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Abstract 

Recent advances in high-throughput sequencing technologies have made it possible to 

collect and share a massive amount of omics data, along with its associated metadata. 

Enhancing metadata availability is critical to ensure data reusability and reproducibility and to 

facilitate novel biomedical discoveries through effective data reuse. Yet, incomplete metadata 

accompanying public omics data may hinder reproducibility and reusability by reducing sample 

interpretability and limiting secondary analyses. In this study, we performed a comprehensive 

assessment of metadata completeness shared in both scientific publications and/or public 

repositories by analyzing over 253 studies encompassing over 164 thousands samples, including 

both human and non-human mammalian studies. We observed that studies often omit over a 

quarter of important phenotypes, with an average of only 74.8% of them shared either in the 

text of publication or the corresponding repository. Notably, public repositories alone 

contained 62% of the metadata, surpassing the textual content  of publications by 3.5%. Only 

11.5% of studies completely shared all phenotypes, while 37.9% shared less than 40% of the 

phenotypes. Studies involving non-human samples were more likely to share metadata than 

studies involving human samples. We observed similar results on the extended dataset 

spanning 2.1 million samples across over 61,000 studies from the Gene Expression Omnibus 

repository. The limited availability of metadata reported in our study emphasizes the necessity 

for improved metadata sharing practices and standardized reporting. Finally, we discuss the 

numerous benefits of improving the availability and quality of metadata to the scientific 

community and beyond, supporting data-driven decision-making and policy development in the 

field of biomedical research. This work provides a scalable framework for evaluating metadata 

availability and may help guide future policy and infrastructure development. 

 

Introduction 

Advancements in the high throughput sequencing technologies over the last decade 

have made omics data readily available to the public, enabling researchers to access a vast 

array of data across various diseases and phenotypes from the textual content of publications 
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or various public repositories
1
. The vast amount of omics data and its accompanying metadata 

enable unprecedented exploration of biological systems through the re-analysis of public omics 

data, which is also known as secondary analysis
2,3

. Secondary analysis is capable of driving 

transformative breakthroughs in biomedical research, fostering collaboration, accelerating 

scientific progress, and deepening the understanding of human biology and diseases. By 

leveraging this readily available wealth of omics information, researchers can unravel the 

complex interplay of genes, proteins, cellular processes, and environmental factors from raw 

omics data. To facilitate the reproducibility of omics studies and the effective secondary 

analysis of omics data, metadata completeness and accuracy are crucial
4,5

. Metadata enriches 

raw data by providing essential details about its fundamental attributes, including phenotype, 

age, sex, and disease condition, as well as comprehensive experimental and environmental 

information, such as the data generator, creation date, data format, and sequencing protocols
2
. 

As a result, accurate and comprehensive metadata are critical for the efficient utilization, 

sharing, and subsequent re-analysis of omics data
1,6–10

. Metadata also enable data-driven 

decision-making and policy development in fields such as biomedical sciences, clinical research, 

environmental sciences, and social sciences
1
.  

Although the biomedical community has made tremendous efforts in sharing omics 

data, little attention is allocated to ensure the completeness of metadata accompanying raw 

omics data
1,11

. We previously reported the limited availability of metadata accompanying 

sepsis-based transcriptomics studies
1
 but the overall patterns of metadata sharing across other 

diseases and organisms remains unknown
1,12,13

. Incomplete metadata hinders researchers' 

ability to utilize metadata information for subsequent downstream analysis
8,14,15

. For instance, 

studies have shown that metadata elements such as sample source, sex, or experimental 

condition are often missing or inconsistently reported in public repositories like GEO and SRA, 

limiting reusability
1,16

. Even when raw data are deposited, the lack of standardized descriptors 

and structured fields impedes automated retrieval and integration
17

. In addition to hindering 

reproducibility, incomplete metadata can lead to underutilization of publicly funded datasets. A 

study analyzing metadata quality in gene expression repositories found that many samples 

lacked even basic information such as organism or tissue type, making them effectively 

unusable for secondary analyses or meta-studies
18

. This not only limits the scientific return on 

investment but also impedes large-scale integrative research that relies on well-annotated 

datasets. Typically, metadata accompanying omics studies has been shared in two ways, in 

public repositories and in the text of publications. Metadata shared solely in the textual content 

of publications has many limitations and is insufficient to ensure that it is complete, accurate, 

accessible, and machine-actionable
19

. This is because metadata not in a standardized format in 

publications can be scattered across multiple locations, making it challenging and time 

consuming for researchers to locate and integrate metadata from multiple sources for further 

downstream analysis. Additionally, metadata shared in publications is often provided at the 
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study level lacking per sample or individual information. The lack of sample-level metadata 

limits the reproducibility of conducted research, restricting the credibility and ultimately 

making secondary analysis impossible or extremely difficult to conduct. If the metadata is 

shared only in the publications, the researchers will require a time-consuming and laborious 

manual data-mining process to extract such metadata information, especially when looking at 

large scale studies
20

. Mining and extracting metadata from the publications can be challenging 

due to the presence of misannotated, unstructured and absent metadata information. In 

contrast to sharing metadata within the text of a publication, a highly effective method for 

disseminating metadata involves sharing it through publicly accessible repositories, making 

researchers easy to access this information and facilitate downstream secondary analyses
1,21

. 

As a result, public repositories play a crucial role in advancing biomedical research by 

facilitating the efficient and effective sharing and utilization of data accompanying metadata
1
.  

In this study, we analyzed a total of 253 randomly selected studies over 164 thousands 

samples across various disease conditions, phenotypes and organisms. We investigated the 

prevailing practice of metadata sharing in the textual content of publications and the 

corresponding public repositories. We observed that studies often omit over a quarter of 

crucial phenotypes, with an average of only 74.8% shared. Only 11.5% of studies completely 

shared all phenotypes, while 37.9% shared less than 40% of the phenotypes. Studies involving 

non-human samples were more likely to have complete metadata than studies involving human 

samples. Additionally, public repositories contained more complete metadata compared to 

metadata shared in the textual content of publications. To generalize our results, we further 

examined over 61 thousand studies over 2.1 million samples from Gene Expression Omnibus
22

 

(GEO) repository. The overall metadata availability of 2.1 million  GEO samples was 63.2%. 

Similar to the metadata availability of surveyed 253 studies, non-human studies have 16.1% 

more pheenotypes shared compared to human studies. Notably, the availability of metadata in 

published studies has increased substantially over time. In studies published before 2011, 

metadata availability was limited, with less than 1% of studies having metadata being shared. In 

contrast, in studies released after 2021, there has been a remarkable enhancement in 

metadata availability, with as many as 50% of studies now incorporating this valuable data. 

Rich, machine-readable phenotypic metadata are now recognised as a prerequisite for 

transparency, reproducibility, and equitable reuse of biomedical omics data. International 

frameworks—most notably the FAIR Guiding Principles and the 2023 NIH Data Management 

and Sharing (DMS) policy—explicitly mandate that publicly shared datasets be accompanied by 

sufficiently detailed descriptors to enable findability and rigorous downstream analysis
23

. Yet 

community audits continue to show that key variables are routinely omitted, constraining 

reliable population stratification, sample matching, and mechanistic inference. To interrogate 

this gap we operationally define metadata completeness as the presence, at minimum, of six 

phenotypic attributes that recur across legacy and emerging minimum-information standards 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2025. ; https://doi.org/10.1101/2021.11.22.469640doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469640
http://creativecommons.org/licenses/by/4.0/


 

 

(MIAME
24

, MINSEQE
25

, MIBBI
26

, GA4GH Phenopackets
27

) and that exert direct analytical 

influence: race/ethnicity/ancestry (REA), age, sex, tissue type (or specific cell type), organism, 

and experimental strain information. These fields are mandated or strongly recommended in 

multiple checklists precisely because they capture the principal axes of biological heterogeneity 

that confound multi-study integration and drive disease risk. Attributes such as marital status or 

geographic latitude, while relevant in certain contexts, lack comparable consensus and are 

inconsistently reported; they were therefore excluded from our baseline definition. 

Using this schema we examined 61,312 genomics and transcriptomics records deposited 

between 2008 and 2024. Automated XML parsing was complemented by a manual audit of 253 

randomly selected studies, confirming parser accuracy and revealing silent discrepancies 

between manuscript narratives and repository entries. Fewer than one-third of studies 

reported all six attributes in either venue, and 42 % of the attributes that were disclosed in one 

source were absent from its counterpart. Although reporting rates have improved modestly 

since 2018—coincident with the roll-out of FAIR and NIH DMS guidance—completeness 

remains highly variable across sub-disciplines. Collectively, these findings substantiate our 

underlying assumption that the six selected attributes constitute a practical yet stringent 

benchmark for evaluating metadata sufficiency, and they underscore the urgent need for 

harmonised publisher–repository checklists, enforceable submission validators, and community 

incentives that treat metadata as a first-class research output. Addressing these structural 

barriers will accelerate hypothesis generation, cross-study integration, and ultimately clinical 

translation across the biomedical research spectrum. By promoting the availability and quality 

of metadata accompanying raw omics data, we can enable more accurate and efficient 

secondary analyses, which in turn may advance our understanding of complex diseases and 

their underlying mechanisms, and ultimately discover novel biomedical insights to improve 

human health
28

.  

 

 

Results 

Assessing the completeness of public metadata accompanying omics studies 

We have performed a comprehensive analysis of the availability of the metadata 

reported in the textual content of the original scientific publications and the corresponding 

public repositories. We meticulously analyzed a total of 253 randomly selected scientific 

publications encompassing over 164 thousand samples across various disease conditions, 

phenotypes and organisms (D1 dataset) (Supplementary table 1). The human studies 

encompassed various disease conditions, namely Alzheimer's disease (AD), acute myeloid 

leukemia (AML), cardiovascular disease (CVD), inflammatory bowel disease (IBD), multiple 

sclerosis (MS), sepsis, and tuberculosis (TB) (Table S1) (Figure S1).  Among the 253 studies, 153 

pertained to human studies, while 100 focused on non-human studies. To assess metadata 
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availability, we manually reviewed the phenotypic information within the textual content of 

publications, including both the main text and supplementary materials. To retrieve metadata 

from the public repositories, we developed the custom Python scripts (Methods Section). To 

increase the generalizability of our analysis,  we randomly selected over 61 thousands studies 

from the Gene Expression Omnibus
29

 (GEO) repository, encompassing a total of over 2.1 million 

samples (D2 dataset) (Supplementary table 2). For both D1 and D2 datasets, we examined the 

four common phenotypes shared by both human and non-human studies, which included 

organism, sex, age, and tissue types. In addition to the common phenotypes, we investigated 

the human-specific phenotype of race/ethnicity/ancestry and the non-human-specific 

phenotype of strain information.  

 

Limited availability for essential phenotypes accompanying 253 studies  

Our analysis has unveiled that more than a quarter of phenotypes are not shared in 

either the textual context of the publication or public repositories (Figure S2). While all studies 

shared at least one phenotype, on average, only 11.5% of studies managed to encompass the 

entire set of phenotypes. In contrast, over a quarter of studies shared a significant 80% of the 

phenotypes, and more than a third of studies shared 40% of the phenotypes. Additionally, 4.7% 

of the studies shared less than 20% of the phenotypes (Figure 1a). Among the six phenotypes, 

organism information was the most commonly shared phenotype with all the studies sharing 

such information (Figure 1b). Meanwhile, up to 80% of the studies reported tissue information, 

and similarly, 80% of the non-human samples reported strain information (Figure 1b). About 

60% of the studies have available sex and age information (Figure 1b), with, on average, half of 

the samples within the studies reporting this information in both sources. Importantly, the 

race/ethnicity/ancestry information was the least frequently reported phenotype with only up 

to 20% of the human studies reported this essential phenotype information (Figure 1b), with 

only about 10% of the samples, on average, sharing such information within the studies in both 

sources. Our analysis revealed a substantial improvement in metadata reporting practices, 

particularly in studies released after 2018 (Figure 1c). Most of the phenotypes experienced a 

drastic increase in availability after 2018, including age, organism, sex, tissue, and strain 

information. In contrast, studies published before 2010 show a significant limitation in the 

availability of the six phenotypes (Figure S3).  

 

Inconsistent practices of metadata sharing across the textual content of publications and 

corresponding public omics repositories 

We compared metadata availability across the 253 studies reported in the textual 

content of publications versus in the corresponding public repositories. The metadata 

availability in original publications was more than 3% lower than the metadata availability in 

public repositories, which was 62.0% (Figure 1d). In comparison to the textual context of the 
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publications, public repositories share more complete phenotypes for organism, sex, age, 

strain, and race/ethnicity/ancestry, while the textual content of publications share more 

complete tissue information (Figure 1e). Organism information was the most completely and 

consistently shared phenotype in both public repositories and the textual content of the 

publications with all such information available across all the 164,909 samples (Figure 1e). 

Notably, organism information was fully available in the public repositories in contrast to 99.2% 

availability in the textual content of the publication (Figure 1e). In contrast, age was the least 

consistently shared phenotype between the textual content of publications and public 

repositories, with 17.9% more samples having age information in public repositories (Figure 

1e).  Tissue information was reported in both platforms for over 60% of the samples, 20% of 

samples only report such information in the textual content of the publications, while only 

about 10% shared it only in public repositories. About 50% of the samples shared sex and 

race/ethnicity/ancestry information between both sources, and 30% of the samples only shared 

such information in public repositories (Figure 1f).  

 

Non-human studies demonstrated an enhanced commitment to sharing metadata  

 We compared the metadata reporting practices for the common phenotypes across 153 

non-human and 100 human studies. The metadata availability for human samples was 56.1% 

and for non-human samples was 60.86% (Figure 1g).  Human and non-human samples had 

more complete metadata reported in public repositories (66.6% and 62.0%, respectively) than 

in the textual content of publications (54.6% and 59.7%, respectively) (Figure S4). Non-human 

studies reported more complete metadata for age and sex, while human studies reported more 

complete metadata for tissue information (Figure 1h). In the human and non-human studies, 

organism information is widely available (Figure 1h). Tissue information is also widely available 

in human studies; conversely, only up to 60% of the non-human samples had available tissue 

information. While organism and tissue information was commonly reported in human studies, 

sex data was provided by only 49.4% of human studies, age data by 48.9%, and 

race/ethnicity/ancestry details by a mere 22% of human studies (Figure 1h). For non-human 

studies, other than the organism data, strain information was the most reported, available for 

76.5% of samples. Age, and sex information has over 60% availability in non-human studies 

(Figure 1h). We observed that both human and non-human studies shared more complete 

metadata in public repositories than in the textual content of publications. Of the 153 human 

studies, 97 had consistent metadata sharing practices between original publications and public 

repositories, 36 had lower metadata availability in the textual content of publications, and 20 

had higher metadata availability in the textual content of publications (Figure 1i). Of the 100 

non-human studies, 59 had more complete metadata in public repositories than in the textual 

content of publications, 28 had the same extent of metadata availability in both sources, and 13 
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had more complete metadata in the textual content of publications than in public repositories 

(Figure 1i).  

 

We observed significant discrepancies in metadata sharing among non-human species 

and aim to assess the overall completeness of metadata across these species. We analyzed 

metadata availability in the textual content of publications and public repositories for the top 

five non-human organisms in the 153 non-human studies, including Mus musculus, Parus major, 

Glycine max, Danio rerio, and Gallus gallus. Mus musculus and Parus major had similar 

metadata availability levels (up to 60%) in both sources. In contrast, Glycine max, Danio rerio, 

and Gallus gallus demonstrate a notable difference in metadata availability between the textual 

content of publications and public repositories. Specifically, they reported more comprehensive 

metadata in the textual content of publications than in public repositories (Figure S5). 

 

Sharing experiment-level metadata remains a common practice 

The concept of experiment-level metadata availability was characterized by the sharing 

of only summarized information regarding the phenotypes of the samples, omitting detailed 

per-sample phenotypic information. It remains a common practice to offer an overall 

description of the study or experiment's participants, while refraining from providing detailed 

descriptions of each individual's phenotypes. Among human studies, 14.8% of metadata was 

exclusively shared at the experiment-level, while non-human studies exhibited a comparable 

pattern, with 6.8% of metadata exclusively shared at the experiment-level. In human studies, 

approximately 60% of the samples reported available age information only at the experiment-

level (Figure S6). Up to 20% of the human samples only shared experiment-level metadata for 

disease, sex, and race/ethnicity/ancestry information (Figure S6 and Figure S7). In non-human 

studies, 20% of the non-human samples only reported tissue information at the experiment-

level. Sex information was often presented in a summarized format, with approximately 40% of 

this information available at the experiment level. In contrast, less than 10% of the sex 

information was available at the sample level (Figure S6 and Figure S7). Notably, the 

experiment-level metadata for sex, age, and race/ethnicity/ancestry information accounts for 

approximately half of the human samples’ phenotypic information availability (Figure S7).  

 

Discrepancies in metadata sharing practices were observed across seven disease conditions 

Next, we examined metadata sharing practices for seven disease conditions, including 

Alzheimer's disease (AD), acute myeloid leukemia (AML), cardiovascular disease (CVD), 

inflammatory bowel disease (IBD), multiple sclerosis (MS), sepsis, and tuberculosis (TB), in 

human studies. The metadata completeness for the six phenotypes varies across the seven 

disease condition studies (Figure 2). All seven diseases have fully reported metadata for 

organism and tissue types (Figure 2). The reporting practices of three phenotypes (sex, age, and 
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race/ethnicity/ancestry information) exhibited variability across the seven diseases. For the sex 

information, CVD studies had reported the highest availability for such information (75.9%), 

followed by AD studies, sepsis studies, AML studies, IBD studies, and TB studies , while MS 

studies had the lowest (10.8%). For the age information, sepsis studies had reported the highest 

availability of such information (67.9%), followed by AD studies, AML studies, IBD studies, CVD 

studies, and TB studies (32.4%),  while MS studies had the lowest (9.7%). For the 

race/ethnicity/ancestry information, most studies rarely reported such information, and 

notably, none of the samples in the IBD and MS studies reported race/ethnicity/ancestry 

information (Figure 2).  

 

Analysis of 61,000 studies encompassing 2.1 million samples across public repositories 

confirms limited metadata availability  

We investigated the availability of the six phenotypes reported for 2,168,620 samples 

from 61,950 studies available at the Gene Expression Omnibus (GEO) (D2 dataset). The overall 

availability of metadata among the 61,950 studies was 63.2% (Figure S8). Notably,  we 

discovered that studies preceding 2010 exhibited a lack of shared metadata (Figure S9). We 

discovered that human studies exhibited a lower average metadata completeness (47.4%) 

compared to non-human studies (63.5%) (Figure S8). As a result, the availability of metadata in 

non-human samples surpasses that in human samples (Figure S8 and Figure S9). Human 

samples invariably share organism and tissue information (100% and 99.9%, respectively), but 

less frequently report age (19%) and sex (13.8%), with race being the least disclosed at 4.2% 

(Figure S10); Conversely, all non-human samples report organism and tissue data, with strain 

and age information present in 56.7% and 37.4% of samples, respectively, while only 24.15% 

include sex information (Figure S10). Tissue, sex, and age metadata are more comprehensively 

reported in non-human samples compared to their human counterparts (Figure S10). 

 

Discussion 

In our study, we focused on six phenotypic attributes—organism, tissue type, strain, sex, 

age, and race/ethnicity/ancestry (REA)—as representative indicators of metadata 

completeness. This selection was guided by a combination of field-wide reporting standards 

and their relevance to downstream analyses. We used standardized descriptors—such as 

organism, tissue or cell type, and experimental strain—guided by international minimum-

information checklists (e.g., MIAME
24

, MINSEQE
25

, MIBBI
26

, GA4GH Phenopackets
27

), as these 

phenotypes are consistently reported across studies and essential for selecting appropriate 

reference genomes, expression atlases, and functional annotations. Their omission has been 

shown to inflate false-positive rates in differential-expression pipelines when samples from 

distinct tissues or mouse substrains are inadvertently pooled. In particular, strain information in 

non-human model organisms (e.g., mice, rats, zebrafish) is essential for reproducibility in 
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molecular studies, especially in areas such as epigenomics, where strain-specific genetic 

backgrounds can significantly influence DNA methylation patterns, histone modifications, and 

chromatin accessibility. For example, studies have shown that genetically similar mouse strains 

exhibit distinct epigenetic profiles that affect disease susceptibility, gene regulation, and 

developmental phenotypes. The absence of such metadata can lead to misinterpretation of 

epigenetic variation as disease-related rather than background-driven
30,31

. 

Certain phenotypic variables—such as sex, age, and ancestry—carry substantial 

biological and analytical value, and their inclusion is essential for accurate, reproducible, and 

equitable interpretation of genomic data. The NIH “Sex as a Biological Variable” (SABV) policy 

(NOT-OD-15-102) codifies sex as essential for reproducibility; meta-analyses of pre- and post-

policy publications show that failure to stratify by sex conceals up to 22 % of significant 

expression differences
32–34

. As a result, sex is widely recognized as a critical biological variable; 

it has been strongly recommended by the NIH and others as essential for identifying sex-

specific disease mechanisms, treatment responses, and biological variability
35

. Age profoundly 

modulates transcript abundance (e.g., >40 % of protein-coding genes in GTEx exhibit age-

dependent expression), alters epigenetic drift, and drives batch effects in single-cell atlases; 

downstream analyses that ignore age confounders mis-estimate effect sizes and disease 

signatures
36–38

. Race/Ethnicity/Ancestry (REA) captures population-specific allele frequencies 

and gene-environment interactions. Large-scale surveys consistently show that >80 % of GWAS 

participants are of European ancestry; re-analyses demonstrate that polygenic risk scores 

trained on such data lose predictive power in under-represented groups, underscoring the 

necessity of REA metadata for equitable translational research
39

. Recent studies have also 

emphasized that the lack of ancestral diversity in genomics undermines generalizability and 

equity in data-driven discoveries
40,41

. 

Collectively, these six attributes represent the intersection of (i) widespread 

standardisation, (ii) availability across public repositories, and (iii) demonstrable influence on 

downstream bioinformatic pipelines. Their absence hampers sample matching, inflates hidden 

confounders, and ultimately erodes reproducibility—as evidenced by the replication failures 

cited above. While additional clinical variables (e.g., disease stage) are invaluable in specific 

contexts, they are neither universally reported nor mandated by current standards, precluding 

systematic cross-study assessment at present. Our definition of metadata completeness 

therefore reflects a pragmatic yet stringent baseline that is both measurable and maximally 

informative across heterogeneous study designs. 

Although additional metadata elements—such as disease severity, batch, or sampling 

location—can be valuable in specific study contexts, the six we selected are expected to be 

routinely collected and are broadly informative across study designs, even if not always publicly 

available. The absence of these variables can limit sample stratification, introduce confounding, 

and reduce the ability to replicate study findings—thereby undermining reproducibility and 
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interpretability in secondary analyses. Our analysis emphasized phenotypes that are broadly 

available and comparable across a wide range of study types. While clinical metadata—such as 

treatment history, disease severity, or comorbidities—are essential in clinically focused 

research, such information is often absent in basic or translational studies that fall under 

disease categories but focus primarily on molecular or mechanistic biology. In these contexts, 

clinical metadata may not be reported or applicable, making systematic extraction and cross-

study comparison challenging. We acknowledge the importance of assessing clinical phenotype 

availability and view this as a valuable direction for future research, particularly in studies that 

target clinical datasets. 

Our study is the first to systematically analyze metadata completeness across multiple 

organisms and phenotypes, revealing limited availability of metadata both in textual content of 

publications and public repositories. While metadata completeness varies by phenotype, 

organism and tissue types are consistently reported, whereas age, sex, strain, and 

race/ethnicity/ancestry information are often missing (Figure S2). Notably, non-human studies 

demonstrated an enhanced commitment to sharing metadata than human studies. Several 

factors may contribute to the observed differences in metadata availability between human 

and non-human studies. Firstly, the nature of the research focus plays a crucial role. Human 

studies are typically subject to stricter ethical guidelines and consent requirements, and data 

sharing regulations
42–44

. These regulations may limit the extent of metadata that can be 

collected, whereas non-human studies may not encounter the same constraints
42,44–46

. As a 

result, non-human studies may enjoy easier access to metadata due to less stringent privacy 

and consent regulations, facilitating more extensive data collection efforts
47–49

. Data sharing 

norms may further influence metadata availability. Non-human studies often have a stronger 

tradition of data sharing, motivating researchers to provide more complete metadata to 

promote transparency and collaboration
50

.  

Different research fields have specific requirements and conventions for metadata, 

which can explain the varying availability between human and non-human species. The nature 

and objectives of a study often dictate which metadata elements are deemed essential. For 

example, in disease model research—particularly cancer studies using mouse models
51

—

detailed metadata such as sex, age, genetic background, and strain are often critical, as these 

variables can substantially influence phenotypic outcomes, tumor progression, and treatment 

response. In some studies, sex is not only a biological descriptor but also a key experimental 

variable, prompting researchers to prioritize and report such information comprehensively to 

ensure scientific rigor, reproducibility, and translational relevance
52

. Conversely, studies 

situated within evolutionary biology or population genetics tend to emphasize broader-scale 

attributes, such as species classification, sampling location, or population structure, while 

individual-specific metadata (e.g., age, sex, strain) may be of secondary importance or entirely 

absent. This difference in research focus leads to variable metadata completeness across 
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species and study types. Additionally, standardization and reporting practices differ between 

research communities: fields with mature metadata standards and well-established reporting 

frameworks (e.g., biomedical mouse model research) typically exhibit greater metadata 

completeness, whereas emerging or interdisciplinary areas may lack uniform metadata 

protocols, resulting in inconsistencies
53

. Repository policies also play a role. Some genomic 

repositories enforce strict metadata submission guidelines for certain study types or species, 

while others offer more flexibility, contributing to the heterogeneity in metadata quality. Taken 

together, these contextual and infrastructural factors help explain why metadata reporting 

practices vary substantially across non-human studies and reinforce the importance of tailoring 

metadata standards to the needs of specific research communities. 

Our study is also the first to investigate metadata availability at both the experiment 

and sample levels. Our previous analysis did not distinguish among the various methods of 

metadata sharing, whether it involved sharing metadata information for each sample 

individually or just providing summary statistics for the entire study
1
. Typically, sample-level 

metadata is more valuable for ensuring the transparency and reproducibility of reported results 

and for secondary analysis than experiment-level metadata, because it provides detailed 

information about each sample rather than a summary of the entire study
54

. Researchers who 

want to replicate or expand on an experiment or perform secondary analyses on the raw data 

need sample-level metadata
55

. In contrast, experiment-level metadata provides a 

comprehensive description of the study, but it may not be enough for many types of analyses 

that require a granular level of detail. When conducting analyses for new research questions, 

the specificity of sample-level metadata enables researchers to reuse the existing dataset to 

answer novel research questions and draw meaningful conclusions. We observed that 

metadata is often reported at the experiment-level, not the sample-level. In most textual 

content of publications, metadata is only available at the experiment level. We found that half 

of the human samples with available metadata for sex, age, and race/ethnicity/ancestry have 

only experiment-level metadata. Note that all studies have shared a portion of information 

pertaining to the metadata of the samples, implying a conscientious effort by the authors to 

provide relevant details about the samples' metadata; however, such effort remains 

incomplete. However, there are several limitations in our study. First, we were able to only 

extract commonly reported phenotypes and were unable to assess the availability of study-

specific phenotypes. Additionally, our analysis focused solely on the availability of metadata 

reported and did not address the quality or accuracy of metadata reported.  

Making metadata widely available in public repositories such as GEO can enhance the 

transparency and reproducibility of research, facilitate cross-study comparisons, and contribute 

to the advancement of scientific knowledge by providing comprehensive contextual 

information about datasets. To ensure the quality and usefulness of clinical data, metadata 

reporting in all categories must be improved and shared across domains on public repositories, 
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in addition to the text of publications
1
. Additionally, sharing metadata solely within the text of a 

publication is not an optimal approach for metadata sharing for several reasons. Firstly, when 

metadata is embedded within textual content, it becomes a challenge to locate and extract, 

especially for those researchers who may be sourcing multiple papers for comprehensive data. 

Additionally, the metadata presented within a publication might not always be complete; key 

details might be overlooked or omitted due to space constraints or editorial decisions. This 

potential for incompleteness can lead to inaccuracies when researchers rely on this data for 

their work. Moreover, when metadata is constrained within a publication, it's not easily 

shareable. Digital repositories or databases, on the other hand, allow for streamlined sharing 

and collaboration. Thus, relegating metadata solely to the text of a publication creates barriers 

to efficient research and collaboration. Sharing metadata on public repositories can reduce the 

efforts in metadata mining directly from the textual content of publications or from the request 

to the authors since the both processes can be time-consuming and error-prone
11,56–58

. 

Leveraging previously published data for novel biological discoveries could be facilitated when 

the metadata accompanying its raw omics data is reported, present in a standardized format, 

and made available in online repositories
5,59,60

. Improving the availability of metadata in public 

repositories could provide valuable and accurate information for downstream analyses, and 

further enhance the usefulness of the public repositories.  

 To address the observed gaps in metadata availability, we outline several actionable 

strategies for improving reporting practices across the community. To improve metadata 

reporting in omics research, we propose four key strategies centered on standardization, 

automation, enforcement, and community coordination. First, adopting standardized metadata 

schemas based on the FAIR (Findable, Accessible, Interoperable, Reusable)
23,53,61

 principles is 

essential for ensuring data reusability and interoperability. Frameworks
62

 such as MIxS from the 

Genomic Standards Consortium
63

, GA4GH models
64

, and Clinical Data Interchange Standards 

Consortium
65

 (CDISC) templates provide structured guidelines for genomic and clinical 

metadata reporting. By adopting these frameworks, researchers can ensure that their metadata 

is comprehensive and consistent, thereby enhancing data integration and interoperability. 

Second, integrating automated tools can enhance metadata accuracy and reduce manual effort. 

Tools like Omics Metadata Management Software
66

 (OMMS) and MARMoSET
67

 enable 

standardized and automated metadata curation for various omics datasets, streamlining data 

preparation for analysis and sharing. Third, journals and funding agencies should mandate the 

inclusion of comprehensive metadata using standardized checklists aligned with FAIR principles. 

This requirement would promote transparency and reproducibility across research outputs. For 

instance, the Digital Repository of Ireland
68

 (DRI) emphasizes the importance of adhering to the 

FAIR principles to enhance data sharing and reuse. By enforcing such standards, journals and 

funding bodies can drive cultural change towards more transparent and reproducible research 

practices. Finally, establishing community-wide minimal metadata reporting guidelines tailored 
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to specific omics data types can reduce ambiguity and improve data integration. Efforts led by 

groups like the Genomic Standards Consortium (GSC) have demonstrated the value of domain-

specific consensus standards
23,62,69

. By implementing these strategies, the scientific community 

can address current challenges in metadata reporting, thereby enhancing the reproducibility, 

reliability, and collaborative potential of omics research
61

. 

Our overall findings highlight the need for improved metadata reporting and sharing 

practices in biomedical research. The limited availability of metadata in both textual content of 

publications and public repositories impedes data reuse and reproducibility, and the disparities 

in completeness across different phenotypes make it difficult to conduct secondary analyses. 

We encourage authors to routinely report all relevant metadata, including organism, tissue 

type, age, sex, strain, and race/ethnicity/ancestry information, in both their publications and 

public repositories. Improving the accessibility and reliability of metadata would significantly 

benefit the broader scientific community by facilitating data-driven research and fostering 

secondary analysis within the biomedical research field. 

Our metadata extraction strategy focused on structured MINiML XML records available 

from the Gene Expression Omnibus (GEO) via the NCBI FTP server. These XML files were 

selected because they represent the only uniformly formatted, machine-readable metadata 

source consistently provided for every GEO study. Their standardized schema and widespread 

accessibility make them a pragmatic choice for cross-study and cross-domain assessments of 

metadata completeness. Prior studies have shown that structured formats like XML enhance 

transparency and reusability, especially when accompanied by schema definitions and parsing 

tools
70

. To evaluate the accuracy of our XML-based extraction pipeline, we manually reviewed 

all 253 studies in our curated D1 subset. This included studies labeled by the pipeline as missing 

one or more of the six core attributes. In each case, we confirmed that the XML output 

accurately reflected the metadata reported in the GEO record and associated publication 

materials. This validation provides strong support for the fidelity of our automated approach, 

particularly in large-scale applications where manual inspection is infeasible. Nonetheless, we 

acknowledge that metadata stored exclusively in alternative formats—such as HDF5 (.h5ad), R 

data files (.rds), spreadsheets, or supplemental PDFs—was not captured by our pipeline. These 

formats are often fragmented, lack standardization, or are embedded within proprietary 

analysis environments, limiting their accessibility to non-specialist users. While our findings 

reflect the most structured and broadly accessible metadata available in GEO, this design 

choice may lead to a modest underestimation of overall metadata availability—especially in 

rapidly evolving areas such as single-cell omics. Future efforts may benefit from extending 

metadata extraction tools to accommodate these emerging formats. 

Moreover, metadata reporting across studies is often inconsistent, varying in 

terminology, structure, and completeness. These inconsistencies introduce challenges in 

automated parsing and can impact the comparability of results across datasets. For example, 
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key attributes such as race/ethnicity/ancestry (REA) and tissue type are frequently labeled in 

non-standardized ways, making them difficult to detect reliably. While our study focused on 

assessing the prevalence of reported metadata, a comprehensive evaluation of the quality, 

accuracy, and downstream scientific impact of missing metadata is outside the current scope. 

To partially mitigate these limitations, we conducted a detailed manual review of 253 

studies to evaluate metadata availability beyond what could be captured automatically. 

However, we acknowledge that even this curated subset may not fully capture metadata 

provided exclusively in complex or proprietary formats. Moving forward, the development of 

more adaptable, format-aware extraction tools and benchmarking against manually annotated 

corpora will be essential for improving both the accuracy and comprehensiveness of metadata 

completeness assessments in large-scale omics repositories.  

Several developments around 2018 may have contributed to improved metadata 

reporting practices observed in public repositories. For instance, many journals began adopting 

standardized data policies aimed at enhancing transparency and reproducibility. Springer 

Nature, for example, implemented standard data policies across over 1,500 journals, 

encouraging researchers to share data and associated metadata openly
71

. Concurrently, 

community-driven efforts such as Crossref’s reintroduction of Participation Reports helped 

promote open metadata standards by providing feedback on the completeness of metadata 

records. Moreover, the broader open science movement gained momentum during this period, 

with initiatives such as Plan S
72

 advocating for immediate open access to research outputs and 

reinforcing the importance of metadata for enabling data reuse. While these initiatives likely 

influenced the trends we observed, we acknowledge that our current study does not establish a 

direct causal relationship between policy changes and metadata completeness. Further 

investigation would be required to systematically assess the impact of these external factors. 

Lastly, while the GEO constitutes a highly comprehensive repository for omics data and 

associated metadata, it represents only a singular component within the broader ecosystem of 

publicly accessible genomic repositories. Our analysis focused specifically on the GEO and 

consequently excluded other significant repositories such as the Sequence Read Archive (SRA), 

European Nucleotide Archive (ENA), ArrayExpress, or domain-specific databases. Future 

research endeavors should aim to broaden this analysis to encompass a more comprehensive 

suite of these resources. Such an expanded investigation would yield a more robust and 

representative assessment of metadata reporting standards and practices across the wider 

genomics research landscape. 

Methods 

Datasets  

We examine the per-sample metadata completeness within the D1 dataset, spanning 

253 mammalian multi-omics studies retrieved from NCBI's Gene Expression Omnibus (GEO) 

and comprising a total of 164,909 samples. This dataset included 20,047 human samples from 
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153 studies and 144,862 non-human samples from 100 studies. The human studies covered a 

variety of diseases, including Alzheimer's disease, acute myeloid leukemia, cardiovascular 

disease, inflammatory bowel disease, multiple sclerosis, sepsis, and tuberculosis. The remaining 

100 studies involved non-human samples, including Mus musculus, Parus major, and Glycine 

max (Figure S1). Additionally, for the D2 dataset, we randomly selected 61,950 studies from the 

GEO repository, encompassing a total of 2,168,620 samples. Among the studies in the D2-

dataset, 2,119,749 samples were non-human samples, while 48,871 samples were human 

samples. 

 

Examined phenotypes 

 We examined the metadata for the six phenotypes among the human and non-human 

studies in the D1 and D2 dataset. For human samples, we examined the human-specific 

phenotype of race/ethnicity/ancestry information, along with four common phenotypes, 

including organism, age, sex, and tissue types. Conversely, for non-human samples, we 

investigated the additional non-human-specific phenotype of strain information, along with the 

four common phenotypes, including organism, age, sex, and tissue types.  In the D2 dataset, we 

examined the metadata for the same six phenotypes as in the D1 dataset, including tissue 

types, organism, sex, age, strain information (non-human samples), and race/ethnicity/ancestry 

(human samples).  

 

Extraction of metadata from the textual content of publications  

We manually extracted metadata from the main text and supplementary materials of 

each publication. Based on the information provided, we classified metadata availability into 

two categories: sample-level metadata available and experiment-level metadata available. 

Sample-level metadata was categorized as available only if the study explicitly shared metadata 

for individual samples. Additionally, if the metadata was not explicitly provided for each sample 

but could be inferred with reasonable certainty (e.g., study says that all samples are female), 

we also classified it as sample-level metadata. In contrast, studies that provided only summary 

metadata without individual sample-level details were classified as experiment-level metadata 

available and they don't indicate that all samples carry the same phenotype. These studies 

usually included summary metadata information that could not be linked to specific samples’ 

metadata information.  

 

Extraction of metadata from the public genomic repositories 
Accession list generation  

On 12 April 2025 we retrieved the GEO “series family” index and compiled 61 312 unique Series 

(GSE) accessions covering studies released between 2008 and 2024. For each accession we 

recorded the location of its MINiML archive on the NCBI FTP server, housed in the tranche 
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directory corresponding to its numeric range (e.g. the archive for GSE123456 resides in the 

directory GSE123nnn). 

Automated download  

A custom Python workflow established anonymous FTP sessions and systematically 

downloaded every MINiML-formatted XML archive. Compressed files were decompressed in 

situ, and automatic retry logic resolved transient network interruptions. The final retrieval 

success rate exceeded 99.9 %. 
XML parsing and metadata normalisation  

 Each MINiML file was parsed and converted into structured tabular form. Two tables were 

produced per study: 
• a Series-level table recording accession, title, submission date, release date and overall 

experimental design; 

• a Sample-level table capturing six core phenotypic attributes—organism, tissue/cell 

type, strain, sex, age and race/ethnicity/ancestry (REA)—together with additional 

descriptors such as library strategy and sample description. 

Free-text entries were harmonised by applying rule-based string matching and ontology look-

ups against widely used vocabularies (NCBI Taxonomy, Uberon, Cell Ontology and HANCESTRO). 
Manual validation  

To evaluate the accuracy of our metadata extraction pipeline, we conducted a manual review of 

all 253 studies in the curated validation subset (D1), including those flagged by the automated 

workflow as missing one or more core attributes. For each study, we cross-validated the 

extracted XML metadata against information available elsewhere in the corresponding GEO 

entry or associated publication. This audit revealed complete concordance (100%) between the 

automated extraction and manual inspection for all six core attributes. 
Scope and limitations  

The pipeline operates exclusively on the MINiML XML channel—the standardized, machine-

readable metadata format provided for all GEO submissions. Phenotypic information available 

solely through other formats (e.g., HDF5, R data files, spreadsheets, or PDF supplements) is not 

captured. Manual validation of 253 studies suggests that such instances are rare and do not 

impact the prevalence trends reported here. However, this design choice may modestly 

underestimate absolute metadata completeness, as discussed in the Discussion section. 
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Figure 1. Completeness of public metadata accompanying omics studies (a) The distribution of 

studies that share 100% of metadata (all phenotypes), 80% of metadata (four phenotypes), 60% 

of metadata (three phenotypes), 40% of metadata (two phenotypes), and 20% of metadata 

(one phenotype) in the D1 dataset. (b) The availability of the six phenotypes information in the 

textual content of publications and/or public repositories in the D1-dataset. (c) The cumulative 

metadata availability of the D1-dataset over the years. (d) The overall metadata availability in 

the textual content of publications and public repositories in the D1-dataset. (e) The sample-

level metadata across seven phenotypes among all the samples in the D1-dataset reported in 

the textual content of publications and public repositories. (f) The proportion between the 

studies shared the six phenotypes in both sources, including textual content of the publication 

and public repositories, the studies shared the six phenotypes only in the textual content of the 

publication, and the studies shared the six phenotypes only in the public repositories. (g) The 

overall metadata availability for human and non-human samples in the D1-dataset. (h) Right: 

The overall composition of sample-level metadata availability across six phenotypes in the 

textual content of publications and public repositories across the human samples in the D1-

dataset; Left: The overall composition of sample-level metadata availability across five 

phenotypes in the textual content of publications and public repositories across the non-human 

samples in the D1-dataset. (i) The percentage of non-human and human studies in the D1-

dataset that reported the sample-level metadata in the textual content of publications the 
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same as, exceeds, or falls below the sample-level metadata reported in the public repository. 

(The REA* (race/ethnicity/ancestry) information is analyzed over the human samples only; The 

strain** information is analyzed over the non-human samples only.) 

 

 
Figure 2. Metadata completeness across human studies. (a). Metadata completeness for 

Alzheimer's disease (AD) studies. (b) Metadata completeness for acute myeloid leukemia (AML) 

studies. (c) Metadata completeness for cardiovascular disease (CVD) studies. (d) Metadata 

completeness for inflammatory bowel disease (IBD) studies. (e) Metadata completeness for 

multiple sclerosis (MS) studies. (f) Metadata completeness for tuberculosis (TB) studies. (g) 

Metadata completeness for sepsis studies. (The REA* (race/ethnicity/ancestry) information is 

analyzed over the human samples only; The strain** information is analyzed over the non-

human samples only.) 
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Figure S1. The proportion of non-human samples across 100 studies encompassing 144,862

samples  in the D1 dataset. 

 

 

Figure S2. The metadata availability reported in the D1-dataset from the textual content of

publications and public repositories. (Red line: the mean metadata availability among the

samples in the D1-dataset.) 
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Figure S3.  The cumulative metadata availability of the six essential phenotypes in the D1-

dataset over the years. 

 

 

 

 

Figure S4. The human and non-human metadata availability in the textual content of

publications and public repositories for the D1-dataset. 
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Figure S5. The metadata availability between the textual content of publications and public

repositories among the top five non-human organisms represented in the D1 dataset. 

 

 

 

Figure S6. The comparison of the availability of sample-level and experiment-level metadata

between human samples (six phenotypes) and non-human samples (five phenotypes) in the D1-

dataset. 
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Figure S7.  Right: The overall composition of sample-level and experiment-level metadata

availability across six phenotypes in the textual content of publications and public repositories

across the human samples in the D1-dataset; Left: The overall composition of sample-level and

experiment-level metadata availability across five phenotypes in the textual content of

publicationss and public repositories across the non-human samples in the D1-dataset. 

 

 

 

Figure S8. The comparison of the human and non-human metadata availability in the D2-

dataset. 
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Figure S9. The cumulative metadata availability of the D2-dataset over the years. 

 

 

 

Figure S10. The separate metadata availability of human and non-human samples in the D2-

dataset. 

 

 

Figure S11. The proportion of organisms among the  2,168,620 samples of the 61,950 studies

from the D2 dataset. 
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