barcodes, pooling, enrichment of transcripts of 
interest (e.g. mRNA or non-rRNA), and sequencing. The implementation of these steps, 
resulting data density, and mitigation of protocol-specific technical biases have continued 
to drive the introduction of novel scRNA-seq methods to better address biological 
questions.  
 
Efforts to profile total RNA in single cells have typically taken the approach of 
polyadenylating total RNA followed with amplification utilizing an oligo(dT) primer (VASA-
seq, Smart-seq-total)6,7. This is different from the random-hexamer priming approach 
commonly used in traditional bulk total RNA. These approaches are taken likely due to 
the potential for random hexamers to prime and amplify genomic DNA (gDNA) if present 
during RT10. However, it is known that oligo(dT) approaches can prime genomic poly-A 
tracks if gDNA is present11,12. To the best of our knowledge, this potential background in 
current polyA-based sc-total-RNA-seq methods has not been examined. We reasoned 
that random hexamer priming would provide the most sensitive sc-total-RNA-seq 
approach by omitting the long poly-adenylation steps and mitigating potential gDNA 
contamination during cell lysis, moving quickly from lysed cells to RT.  
 
All scRNA-seq methods that use template switching oligos (TSOs) have the potential to 
introduce chimeric transcripts during RT and second-strand synthesis13.  Recent scRNA-
seq methods capturing polyadenylated RNA have shown that the design and composition 
of the nucleotide sequence of the UMI-TSO is critical to minimize these artifacts5,8. 
However, existing sc-total-RNA-seq technologies using UMI-TSOs (e.g. VASA-seq, 
Smart-seq-total, SnapTotal-seq) are unable to readily identify the impact of contaminating 
strand invasion artifacts due to methodological choices6,7,9. As a result, strand invasion 
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artifacts in sc-total-RNA-seq remain poorly characterized, potentially skewing gene 
expression profiles and ultimately, biological interpretations.  
 
The ability to account for cell-to-cell RNA content differences is an additional layer of bias 
that can distort expression profiles if left unaccounted for (e.g. MYC amplification and cell-
cycle)14,15. Indeed, the External RNA Controls Consortium RNA spike-in mix (ERCCs)16, 
Spike-in RNA Variant Control mixes (SIRVs), molecular spikes17, and others have been 
developed to accomplish these tasks, enabling the ability to account for RNA content 
differences during analysis. However, when and how spike-ins are added during library 
preparation requires thoughtful consideration to limit introduction of technical biases and 
consumption of valuable sequencing reads14. 
 
With the promise of scRNA-seq revealing heterogeneity in single-cells, it is important to 
consider going beyond gene counts alone. Transposable elements (TE) and TE-derived 
transcripts are now well-appreciated to play critical roles in species evolution and tissue 
development through their intrinsic transposition capabilities and co-option, providing a 
rich set of gene regulatory features such as enhancers and promoters18–20. Under stress, 
cryptic regulatory elements within transposable elements (TEs) undergo epigenetic 
reactivation in cells, contributing to disease progression — particularly oncogenesis — by 
promoting oncogene expression through a mechanism known as onco-exaptation21–23. 
However, existing scRNA-seq technologies struggle to reconstruct the expected TE 
expression profiles in single cells, exhibiting a preferential bias toward the expression of 
short interspersed nuclear elements (SINEs)/Alu elements over long interspersed nuclear 
elements (LINEs)/long terminal repeats (LTRs)24. Furthermore, the data sparsity issue of 
current scRNA-seq approaches limits the detection of TE expression heterogeneity within 
cell populations and tumors. Despite methodological advancements, new single-cell 
technologies that comprehensively recapitulate expected locus-level TE and TE-derived 
transcript expression profiles are needed. 
 
Another challenging class of non-coding transcripts to assay in single cells is enhancer 
RNA (eRNA), due to their short half-lives (1-2 minutes on average) and low expression25–
27. Specialized assays to identify these transient RNA species have been developed, with 
nuclear run-on followed by cap-selection assays (GRO/PRO-cap) being the most 
sensitive in detecting eRNAs28. Further, transient transcriptome sequencing (TT-seq) and 
related single-cell nascent transcript sequencing has enabled capturing short and long-
lived RNA species over time to estimate rates of RNA synthesis and decay, including 
eRNAs25,26,29,30. Bulk and scRNA-seq methods have shown that eRNAs can be captured 
in principle, though to a lesser extent than their specialized counterparts due to primarily 
profiling steady-state RNA28. However, these nascent RNA methods typically require 
additional steps that are often not compatible with profiling primary tissues31. As a result, 
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high sensitivity sc-total-RNA-seq methods to measure eRNAs and their contribution to 
cell states and fates, are an important gap to fill between specialized approaches and 
traditional scRNA-seq methods. 
 
Many contemporary scRNA-seq methods are time consuming to implement and execute, 
and challenging to analyze, increasing the barrier to entry for these methods. To address 
these barriers, we present STORM-seq, a single cell total RNA sequencing method that 
has been adapted as a commercially available kit, makes use of random hexamer 
priming, incorporation of unique molecular identifiers (UMI), requires no specialized 
equipment for library preparation, leverages spike-in controls, and generates the most 
complex scRNA-seq libraries to date. We compare STORM-seq and current, sc-total-
RNA-seq protocols in HEK293T and K-562 cell lines, demonstrating STORM-seq more 
robustly and sensitively profiles total RNA. Further, we show that this method can 
reconstruct transposable element (TE) expression profiles in single cells, capture short-
lived enhancer RNAs (eRNAs), and clinically relevant gene fusions. We apply STORM-
seq to the human pre-menopausal fallopian tube epithelium (FTE). FTE plays important 
roles for reproductive biology, and likely harbors the cell of origin for high-grade serous 
ovarian cancer. However, the stem/precursor population for this important tissue has 
been elusive and prior single-cell studies yielded divergent results32–34.  With the 
increased resolution of STORM-seq, we discover a putative progenitor-like population 
and intermediate cell types, with potential long intergenic non-coding RNAs (lincRNAs) 
and TEs as candidate drivers shaping lineage fate in this tissue.  
 
Results 
 
Development of STORM-seq 
STORM-seq is built to allow use of off-the-shelf reagents and standard equipment, 
addressing various limitations of other methods (Supplemental Table 1). Single cells are 
index sorted into a microwell plate containing Fragmentation Buffer (FB) so that the flow 
cytometric phenotype of each sorted cell will be associated with the well name for 
downstream data integration.  After cells are lysed, RNA is fragmented for 3 minutes. This 
optimized fragmentation time generates longer RNA fragments enabling longer paired-
end sequencing, allowing for more even coverage across single cells (Supp. Fig. 1a-d)35. 
Additionally, fragmenting RNA immediately versus waiting to fragment after conversion 
to cDNA has been shown to reduce random priming bias35,36. By utilizing random priming, 
STORM-seq captures total RNA without additional polyadenylation steps. Following the 
random priming of total RNA, STORM-seq utilizes an MMLV-derived reverse 
transcriptase (RT) with template switching (TS) functionality to add a unique molecular 
identifier (UMI) sequence during first strand cDNA synthesis. ERCC spike-in controls are 
also added at the RT and TS step. Introducing ERCCs at this stage prevents 
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fragmentation of the ERCC transcripts, ensuring that counts are accurate after UMI 
collapsing15. Next, PCR amplification is performed, generating double stranded cDNA 
libraries, each containing a unique dual index (UDI) for multiplexing single cells. At this 
stage, all wells of the plate are combined into a single pool37. With a larger, pooled 
volume, the remainder of the protocol mimics a bulk total RNA-seq library preparation 
and can be performed with a single channel pipette. Alternatively, pooled plates can be 
frozen and stored, allowing multiple plates to be processed through the rest of the protocol 
simultaneously, increasing throughput and decreasing technical plate-to-plate bias. 
Ribosomal RNA (rRNA) comprises 80-90% of the RNA within a cell and is typically 
depleted prior to sequencing total RNA38–40. STORM-seq uses a probe-based targeted 
enzymatic digestion to remove rRNA. Depleting the rRNA from a larger pool has the 
additional benefit of preserving lowly expressed transcripts, likely due to the rRNA acting 
as a “carrier” to protect the mRNA and ncRNAs through the enzymatic digestion step and 
subsequent cleanup41. The rRNA-depleted pool is then PCR amplified to introduce 
sequencing adapters, a final cleanup is performed, and sequenced (Fig. 1a-b). Following 
targeted, probe-based rRNA depletion, STORM-seq libraries contained <2% rRNA 
content in each cell (Supp. Fig. 1e). We have also implemented an automated quality 
control pipeline to collect various metrics post-sequencing of STORM-seq libraries (Supp. 
Fig. 2, Methods). This protocol is modular, flexible, and can be pipetted manually or using 
an automated liquid handler, going from live cells to sequence-ready libraries in one 
working day – the fastest end-to-end sc-total-RNA-seq protocol (Fig. 1c). 
 
Benchmarking STORM-seq against current, plate-based scRNA-seq protocols 
Alignment/mapping, and quantification of scRNA-seq is often performed using two 
approaches: 1) pseudoalignment to the transcriptome (e.g. kallisto|bustools)42 and 2) 
splice-aware alignment to the genome (e.g. STARsolo)43. To facilitate STORM-seq data 
analysis, the library fragment structure (Fig. 1b) exists as a preset within kallisto|bustools. 
Additionally, we have developed a tool to add synthetic cell barcodes to STORM-seq data 
called “synthbar” to integrate seamlessly with STARsolo (Methods). To the best of our 
knowledge, STORM-seq is the only paired-end sc-total-RNA-seq method, and when 
combined with the innovative library preparation approach, we observe more usable 
reads per cell post-transcriptome alignment, compared to VASA-seq and Smart-seq-total 
(Fig. 1d). Given that STORM-seq is a full-length (gene-body) protocol, we compared 
gene-body coverage across current scRNA-seq methods. Indeed, we find that STORM-
seq covers the gene-body (Fig. 1e) and expected gene-length detection bias, similar to 
other full-length methods (Supp. Fig. 3a). STORM-seq produces high-complexity 
transcript isoform- and gene-level libraries across sequencing depths (Fig. 1f, Supp. Fig. 
3b-c). Further, STORM-seq recovers more genes per cell compared to the latest sc-total-
RNA-seq protocols, VASA-seq and Smart-seq-total, as well as the latest mRNA protocol, 
Smart-seq3xpress (SS3x; Fig. 1g).  
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Figure 1. STORM-seq efficiently profiles total RNA in single-cells. a) Overview of the STORM-seq library preparation protocol. 
b) Fragment structure and annotations of final STORM-seq libraries. c) STORM-seq is the fastest single-cell total RNA-seq method, 
similar in total time to Smart-seq3xpress. Hands on time: active handling/pipetting of cells/samples; Hands off time: samples/cells 
not being actively handled (e.g. PCR steps). d) STORM-seq has the highest mapping rates in single-cells compared to VASA-seq 
and Smart-seq-total. e) STORM-seq has full gene-body length coverage, similar to other plate-based approaches. Protein coding 
genes only shown for comparison purposes. f) STORM-seq identifies thousands of genes and transcripts per cell across read 
depths. g) Gene detection rate comparison demonstrates STORM-seq measures the most genes/cell compared to other methods 
(UMI count minimum of 1). h) Background genomic alignment percentages in single cells (100k reads/cell) demonstrates that 
STORM-seq aligns similar proportions of reads to known coding, non-coding, and intergenic TE space, similar to bulk total 
RNA-seq. i) Example genomic background alignment coverage across technologies shows regions with coverage are flanked by 
poly-A sequences. j) Sequence logo plots of the most abundant UMI per cell across technologies. Expected results are even repre-
sentation for random UMIs for STORM (NNNNNN - 8 bp UMI), VASA-seq (NNNNNN - 6 bp UMI/UFI), Smart-seq-total (16xN - 16 bp 
UMI), and Smart-seq3xpress (NNNNNNNNWW - 8bp random + 2 bp W (A/T)). All technology comparisons and results shown are in 
HEK293T cells at subsampled sequencing depths shown.
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Genomic DNA (gDNA) contamination is a primary concern for random-primed total RNA-
seq, as MMLV-derived RT will amplify DNA, as well as RNA10. Additionally, oligo(dT)-
primers in the presence of gDNA will prime DNA containing poly-A tracks, found 
throughout the genome11,12. We reasoned that background genomic alignments may 
serve as a proxy for spurious priming events if gDNA is present. Therefore, we 
investigated reads aligning to unannotated coding and non-coding space, combined with 
known transposable element (TE) annotations, and not found within known R-loop 
regions. STORM-seq (random primed) and SS3x (oligo(dT) primed) exhibit minimal 
genomic background alignments, similar to bulk total RNA-seq (random primed). In 
contrast, VASA-seq (oligo(dT) primed) and Smart-seq-total (oligo(dT) primed) have up to 
~15% genomic background alignments, often found to be flanked by poly-A runs, though 
may be more prevalent given the read depth and filtering performed (Fig. 1h-i, Methods).  
 
UMI diversity is critical for mitigating the technical effects of PCR amplification bias, with 
downstream consequences of under- or over-collapsing UMIs if systematic bias persists 
during library preparation, sequencing, and data analysis42. To examine UMI bias across 
technologies, we constructed per cell UMI sequence logos to visualize diversity (unique 
UMIs), prevalence (frequency of UMIs), and bias (most abundant UMI per cell), as well 
as the observed/expected inter-gene UMI collision rates. Based on the random nucleotide 
construction for each UMI (except for SS3x which has the added 3’ WW nucleotide motif, 
Supp. Fig. 4d-e), we reasoned that the base diversity at each position in the UMI should 
be evenly represented, across metrics. Indeed, STORM-seq, VASA-seq, and SS3x had 
relatively even representation of each base across UMI diversity and prevalence, 
indicating expected starting UMI diversity during library preparation and carried through 
to data analysis. In contrast, Smart-seq-total had biased base diversity across the length 
of the 16bp UMI (Supp. Fig. 4d-e). Next, we examined the most abundant UMI sequence 
per cell and found that STORM-seq has the most even representation of the expected 
random nucleotide diversity across the length of the UMI, with VASA-seq and Smart-seq-
total being the most severely affected (Fig. 1j). To estimate inter-gene collision rates, we 
constructed a simulation framework as a function of UMI length and gene detection (e.g. 
sequence depth) to establish the expected collision rates across UMI lengths/base 
diversity in the technologies examined (Supp. Fig. 4a, Methods). Indeed, UMI inter-gene 
collision rates decreased as the length of the UMI increased from 6bp (VASA-seq) to 
16bp (Smart-seq-total) in the simulation results. We observe the expected UMI inter-gene 
collision rates in STORM-seq and VASA-seq, with the most severe in Smart-seq-total 
(~7x the expected rate; Supp. Fig. 4b). This elevated inter-gene collision rate is likely 
explained by the observed versus expected UMI saturation, with the largest effects being 
shown when UMI saturation is low (Supp. Fig. 4c). Moreover, STORM-seq exhibits low 
strand invasion artifacts, similar to SS3x (Supp. Fig. 4f, Methods). Strand invasion 



artifacts were not able to be calculated for VASA-seq and Smart-seq-total, due to the read 
architecture. 
 
Robustness and sensitivity of transcript detection 
Typical metrics for new scRNA-seq technologies include quantification of detected genes 
per cell, library construction and throughput optimizations, library complexity, and 
applications that may improve biological insights5–7. While these metrics help 
contextualize new technologies within contemporary methods, it is important to assess 
whether they provide better, more robust measurements. Here we propose that 
simulation of multiple experiments through subsampling and resampling techniques 
across technologies and a common cell type (HEK293T), allows demonstration of 
expected transcript detection rates and transcript expression variance (robustness) in sc-
total-RNA-seq methods in single-cells (Supp. Fig. 5a, Methods). Simulation of 10 
experiments through randomly subsampling single HEK293T cells to 50k reads/cell 
(Supp. Fig. 5a), showed that STORM-seq has greater transcript detection rates across 
annotated transcript lengths, compared to VASA-seq and Smart-seq-total (Supp. Fig. 
5b). Moreover, STORM-seq produces the most robust (lowest variance) transcript 
abundance estimates across transcript lengths, compared to VASA-seq and Smart-seq-
total (Supp. Fig. 5c). Taken together, STORM-seq produces more consistent, robust 
transcript abundance estimates compared to contemporary sc-total-RNA-seq methods. 
 
Next, we examined the sensitivity of STORM-seq to capture single molecules in individual 
cells by using ERCC spike-in transcripts that are expected to be at ~1 copy per cell at the 
1:1 million (M) dilution used, across 3 different cell types and sequencing depths 
(Methods)44. Indeed, STORM-seq reconstructs expected ERCC spike-in copy number 
that have at least ~1 molecule per cell across all cell types (HEK293T, K-562, and RMG-
2) and sequencing depths tested (³0.9 median adjusted R2 for observed versus expected 
copy number; Supp. Fig. 5d-e). Moreover, STORM-seq showed a median sensitivity of 
single molecule ERCC spike-in detection of ~88% at 100k reads/cell and increases with 
sequencing depth, across cell types, making STORM-seq the most sensitive sc-total-
RNA-seq method to date (Supp. Fig. 5f)45. STORM-seq also demonstrates good cell-to-
cell gene expression correlations within the cell types tested (Supp. Fig. 5g).  
 
Reconstruction of TE transcripts, regulatory elements, and gene fusions in single-
cells 
To investigate the capability of STORM-seq to recapitulate bulk total RNA-seq (current 
“gold-standard”) TE profiles in single-cells, we calculated the observed over expected 
scores comparing transcribed and genomic TE family representation as previously 
described24. STORM-seq shows the most consistent TE family representation in 
HEK293T (Fig. 2a) and K-562 (Supp. Fig. 6a) single-cells, similar to bulk total RNA-seq, 



across scRNA-seq technologies tested. Long interspersed nuclear elements (LINEs) L1 
and L2, and long terminal repeats (LTRs) ERV1 and ERVK  contain endogenous 
promoters that are often exapted in a cell-type specific manner18. STORM-seq robustly 
captures these TE families in single cells compared to other scRNA-seq methods . Short 
interspersed nuclear elements (SINEs) are over-represented in VASA-seq and Smart-
seq-total relative to bulk total RNA-seq, likely due to the oligo(dT) primed library 
construction strategy of these methods and the preferential genomic location of SINEs 
found at the 3’ ends of genes (Fig. 2a, Supp. Fig. 4a)46. Moreover, STORM-seq has the 
highest locus-level TE expression correlation to bulk total RNA-seq (R2 of 0.655) 
compared to VASA-seq (R2 of 0.162) and Smart-seq-total (R2 of 0.003; Fig. 2b). These 
results demonstrate that STORM-seq is the only scRNA-seq method that can faithfully 
reconstruct TE family and locus-level expression profiles in single cells. 
 
A limitation of current scRNA-seq methods is data sparsity, making it difficult to 
differentiate between technical dropouts or true absence of signal at baseline expression 
levels. STORM-seq’s high sensitivity enables confident interrogation of the heterogeneity 
of endogeneous TE and TE-derived transcripts in single cells. We examined TE-derived 
transcript candidates previously discovered with polyA-based bulk RNA-seq in K-56221. 
STORM-seq replicated 76% (25/33) of these candidate TE-derived transcripts. Notably, 
only four TE-derived transcripts (12%) were expressed in nearly all cells, suggesting that 
the majority of TE-derived transcripts are heterogeneously expressed even in 
homogeneous cell populations (Fig 2c). Next, we identified additional candidate TE-
derived transcripts in K-562 that display cellular heterogeneity (Methods), likely missed 
in previous bulk RNA-seq analyses due to the use of oligo(dT) approaches. STORM-seq 
detected 40 additional TE-derived transcripts that are also found in bulk total RNA-seq, 
many of which are associated with lincRNAs and oncogenic processes (Fig 2c). As an 
example, STORM-seq identifies LTR1A2-PURPL (P53 Upregulated Regulator Of P53 
Levels) as a putative TE-derived long non-coding RNA that spans nearly 300kb, with 
overlap of similarly long annotated PURPL transcript isoforms. PURPL lncRNA 
expression appears to be predominately driven by the TE-derived transcript isoform 
variants in K-562, also demonstrating the ability of STORM-seq as a tool to dissect 
isoform level differences in single cells (Fig 2d). With PURPL being a proposed regulator 
of p53, we observe the expected anticorrelation of PURPL expression and p53 RNA 
expression with the majority of cells expressing either gene (Supp. Fig. 6b).  
 
We expected STORM-seq to be able to capture non-polyadenylated eRNA transcripts in 
distal enhancers in K-562 single cells. Coverage and detection rates were computed 
across annotated distal enhancers by GRO/PRO-cap in K-562 cells, as previously 
described (N=33,207, Methods)28. Indeed, STORM-seq captures bidirectional 
expression profiles for detected eRNAs, resembling those from PRO-cap47 and TT-seq26 
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(Fig. 2f). Compared to VASA-seq, STORM-seq has an ~2x greater median detection rate 
of eRNAs in GRO/PRO-cap annotated distal K-562 enhancers28 per cell (STORM-seq: 
202 enhancers/cell; VASA-seq: 104 enhancers/cell; Fig. 2g). Further, we reasoned that 
given K-562 is a relatively homogeneous cell population, on average, similar enhancers 
would be utilized and expressed as eRNAs between cells. STORM-seq recovers more 
shared enhancer/eRNA expression across all bins compared to VASA-seq (Supp. Fig. 
7a). However, shared enhancer usage did not describe the full complement of detected 
eRNAs across single cells. As an example, multiple enhancers found within an enhancer 
cluster upstream of FTH1 (Ferritin Heavy Chain 1), display differential upstream enhancer 
usage of a gene involved in iron homeostasis and other oncogenic processes in K-562 
(Supp. Fig. 7b)48. Taken together, STORM-seq enables the ability to dissect eRNA 
expression profiles in single cells.  
 
One powerful aspect of RNA-seq is the ability to detect fusion transcripts. Some fusions 
(e.g. BCR-ABL1 in chronic myeloid leukemia) are pathognomonic for disease49. The 
Cancer Cell Line Encyclopedia (CCLE) has made a catalog of known gene fusions using 
bulk RNA-seq across many cancer cell lines, including K-56250. Using the CCLE K-562 
known fusion set, we benchmarked the detection rates of expected gene fusions across 
bulk RNA-seq, STORM-seq, VASA-seq, and SS3x. We subsampled to 150k reads/cell 
across scRNA-seq technologies and analyzed the data using STAR-Fusion51, as it was 
the same fusion detection approach in the CCLE. Directly comparing polyA-based 
methods and total RNA-seq methods for fusion detection rates is complicated due to 
technical differences in library construction. We reasoned that using full-depth bulk RNA-
seq observed fusion fragments per million (FFPM) read support within the same fusion 
would reduce library construction strategy differences in fusion detection rates 
(Methods). For example, the BAG6-SLC44A4 gene fusion is expected to have ~6x the 
read support in polyA-based RNA-seq than total RNA-seq, while BCR-ABL1 is 
approximately equal across library construction strategies. Across scRNA-seq 
technologies tested, STORM-seq showed the highest proportion of cells containing 
known gene fusions in K-562, followed closely by SS3x (Fig. 2h, Supp. Fig. 7c). VASA-
seq consistently had the lowest overall detection rates with BAG6-SLC44A4, C16orf87-
ORC6, and IMMP2L-DOCK4 not detected (Fig. 2i, Supp. Fig. 7d).  
 
Application to primary human fallopian tube epithelium 
We applied STORM-seq to primary human benign distal, pre-menopausal fallopian tube 
epithelium (FTE) (Fig. 3). This tissue is thought to harbor the cell of origin for most high-
grade serous ovarian carcinomas (HGSOC)52. Therefore, characterization of the 
repertoire of cell types, states, and drivers of lineage fates found within the benign 
fallopian tube is critical for our understanding of molecular events leading to HGSOC 
oncogenesis. Recent scRNA-seq work has proposed different potential progenitor 



populations and divergent differentiation models32,33,53,54. Additionally, 
intermediate/transitioning cells connecting proposed progenitors to differentiated cell 
types are largely absent in current studies. To investigate whether STORM-seq can better 
reconstruct the normal FTE developmental trajectory and identify 
intermediate/transitioning cell types, we profiled primary pre-menopausal FTE from two 
donors. We recovered the expected differentiated non-ciliated secretory epithelial cells 
(NCSE) and ciliated epithelial (CE) cells based on established marker gene sets33,54 
(Supp. Fig. 8). Further, STORM-seq reveals intermediate/transitioning cells along 
continuous differentiation trajectories to NCSE and CE cell types, and recovers more 
features per cell, compared to prior studies (Supp. Fig. 8-10). Interestingly, within the 
STORM-seq data, we found a cluster of “dual-feature” cells across donors that 
simultaneously expressed endothelial (PECAM1/CD31) and epithelial (EpCAM) marker 
genes (Supp. Fig. 11). Given that STORM-seq leverages index sorting, we confirmed 
that these cells expressed EpCAM+ on the cell surface, and were unlikely to be doublets 
of epithelial and endothelial cells, with EpCAM gene expression lower relative to both 
NCSE and CE populations (Supp. Fig. 11-12). We then identified marker genes across 
cell types, and found progenitor-like gene programs were enriched in these “dual-feature” 
cells (Supp. Fig. 9). Next, we inferred cell trajectories using RNA velocity55,56, latent 
time56, pseudotime57,58, and principal curves59 (Fig. 3a-e, Supp. Fig. 13a-c). Notably, the 
trajectories were consistent across methods and donors, showing a bifurcating lineage 
from the “dual-feature” cells, along intermediate/transitioning cell types, to NCSE and CE 
populations (Fig. 3a-e, Supp. Fig. 13a-c). Therefore, we propose to call this population 
of cells as “unclassified fallopian tube progenitors” (UCFP). This bifurcating trajectory 
gives evidence against the de-differentiation model passing through a RUNX3 or CD44 
progenitor, and supports a common progenitor population that may directly give rise to 
NCSE and CE cells, based on our analyses (Fig. 3, Supp. Fig. 13)32. Further, we 
identified potential driver genes shaping lineage fate and identified several transcription 
factors that are consistent with known FTE biology. Specifically, PAX8 was found for 
NCSE lineage commitment – a known marker gene for NCSE cells33,54. Within the CE 
cell lineage, we identified ULK4, which has been shown to be important for ciliogenesis60 
(Supp. Fig. 13d-e). As an additional example, two long-intergenic non-coding RNAs 
(LINC0188 and LINC00937) were inferred as putative drivers for NCSE and CE lineage 
fates (Supp. Fig. 13d-e). To assess the influence of transposable elements (TEs) on 
lineage commitment in primary human fallopian tube (FT), we examined locus-level 
expression profiles of LINEs, SINEs, and LTRs, and observe lineage-restricted TE 
expression along inferred differentiation trajectories from UCFP to ciliated cells across 
donors (Fig. 3f, Supp. Fig. 13g). As examples, two LINE elements (L1PA3 and L1ME1) 
are shown to have expression restricted to the ciliated lineage, and are found within ~1kb 
of genes known to participate in cilia beating and ciliogenesis (IQUB and FAM216B). 
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Taken together, these results highlight the advantage of high-resolution total RNA 
profiling for cell type/state and lineage inference. 
 
To validate the presence of UCFP cells within the primary human fallopian tube (FT), we 
subjected full-thickness (epithelial and non-epithelial cells) tissue sections and matched 
single cell suspensions from three additional donors to cyclic immunofluorescence 
(CycIF) and flow cytometric analysis. Tissue sections and cell suspensions were stained 
with an antibody cocktail to delineate epithelial (PanCK or EpCAM) and endothelial 
(PECAM1/CD31) cell types (Methods). Indeed, across all three donors, we observe the 
presence of epithelial, endothelial, and importantly, the UCFP “dual-feature” cell types at 
similar frequencies observed in the STORM-seq data (Fig 3g-k, Supp. Fig. 14). Thus, by 
applying STORM-seq to primary human FT tissue, we demonstrate the utility of this 
method to illuminate new biology and the importance of total RNA profiling in this tissue.  
 
Discussion 
 
Over the last decade, many scRNA-seq methods have been developed, including both 
plate-based and droplet protocols, with the primary goal of capturing the whole 
transcriptome of each cell61. Depending on the method being presented, either droplet or 
plate-based alternatives are cast in a negative light, typically highlighting shortcomings in 
throughput, gene count, and cost. We believe this is a false dichotomy and choosing the 
right tool for the job is important depending on the experimental question at hand. While 
droplet-based protocols are valuable for cataloging cell types in tens to hundreds of 
thousands of cells, plate-based protocols like STORM-seq, excel at capturing high-
resolution, full gene body length profiles of single-cell transcriptomes in hundreds to 
thousands of cells, where cell states are of primary interest. Choosing a method that is 
best for a project requires a balance of experimental goals, time, and cost considerations 
– STORM-seq was developed with these criteria in mind. 
 
The importance of timing in a scRNA-seq protocol has largely been overlooked. The 
ability to quickly move from dissociated tissue/single cells, to cDNA, to prepared libraries, 
sequencing, and analysis is paramount for data quality and sample throughput62. 
STORM-seq was designed to minimize manipulations to the cell and its content prior to 
reverse transcription (RT). Once single cells have been sorted into a plate, only 5 minutes 
of time is spent before cells undergo reverse transcription. This includes a 3-minute cell 
lysis/RNA fragmentation step and a 2-minute cooling step. Although the Fragmentation 
Buffer contains RNase inhibitor, rapidly moving from cells to cDNA is crucial for capturing 
short-lived RNA transcripts (i.e., eRNAs), as well as limiting RNA degradation63. 
Minimizing cell lysis time ensures that the nuclear membrane remains intact, preventing 
genomic DNA (gDNA) contamination within libraries, which is particularly detrimental for 



random hexamer primed protocols like STORM-seq10. Indeed, STORM-seq has 
comparable background genomic alignment rates to bulk total RNA-seq (random 
hexamer primed) and Smart-seq3xpress (oligo(dT) primed), and in sharp contrast to 
VASA-seq and Smart-seq-total. Minimizing genomic background alignments is critical as 
non-RNA species present in the library undermines unspliced transcript abundance 
estimates, as well as gene biotype detection diversity64,65. STORM-seq represents the 
fastest single-cell total RNA-seq protocol to date, going from single cells to sequence-
ready libraries in a single working day.  
 
All sequencing protocols have bias, which can be limited with careful methodological 
choices during library preparation. STORM-seq rapidly moves from single-cells to a 
barcoded pool, avoiding cleanup steps before pooling mimicking a bulk RNA-seq 
approach. Current scRNA-seq methods use bead-based cleanups, including STORM-
seq. At every bead-based cleanup step, it is expected to lose a large proportion of the 
input material, typically requiring additional rounds of PCR amplification to increase yield 
and potentially introducing biased transcript representation. Therefore, STORM-seq 
includes unique molecular identifiers (UMIs) to overcome PCR amplification bias (Fig. 
1a-b). The methodological implementation of introducing the UMI sequences themselves 
can result in additional technical bias37. Prior work has demonstrated that careful design 
of the UMI-TSO is critical to mitigate strand invasion artifacts5,8. Strand invasion occurs 
when a complimentary strand binds the template switching oligo, causing the subsequent 
double stranded cDNA to have originated from two different RNA molecules creating a 
chimeric transcript13. STORM-seq has low strand invasion, similar to Smart-seq3xpress 
and reduced UMI bias, in contrast to competing methods.  
 
STORM-seq is a random hexamer priming protocol, profiling both polyadenylated and 
non-polyadenylated RNA transcripts (e.g. total RNA), whereas oligo(dT) priming methods 
measure polyadenylated transcripts either by preferential amplification (Smart-
seq3xpress) or introduction of polyA tails to capture total RNA (e.g. VASA-seq and Smart-
seq-total). Profiling total RNA expands our insight into unspliced transcripts and non-
polyadenylated regulatory features within single-cells, such as transposable elements 
(TEs), eRNAs, and other transcribed regulatory elements, which are known to play critical 
roles in cell state and fate. An additional benefit to random hexamer priming is that it is 
robust to degraded RNA, capturing transcripts that may be lost with oligo(dT) priming 
methods41. To the best of our knowledge, another unique design innovation for STORM-
seq is introduction of spike-in ERCC transcripts at the RT and addition of UMIs step, 
instead of at the cell lysis and RNA fragmentation steps. By taking this approach, it 
minimizes the skewing of expected ERCC copy numbers66. ERCC and related molecular 
spike-ins provide a means to normalize total RNA content differences, enabling the ability 
to account for both technical and biological cellular RNA content differences, such as 



those that can arise during cell replication, MYC amplification, and cellular 
differentiation15. ERCC spike-in transcripts are added at known copy numbers, enabling 
an estimate of assay sensitivity for single or near-single molecule detection. Indeed, 
STORM-seq accurately reconstructs expected ERCC copy numbers and sensitively 
detects single copy spike-ins. With this level of sensitivity, STORM-seq can profile total 
RNA, including short-lived, low expression transcripts (e.g. eRNAs) more robustly than 
VASA-seq and Smart-seq-total. 
 
RNA velocity55,56 and cellular trajectory inference57,58 are common analyses in scRNA-
seq. RNA velocity infers gene expression dynamics, and ultimately cellular trajectory, 
through spliced and unspliced transcript abundances, and has been previously shown 
that single-cell total RNA-seq methods improve RNA velocity inference6. We applied 
STORM-seq to the pre-menopausal human fallopian tube epithelium (FTE), as the 
stem/progenitor population has remained elusive and is of great interest for reproductive 
and cancer.  Prior efforts utilizing 10x Genomics scRNA-seq proposed divergent 
models32,33. Our results and another prior study both showed that evidence is lacking for 
the ‘dedifferentiation’ model, and that RUNX3 does not mark an intermediate population, 
but is instead, likely an immune cell population33. This may be due in part to technological 
limitations, compounded with the inclusion of confounding cell types (RUNX3 expressing 
immune cells) as part of the pseudotime inference32,59. Moreover, we observe that CD44 
alone is not a sufficient marker for progenitor-like cell populations. Recent work has 
proposed that both stroma and ciliated cells both come from mesenchymal/epithelial 
‘dual-feature’ cells33, similar to those discovered in our study – referred to as unclassified 
fallopian tube progenitor-like (UCFP) cells, here. In this model, secretory cells had a 
different, unidentified origin outside of the ‘dual-feature’ cells. Our results show that the 
two types of epithelial cells likely derive from the same progenitor cell population. Notably, 
lineage reconstruction is consistent across donors, read depths, and cell lineage fate 
inference methods. We provide evidence for the first time that these ‘dual-feature’ UCFP 
populations are also found in whole tissue sections of full thickness human FT. Both 
secretory and ciliated populations have substantial heterogeneity, particularly within the 
secretory, non-ciliated epithelial cell lineage. What is traditionally treated as one cell type 
(secretory cells) likely contains multiple populations of non-ciliated epithelial cells32,33,53,54. 
We also demonstrate the utility of STORM-seq to dissect the contribution of non-coding 
transcript expression, previously uncharacterized in human FT through the observation 
of lineage restricted TE expression in ciliated cells. These TEs possess zinc finger protein 
binding sites, including KRAB-zinc finger and C2H2 zinc finger sites. KRAB-zinc finger 
proteins are recognized to play important roles in regulating TE expression and 
demonstrates the power of STORM-seq to simultaneously profile TE and KRAB-zinc 
finger expression in single cells67. Taken together, we show evidence for a putative 



common progenitor-like cell type (UCFP) that may give rise to both epithelial and 
endothelial compartments within the human FT. 
 
Finally, while much attention has been given to calculating the cost per cell for scRNA-
seq methods, numerous additional factors drive the cost of a sequencing project, 
rendering this metric incomplete at best68. For example, while investment in the liquid 
handlers required for other methods can cost tens to hundreds of thousands of dollars, 
this value is not often calculated as part of the price per cell. While STORM-seq is 
amenable to the use of automation, a simple multi-channel pipette is all that is required 
for library generation. Additionally, the price per cell is calculated using the number of 
cells that began the library generation protocol, not the number of cells that are usable 
after sequencing. STORM-seq recovers nearly all cells after sequencing, limiting the 
amount of money wasted by generating and sequencing failed libraries. Moreover, 
STORM-seq is accessible as a commercially available kit, reducing the need to purchase 
and generate additional reagents for library preparation. Computationally, STORM-seq 
has been added as a preset within the kallisto|bustools42 suite and usable with 
STARsolo43 through synthbar (Methods), further reducing the need for custom 
processing scripts, in the hope of lowering the barrier to entry for this method. 
 
In conclusion, STORM-seq is a random hexamer primed, ribo-reduced RNA-sequencing 
protocol that does not require specialized equipment, producing the highest complexity 
single-cell libraries to date. Further, STORM-seq is currently the only single-cell method 
that can accurately reconstruct TE expression profiles similar to bulk total RNA-seq. It 
can capture transcribed regulatory elements like eRNAs, and clinically relevant gene 
fusions in single cells. Finally, when STORM-seq was applied to the human FT, we 
identified a putative progenitor population expressing both epithelial and endothelial 
markers, and orthogonally validated in whole tissue section cyclic immunofluorscence 
(CycIF), combined with flow cytometry. With its carefully optimized design, along with its 
efficiency and sensitivity in profiling total RNA, we believe STORM-seq represents the 
state of the art in single-cell total RNA sequencing. 
 
Materials and Methods in separate document  
 
Data and Code availability 
STORM-seq K-562, HEK293T, and RMG-2 raw data, SS3x K-562 raw data, and STORM-
seq fallopian tube counts have been deposited as GSE181544. Raw FASTQ files for the 
human fallopian tube epithelium data will be deposited in dbGaP as controlled access at 
time of publication. Flow cytometry data will be deposited in FlowRepository and will be 
made available as above. All code and related R and python objects will be deposited in 
zenodo. 
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