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Abstract

Despite significant advances, current single-cell RNA sequencing (scRNA-seq)
technologies often struggle with accurately detecting non-coding transcripts, achieving
full-length RNA coverage, and/or resolving transcript-level complexity. Many are also
difficult to implement or inaccessible without specialized liquid handlers, further limiting
their utility. We present Single-cell TOtal RNA-seq Miniaturized (STORM-seq), a random-
hexamer primed, ribo-reduced single-cell total RNA sequencing (sc-total-RNA-seq)
protocol using standard laboratory equipment. Adapted as a kit, STORM-seq constructs
sequence-ready libraries in one working day, producing the highest complexity sScRNA-
seq libraries to-date, robustly measuring transcript isoforms and clinically relevant gene
fusions in single cells. STORM-seq faithfully reconstructs expression profiles of locus-
level transposable elements (TEs), and provides high-resolution profiling of transient, low-
abundance enhancer RNAs (eRNAs), offering a powerful tool to dissect single-cell gene
regulatory networks in unprecedented detail. Applied to human fallopian tube epithelium,
the improved transcriptional resolution reveals a putative progenitor-like population and
intermediate cell states, shaped by TEs and non-coding RNAs.
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Introduction

Over the past decade, single-cell sequencing technologies have been developed to
assess the heterogeneity of cells across organisms, tissues, cell types and states’.
Whole-organism and tissue-level single-cell atlases have been generated using a variety
of approaches??, with the most common being single-cell RNA-seq (scRNA-seq). This
has spurred rapid development of both new library preparation techniques and associated
computational tooling*. Recent advances in plate-based scRNA-seq have been
developed to assess single-cell whole transcriptomes at high resolution — exemplified by
Smart-seq3xpress (SS3x), VASA-seq, Smart-seqg-total, and others®®. Profiling
polyadenylated and non-polyadenylated transcripts (total RNA) in single cells (sc-total-
RNA-seq) has greatly expanded our understanding of transcriptional regulation and
coordinated gene expression changes in cell states and fates>®°. Generation of scRNA-
seq libraries has largely coalesced to a shared set of steps: isolation of single cells (e.g.
microfluidics or flow cytometry), cell lysis, reverse transcription (RT), addition of unique
molecular identifiers (UMIs) and cell barcodes, pooling, enrichment of transcripts of
interest (e.g. MRNA or non-rRNA), and sequencing. The implementation of these steps,
resulting data density, and mitigation of protocol-specific technical biases have continued
to drive the introduction of novel scRNA-seq methods to better address biological
questions.

Efforts to profile total RNA in single cells have typically taken the approach of
polyadenylating total RNA followed with amplification utilizing an oligo(dT) primer (VASA-
seq, Smart-seq-total)®’. This is different from the random-hexamer priming approach
commonly used in traditional bulk total RNA. These approaches are taken likely due to
the potential for random hexamers to prime and amplify genomic DNA (gDNA) if present
during RT'0. However, it is known that oligo(dT) approaches can prime genomic poly-A
tracks if gDNA is present'!'2. To the best of our knowledge, this potential background in
current polyA-based sc-total-RNA-seq methods has not been examined. We reasoned
that random hexamer priming would provide the most sensitive sc-total-RNA-seq
approach by omitting the long poly-adenylation steps and mitigating potential gDNA
contamination during cell lysis, moving quickly from lysed cells to RT.

All scRNA-seq methods that use template switching oligos (TSOs) have the potential to
introduce chimeric transcripts during RT and second-strand synthesis’3. Recent scRNA-
seq methods capturing polyadenylated RNA have shown that the design and composition
of the nucleotide sequence of the UMI-TSO is critical to minimize these artifacts®?.
However, existing sc-total-RNA-seq technologies using UMI-TSOs (e.g. VASA-seq,
Smart-seqg-total, SnapTotal-seq) are unable to readily identify the impact of contaminating
strand invasion artifacts due to methodological choices®’°. As a result, strand invasion
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artifacts in sc-total-RNA-seq remain poorly characterized, potentially skewing gene
expression profiles and ultimately, biological interpretations.

The ability to account for cell-to-cell RNA content differences is an additional layer of bias
that can distort expression profiles if left unaccounted for (e.g. MYC amplification and cell-
cycle)'*". Indeed, the External RNA Controls Consortium RNA spike-in mix (ERCCs)'8,
Spike-in RNA Variant Control mixes (SIRVs), molecular spikes'’, and others have been
developed to accomplish these tasks, enabling the ability to account for RNA content
differences during analysis. However, when and how spike-ins are added during library
preparation requires thoughtful consideration to limit introduction of technical biases and
consumption of valuable sequencing reads™.

With the promise of scRNA-seq revealing heterogeneity in single-cells, it is important to
consider going beyond gene counts alone. Transposable elements (TE) and TE-derived
transcripts are now well-appreciated to play critical roles in species evolution and tissue
development through their intrinsic transposition capabilities and co-option, providing a
rich set of gene regulatory features such as enhancers and promoters'-2°. Under stress,
cryptic regulatory elements within transposable elements (TEs) undergo epigenetic
reactivation in cells, contributing to disease progression — particularly oncogenesis — by
promoting oncogene expression through a mechanism known as onco-exaptation?'-23.
However, existing scRNA-seq technologies struggle to reconstruct the expected TE
expression profiles in single cells, exhibiting a preferential bias toward the expression of
short interspersed nuclear elements (SINEs)/Alu elements over long interspersed nuclear
elements (LINEs)/long terminal repeats (LTRs)?*. Furthermore, the data sparsity issue of
current scRNA-seq approaches limits the detection of TE expression heterogeneity within
cell populations and tumors. Despite methodological advancements, new single-cell
technologies that comprehensively recapitulate expected locus-level TE and TE-derived
transcript expression profiles are needed.

Another challenging class of non-coding transcripts to assay in single cells is enhancer
RNA (eRNA), due to their short half-lives (1-2 minutes on average) and low expression?>-
27 Specialized assays to identify these transient RNA species have been developed, with
nuclear run-on followed by cap-selection assays (GRO/PRO-cap) being the most
sensitive in detecting eRNAs?8. Further, transient transcriptome sequencing (TT-seq) and
related single-cell nascent transcript sequencing has enabled capturing short and long-
lived RNA species over time to estimate rates of RNA synthesis and decay, including
eRNAs?526:29.30 Bylk and scRNA-seq methods have shown that eRNAs can be captured
in principle, though to a lesser extent than their specialized counterparts due to primarily
profiling steady-state RNA?8. However, these nascent RNA methods typically require
additional steps that are often not compatible with profiling primary tissues®'. As a resuilt,
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high sensitivity sc-total-RNA-seq methods to measure eRNAs and their contribution to
cell states and fates, are an important gap to fill between specialized approaches and
traditional scRNA-seq methods.

Many contemporary scRNA-seq methods are time consuming to implement and execute,
and challenging to analyze, increasing the barrier to entry for these methods. To address
these barriers, we present STORM-seq, a single cell total RNA sequencing method that
has been adapted as a commercially available kit, makes use of random hexamer
priming, incorporation of unique molecular identifiers (UMI), requires no specialized
equipment for library preparation, leverages spike-in controls, and generates the most
complex scRNA-seq libraries to date. We compare STORM-seq and current, sc-total-
RNA-seq protocols in HEK293T and K-562 cell lines, demonstrating STORM-seq more
robustly and sensitively profiles total RNA. Further, we show that this method can
reconstruct transposable element (TE) expression profiles in single cells, capture short-
lived enhancer RNAs (eRNAs), and clinically relevant gene fusions. We apply STORM-
seq to the human pre-menopausal fallopian tube epithelium (FTE). FTE plays important
roles for reproductive biology, and likely harbors the cell of origin for high-grade serous
ovarian cancer. However, the stem/precursor population for this important tissue has
been elusive and prior single-cell studies yielded divergent results3?-34,  With the
increased resolution of STORM-seq, we discover a putative progenitor-like population
and intermediate cell types, with potential long intergenic non-coding RNAs (lincRNAs)
and TEs as candidate drivers shaping lineage fate in this tissue.

Results

Development of STORM-seq

STORM-seq is built to allow use of off-the-shelf reagents and standard equipment,
addressing various limitations of other methods (Supplemental Table 1). Single cells are
index sorted into a microwell plate containing Fragmentation Buffer (FB) so that the flow
cytometric phenotype of each sorted cell will be associated with the well name for
downstream data integration. After cells are lysed, RNA is fragmented for 3 minutes. This
optimized fragmentation time generates longer RNA fragments enabling longer paired-
end sequencing, allowing for more even coverage across single cells (Supp. Fig. 1a-d).
Additionally, fragmenting RNA immediately versus waiting to fragment after conversion
to cDNA has been shown to reduce random priming bias®-3¢. By utilizing random priming,
STORM-seq captures total RNA without additional polyadenylation steps. Following the
random priming of total RNA, STORM-seq utilizes an MMLV-derived reverse
transcriptase (RT) with template switching (TS) functionality to add a unique molecular
identifier (UMI) sequence during first strand cDNA synthesis. ERCC spike-in controls are
also added at the RT and TS step. Introducing ERCCs at this stage prevents
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fragmentation of the ERCC transcripts, ensuring that counts are accurate after UMI
collapsing'®. Next, PCR amplification is performed, generating double stranded cDNA
libraries, each containing a unique dual index (UDI) for multiplexing single cells. At this
stage, all wells of the plate are combined into a single pool*’. With a larger, pooled
volume, the remainder of the protocol mimics a bulk total RNA-seq library preparation
and can be performed with a single channel pipette. Alternatively, pooled plates can be
frozen and stored, allowing multiple plates to be processed through the rest of the protocol
simultaneously, increasing throughput and decreasing technical plate-to-plate bias.
Ribosomal RNA (rRNA) comprises 80-90% of the RNA within a cell and is typically
depleted prior to sequencing total RNA%*-40. STORM-seq uses a probe-based targeted
enzymatic digestion to remove rRNA. Depleting the rRNA from a larger pool has the
additional benefit of preserving lowly expressed transcripts, likely due to the rRNA acting
as a “carrier” to protect the mRNA and ncRNAs through the enzymatic digestion step and
subsequent cleanup*'. The rRNA-depleted pool is then PCR amplified to introduce
sequencing adapters, a final cleanup is performed, and sequenced (Fig. 1a-b). Following
targeted, probe-based rRNA depletion, STORM-seq libraries contained <2% rRNA
content in each cell (Supp. Fig. 1e). We have also implemented an automated quality
control pipeline to collect various metrics post-sequencing of STORM-seq libraries (Supp.
Fig. 2, Methods). This protocol is modular, flexible, and can be pipetted manually or using
an automated liquid handler, going from live cells to sequence-ready libraries in one
working day — the fastest end-to-end sc-total-RNA-seq protocol (Fig. 1c).

Benchmarking STORM-seq against current, plate-based scRNA-seq protocols
Alignment/mapping, and quantification of scRNA-seq is often performed using two
approaches: 1) pseudoalignment to the transcriptome (e.g. kallisto|bustools)*? and 2)
splice-aware alignment to the genome (e.g. STARsolo)*3. To facilitate STORM-seq data
analysis, the library fragment structure (Fig. 1b) exists as a preset within kallisto|bustools.
Additionally, we have developed a tool to add synthetic cell barcodes to STORM-seq data
called “synthbar” to integrate seamlessly with STARsolo (Methods). To the best of our
knowledge, STORM-seq is the only paired-end sc-total-RNA-seq method, and when
combined with the innovative library preparation approach, we observe more usable
reads per cell post-transcriptome alignment, compared to VASA-seq and Smart-seq-total
(Fig. 1d). Given that STORM-seq is a full-length (gene-body) protocol, we compared
gene-body coverage across current sScRNA-seq methods. Indeed, we find that STORM-
seq covers the gene-body (Fig. 1e) and expected gene-length detection bias, similar to
other full-length methods (Supp. Fig. 3a). STORM-seq produces high-complexity
transcript isoform- and gene-level libraries across sequencing depths (Fig. 1f, Supp. Fig.
3b-c). Further, STORM-seq recovers more genes per cell compared to the latest sc-total-
RNA-seq protocols, VASA-seq and Smart-seg-total, as well as the latest mRNA protocol,
Smart-seq3xpress (SS3x; Fig. 19).
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Figure 1. STORM-seq efficiently profiles total RNA in single-cells. a) Overview of the STORM-seq library preparation protocol.
b) Fragment structure and annotations of final STORM-seq libraries. ¢) STORM-seq is the fastest single-cell total RNA-seq method,
similar in total time to Smart-seq3xpress. Hands on time: active handling/pipetting of cells/samples; Hands off time: samples/cells
not being actively handled (e.g. PCR steps). d) STORM-seq has the highest mapping rates in single-cells compared to VASA-seq
and Smart-seqg-total. ) STORM-seq has full gene-body length coverage, similar to other plate-based approaches. Protein coding
genes only shown for comparison purposes. f) STORM-seq identifies thousands of genes and transcripts per cell across read
depths. g) Gene detection rate comparison demonstrates STORM-seq measures the most genes/cell compared to other methods
(UMI count minimum of 1). h) Background genomic alignment percentages in single cells (100k reads/cell) demonstrates that
STORM-seq aligns similar proportions of reads to known coding, non-coding, and intergenic TE space, similar to bulk total
RNA-seq. i) Example genomic background alignment coverage across technologies shows regions with coverage are flanked by
poly-A sequences. j) Sequence logo plots of the most abundant UMI per cell across technologies. Expected results are even repre-
sentation for random UMIs for STORM (NNNNNN - 8 bp UMI), VASA-seq (NNNNNN - 6 bp UMI/UFI), Smart-seqg-total (16xN - 16 bp
UMI), and Smart-seq3xpress (NNNNNNNNWW - 8bp random + 2 bp W (A/T)). All technology comparisons and results shown are in
HEK293T cells at subsampled sequencing depths shown.



Genomic DNA (gDNA) contamination is a primary concern for random-primed total RNA-
seq, as MMLV-derived RT will amplify DNA, as well as RNA'. Additionally, oligo(dT)-
primers in the presence of gDNA will prime DNA containing poly-A tracks, found
throughout the genome''-'2. We reasoned that background genomic alignments may
serve as a proxy for spurious priming events if gDNA is present. Therefore, we
investigated reads aligning to unannotated coding and non-coding space, combined with
known transposable element (TE) annotations, and not found within known R-loop
regions. STORM-seq (random primed) and SS3x (oligo(dT) primed) exhibit minimal
genomic background alignments, similar to bulk total RNA-seq (random primed). In
contrast, VASA-seq (oligo(dT) primed) and Smart-seqg-total (oligo(dT) primed) have up to
~15% genomic background alignments, often found to be flanked by poly-A runs, though
may be more prevalent given the read depth and filtering performed (Fig. 1h-i, Methods).

UMI diversity is critical for mitigating the technical effects of PCR amplification bias, with
downstream consequences of under- or over-collapsing UMIs if systematic bias persists
during library preparation, sequencing, and data analysis*?. To examine UMI bias across
technologies, we constructed per cell UMI sequence logos to visualize diversity (unique
UMIs), prevalence (frequency of UMIs), and bias (most abundant UMI per cell), as well
as the observed/expected inter-gene UMI collision rates. Based on the random nucleotide
construction for each UMI (except for SS3x which has the added 3° WW nucleotide motif,
Supp. Fig. 4d-e), we reasoned that the base diversity at each position in the UMI should
be evenly represented, across metrics. Indeed, STORM-seq, VASA-seq, and SS3x had
relatively even representation of each base across UMI diversity and prevalence,
indicating expected starting UMI diversity during library preparation and carried through
to data analysis. In contrast, Smart-seq-total had biased base diversity across the length
of the 16bp UMI (Supp. Fig. 4d-e). Next, we examined the most abundant UMI sequence
per cell and found that STORM-seq has the most even representation of the expected
random nucleotide diversity across the length of the UMI, with VASA-seq and Smart-seq-
total being the most severely affected (Fig. 1j). To estimate inter-gene collision rates, we
constructed a simulation framework as a function of UMI length and gene detection (e.g.
sequence depth) to establish the expected collision rates across UMI lengths/base
diversity in the technologies examined (Supp. Fig. 4a, Methods). Indeed, UMI inter-gene
collision rates decreased as the length of the UMI increased from 6bp (VASA-seq) to
16bp (Smart-seq-total) in the simulation results. We observe the expected UMI inter-gene
collision rates in STORM-seq and VASA-seq, with the most severe in Smart-seq-total
(~7x the expected rate; Supp. Fig. 4b). This elevated inter-gene collision rate is likely
explained by the observed versus expected UMI saturation, with the largest effects being
shown when UMI saturation is low (Supp. Fig. 4c). Moreover, STORM-seq exhibits low
strand invasion artifacts, similar to SS3x (Supp. Fig. 4f, Methods). Strand invasion



artifacts were not able to be calculated for VASA-seq and Smart-seq-total, due to the read
architecture.

Robustness and sensitivity of transcript detection

Typical metrics for new scRNA-seq technologies include quantification of detected genes
per cell, library construction and throughput optimizations, library complexity, and
applications that may improve biological insights®’. While these metrics help
contextualize new technologies within contemporary methods, it is important to assess
whether they provide better, more robust measurements. Here we propose that
simulation of multiple experiments through subsampling and resampling techniques
across technologies and a common cell type (HEK293T), allows demonstration of
expected transcript detection rates and transcript expression variance (robustness) in sc-
total-RNA-seq methods in single-cells (Supp. Fig. 5a, Methods). Simulation of 10
experiments through randomly subsampling single HEK293T cells to 50k reads/cell
(Supp. Fig. 5a), showed that STORM-seq has greater transcript detection rates across
annotated transcript lengths, compared to VASA-seq and Smart-seq-total (Supp. Fig.
5b). Moreover, STORM-seq produces the most robust (lowest variance) transcript
abundance estimates across transcript lengths, compared to VASA-seq and Smart-seq-
total (Supp. Fig. 5c). Taken together, STORM-seq produces more consistent, robust
transcript abundance estimates compared to contemporary sc-total-RNA-seq methods.

Next, we examined the sensitivity of STORM-seq to capture single molecules in individual
cells by using ERCC spike-in transcripts that are expected to be at ~1 copy per cell at the
1:1 million (M) dilution used, across 3 different cell types and sequencing depths
(Methods)*. Indeed, STORM-seq reconstructs expected ERCC spike-in copy number
that have at least ~1 molecule per cell across all cell types (HEK293T, K-562, and RMG-
2) and sequencing depths tested (>0.9 median adjusted R? for observed versus expected
copy number; Supp. Fig. 5d-e). Moreover, STORM-seq showed a median sensitivity of
single molecule ERCC spike-in detection of ~88% at 100k reads/cell and increases with
sequencing depth, across cell types, making STORM-seq the most sensitive sc-total-
RNA-seq method to date (Supp. Fig. 5f)*>. STORM-seq also demonstrates good cell-to-
cell gene expression correlations within the cell types tested (Supp. Fig. 59g).

Reconstruction of TE transcripts, regulatory elements, and gene fusions in single-
cells

To investigate the capability of STORM-seq to recapitulate bulk total RNA-seq (current
“gold-standard”) TE profiles in single-cells, we calculated the observed over expected
scores comparing transcribed and genomic TE family representation as previously
described?*. STORM-seq shows the most consistent TE family representation in
HEK293T (Fig. 2a) and K-562 (Supp. Fig. 6a) single-cells, similar to bulk total RNA-seq,



across scRNA-seq technologies tested. Long interspersed nuclear elements (LINEs) L1
and L2, and long terminal repeats (LTRs) ERV1 and ERVK contain endogenous
promoters that are often exapted in a cell-type specific manner'®. STORM-seq robustly
captures these TE families in single cells compared to other scRNA-seq methods . Short
interspersed nuclear elements (SINEs) are over-represented in VASA-seq and Smart-
seqg-total relative to bulk total RNA-seq, likely due to the oligo(dT) primed library
construction strategy of these methods and the preferential genomic location of SINEs
found at the 3’ ends of genes (Fig. 2a, Supp. Fig. 4a)*6. Moreover, STORM-seq has the
highest locus-level TE expression correlation to bulk total RNA-seq (R? of 0.655)
compared to VASA-seq (R? of 0.162) and Smart-seg-total (R? of 0.003; Fig. 2b). These
results demonstrate that STORM-seq is the only scRNA-seq method that can faithfully
reconstruct TE family and locus-level expression profiles in single cells.

A limitation of current scRNA-seq methods is data sparsity, making it difficult to
differentiate between technical dropouts or true absence of signal at baseline expression
levels. STORM-seq'’s high sensitivity enables confident interrogation of the heterogeneity
of endogeneous TE and TE-derived transcripts in single cells. We examined TE-derived
transcript candidates previously discovered with polyA-based bulk RNA-seq in K-5622".
STORM-seq replicated 76% (25/33) of these candidate TE-derived transcripts. Notably,
only four TE-derived transcripts (12%) were expressed in nearly all cells, suggesting that
the majority of TE-derived transcripts are heterogeneously expressed even in
homogeneous cell populations (Fig 2c). Next, we identified additional candidate TE-
derived transcripts in K-562 that display cellular heterogeneity (Methods), likely missed
in previous bulk RNA-seq analyses due to the use of oligo(dT) approaches. STORM-seq
detected 40 additional TE-derived transcripts that are also found in bulk total RNA-seq,
many of which are associated with lincRNAs and oncogenic processes (Fig 2c). As an
example, STORM-seq identifies LTR1A2-PURPL (P53 Upregulated Regulator Of P53
Levels) as a putative TE-derived long non-coding RNA that spans nearly 300kb, with
overlap of similarly long annotated PURPL transcript isoforms. PURPL IncRNA
expression appears to be predominately driven by the TE-derived transcript isoform
variants in K-562, also demonstrating the ability of STORM-seq as a tool to dissect
isoform level differences in single cells (Fig 2d). With PURPL being a proposed regulator
of p53, we observe the expected anticorrelation of PURPL expression and p53 RNA
expression with the majority of cells expressing either gene (Supp. Fig. 6b).

We expected STORM-seq to be able to capture non-polyadenylated eRNA transcripts in
distal enhancers in K-562 single cells. Coverage and detection rates were computed
across annotated distal enhancers by GRO/PRO-cap in K-562 cells, as previously
described (N=33,207, Methods)?®. Indeed, STORM-seq captures bidirectional
expression profiles for detected eRNAs, resembling those from PRO-cap*” and TT-seq?®
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Figure 2. STORM-seq reconstructs cell-type specific regulatory elements and clinically relevant gene fusions in single-cells. a) Sin-
gle-cell transposable element (TE) expression representation (obs/exp) across single-cell technologies and bulk RNA-seq. Bulk total RNA-seq is
considered the “gold standard”. STORM-seq reconstructs TE profiles in single cells similar to bulk total RNA-seq. b) STORM-seq quantifies
locus-level TE expression similar to bulk total RNA-seq. ¢) STORM-seq reveals single cell TE-derived transcript expression heterogeneity in
previously reported bulk-level TE-derived transcript candidates in K-562 (Shah et al., Nat. Genetics 2023), demonstrating that bulk-level discov-
ery of TE-derived transcripts does not necessarily indicate ubiquitous expression across single cells. d) Discovery and characterization of addi-
tional TE-derived transcript expression heterogeneity found in bulk total RNA-seq. LTR1A2-PURPL is being shown as an example of consistent
expression across replicates in bulk total RNA-seq, but heterogeneous expression across K-562 single cells. Transcript names beginning with
“TU” are unannotated genes/transcripts found in Ensembl 101 annotations. TE-derived transcripts above and below LTR1A2-PURPL have been
removed for aesthetic purposes but the full list can be found in Supplemental Table 3. e) STORM-seq reads spanning annotated PURPL tran-
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spanning reads in the assigned LTR1A2-PURPL track. f) Stranded coverage profiles of pseudobulk STORM-seq and VASA-seq across intergen-
ic, distal K-562 enhancers, with transient transcriptome sequencing (TT-seq) and PRO-cap coverage. g) Detection rates of single-cell distal
eRNAs when subsampled to 150k reads/cell shows STORM-seq identifies approximately twice as many eRNAs per cell compared to VASA-seq.
h) Proportion of single cells with a detected, known gene fusion in K-562 from CCLE. Cell type proportions are weighted by respective bulk
RNA-seq technology detection sensitivity to allow total RNA and mRNA single-cell protocols to be comparable. Single cells were downsampled
to 150k reads/cell. i) Circos plot showing genomic alterations of known gene fusions (CCLE) in K-562 recovered by STORM-seq.



(Fig. 2f). Compared to VASA-seq, STORM-seq has an ~2x greater median detection rate
of eRNAs in GRO/PRO-cap annotated distal K-562 enhancers?® per cell (STORM-seq:
202 enhancers/cell; VASA-seq: 104 enhancers/cell; Fig. 2g). Further, we reasoned that
given K-562 is a relatively homogeneous cell population, on average, similar enhancers
would be utilized and expressed as eRNAs between cells. STORM-seq recovers more
shared enhancer/eRNA expression across all bins compared to VASA-seq (Supp. Fig.
7a). However, shared enhancer usage did not describe the full complement of detected
eRNAs across single cells. As an example, multiple enhancers found within an enhancer
cluster upstream of FTH1 (Ferritin Heavy Chain 1), display differential upstream enhancer
usage of a gene involved in iron homeostasis and other oncogenic processes in K-562
(Supp. Fig. 7b)*8. Taken together, STORM-seq enables the ability to dissect eRNA
expression profiles in single cells.

One powerful aspect of RNA-seq is the ability to detect fusion transcripts. Some fusions
(e.g. BCR-ABL1 in chronic myeloid leukemia) are pathognomonic for disease*®. The
Cancer Cell Line Encyclopedia (CCLE) has made a catalog of known gene fusions using
bulk RNA-seq across many cancer cell lines, including K-562%. Using the CCLE K-562
known fusion set, we benchmarked the detection rates of expected gene fusions across
bulk RNA-seq, STORM-seq, VASA-seq, and SS3x. We subsampled to 150k reads/cell
across scRNA-seq technologies and analyzed the data using STAR-Fusion®’, as it was
the same fusion detection approach in the CCLE. Directly comparing polyA-based
methods and total RNA-seq methods for fusion detection rates is complicated due to
technical differences in library construction. We reasoned that using full-depth bulk RNA-
seq observed fusion fragments per million (FFPM) read support within the same fusion
would reduce library construction strategy differences in fusion detection rates
(Methods). For example, the BAG6-SLC44A4 gene fusion is expected to have ~6x the
read support in polyA-based RNA-seq than total RNA-seq, while BCR-ABL1 is
approximately equal across library construction strategies. Across scRNA-seq
technologies tested, STORM-seq showed the highest proportion of cells containing
known gene fusions in K-562, followed closely by SS3x (Fig. 2h, Supp. Fig. 7c). VASA-
seq consistently had the lowest overall detection rates with BAG6-SLC44A4, C160rf87-
ORC6, and IMMP2L-DOCK4 not detected (Fig. 2i, Supp. Fig. 7d).

Application to primary human fallopian tube epithelium

We applied STORM-seq to primary human benign distal, pre-menopausal fallopian tube
epithelium (FTE) (Fig. 3). This tissue is thought to harbor the cell of origin for most high-
grade serous ovarian carcinomas (HGSOC)%. Therefore, characterization of the
repertoire of cell types, states, and drivers of lineage fates found within the benign
fallopian tube is critical for our understanding of molecular events leading to HGSOC
oncogenesis. Recent scRNA-seq work has proposed different potential progenitor



populations  and divergent  differentiation models32:33:53.54, Additionally,
intermediate/transitioning cells connecting proposed progenitors to differentiated cell
types are largely absent in current studies. To investigate whether STORM-seq can better
reconstruct the  normal FTE  developmental trajectory  and identify
intermediate/transitioning cell types, we profiled primary pre-menopausal FTE from two
donors. We recovered the expected differentiated non-ciliated secretory epithelial cells
(NCSE) and ciliated epithelial (CE) cells based on established marker gene sets3354
(Supp. Fig. 8). Further, STORM-seq reveals intermediate/transitioning cells along
continuous differentiation trajectories to NCSE and CE cell types, and recovers more
features per cell, compared to prior studies (Supp. Fig. 8-10). Interestingly, within the
STORM-seq data, we found a cluster of “dual-feature” cells across donors that
simultaneously expressed endothelial (PECAM1/CD31) and epithelial (EpCAM) marker
genes (Supp. Fig. 11). Given that STORM-seq leverages index sorting, we confirmed
that these cells expressed EpCAM?* on the cell surface, and were unlikely to be doublets
of epithelial and endothelial cells, with EpCAM gene expression lower relative to both
NCSE and CE populations (Supp. Fig. 11-12). We then identified marker genes across
cell types, and found progenitor-like gene programs were enriched in these “dual-feature”
cells (Supp. Fig. 9). Next, we inferred cell trajectories using RNA velocity®>°¢, latent
time®®, pseudotime®”-%8, and principal curves®® (Fig. 3a-e, Supp. Fig. 13a-c). Notably, the
trajectories were consistent across methods and donors, showing a bifurcating lineage
from the “dual-feature” cells, along intermediate/transitioning cell types, to NCSE and CE
populations (Fig. 3a-e, Supp. Fig. 13a-c). Therefore, we propose to call this population
of cells as “unclassified fallopian tube progenitors” (UCFP). This bifurcating trajectory
gives evidence against the de-differentiation model passing through a RUNX3 or CD44
progenitor, and supports a common progenitor population that may directly give rise to
NCSE and CE cells, based on our analyses (Fig. 3, Supp. Fig. 13)*2. Further, we
identified potential driver genes shaping lineage fate and identified several transcription
factors that are consistent with known FTE biology. Specifically, PAX8 was found for
NCSE lineage commitment — a known marker gene for NCSE cells3354. Within the CE
cell lineage, we identified ULK4, which has been shown to be important for ciliogenesis®
(Supp. Fig. 13d-e). As an additional example, two long-intergenic non-coding RNAs
(LINC0O188 and LINC00937) were inferred as putative drivers for NCSE and CE lineage
fates (Supp. Fig. 13d-e). To assess the influence of transposable elements (TEs) on
lineage commitment in primary human fallopian tube (FT), we examined locus-level
expression profiles of LINEs, SINEs, and LTRs, and observe lineage-restricted TE
expression along inferred differentiation trajectories from UCFP to ciliated cells across
donors (Fig. 3f, Supp. Fig. 13g). As examples, two LINE elements (L1PA3 and L1ME1)
are shown to have expression restricted to the ciliated lineage, and are found within ~1kb
of genes known to participate in cilia beating and ciliogenesis (IQUB and FAMZ216B).
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Figure 3. STORM-seq identifies a continuous differentiation trajectory from an unclassified progenitor/”dual-feature” cell popu-
lation in primary human fallopian tube epithelium. a) RNA velocity supports a continuous differentiation process from an unclassified
fallopian tube progenitor (UCFP) cells (cluster 3) to an intermediate branch point (cluster 5) to terminally differentiated secretory and
ciliated cells (clusters 7-8 and 4, respectively). Thickness and direction of arrows indicate velocity. b) Latent time inference of cellular
differentiation and ¢) CytoTRACE pseudotime supports a similar differentiation trajectory from early UCFP/’dual-feature” cells towards
late, secretory and ciliated cell types. d) PCA space embedding of patient 1 with fitted principal curves and pseudotime show similar
lineage trajectories as shown above. e) PCA space embedding of patient 2 with fitted principal curves and pseudotime show consistency
with patient 1 lineage fate from UCFP to differentiatied secretory and ciliated cell types. RNA velocity, latent time, CytoTRACE pseudotime
were calculated using scvelo. densMAP embeddings shown for patient 1 (a-c). Principal curves and pseudotime for patients 1 and 2 were
calculated using slingshot (d-e). f) Representative cell-type specific intergenic transposable element (TE) expression from patient 1
demonstrates lineage restricted TE expression, with example locus-level LINE expression within the ciliated cell lineage. g) Independent
validation of the presence of the “dual-feature” UCFP cells using cyclic immunofluorescence across 3 additional patients. Cell type classi-
fication and quantification of “dual-feature” cells as a proprotion of total cells. h) Separate regions of interest (ROI) with zoomed insets to
show representative simultaneous expression of epithelial (PanCK) and non-epithelial (CD31) cells. i-k) FACS analysis of matched
patient single cell suspensions using the same antibodies used for STORM-seq patients 1 and 2 demonstrate similar proportions of UCF-

P/’dual-feature” cell populations (EpCAM+/CD31+).



Taken together, these results highlight the advantage of high-resolution total RNA
profiling for cell type/state and lineage inference.

To validate the presence of UCFP cells within the primary human fallopian tube (FT), we
subjected full-thickness (epithelial and non-epithelial cells) tissue sections and matched
single cell suspensions from three additional donors to cyclic immunofluorescence
(CyclF) and flow cytometric analysis. Tissue sections and cell suspensions were stained
with an antibody cocktail to delineate epithelial (PanCK or EpCAM) and endothelial
(PECAM1/CD31) cell types (Methods). Indeed, across all three donors, we observe the
presence of epithelial, endothelial, and importantly, the UCFP “dual-feature” cell types at
similar frequencies observed in the STORM-seq data (Fig 3g-k, Supp. Fig. 14). Thus, by
applying STORM-seq to primary human FT tissue, we demonstrate the utility of this
method to illuminate new biology and the importance of total RNA profiling in this tissue.

Discussion

Over the last decade, many scRNA-seq methods have been developed, including both
plate-based and droplet protocols, with the primary goal of capturing the whole
transcriptome of each cell®'. Depending on the method being presented, either droplet or
plate-based alternatives are cast in a negative light, typically highlighting shortcomings in
throughput, gene count, and cost. We believe this is a false dichotomy and choosing the
right tool for the job is important depending on the experimental question at hand. While
droplet-based protocols are valuable for cataloging cell types in tens to hundreds of
thousands of cells, plate-based protocols like STORM-seq, excel at capturing high-
resolution, full gene body length profiles of single-cell transcriptomes in hundreds to
thousands of cells, where cell states are of primary interest. Choosing a method that is
best for a project requires a balance of experimental goals, time, and cost considerations
— STORM-seq was developed with these criteria in mind.

The importance of timing in a scRNA-seq protocol has largely been overlooked. The
ability to quickly move from dissociated tissue/single cells, to cDNA, to prepared libraries,
sequencing, and analysis is paramount for data quality and sample throughput®.
STORM-seq was designed to minimize manipulations to the cell and its content prior to
reverse transcription (RT). Once single cells have been sorted into a plate, only 5 minutes
of time is spent before cells undergo reverse transcription. This includes a 3-minute cell
lysis/RNA fragmentation step and a 2-minute cooling step. Although the Fragmentation
Buffer contains RNase inhibitor, rapidly moving from cells to cDNA is crucial for capturing
short-lived RNA transcripts (i.e., eRNAs), as well as limiting RNA degradation®3.
Minimizing cell lysis time ensures that the nuclear membrane remains intact, preventing
genomic DNA (gDNA) contamination within libraries, which is particularly detrimental for



random hexamer primed protocols like STORM-seq'®. Indeed, STORM-seq has
comparable background genomic alignment rates to bulk total RNA-seq (random
hexamer primed) and Smart-seq3xpress (oligo(dT) primed), and in sharp contrast to
VASA-seq and Smart-seq-total. Minimizing genomic background alignments is critical as
non-RNA species present in the library undermines unspliced transcript abundance
estimates, as well as gene biotype detection diversity5485. STORM-seq represents the
fastest single-cell total RNA-seq protocol to date, going from single cells to sequence-
ready libraries in a single working day.

All sequencing protocols have bias, which can be limited with careful methodological
choices during library preparation. STORM-seq rapidly moves from single-cells to a
barcoded pool, avoiding cleanup steps before pooling mimicking a bulk RNA-seq
approach. Current scRNA-seq methods use bead-based cleanups, including STORM-
seq. At every bead-based cleanup step, it is expected to lose a large proportion of the
input material, typically requiring additional rounds of PCR ampilification to increase yield
and potentially introducing biased transcript representation. Therefore, STORM-seq
includes unique molecular identifiers (UMIs) to overcome PCR amplification bias (Fig.
1a-b). The methodological implementation of introducing the UMI sequences themselves
can result in additional technical bias®’. Prior work has demonstrated that careful design
of the UMI-TSO is critical to mitigate strand invasion artifacts®8. Strand invasion occurs
when a complimentary strand binds the template switching oligo, causing the subsequent
double stranded cDNA to have originated from two different RNA molecules creating a
chimeric transcript'3. STORM-seq has low strand invasion, similar to Smart-seq3xpress
and reduced UMI bias, in contrast to competing methods.

STORM-seq is a random hexamer priming protocol, profiling both polyadenylated and
non-polyadenylated RNA transcripts (e.g. total RNA), whereas oligo(dT) priming methods
measure polyadenylated transcripts either by preferential amplification (Smart-
seq3xpress) or introduction of polyA tails to capture total RNA (e.g. VASA-seq and Smart-
seq-total). Profiling total RNA expands our insight into unspliced transcripts and non-
polyadenylated regulatory features within single-cells, such as transposable elements
(TEs), eRNAs, and other transcribed regulatory elements, which are known to play critical
roles in cell state and fate. An additional benefit to random hexamer priming is that it is
robust to degraded RNA, capturing transcripts that may be lost with oligo(dT) priming
methods*'. To the best of our knowledge, another unique design innovation for STORM-
seq is introduction of spike-in ERCC transcripts at the RT and addition of UMIs step,
instead of at the cell lysis and RNA fragmentation steps. By taking this approach, it
minimizes the skewing of expected ERCC copy numbers®. ERCC and related molecular
spike-ins provide a means to normalize total RNA content differences, enabling the ability
to account for both technical and biological cellular RNA content differences, such as



those that can arise during cell replication, MYC amplification, and cellular
differentiation’®. ERCC spike-in transcripts are added at known copy numbers, enabling
an estimate of assay sensitivity for single or near-single molecule detection. Indeed,
STORM-seq accurately reconstructs expected ERCC copy numbers and sensitively
detects single copy spike-ins. With this level of sensitivity, STORM-seq can profile total
RNA, including short-lived, low expression transcripts (e.g. eRNAs) more robustly than
VASA-seq and Smart-seq-total.

RNA velocity®>°® and cellular trajectory inference® % are common analyses in scRNA-
seq. RNA velocity infers gene expression dynamics, and ultimately cellular trajectory,
through spliced and unspliced transcript abundances, and has been previously shown
that single-cell total RNA-seq methods improve RNA velocity inference®. We applied
STORM-seq to the pre-menopausal human fallopian tube epithelium (FTE), as the
stem/progenitor population has remained elusive and is of great interest for reproductive
and cancer. Prior efforts utilizing 10x Genomics scRNA-seq proposed divergent
models3233, Our results and another prior study both showed that evidence is lacking for
the ‘dedifferentiation’ model, and that RUNX3 does not mark an intermediate population,
but is instead, likely an immune cell population®3. This may be due in part to technological
limitations, compounded with the inclusion of confounding cell types (RUNX3 expressing
immune cells) as part of the pseudotime inference®?°°. Moreover, we observe that CD44
alone is not a sufficient marker for progenitor-like cell populations. Recent work has
proposed that both stroma and ciliated cells both come from mesenchymal/epithelial
‘dual-feature’ cells33, similar to those discovered in our study — referred to as unclassified
fallopian tube progenitor-like (UCFP) cells, here. In this model, secretory cells had a
different, unidentified origin outside of the ‘dual-feature’ cells. Our results show that the
two types of epithelial cells likely derive from the same progenitor cell population. Notably,
lineage reconstruction is consistent across donors, read depths, and cell lineage fate
inference methods. We provide evidence for the first time that these ‘dual-feature’ UCFP
populations are also found in whole tissue sections of full thickness human FT. Both
secretory and ciliated populations have substantial heterogeneity, particularly within the
secretory, non-ciliated epithelial cell lineage. What is traditionally treated as one cell type
(secretory cells) likely contains multiple populations of non-ciliated epithelial cells3?:33.53.54,
We also demonstrate the utility of STORM-seq to dissect the contribution of non-coding
transcript expression, previously uncharacterized in human FT through the observation
of lineage restricted TE expression in ciliated cells. These TEs possess zinc finger protein
binding sites, including KRAB-zinc finger and C2H2 zinc finger sites. KRAB-zinc finger
proteins are recognized to play important roles in regulating TE expression and
demonstrates the power of STORM-seq to simultaneously profile TE and KRAB-zinc
finger expression in single cells®”. Taken together, we show evidence for a putative



common progenitor-like cell type (UCFP) that may give rise to both epithelial and
endothelial compartments within the human FT.

Finally, while much attention has been given to calculating the cost per cell for scRNA-
seq methods, numerous additional factors drive the cost of a sequencing project,
rendering this metric incomplete at best®®. For example, while investment in the liquid
handlers required for other methods can cost tens to hundreds of thousands of dollars,
this value is not often calculated as part of the price per cell. While STORM-seq is
amenable to the use of automation, a simple multi-channel pipette is all that is required
for library generation. Additionally, the price per cell is calculated using the number of
cells that began the library generation protocol, not the number of cells that are usable
after sequencing. STORM-seq recovers nearly all cells after sequencing, limiting the
amount of money wasted by generating and sequencing failed libraries. Moreover,
STORM-seq is accessible as a commercially available kit, reducing the need to purchase
and generate additional reagents for library preparation. Computationally, STORM-seq
has been added as a preset within the kallisto|bustools*? suite and usable with
STARsolo*® through synthbar (Methods), further reducing the need for custom
processing scripts, in the hope of lowering the barrier to entry for this method.

In conclusion, STORM-seq is a random hexamer primed, ribo-reduced RNA-sequencing
protocol that does not require specialized equipment, producing the highest complexity
single-cell libraries to date. Further, STORM-seq is currently the only single-cell method
that can accurately reconstruct TE expression profiles similar to bulk total RNA-seq. It
can capture transcribed regulatory elements like eRNAs, and clinically relevant gene
fusions in single cells. Finally, when STORM-seq was applied to the human FT, we
identified a putative progenitor population expressing both epithelial and endothelial
markers, and orthogonally validated in whole tissue section cyclic immunofluorscence
(CyclF), combined with flow cytometry. With its carefully optimized design, along with its
efficiency and sensitivity in profiling total RNA, we believe STORM-seq represents the
state of the art in single-cell total RNA sequencing.

Materials and Methods in separate document

Data and Code availability

STORM-seq K-562, HEK293T, and RMG-2 raw data, SS3x K-562 raw data, and STORM-
seq fallopian tube counts have been deposited as GSE181544. Raw FASTQ files for the
human fallopian tube epithelium data will be deposited in dbGaP as controlled access at
time of publication. Flow cytometry data will be deposited in FlowRepository and will be
made available as above. All code and related R and python objects will be deposited in
zenodo.
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