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Abstract 13 

In most mammals, female sexual receptivity (estrus) closely coincides with ovulation, providing males with 14 

precise fertility signals. However, in some anthropoid primates living in multi-male societies, females 15 

display extended receptivity along with exaggerated sexual swellings that probabilistically indicate 16 

ovulation. This raises the question about how males successfully time mating, particularly when ovulation is 17 

difficult to predict from such cues as seen in bonobos. To address this question, we combined daily variation 18 

in swelling size, hormonal profiles, and male mating behaviors. By estimating day-specific ovulation 19 

probabilities relative to the onset of the maximal swelling phase and detumescence, we also examined how 20 

male efforts correlate with female fertility. Our results revealed that while ovulation probability was widely 21 

distributed and difficult to predict when aligned with the onset of the swelling phase, male behavior was 22 

closely aligned with the conception probability. Males concentrated mating efforts late in the phase and 23 

stopped after detumescence. High-ranking males intervened in copulations involving females with higher 24 

conception probabilities, specifically those with maximal swelling and older infants. When multiple females 25 

exhibited maximal swelling, males preferentially followed females whose maximal swelling started earlier 26 

and who had older infants. Male-male aggression increased when there were more females with maximal 27 

swelling. However, this tendency was reversed when male party size exceeded the average. Importantly, our 28 

results revealed that the low predictability of ovulation is best explained by inter- and intra-individual 29 

variation in the length of maximal swelling phase, rather than ovulation occurring randomly within that 30 

phase in bonobos. Males effectively manage such a noisy signal by prioritizing late-phase ovulatory cues and 31 

integrating reproductive history, thereby extracting usable timing information. This behavioral mechanism 32 

helps explain the persistence of conspicuous yet noisy ovulatory signals in bonobos. Since males are capable 33 

of inferring ovulation timing even under noisy conditions, selection may not favor highly precise female 34 

signals. Instead, it shifts more of the time and energy costs onto males, allowing conspicuous female traits to 35 

be maintained. 36 
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Introduction 39 

Sexual selection operates when individuals differ in their ability to compete for accessing mates and 40 

fertilizations, resulting in differences in reproductive success facilitated by mate choices in the opposite sex 41 

[1,2]. Since Darwin’s introduction of sexual selection [3], it has successfully explained how traits that appear 42 

costly for survival can evolve in one sex, if they give advantages in mate competition or attraction [4,5]. 43 

Under this scenario, males are typically the sex that develop conspicuous traits signaling their competitive 44 

quality, and females are usually the sex that choose [1,2]. Conspicuous signals including ornamentation and 45 

olfactory chemicals, can impose costs on females by diverting energy from reproduction or by increasing 46 

predation risk [6–8]. Particularly in mammals, such costly displays by females are considered rare due to 47 

their greater reproductive investment, including long gestation and extended maternal care [9,10]. Female 48 

signaling has therefore been viewed mainly as a means of advertising fertility or reproductive condition over 49 

short time windows, rather than as prolonged displays of competitive ability. Even so, growing evidence 50 

shows that female signaling can provide competitive advantages over other females in mammals [11–14]. 51 

For example, higher concentrations of major urinary proteins in female house mice (Mus musculus 52 

domesticus) predict more frequent aggression between females, suggesting greater investment in competitive 53 

olfactory signaling [15]. In cooperative breeders, such as meerkats, females show pronounced aggression 54 

that suppresses reproduction in other females, which parallels male–male competition [16]. Nevertheless, 55 

even in these cases, female typically compete for reproductive opportunities or for raising offspring, rather 56 

than for direct access to mates [11,16]. 57 

Primates differ from most mammals in their heavy use of vision for daily activities and communication [17–58 

19]. In contrast, many other mammals rely primarily on olfactory (chemical) signals [13,20], a pattern linked 59 

to nocturnal activity in much of the clade [21,22]. Primates also engage in sexual activity beyond the narrow 60 

fertile window [23], whereas sexual behavior in most mammals is largely confined to the narrow fertile 61 

windows (estrus) [24]. Among primates, anthropoids (New World & Old World monkeys and apes), exhibit 62 

hyper sexual activity independent of ovulation and possess trichromatic color vision that likely evolved for 63 

foraging efficiency [25,26]. This visual capacity has then supported the evolution of visual sexual signals, 64 

with both sexes exhibiting visually conspicuous secondary sexual traits [27–31]. 65 

One of the most distinctive visual signals expressed by female primates is the exaggerated sexual swelling –66 

conspicuous changes in the size and color of the anogenital skin linked to the ovulatory cycle – found in Old 67 

World primates [27,32,33]. It occurs mainly in multi-male and multi-female groups in which females mate 68 

with multiple males within a menstrual cycle and appears to have evolved at least three times independently 69 

[32,33]. In contrast to what is found in most mammals, it is females, not males, that exhibit such conspicuous 70 

and physiologically costly signals. Several hypotheses have been proposed to explain its role in sexual 71 

selection. The most well-known hypotheses are the reliable indicator hypothesis and the graded signal 72 
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hypothesis [27,34]. The reliable indicator hypothesis proposes that variation in swelling size between 73 

females reflects differences in reproductive quality, leading males to preferentially invest in females with 74 

larger swellings and thereby creating an arena for female-female competition for access to males [34,35]. 75 

This contrasts with many other mammals, where females more often compete for breeding opportunities or 76 

ecological resources rather than mates [17]. Although one study of wild olive baboons reported that larger 77 

swellings predicted higher female reproductive quality [35], the analysis was later criticized [36] and 78 

subsequent work in the same species did not replicate the result [37]. The graded signal hypothesis instead 79 

proposes that swelling provides a probabilistic visual cue of ovulation to males, shaping male mating effort 80 

and competition within multi-male society [27–29]. A substantial body of research supports key predictions 81 

of the graded signal hypothesis, showing evidence that swelling size increases with the probability of 82 

ovulation, and male mating effort and competition are concentrated at the peak of swelling size when 83 

ovulation most likely coincides [38–42]. For example, in mandrills and crested macaques, individual 84 

differences in swelling size do not indicate female reproductive quality, but signal their ovulation probability 85 

and influence male mating interests [43,44]. In Barbary macaques, changes in swelling size also indicate 86 

ovulation probability and increase male copulatory behavior [45,46]. 87 

Despite this progress, further investigation is necessary to better understand how females of certain species 88 

balance mate preferences against male coercion, and whether controlling signal conspicuity and reliability 89 

would influence mating systems and social characteristics. Increasing signal conspicuity likely carries 90 

physiological costs that could otherwise be allocated to reproduction, and lowering reliability by allowing 91 

ovulation outside the signal risks introducing errors even for female choice [23,29]. There is also marked 92 

variation among species in how exactly swelling predicts ovulation based on swelling progress. For example, 93 

in chimpanzees, swelling size is closely aligned with ovulation timing and elicits male copulation attempts, 94 

in line with graded signal hypothesis [47]. In contrast, in bonobos, ovulation is poorly predicted by swelling 95 

onset, which may make the signal among the least reliable in species that exhibit exaggerated swellings 96 

[48,49]. The causes and consequences of this species variation are unresolved. They may reflect species-97 

specific female adaptations that influence male mating strategies [23,50], measurement artifacts that could 98 

inflate noise [49], or broader social functions, including roles in female-female interactions as observed in 99 

bonobos [51,52]. 100 

Bonobos occupy a particularly informative position for the study of mammalian sexual signaling. Unlike 101 

humans and most apes, they retain conspicuous ovulatory signals, and females hold high social status and 102 

exert substantial control over mate choices and male–male competition, which contrasts with chimpanzees 103 

and humans [50,53]. Bonobos also have unusually long maximal swelling phases, resume swelling cycles 104 

relatively early postpartum, and therefore experience many cycles before conception [48,54–57]. Estimates 105 

suggest more than 20 swelling cycles per conception, roughly twice that in most chimpanzee populations 106 

[28,58], with the exception of Taï chimpanzees (11.7 ~ 19.4 cycles) [30]. Frequent swelling appearance in 107 

bonobos may lengthen receptive periods and diffuse male competition by increasing opportunities to mate 108 

with females with maximal swelling – the estrus-sex-ratio hypothesis [50,55]. Additionally, since ovulation 109 
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can occur outside the maximal swelling phase in bonobos [48,56], but also see [57,59], ovulation is assumed 110 

to be difficult to predict from swelling onset [48,49]. This view aligns with the notion that prolonged and 111 

imprecise signaling can promote paternity confusion and ease male–male competition [50] by making any 112 

single cycle less attractive to males [23,28,60]. However, field data showing substantial male–male 113 

competition over mates [53] and strongly skewed paternity toward highest-ranking males [61,62], contradict 114 

the low predictability of ovulation from the signal in bonobos. It also raises the question of why females 115 

maintain such a costly and prolonged ovulatory signal that could elevate sperm competition and potentially 116 

hinder preferences for high-ranking males [63]. Finally, if ovulatory signals are very unreliable due to 117 

excessive noise, the signaling system should be unstable and possibly collapse, unless the recipient of the 118 

signal is manipulated or counterstrategies have not yet evolved [64–66]. 119 

In this study, we tested the signal reliability of the sexual swelling as a graded ovulatory cue in a wild 120 

bonobo group. We first investigated whether male mating efforts are correlated with sexual swelling and the 121 

probability of ovulation, particularly to the 4-day fertile window – three days preceding ovulation and the 122 

day of ovulation [67]. We did not expect that males can pinpoint the fertile windows within a menstrual 123 

cycle. Instead, we expected that male sexual behavior, particularly that of high-ranking males, would 124 

coincide with the fertile windows, as predicted by the graded-signal hypothesis [27]. Second, we calculated 125 

day-specific ovulation probability from the onset of the maximal swelling and compared it with day-specific 126 

ovulation probability that calculated from detumescence. We then aligned these probabilities with male 127 

mating efforts. Lastly, based on our findings, we discussed whether maximal sexual swelling serves as a 128 

graded ovulatory signal influencing male mating efforts, and whether the low predictivity of ovulation, 129 

calculated from the equation (see Methods), is biologically meaningful in bonobos or not. By doing so, this 130 

study contributes to a better understanding of how seemly noise signals in bonobos have evolved and how 131 

they fit into the evolutionary continuum of the exaggerated sexual swelling in primates and signal 132 

communications surrounding ovulation in mammals. 133 

Results 134 

Males followed females with maximal swelling who had older infants 135 

To test males’ ability to estimate ovulation probability, we first investigated the number of males exhibiting 136 

intensive following directed at females – defined as following a target female for over 5 minutes within a 137 

10m distance. In total, male intensive following of females was observed on 95 out of 250 observation days. 138 

The number of males engaging in intensive following on a given day ranged from 0 to 8 (1.4 ± 2.1 males per 139 

day). Of these 95 days, there were 6 days when two females were simultaneously the targets of male 140 

intensive following. More males exhibited intensive following of females with maximal swelling and an 141 

older infant (Fig 1A and 1B; GLMM-1A in Table 1). The effect of the number of males and females with 142 

maximal swelling and the interaction between sexual swelling and infant age were not significant. 143 

<Fig 1. see attached> 144 
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Fig 1. Males intensive following of females depending on sexual swelling and infant ages. (A) The number of males 145 

exhibiting intensive following increased with sexual swelling size, and (B) increased with infant age. Sexual swelling 146 

categories were 1 for non-swelling, 2 for intermediate, and 3 for maximal swelling. Infant age ranged from -1 147 

(pregnancy) to 5 years. As the medians were zero due to many zero values, the box plot collapsed to a small box at the 148 

75th percentile with only the upper whisker visible. (C) More males exhibited intensive following of females with older 149 

infants, especially as the female’s maximal swelling neared detumescence. The dashed lines were fitted by ‘lowess’ 150 

(locally weighted least squares regression) function. (D) The probability that a male performed intensive following 151 

increased for females with older infants and with earlier onset of the maximal swelling. The dashed lines were fitted by 152 

logistic regressions. Each dot is a daily value. Day 0 is the day of detumescence (C) or one day before the onset of 153 

maximal swelling (D). (E) The number of males in intensive following increased as ovulation approached. 154 

Detumescence started 1.9 ± 2.4 days after the ovulation on average and the median number of males in intensive 155 

following peaked on the ovulation day. The box plot represents the 75th and 25th percentiles with a line indicating the 156 

median and whiskers representing 1.5 times the interquartile range. The dots represent all data points. 157 

Table 1. Summary statistics of GLMM-1A to 1D. 158 

Models Explanatory variables Estimates SE Z P 

GLMM-1A 

(Fig 1A, B) 

Intercept -8.31 1.07 -7.77 <0.001*** 

Infant age(a) 3.09 0.75 4.12 <0.001*** 

Swelling score(b) 2.50 0.54 4.63 <0.001*** 

Female age -0.16 0.70 -0.23 0.819 

Number of males -0.17 0.17 -1.04 0.299 

Number of FMSs -0.01 0.15 -0.04 0.972 

Interaction between (a) & (b) -0.03 0.42 -0.08 0.940 

GLMM-1B 

(Fig 1C) 

Intercept -4.19 0.7 -6.02 <0.001*** 

Infant age(c) 2.13 0.48 4.48 <0.001*** 

Days from detumescence(d) 1.31 0.23 5.67 <0.001*** 

Female age -0.26 0.7 -0.37 0.714 

Number of males -0.03 0.13 -0.2 0.841 

Number of FMSs -0.08 0.13 -0.61 0.543 

Interaction between (c) & (d) 1.30 0.26 4.95 <0.001*** 

GLMM-1C 

(Fig 1D) 

Intercept -2.99 0.40 -7.55 <0.001*** 

Infant age(e) 3.48 0.57 6.11 <0.001*** 

Days from onset of MSP(f) 2.31 0.40 5.83 <0.001*** 

Female age 0.85 0.40 2.14 0.033* 

Number of males -0.02 0.22 -0.09 0.932 

Interaction between (e) & (f) 1.91 0.47 4.11 <0.001*** 

GLMM-1D 

(Fig 1E) 

Intercept -2.97 0.38 -7.87 <0.001*** 

Infant age(g) 1.59 0.42 3.83 <0.001*** 

Days from ovulation(h) 1.74 0.23 7.59 <0.001*** 

Female age -0.26 0.31 -0.82 0.413 

Number of males 0.17 0.14 1.23 0.217 

Number of FMSs 0.10 0.13 0.78 0.434 

Interaction between (g) & (h) -0.04 0.27 -0.14 0.887 

This table presents the results of GLMM analyses of the number of males who engaged in intensive following of a 159 

given female (response variable). All explanatory variables are standardized (mean of 0 and a standard deviation of 1). 160 

The maximum variance influence factor (VIF) is 3.44 for the interaction term in GLMM-1A. Letters in superscript 161 
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indicate the variables also used in interaction terms. Asterisks indicate significance levels, *: P<0.05, **: P<0.01, ***: 162 

P<0.001. FMSs: females with maximal swelling, MSP: maximal swelling phase. 163 

Males focused their intensive following on females whose maximal swelling was nearing detumescence and 164 

whose infant was 3 years old or older – a significant interaction between days from detumescence and infant 165 

age (Fig 1C; GLMM-1B in Table 1). The other explanatory variables were not significant. When there were 166 

more than 2 females with maximal swelling, the probability that males chose a female for intensive 167 

following was higher for those with an older infant and whose maximal swelling phase started earlier (Fig 168 

1D; GLMM-1C in Table 1). However, the number of males did not influence male choice, indicating that 169 

males do not alter their preference based on the presence of same-sex competitors, nor do they shift attention 170 

to the second most attractive female. Although female age was significant in this model, it may be due to the 171 

limited variation in female age in the dataset (Fig A in S1 Text). We also found, using 14 ovulation-detected 172 

menstrual cycles (Fig B in S1 Text), that the number of males exhibiting intensive following of females 173 

increased when ovulation was imminent (Fig 1E; GLMM-1D in Table 1), and with increasing infant age. The 174 

other predictor variables, including the interaction, did not predict the number of males engaged in intensive 175 

following. 176 

The day-specific probability of ovulation and fertility 177 

The day-specific probability of ovulation and fertility were computed using 14 ovulatory cycles from 5 178 

females (Fig B in S1 Text). We employed the same equation that used in previous studies of chimpanzees 179 

and bonobos [48,67]. The day-specific ovulation probability was broadly distributed from the 8th to 27th 180 

days from the onset of maximal swelling phase (Fig 2A). The peak probability was on the 19th day from the 181 

onset of maximal swelling phase. This pattern is similar to that of a previous report on wild bonobos from 182 

Lui Kotale [48]. The day-specific probability of fertility – the likelihood that the egg coincides with sperm – 183 

did not exceed 0.3 (Fig 2A), which is consistent with the previous report [48]. 184 

<Fig 2. see attached> 185 

Fig 2. Probability of ovulation, fertility and male intensive following. (A) The day-specific probability of ovulation 186 

and fertility from the onset of maximal swelling phase (MSP), and (B) from the detumescence of the maximal swelling. 187 

Black closed circles and lines represent the day-specific ovulation probability, and red open circles and lines represent 188 

the day-specific probability of fertility. (C) The number of males exhibiting intensive following of females from the 189 

onset of MSP is distributed similarly to the probability of ovulation in Fig 2A. (D) The number of males exhibiting 190 

intensive following in relation to the detumescence of maximal swelling shows a similar distribution as found in the 191 

probability of ovulation in Fig 2B. Day 1 is defined as the day of onset of the MSP in Fig 2A and 2C. Day 0 is defined 192 

as the day of detumescence in Fig 2B and 2D. The box plot represents the 75th and 25th percentiles with a line 193 

indicating the median and whiskers representing 1.5 times the interquartile range. The dots represent all data points. 194 

To investigate the likelihood of ovulation in relation to detumescence and how detumescence impacts male 195 

behavior, we also calculated the day-specific probability of ovulation and fertility relative to the day of 196 

detumescence [37]. The ovulation probability was concentrated on the day of detumescence and showed a 197 
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clear peak 4 days before detumescence (Fig 2B), suggesting that progesterone, released from the corpus 198 

luteum after ovulation, results in detumescence of maximal swelling [57]. The day-specific fertility exceeded 199 

0.8 from 5 to 4 days before detumescence, then decreased rapidly to zero one day before detumescence. The 200 

distribution of the probability of ovulation and fertility, regardless of calculation methods, mirrored the 201 

distribution of males exhibiting intensive following on each day. The number of males exhibiting intensive 202 

following was spread across days when aligned with the onset of maximal swelling phase (Fig 2C). In 203 

contrast, male intensive following was clustered around the days approaching detumescence (Fig 2D). 204 

Notably, the median number of males exhibiting intensive following increased until detumescence, and no 205 

males followed females after detumescence, indicating that males use detumescence as a signal to stop 206 

intensive following toward the target female. We do not have evidence to suggest that males can predict 207 

detumescence and adjust their intensive following. 208 

Male mating efforts in response to ovulation and male-male aggression 209 

Males’ copulations increased when the ovulation day was imminent (Fig 3A; GLMM-2A in Table 2). Infant 210 

age had a negative effect – males copulated more with females with younger infants (Fig 3B), and male rank 211 

had a positive effect – high-ranking males copulated more (Fig 3C). Although male age had a negative effect 212 

on copulation (Fig 3D), female age had no such effect (Fig 3E). The interaction between infant age and days 213 

from ovulation was not significant. To better understand the effect of male rank and infant age on the number 214 

of copulations, we further investigated copulatory patterns among males. The top 3 ranking males accounted 215 

for 78.9% of all copulations (165/209), and they copulated with females with younger infants most often (Fig 216 

C and GLMM-2B in Table 2), which contrasts with their skewed intensive following of the females with 217 

older infants and maximal swelling. Although high-ranking males copulated more frequently with females 218 

with young infants (indicating low reproductive quality), this pattern may reflect the reduced mating 219 

frequency of females with older infants (indicating high reproductive quality). Due to such skewness in 220 

copulation, low-ranking males had fewer chances to copulate even with females of low reproductive quality, 221 

which does not support the prediction made by the estrus-sex-ratio hypothesis [50]. The lower copulation 222 

rate of females with older infants with high-ranking males indicates that females are more selective when 223 

they have higher reproductive quality, and/or males interfere with copulations with each other. 224 

<Fig 3. see attached> 225 

Fig 3. Prediction plots of males’ copulation, intervention, solicitation of copulation in relation to the ovulation 226 

day, infant age, male rank, male age, and female age. (A-E) The predicted copulation rate within a male-female dyad 227 

(GLMM-2A). (F-J) The predicted rate of intervention of copulation within a female-male dyad. (K-O) The predicted 228 

rate of solicitation of copulation by a male within a male-female dyad. Asterisks (*) on each plot indicate P-value (ns: 229 

not significant, *: P<0.05, **: P<0.01, ***: P<0.001). 230 

Table 2. Summary statistics of GLMM-2A to LM-2E. 231 

Models Explanatory variables Estimates SE Z P 

GLMM-2A 

Copulation 

Intercept -4.89 0.27 -18.19 <0.001*** 

Days from ovulation 0.24 0.10 2.49 0.013* 
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(Fig 3A–E) Infant age -0.48 0.18 -2.65 0.008** 

Male rank -0.44 0.17 -2.65 0.008** 

Male age -1.28 0.22 -5.80 <0.001*** 

Female age 0.02 0.19 0.11 0.911 

GLMM-2B 

Copulation 

(Fig C in S1 Text) 

Intercept -4.07 0.30 -13.61 <0.001*** 

Days from ovulation(a) 0.30 0.10 3.01 0.003** 

Infant age(b) -0.50 0.17 -2.86 0.004** 

Male rank (high(c) vs low(d)) -1.35 0.34 -3.99 <0.001*** 

Male age -1.23 0.22 -5.62 <0.001*** 

Interaction between a, b & c -0.42 0.14 -3.01 0.003** 

Interaction between a, b & d 0.24 0.14 1.70 0.090 

GLMM-2C 

Intervention 

(Fig 3F–J) 

Intercept -7.94 0.82 -9.70 <0.001*** 

Days from ovulation 0.85 0.25 3.43 <0.001*** 

Infant age 0.81 0.36 2.26 0.024* 

Male rank -2.14 0.57 -3.77 <0.001*** 

Male age -0.58 0.41 -1.42 0.157 

Female age -0.47 0.25 -1.93 0.053 

GLMM-2D 

Solicitation 

(Fig 3K–O) 

Intercept -4.53 0.23 -19.59 <0.001*** 

Days from ovulation 0.29 0.10 2.84 0.005** 

Infant age -0.10 0.15 -0.68 0.499 

Male rank -0.34 0.14 -2.45 0.014* 

Male age -1.25 0.19 -6.43 <0.001*** 

Female age 0.15 0.15 1.00 0.318 

LM-2E 

Aggression 

(Fig 4A, B) 

Intercept 0.30 0.01 21.77 <0.001*** 

Intensive following (x: o) -0.09 0.02 -5.76 <0.001*** 

Number of FMSs(e) 0.02 0.01 1.55 0.123 

Number of males(f) 0.05 0.01 4.69 <0.001*** 

Interaction between e & f -0.03 0.01 -3.14 0.002** 

This table presents the results of GLMMs (2A to 2D) that used the number of copulations, interventions, and 232 

solicitations of copulation between male-female dyads as response variables, collected over a total of 104 days. Days 233 

from ovulation include -14 to 0 days from an ovulation. In GLMM-2B, male rank 1st to 3rd coded “high” and 4th to 234 

10th is coded “low”. LM-2E shows results of the number of male-male agonistic interactions in relation to the existence 235 

of male intensive following of females and the number of females with maximal swelling. All explanatory variables are 236 

standardized and the maximum VIF is 2.07 for the number of males in LM-2E. Letters in superscript indicate the 237 

variables also used in interaction terms. Asterisks indicate significance levels, *: P<0.05, **: P<0.01, ***: P<0.001. 238 

FMSs: females with maximal swelling. 239 

Interventions of copulation between males increased as a female’s ovulation day approached (Fig 3F; 240 

GLMM-2C in Table 2) and for females with older infants (Fig 3G). High-ranking males intervened more 241 

frequently in other males’ copulation attempts (Fig 3H). Neither male nor female age predicted the number 242 

of interventions (Fig 3I and 3J), suggesting that the intervention rate was not influenced by female rank, even 243 

though older females have a higher rank than younger females. 244 

Males solicited copulation more from females whose ovulation was approaching (Fig 3K; GLMM-2D in 245 

Table 2). The effect of infant age was not significant (Fig 3L). Therefore, the higher copulation rate of 246 

females with younger infants (Fig 3B; Fig C in S1 Text) was not due to a higher male solicitation rate 247 

directed at those females. Both high-ranking and younger males solicited copulation more frequently (Fig 248 
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3M and 3N). Female age was not significant, suggesting that older females are not necessarily more 249 

attractive to males, which contrasts with the male preference for older females reported in wild chimpanzees 250 

[68]. 251 

The hourly rate of male–male aggression (male aggression rate) was higher on days when male intensive 252 

following was observed and increased with the number of males present (Fig 4A; LM-2E in Table 2). 253 

Although the male aggression rate appeared to increase with the number of females with maximal swelling 254 

on the day (Fig 4B), this trend was not significant. However, there was a significant interaction between the 255 

number of males and females with maximal swelling on the male aggression rate. To better understand the 256 

interaction, we visualized the effect of the number of females with maximal swelling and males on the male 257 

aggression rate. As shown in Fig 4C and 4D, the male aggression rate decreased when there were more males 258 

and females with maximal swelling in the party. However, when there were a fewer males in the party, the 259 

effect of the number of females with maximal swelling on the male aggression was opposite so the male 260 

aggression rate increased with an increase in the number of females with maximal swelling. These results 261 

demonstrate that the effect of the availability of receptive/attractive females with maximal swelling on the 262 

male aggression rates changes depending on the number of males in the party. 263 

<Fig 4. see attached> 264 

Fig 4. The number of male-male agonistic interactions in relation to females with maximal swelling. (A) A higher 265 

rate of agonistic interactions per hour between males was observed when males exhibited intensive following. The 266 

presence of intensive following is denoted by ‘O’ and its absence by ‘X’. (B) The number of male-male agonistic 267 

interactions appears to increase with an increase in the number of females with maximal swelling. However, this trend 268 

was not significant. (C) The effect of the number of males and females with maximal swelling on the hourly male 269 

aggression rate based on the model prediction of the LM-2E shows an interdependency between the number of males 270 

and females with maximal swelling. This plot was redrawn to fit to the frame based on an interactive 3D plot available 271 

at https://figshare.com/s/6c01c43ecb3e05ffabd8. (D) Visualization of the interdependency between the number of males 272 

and females with maximal swelling on the male aggression rate (significant interaction in LM-2E) shows that when 273 

there were a greater number of males in the party e.g., Mean + 1SD (9.6 males in D), the male aggression rate decreased 274 

as the number of females with maximal swelling increased. However, when there were a fewer number of males in the 275 

party, the male aggression rate increased with an increase in the number of females with maximal swelling. Each dot 276 

represents a single data point, specifically the aggression rate per hour over 250 days. The box plot represents the 75th 277 

and 25th percentiles with a line indicating the median and whiskers representing 1.5 times the interquartile range. 278 

 279 

Discussion 280 

In this study, male mating efforts were skewed toward females with higher probability of conception – 281 

females with older infants (3 years or older) and those whose maximal swelling was close to detumescence 282 

(near ovulation). Males, regardless of rank, concentrated their mating efforts, including copulation 283 

interventions, on females with a higher probability of conception. However, high-ranking males accounted 284 

for most copulations within the party, indicating priority of access to those females. When there were more 285 
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than two females with maximal swelling, males followed females with older infants whose maximal swelling 286 

phase started earlier, demonstrating males’ preference for females with a higher probability of conception. 287 

These results suggest males can discriminate conceptive potential of a given female based on her sexual 288 

swelling and reproductive history, e.g., infant age. Although male bonobos can discriminate subtle changes in 289 

swelling size as found in other primates including chimpanzees and Barbary macaques [46,47], we could not 290 

test this possibility due to our categorical measure. Further investigation using precise measurements of 291 

swelling size is necessary to clarify this possibility. However, even in this case, group males who can tract 292 

daily changes in swelling size until detumescence and retain information about individual variations in 293 

swelling characteristics and reproductive history would have greater advantages than outgroup males who 294 

cannot utilize such information. 295 

One unexpected finding is that females with younger infants exhibited more frequent copulation, and their 296 

mating partners were mostly high-ranking males. This can be explained if male-male competition over 297 

females with older infants is intense, resulting in a lower frequency of copulation for those females, or if 298 

females with a higher probability of conception copulate more selectively, thereby reducing their copulation 299 

frequency. Contrary to a prediction from the estrus-sex-ratio hypothesis, male-male aggression increased 300 

when the number of females with maximal swelling increased. However, this effect of the females with 301 

maximal swelling on male-male aggression was reversed when the number of males in a party exceeded the 302 

mean number of males party (i.e., in very large parties), implying that the effect of the number of receptive 303 

females on male-male agonistic interactions is context-dependent and warrants further investigation. 304 

As in a previous study [48], we also found that day-specific ovulation probability was widely distributed 305 

across the maximal swelling phase (Fig 2A), suggesting ovulation is difficult to predict from the onset of 306 

maximal swelling. However, this statistically driven unpredictability may not reflect biological relevance in 307 

bonobos. The equation (see Methods and [67]) calculates day-specific ovulation probability by summing 308 

probabilities for each day across all defined ovulatory maximal swelling phases in the group. In this case, 309 

there are two ways to achieve a wide distribution. One is that ovulation occurs randomly within or outside 310 

the maximal swelling phase – truly unpredictable (random) ovulation. The other is that although ovulation 311 

occurs near detumescence (Fig. 2B) – post-hoc trackable ovulation – large inter- and intra-individual 312 

variation in the length of the swelling phase (Fig. B in S1 Text) results in a wide statistical distribution (Fig. 313 

2A). As bonobos show longer maximal swelling phases than chimpanzees (Mann-Whitney U Test: W = 48, p 314 

= 0.024; Table 3), the maximal swelling phase likely contains greater variation [23]. Since the maximal 315 

swelling phase corresponds to the follicular phase in bonobos [57,59], greater follicular variance can inflate 316 

the unpredictability of ovulation in pooled datasets. Physiological factors such as heightened estrogen 317 

sensitivity [57] and reproductive events, including lactation, pregnancy, and early pregnancy loss, also 318 

increase variability of maximal swelling phases by influencing menstrual cycles [57,69]. Post-conception 319 

swelling, followed by early miscarriage, as observed in female No (Fig D in S1 Text), illustrates how such 320 

hormonal fluctuations after implantation can mimic pre-ovulatory signals, adding further variation [70]. 321 

 322 
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Table 3. The length of maximal swelling phases in female bonobos and chimpanzees. 323 

Species Condition No. cycles No. ID AVG SD (SE*) Study sites (reference) 

Bonobo C 6 1 15.3 –  Yerkes [71] 

Bonobo C 9 4 11.5 2.7* Planckendael [59] 

Bonobo C 23 8 16.0 6.8 Cologne & 3 sites [56] 

Bonobo C 57 4 13.4 0.7* Apenheul [72] 

Bonobo W 70 13 10.6 6.8 Luikotale [48] 

Bonobo W 9 3 14.6 7.4 Wamba [54] 

Bonobo W 9 - 12.9 9.3 Wamba [73] 

Bonobo W 36 9 14.0 11.2 Wamba [69] 

Chimpanzee C 53 13 11.9 4.4 Norman, OK [74] 

Chimpanzee C 158 10 10.4 - Yerkes [75] 

Chimpanzee W 41 46 12.7 - Gombe & 2 sites [76] 

Chimpanzee W 33 12 10.9 3.2 Taï [67] 

Chimpanzee W 27 28 12.5 - Mahale [77] 

Chimpanzee W 37 5 10.9 - Mahale [78] 

Chimpanzee W 37 6 9.6 - Gombe [79] 

The length of maximal swelling phases (MSPs) in captive and wild bonobos and chimpanzees from the available 324 

studies. The average length of MSPs from all available studies is 13.5 ± 1.8 days for bonobos and 11.3 ± 1.1 for 325 

chimpanzees. The length of MSPs of female bonobos is longer than that of female chimpanzees (Mann-Whitney U Test; 326 

W = 48, p = 0.024). No. cycles: the number of cycles investigated, No. ID: the number of individuals, AVG: average 327 

length of MSPs, SD: standard deviation, SE*: standard error, W: wild, C: captivity, –: not available. 328 

Despite the low predictability of ovulation, males concentrate mating efforts on females with a high 329 

conceptive probability – females with maximal swelling that started earlier and with older infants – and 330 

paternity remains highly skewed toward alpha males [61,62]. Our study suggests that this mismatch between 331 

male behaviors and the equation-derived unpredictability of ovulation likely stems from large inter- and 332 

intra-individual variations in the length of maximal swelling phase, rather than from unpredictable ovulation 333 

based on swelling progression. As we showed, detumescence provides a reliable post-hoc cue of ovulation, 334 

and males can adjust their mating efforts accordingly (Fig 2D). High-ranking males’ reproductive success 335 

also demonstrates their mating allocation strategy is effective [61,62,80]. Therefore, our results suggest that 336 

male bonobos extract usable ovulation timing from probabilistic, noisy signals by focusing mating effort 337 

around detumescence and utilizing reproductive history (e.g., infant age). This male strategy also helps 338 

explain how conspicuous but noisy ovulatory signals in bonobos can persist. If males can recover ovulation 339 

timing despite noise, selection need not favor highly precise signals. This relaxes the constraints on female 340 

signal precision, shifts greater time and energetic costs to males, and still allows conspicuous, graded signal 341 

to be maintained. 342 

In most mammals with estrous cycles, sexual behavior is tightly restricted to ovulation, creating high-fidelity 343 

signals that reduce male search and guarding costs. By contrast, anthropoid primates often exhibit menstrual 344 

cycles with extended receptivity and conspicuous but probabilistic ovulatory signals, including exaggerated 345 
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sexual swellings. Under multi-male mating, a graded but noisy signal still yields female benefits – reducing 346 

male monopolization of mating/paternity and securing social tolerance – without strongly favoring on 347 

paternity certainty for high-ranking males, provided that males can utilize integrated information (ovulatory 348 

cues and reproductive events) with sustained mating effort. Thus, our findings specify how a behavioral 349 

mechanism can stabilize noisy signaling systems in mammals – male strategies that shift from detecting a 350 

brief, reliable estrus to tracking phase-specific landmarks and combining cues over time. More broadly, the 351 

equilibrium between conspicuousness and noise of female signals should reflect a balance between (i) the 352 

costs and benefits to females of ambiguity, (ii) the energetic and opportunity costs to males of prolonged 353 

effort, and (iii) the presence of terminal, post-ovulatory cues (e.g., detumescence) that signal the end of the 354 

fertile window and allow males to disengage. By documenting how bonobo males succeed under noisy 355 

signals, we fill the gap between proximate mating behavior and ultimate causation and maintenance of 356 

conspicuous, noisy, but probabilistic ovulatory signals across mammals. 357 

The emergence of exaggerated sexual swelling in anthropoid primates extends the duration of ovulatory 358 

signaling and facilitates mating across a broader timeline that includes non-fertile periods. However, 359 

importantly, even though females exhibit such a conspicuous visual signal, its function is not for female-360 

female competition or ornamentation to indicate their competitive quality. It is rather for attracting male 361 

attention and influencing male–male competition, implying the function of such a conspicuous visual fertility 362 

signal is not for intrasexual competition (competition over mates) and is still in line with what is suggested 363 

by sexual selection in female mammals – female–female competition for reproductive environment and 364 

opportunity [1,9,16]. Our findings in bonobos align well with this framework. In this framework, bonobos 365 

fall on imprecise end of an evolutionary continuum of conspicuous ovulatory signal, where signals are 366 

probabilistic and prolonged. At the other end, there are mammal species with short estrous cycles, where 367 

ovulatory signals are conspicuous, but precise, and sexual behavior is tightly confined to the fertile period. 368 

By situating bonobo swellings within this evolutionary continuum, we provide insight into how males 369 

adaptively allocate mating effort in response to prolonged and probabilistic ovulatory signals, while also 370 

noting the importance of post-hoc cues in guiding this allocation. Our study therefore provides evidence that 371 

sexual selection has shaped the diversification of female ovulatory signals across mammals, while 372 

emphasizing that male mating-effort allocation in response to these signals remains central to the 373 

maintenance of such signaling systems. 374 

Materials and Methods 375 

Ethics statement 376 

The current study was approved by the Ministry of Scientific Research in the Democratic Republic of 377 

Congo, under permission numbers MIN.ESURS/SG-RST/13/2013, MIN.ESURS/SG-RST/007/2014, and 378 

MIN.ESURS/SG-RST/026/2014. We adhered to the Guidelines for Field Research of Non-Human Primates 379 

established by the Primate Research Institute of Kyoto University, Japan, and conducted our study 380 

accordingly. 381 
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Study site and subjects 382 

We conducted this study on a fully habituated, free-ranging wild bonobo group, E1, at the long-term bonobo 383 

field site at Wamba (00˚ 11ʹ 07.6ʺ N, 022˚ 37ʹ 57.5ʺ E; WGS84) in the northern sector of the Luo Scientific 384 

Reserve, D. R. Congo [81,82]. The group’s home range includes primary, secondary, and swamp forests. 385 

Despite the absence of a clear division of dry and wet seasons, rainfall and fruit availability are lower in 386 

January and February [83]. During the study periods from 2013 to 2015, the E1 group consisted of 32 to 38 387 

individuals, including 9 adult and 3 adolescent immigrant females, and 7 adult and 4 adolescent males. Age 388 

classes were defined following a previous study [84]. We collected focal data on 9 adult females and 7 adult 389 

and 3 adolescent males (Table A in S1 Text). All adult females had immigrated into the E1 group and had at 390 

least one successful birth [85].  391 

Behavioral observation 392 

We collected behavioral data on adult males and females during three study periods: SP1 (September 2013 to 393 

February 2014), SP2 (July 2014 to September 2014), and SP3 (November 2014 to April 2015). We followed 394 

bonobos from their bed site, located at around 6 AM, until they made a new night bed, usually after 5 PM. 395 

When the group split into several parties, the largest party was followed. To control for the effect of the 396 

number of available group members, we recorded party composition every hour using the one-hour party 397 

method [86]. Daily ranging party size and membership were defined as the number and identities of all 398 

individuals found during a given day when the total observation time exceeded 2 hours. 399 

For continuous focal sampling, we randomly selected one bonobo from the party based on a pre-generated 400 

random order before fieldwork began. We searched for the first target focal animal in the random order for at 401 

least 30 minutes after locating the bonobos in the morning. If we could not find the first one, we chose the 402 

second one in the order, and so on. To compensate for the lack of focal sampling data due to the species’ 403 

fission-fusion social system [87], we prioritized individuals with fewer data for focal animal selection. One 404 

focal session continued for 20 minutes and was terminated if a focal animal was out of sight for more than 5 405 

minutes within a session. Only focal sessions that lasted longer than 15 minutes were included in the data 406 

analysis. After an individual was followed once, it was not followed again for another focal sampling until at 407 

least 100 minutes had passed. During a focal session, we recorded all activities involving the focal animal, 408 

including feeding, moving, resting, and social interactions. We recorded the names and behaviors of 409 

individuals within 5m of the focal animal at 5-minute intervals, including an initial scan at the beginning of 410 

each focal session to collect information on nearby individuals. We also recorded all rare events, such as 411 

sexual and agonistic interactions, as far as possible. We recorded the individual ID of the participants of the 412 

interactions as well as the time and duration. All copulations, genito-genital rubbings, and agonistic 413 

interactions (e.g., bite, hit, displacing, and chase) were recorded whenever observed. 414 

Ejaculation during copulation was not always possible to confirm. Therefore, complete heterosexual 415 

intercourse without any interruption by others was counted as copulation. Intervention in copulation included 416 

direct aggression toward a male who solicited copulation from a female, and direct intervention that targeted 417 
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the male during copulation. Intervention directed toward females from males was not included as there were 418 

only 22 attempts and most of them led to counter-aggression from females or were otherwise ineffective. 419 

Only 5 cases of intervention directed toward females were successful in stopping copulation. Solicitation of 420 

copulation was counted only when a clear target was identified. Male bonobos often have an erect penis 421 

during feeding while watching females, so only the presence of an erection was not counted as solicitation. 422 

For solicitation, an erection should coincide with other behaviors such as directed hand or body gestures [88] 423 

or shaking, bending, or dropping branches or twigs to get attention from the target female. We also recorded 424 

agonistic interactions whenever there was a clear target, regardless of physical contact. Therefore, undirected 425 

display behaviors, such as charging and branch dragging, were not considered agonistic interactions [89]. 426 

When a counterattack was performed by the target within 5 seconds of the directed aggression toward the 427 

target, we considered it a tied interaction. 428 

To evaluate males’ interests toward females in the party, we defined male intensive following directed at 429 

females as when a male maintains proximity (within 10m maximum) to the target female for more than 5 430 

minutes while moving, without losing the target female from his sight. If a male’s following behavior met 431 

these criteria, we considered that this male performed intensive following of the target female. 432 

In total, we followed bonobos for 1462.3 hours over 255 days (5.73 ± 1.25 hours per day). The total focal 433 

sampling time for all individuals was 280.22 hours (858 sessions: 14.75 ± 2.01 hours per individual). The 434 

average length of a focal session was 19.6 ± 1.0 minutes, and each session consisted of 4.88 ± 0.34 scans 435 

(4189 scans in 858 sessions). We excluded two days from the 255 days when we were able to follow 436 

bonobos for less than 1 hour. Additionally, one day with very heavy rain when no males were confirmed, and 437 

two days when we could not see any females were removed from data analysis, except for the calculation of 438 

male dominance relationships. 439 

Assessment of sexual swelling and the maximal swelling phase 440 

We scored the daily variation in sexual swelling of female bonobos in relation to the firmness and size of 441 

each individual’s swelling [51,54]. The sexual swelling status was assigned to one of three categories. Fig E 442 

in S1 Text shows an example of changes in sexual swelling of one individual, named Fk. Swelling 1 is for 443 

non-swelling status; swelling 2 is for intermediate swelling; swelling 3 represents maximal swelling. Unlike 444 

female chimpanzees, the sexual swelling of female bonobos is always visible, even in the non-swelling 445 

status. Therefore, the practical definition of non-swelling status (swelling 1) is that the swelling is within its 446 

minimum size range. The swelling size variation of an individual between swelling 2 and 3 was sometimes 447 

not definitive. Therefore, firmness and shininess of the surface and movement of the sexual swelling during 448 

locomotion were the key features for distinguishing swelling 2 and 3. The detumescence day was set to the 449 

first day when the maximal swelling started shrinking, lost its firmness and shininess, and the swelling score 450 

moved from 3 to 2. The maximal swelling phase was defined from the first day of the appearance of the 451 

maximal swelling to the end day of the maximal swelling phase before detumescence. If sexual swelling 452 

recovers from 2 to 3 within 4 days, it was considered that the maximal swelling phase was continuous, 453 
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following the previous study [48]. To reduce observation errors and bias in sexual swelling scoring, at least 454 

one researcher and two research assistants discussed the sexual swelling status of each female during field 455 

observations and decided scores at a daily meeting every evening. 456 

Urine sample collection and hormonal measurement 457 

Urine samples were collected using filter papers (Whatman #1 Ø 5.5cm) throughout the day. After a female 458 

finished urination, we collected urine from the leaves of terrestrial plants or small trees. We placed the edge 459 

of the filter paper (around 1/4 of the whole) into the urine droplets and waited until it absorbed around 2/3 of 460 

the paper, allowing us to avoid contamination from dirt on the leaves. To prevent disturbing the bonobos, we 461 

collected urine after they had left the area, maintaining a minimum distance of 5m. We did not collect urine 462 

that was mixed with feces or other bonobos’ urine. Upon returning to camp, urine-soaked papers were placed 463 

in a dry box containing 500g of silica gel. Although the papers typically dried within 2 days, they were kept 464 

in the dry box for a minimum of 5 days. The silica gel was replaced weekly and heated in a hot pan for over 465 

30 minutes for reuse. Once each paper was removed from the dry box, it was individually packed in plastic 466 

zipper bags, then placed in a larger zipper bag with silica gel and stored in a dark room. The longest period 467 

that the sample was stored at room temperature was 6 months. After the samples were transported back to 468 

Japan, they were stored in a freezer (-20℃) until the time of urine extraction. A previous report demonstrated 469 

that using this method, the estrogen and progesterone metabolite levels do not change for 6 to 12 months 470 

even at room temperature [90,91]. 471 

We used an enzyme immunoassay (EIA) to measure urinary metabolites of estrogen (E1C) and progesterone 472 

(PdG). In total, we successfully recovered urinary E1C and PdG from 660 urine samples from 9 females, 473 

which were used to determine ovulatory swelling cycles (Table A in S1 Text). For the EIA, urine was 474 

extracted from the filter paper using deionized water with mechanical shaking [91]. Following extraction, we 475 

measured the creatinine concentration of the samples using the Jaffe reaction [92]. When the creatinine 476 

concentration of the samples exceeded 3mg/dl, we retested them by diluting the extracted samples. Urinary 477 

E1C and PdG concentrations were measured by EIA, as described in a previous study [93]. We used 478 

antibodies (Cosmo Bio in Japan) against estrone-3-glucuronide BSA, pregnanediol-3-glucuronide BSA, and 479 

horseradish peroxidase conjugated steroid derivatives (Cosmo Bio in Japan). More details regarding the EIA 480 

are published elsewhere [91,94]. The sensitivity of EIA was 6.6pg/ml for E1C and 2.1ng/ml for PdG. If the 481 

concentration was below these values, we excluded that sample from the analysis. The inter-plate CV for E1C 482 

was 10.79 and 15.83 for PdG. The intra-sample CV was 5.66 for E1C and 6.66 for PdG. ANCOVA tests with 483 

different dilutions from three different bonobo urine samples (N = 3 x 4) confirmed that there was no 484 

violation of parallelism between the diluted samples and the standards (P values ranged 0.155 to 0.337 for 485 

E1C and 0.255 to 0.730 for PdG). The recovery test, which involved adding a fixed amount of standard 486 

solutions to three different samples (N = 3 x 4), showed high regression coefficient values (E1C: Y = 0.99X + 487 

0.01, r2 = 0.985, PdG: Y = 0.99X - 2.5, r2 = 0.967), suggesting that E1C and PdG were successfully recovered 488 

in assays. 489 
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Defining the fertile window and probability of ovulation and conception within a swelling cycle 490 

The date of ovulation was estimated based on a sustained rise in urinary PdG above the baseline [57]. 491 

Briefly, the baseline was defined as the mean of urinary PdG concentration of the 10 days preceding a given 492 

day. If the PdG concentration on a given day exceeded two standard deviations above the baseline for three 493 

consecutive days within a week, the day before the first day of the sustained PdG rise was considered the 494 

ovulation date. We used a 4-day fertile window, also known as the periovulatory period [67], starting from 495 

three days prior to ovulation, based on findings that sperm remain fertile within the reproductive tracts for 496 

three days and eggs remain fertile within 24 hours after ovulation [95,96]. This criterion has been used in 497 

several studies on various primate species, including wild chimpanzees in Taï [67] and wild bonobos in Lui 498 

Kotale [48]. 499 

To calculate the probability of ovulation on a specific day from the onset of the maximal swelling phase, we 500 

used the following equation proposed in a previous study [67]. 501 

𝑃(𝑇 = 𝑡) =
𝑛𝑡

𝑛
, 𝑡 = 1,2,3…  502 

In this equation, 𝑃(𝑇 = 𝑡) represents the probability of ovulation on a given day. Here, t denotes a specific 503 

day within the maximal swelling phase, which starts from the onset of the phase. 𝑛𝑡 is the total number of 504 

cycles in which ovulation occurred on day t and n is the total number of ovulatory cycles, which is 14 in the 505 

current study (Fig B in S1 Text). 506 

We also calculated the daily probability of fertility (the likelihood that the sperm cell meets the egg; 507 

fertilization) using the equation from the same study [67]. 508 

𝑃(𝑋(𝑓) = 1) = ∑ 𝑃(𝑇 = 𝑡)

𝑓+3

𝑡=𝑓

 509 

In this equation, 𝑃(𝑋(𝑓) = 1) represents the probability of fertility (fertilization) on a given day within the 510 

maximal swelling phase. More simply, the probability of fertilization on a given day is the sum of the 511 

probability of ovulation on the given day 𝑓 and the following 3 days from the given day 𝑓, as calculated in 512 

the previous equation for the probability of ovulation. By using this equation, we can directly compare our 513 

results between species, as well as between populations of the same species. 514 

Estimating male dyadic dominance hierarchy 515 

We assessed male dominance relationships based on dyadic agonistic interactions. Agonistic interactions 516 

with physical contact included biting, hitting, and trampling, while those without physical contact included 517 

chasing, charging, and directed display (sometimes with branch dragging). We only used dyadic agonistic 518 

interactions that had a clear outcome of loser and winner. A loser was defined as the recipient of aggression 519 

who exhibited submissive behaviors such as grimacing, screaming, running away, or retreating. We excluded 520 

tied agonistic interactions from the calculation of relative dominance. In total, we observed 844 dyadic 521 
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agonistic interactions. Only 16 dyadic interactions were followed by counter-aggressions. Therefore, we 522 

selected 828 dyadic interactions (SP1: 314, SP2: 162, SP3: 352) to calculate the male dominance hierarchy 523 

(Table B in S1 Text). We used the steepness package [97] to build a dominance hierarchy and calculate 524 

David’s score. We also checked the hʹ index [98], a modified version of Landau’s linearity index [99], using 525 

the igraph package [100] to determine whether the male dominance hierarchy was linear. 526 

Statistical analysis 527 

We used R 4.3.3 [101] and several packages including lme4 [102], lmerTest [103], car [104], ggplot2 [105], 528 

and sjPlot [106] for statistical analyses and graphics. We used generalized linear mixed models (GLMM) or 529 

linear models (LM) with negative binomial and binomial distributions. Mixed models that included random 530 

effects were used to control the repeated measures of behavior from the same individual. We also checked 531 

multicollinearity between independent variables in the model based on variance inflation factors (VIFs) after 532 

we ran models. In all models, the maximum VIF was less than 3, except for the non-significant interaction 533 

term in GLMM-1A, which had a VIF of 3.44. This indicates that multicollinearity among the predictor 534 

variables is not a serious concern [107]. All models were also significantly better in explaining the data 535 

compared with null models. 536 

We considered that the reproductive quality of female bonobos has two main components. One is the 537 

increased chance of pregnancy as infants grow over time, irrespective of the menstrual cycle on a broad 538 

timescale. The other is changes in the probability of fertility (the chance of fertilization – a sperm meets an 539 

egg) within a menstrual cycle, depending on changes in the probability of ovulation over time. In 540 

chimpanzees, these two components are likely closely related because the energetic constraint from lactation 541 

plays a regulatory role in the resumption of the menstrual (swelling) cycle [108]. This is probably similar to 542 

female bonobos, although bonobo females resume their swelling cycle much earlier [55,57]. To integrate the 543 

effect of a dependent infant on female reproductive quality, we used infant age as a proxy for female body 544 

condition. To examine the effect of ovulation, we also included the number of days from ovulation, 545 

detumescence, or the onset of maximal swelling phase as a predictor variable in each model, depending on 546 

our question. The day of ovulation (or detumescence) was coded 0, one day before ovulation was -1, two 547 

days before was -2, and so on. The days after ovulation were 1, 2, and so on. The onset of maximal swelling 548 

phase was coded as 1, the next day was 2, and so on. In some analyses, we confined the data from -14 days 549 

before ovulation to the ovulation day (15 days, -14 to 0) to control for large inter- and intra-individual 550 

variations in the length of the maximal swelling phase. This 15-day-length maximal swelling phase was 551 

selected as the mean length of the maximal swelling phase from a published study was 13.5 ± 1.8 days 552 

(Table 3). 553 

Infant age was coded on an ordinal scale by grouping 6 months as 0.5 years. It ranges from -1 to 5. From six 554 

months before parturition to the day of parturition was coded as -0.5 and the newborn infant was coded as 0. 555 

We also coded -1 from the detumescent day of maximal swelling which coincided with ovulation resulting in 556 

successful deliveries of an infant. Finally, to avoid high VIF and convergence errors of the model, we 557 
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standardized all predictor variables to make all variables have a mean of 0 and standard deviation of 1. To 558 

make figures more intuitive and easier to interpret, they were made with the original scale. 559 

To investigate the factors influencing a male’s intensive following of  a certain female, we ran two GLMMs 560 

with a negative binomial distribution, following the hurdle model approaches [109]. In the first model 561 

(GLMM-1A in Table 1), we tested whether swelling status and infant age (explanatory variables) predict the 562 

number of males (response variable) in intensive following of a specific female using all data (250 days). 563 

Female age was also included as a fixed effect to examine its influence on male intensive following. The 564 

number of males and females with maximal swelling were also included as fixed effects to examine whether 565 

the spatio-temporal distribution of males and females with maximal swelling on a given day influences the 566 

number of males who exhibit intensive following. The interaction between swelling status and infant age was 567 

also included and female ID was the random factor in the model. 568 

In the second part of the hurdle model, we took a subset of the data, which consisted only of those females 569 

with maximal swelling (205 days), to examine the effect of detumescence of maximal swelling and infant 570 

age (GLMM-1B in Table 1). In this model, the days from detumescence of maximal swelling were included 571 

as an explanatory variable instead of swelling scores. The other variables were the same as in GLMM-1A, 572 

except for the inclusion of the interaction between detumescent day and infant age. 573 

We also investigated how males chose the target of the intensive following using a binomial mixed model 574 

(GLMM-1C in Table 1) with the data when there were more than 2 females with maximal swelling in a daily 575 

ranging party (77 observation days). In this model, the number of days from the onset of maximal swelling 576 

phase and infant age, as well as their interaction, were included as explanatory variables. Female age and the 577 

number of males of the day were also included as in the two previous models. 578 

Finally, using the data from the 14 ovulation-detected menstrual cycles (138 observation days), we tested the 579 

effect of ovulation on male intensive following of females using a negative binomial GLMM (GLMM-1D in 580 

Table 1). In this model, other explanatory variables were identical to GLMM-1B except that we changed 581 

days from detumescence to days from ovulation (ovulation day was coded 0). 582 

To investigate the factors influencing male behaviors, including copulation, intervention in copulation, and 583 

solicitation of copulation, which are directly related to male mating efforts, we conducted four separate 584 

GLMMs with negative binomial distribution. For these analyses, we used data from the 14 ovulation-585 

detected menstrual cycles and limited the data from -14 to 0 days from ovulation (104 days in total). Each 586 

model (copulation: GLMM-2A and 2B, intervention: GLMM-2C, solicitation: GLMM-2D in Table 2) uses 587 

the number of copulations, interventions, and solicitations of copulation observed within a male-female dyad 588 

on a given day as a response variable. The mother–son dyad (Jk–JR) was excluded from the dataset to 589 

minimize unnecessary zero inflation in the behavioral data. The number of events was adjusted using the 590 

offset function, which included the hours that the male and female in the given dyad were observed together 591 

in the same party on a given day. The explanatory variables were the number of days from ovulation, infant 592 

age, male rank, male age, and female age. In GLMM-2B, male rank was categorized into two groups, high 593 
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(1st to 3rd ranking) and low (4th to 10th ranking), to further investigate the effect of a 3-way interaction 594 

between days from ovulation, infant age, and male rank on the number of copulations. The female-male dyad 595 

nested within a certain menstrual (swelling) cycle was integrated into all models as a random variable (coded 596 

as dyad ID: cycle name). 597 

To test whether the number of females with maximal swelling and males influences the hourly male-male 598 

aggression rate, we ran an LM (LM-2E in Table 2). As male-male aggression might be related both directly 599 

and indirectly to male mating competition, we included the presence of male intensive following (O or X) as 600 

a fixed effect, along with the number of females with maximal swelling and males on a given day. To 601 

calculate the male-male aggression rate per male per hour, we divided the total number of male-male 602 

aggressions on a given day with the total following hours of the day. We then conducted a square root 603 

transformation of the aggression rate to avoid a violation of the normality assumption of the model. We used 604 

an LM, not GLMM, as the random effect could not be defined since the number of male-male aggression 605 

incidents was pooled within a day. 606 
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S1 Text: Supplementary Figures, Tables and References 

Fig A. Properties of the target female of male’s intensive following behavior (IFB).  

This figure presents significant variables in GLMM-1C. The subfigures show the difference in the (a) infant age 

of females, (b) days from the onset of maximal swelling phase (MSP), and (c) age of females depending on the 

existence of male IFB (O) or not (X). Although GLMM-1C indicated that males followed older females more, 

this result might be erroneous given the distribution of female age as shown in (c). The upper and lower edges of 

the box represent the 75th and 25th percentiles respectively. A line within a box is the median and whiskers are 

1.5 times the interquartile range, and colored markers are all data points of the 9 subject females. 
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Fig B. Fourteen ovulation-detected maximal swelling phases (MSPs).  

A fertile phase (periovulatory phase) is defined from -3 to 0 days from ovulation. The onset of the MSP is the 

first day maximal swelling was observed. For Sl 1, the length (days) of MSP was defined from -18 to 0 days from 

ovulation. When the swelling score temporarily dropped to 2 (intermediate swelling) from 3 (maximal swelling) 

then rose again to 3 within 4 days, we considered MSP was continuous, as in a previous study [1]. The orange 

block represents the day that females were in the MSP (swelling 3), the white block represents not maximal 

swelling (swelling 1 or 2), na: absent of the female. 
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Fig C. Effect of the 3-way interaction between ovulation, infant age, and male rank.  

This figure presents the significant 3-way interaction term demonstrating that males copulated more with females 

with younger infants than those with older infants. Such a tendency was clearer for the three high-ranking males. 

Colored bands (ribbon) around each fitted line represent the 95% confidence interval (CI) from GLMM-2B. 
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Fig D. Changes in hormones and swelling status of two conceptive menstrual cycles.  

(a) A conceptive menstrual cycle of a female, No, that resulted in a successful delivery. An earlier surge of 

estrogen (E1C) than progesterone (PdG) resulted in post-conception maximal swelling phase (MSP) after 3 

weeks from ovulation. (b) A conceptive but miscarriage occurred menstrual cycle of the same female, No. 

Although there was a surge of estrogen and progesterone, after around 10 days from ovulation, this cycle failed in 

keeping a high concentration of estrogen and progesterone, so an early loss of pregnancy occurred. It is notable, 

however, that a short MSP came as in the successful conceptive cycle shown in (a). 
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Fig E. Changes in sexual swelling and score estimation. 

Morphological changes in sexual swelling of a female, Fk. Non-swelling status was scored 1, intermediate 

swelling was scored 2, and the maximal swelling was scored 3. 
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Table A. Basic information about subject individuals in E1 group. 

The age of each female in 2015 was estimated based on immigration date and several morphological cues, while 

the age of males was estimated mostly based on their birth date with morphological cues. The immigration dates 

of Yk, Hs, Jk, and Sl were the year and month when they were identified. The infant age in April 2015 is 

expressed in months. Ovulation cycles: ovulation detected menstrual cycles, (anovulation): anovulatory cycle. 

MSP: The number of maximal swelling phases (MSPs) defined for the female. †, ‡: infant births within 2 weeks. 

Females and their youngest infants 

Name Age (2015) 
Infant age 

(2015.04) 

Ovulation cycles 

(anovulation) 
MSP 

Urine 

samples 
Immigration 

Latest 

delivery 

No 44 0 3 (0) 9 120 1983.11 †2015.04 

Ki 41 15 0 (0) 4 44 1984.12 ‡2014.02 

Yk 34 13 0 (0) 5 29 *2004.04 2014.04 

Hs 32 15 0 (2) 4 36 *2003.08 ‡2014.02 

Jk 27 39 4 (0) 7 60 *2004.04 2012.01 

Sl 24 40 2 (0) 9 114 *2003.08 2011.12 

Nv 20 21 0 (2) 5 53 2007.08 2013.7 

Ot 18 0 1 (0) 3 65 2008.06 †2015.04 

Fk 17 51 4 (1) 7 139 2008.06 2011.02 

Males 

Name 
Age  

(2015) 
Age class Copulation Rank SP1 

Rank 

SP2&3 

Identified 

(age) 

TN 45 Old 21 8 8 1976 (6) 

TW 41 Old 0 7 7 1976 (2) 

DI 40 Old 20 9 10 2004 (29) 

NB 27 Middle 68 2 2 1988 (0) 

GC 27 Middle 18 4 3 2003 (15) 

LB 22 Middle 18 5 6 2003 (12) 

JD 22 Middle 39 6 4 2003 (12) 

JR 14 Young 34 1 5 2004 (3) 

KT 11 Young 274 3 1 2004 (0) 

SB 11 Young 78 10 9 2004 
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Table B. The number of male dyadic agonistic interactions during the study periods.  

In study period 1 (SP1), JR occupied the highest rank. However, the h’ index (0.84) indicated that the hierarchy 

was not linear. In SP2&3 the hierarchy was linear (h’ = 0.95). The numbers next to the name represent the age of 

the individual in 2014 (SP1) and 2015 (SP2&3). 

SP1 

ID JR NB KT GC LB JD TW TN DI SB 

JR (13)  10 13 21 9 10 1 5 2 20 

NB (26) 6  0 30 4 9 0 5 1 12 

KT (10) 0 5  2 8 4 0 8 2 15 

GC (26) 4 2 1  10 0 2 4 1 2 

LB (20) 0 0 2 0  1 5 3 7 6 

JD (20) 0 0 0 0 0  3 2 7 18 

TW (40) 0 0 0 1 0 0  3 0 0 

TN (44) 0 0 0 0 1 0 0  8 8 

DI (39) 0 0 1 0 0 0 1 0  9 

SB (10) 0 0 0 0 0 0 0 0 0  

SP2&3 

ID KT NB GC JD JR LB TW TN SB DI 

KT (11)  40 15 6 20 26 1 3 28 4 

NB (27) 2  31 8 56 19 3 7 8 4 

GC (27) 0 0  1 84 6 2 4 10 9 

JD (21) 0 0 0  0 11 5 5 9 9 

JR (14) 3 8 0 0  1 0 1 2 2 

LB (21) 0 0 0 0 0  8 7 4 25 

TW (41) 0 0 0 0 0 0  2 0 1 

TN (45) 0 0 0 0 0 0 0  1 8 

SB (11) 2 0 0 0 0 0 0 0  0 

DI (40) 0 0 0 0 0 0 0 0 3  
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