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Abstract

Recent advances in high-throughput sequencing technologies have made it possible to
collect and share a massive amount of omics data, along with its associated metadata.
Enhancing metadata availability is critical to ensure data reusability and reproducibility and to
facilitate novel biomedical discoveries through effective data reuse. Yet, incomplete metadata
accompanying public omics data may hinder reproducibility and reusability by reducing sample
interpretability and limiting secondary analyses. In this study, we performed a comprehensive
assessment of metadata completeness shared in both scientific publications and/or public
repositories by analyzing over 253 studies encompassing over 164 thousands samples, including
both human and non-human mammalian studies. We observed that studies often omit over a
quarter of important phenotypes, with an average of only 74.8% of them shared either in the
text of publication or the corresponding repository. Notably, public repositories alone
contained 62% of the metadata, surpassing the textual content of publications by 3.5%. Only
11.5% of studies completely shared all phenotypes, while 37.9% shared less than 40% of the
phenotypes. Studies involving non-human samples were more likely to share metadata than
studies involving human samples. We observed similar results on the extended dataset
spanning 2.1 million samples across over 61,000 studies from the Gene Expression Omnibus
repository. The limited availability of metadata reported in our study emphasizes the necessity
for improved metadata sharing practices and standardized reporting. Finally, we discuss the
numerous benefits of improving the availability and quality of metadata to the scientific
community and beyond, supporting data-driven decision-making and policy development in the
field of biomedical research. This work provides a scalable framework for evaluating metadata
availability and may help guide future policy and infrastructure development.

Introduction

Advancements in the high throughput sequencing technologies over the last decade
have made omics data readily available to the public, enabling researchers to access a vast
array of data across various diseases and phenotypes from the textual content of publications
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or various public repositories’. The vast amount of omics data and its accompanying metadata
enable unprecedented exploration of biological systems through the re-analysis of public omics
data, which is also known as secondary analysis™>. Secondary analysis is capable of driving
transformative breakthroughs in biomedical research, fostering collaboration, accelerating
scientific progress, and deepening the understanding of human biology and diseases. By
leveraging this readily available wealth of omics information, researchers can unravel the
complex interplay of genes, proteins, cellular processes, and environmental factors from raw
omics data. To facilitate the reproducibility of omics studies and the effective secondary
analysis of omics data, metadata completeness and accuracy are crucial*”. Metadata enriches
raw data by providing essential details about its fundamental attributes, including phenotype,
age, sex, and disease condition, as well as comprehensive experimental and environmental
information, such as the data generator, creation date, data format, and sequencing protocols®.
As a result, accurate and comprehensive metadata are critical for the efficient utilization,

L6719 Metadata also enable data-driven

sharing, and subsequent re-analysis of omics data
decision-making and policy development in fields such as biomedical sciences, clinical research,
environmental sciences, and social sciences'.

Although the biomedical community has made tremendous efforts in sharing omics
data, little attention is allocated to ensure the completeness of metadata accompanying raw

L11

omics data”". We previously reported the limited availability of metadata accompanying

sepsis-based transcriptomics studies’ but the overall patterns of metadata sharing across other

1,12,13

diseases and organisms remains unknown . Incomplete metadata hinders researchers'

ability to utilize metadata information for subsequent downstream analysis®***°

. For instance,
studies have shown that metadata elements such as sample source, sex, or experimental
condition are often missing or inconsistently reported in public repositories like GEO and SRA,
limiting reusability™*°. Even when raw data are deposited, the lack of standardized descriptors
and structured fields impedes automated retrieval and integration'’. In addition to hindering
reproducibility, incomplete metadata can lead to underutilization of publicly funded datasets. A
study analyzing metadata quality in gene expression repositories found that many samples
lacked even basic information such as organism or tissue type, making them effectively
unusable for secondary analyses or meta-studies'®. This not only limits the scientific return on
investment but also impedes large-scale integrative research that relies on well-annotated
datasets. Typically, metadata accompanying omics studies has been shared in two ways, in
public repositories and in the text of publications. Metadata shared solely in the textual content
of publications has many limitations and is insufficient to ensure that it is complete, accurate,
accessible, and machine-actionable™. This is because metadata not in a standardized format in
publications can be scattered across multiple locations, making it challenging and time
consuming for researchers to locate and integrate metadata from multiple sources for further
downstream analysis. Additionally, metadata shared in publications is often provided at the
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study level lacking per sample or individual information. The lack of sample-level metadata
limits the reproducibility of conducted research, restricting the credibility and ultimately
making secondary analysis impossible or extremely difficult to conduct. If the metadata is
shared only in the publications, the researchers will require a time-consuming and laborious
manual data-mining process to extract such metadata information, especially when looking at
large scale studies®®. Mining and extracting metadata from the publications can be challenging
due to the presence of misannotated, unstructured and absent metadata information. In
contrast to sharing metadata within the text of a publication, a highly effective method for
disseminating metadata involves sharing it through publicly accessible repositories, making
researchers easy to access this information and facilitate downstream secondary analysesl'u.
As a result, public repositories play a crucial role in advancing biomedical research by
facilitating the efficient and effective sharing and utilization of data accompanying metadata®.

In this study, we analyzed a total of 253 randomly selected studies over 164 thousands
samples across various disease conditions, phenotypes and organisms. We investigated the
prevailing practice of metadata sharing in the textual content of publications and the
corresponding public repositories. We observed that studies often omit over a quarter of
crucial phenotypes, with an average of only 74.8% shared. Only 11.5% of studies completely
shared all phenotypes, while 37.9% shared less than 40% of the phenotypes. Studies involving
non-human samples were more likely to have complete metadata than studies involving human
samples. Additionally, public repositories contained more complete metadata compared to
metadata shared in the textual content of publications. To generalize our results, we further
examined over 61 thousand studies over 2.1 million samples from Gene Expression Omnibus®
(GEO) repository. The overall metadata availability of 2.1 million GEO samples was 63.2%.
Similar to the metadata availability of surveyed 253 studies, non-human studies have 16.1%
more pheenotypes shared compared to human studies. Notably, the availability of metadata in
published studies has increased substantially over time. In studies published before 2011,
metadata availability was limited, with less than 1% of studies having metadata being shared. In
contrast, in studies released after 2021, there has been a remarkable enhancement in
metadata availability, with as many as 50% of studies now incorporating this valuable data.

Rich, machine-readable phenotypic metadata are now recognised as a prerequisite for
transparency, reproducibility, and equitable reuse of biomedical omics data. International
frameworks—most notably the FAIR Guiding Principles and the 2023 NIH Data Management
and Sharing (DMS) policy—explicitly mandate that publicly shared datasets be accompanied by
sufficiently detailed descriptors to enable findability and rigorous downstream analysis®. Yet
community audits continue to show that key variables are routinely omitted, constraining
reliable population stratification, sample matching, and mechanistic inference. To interrogate
this gap we operationally define metadata completeness as the presence, at minimum, of six
phenotypic attributes that recur across legacy and emerging minimum-information standards
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(MIAME®*, MINSEQE”, MIBBI*®, GA4GH Phenopackets’’) and that exert direct analytical
influence: race/ethnicity/ancestry (REA), age, sex, tissue type (or specific cell type), organism,
and experimental strain information. These fields are mandated or strongly recommended in
multiple checklists precisely because they capture the principal axes of biological heterogeneity
that confound multi-study integration and drive disease risk. Attributes such as marital status or
geographic latitude, while relevant in certain contexts, lack comparable consensus and are
inconsistently reported; they were therefore excluded from our baseline definition.

Using this schema we examined 61,312 genomics and transcriptomics records deposited
between 2008 and 2024. Automated XML parsing was complemented by a manual audit of 253
randomly selected studies, confirming parser accuracy and revealing silent discrepancies
between manuscript narratives and repository entries. Fewer than one-third of studies
reported all six attributes in either venue, and 42 % of the attributes that were disclosed in one
source were absent from its counterpart. Although reporting rates have improved modestly
since 2018—coincident with the roll-out of FAIR and NIH DMS guidance—completeness
remains highly variable across sub-disciplines. Collectively, these findings substantiate our
underlying assumption that the six selected attributes constitute a practical yet stringent
benchmark for evaluating metadata sufficiency, and they underscore the urgent need for
harmonised publisher—repository checklists, enforceable submission validators, and community
incentives that treat metadata as a first-class research output. Addressing these structural
barriers will accelerate hypothesis generation, cross-study integration, and ultimately clinical
translation across the biomedical research spectrum. By promoting the availability and quality
of metadata accompanying raw omics data, we can enable more accurate and efficient
secondary analyses, which in turn may advance our understanding of complex diseases and
their underlying mechanisms, and ultimately discover novel biomedical insights to improve
human health?.

Results
Assessing the completeness of public metadata accompanying omics studies

We have performed a comprehensive analysis of the availability of the metadata
reported in the textual content of the original scientific publications and the corresponding
public repositories. We meticulously analyzed a total of 253 randomly selected scientific
publications encompassing over 164 thousand samples across various disease conditions,
phenotypes and organisms (D1 dataset) (Supplementary table 1). The human studies
encompassed various disease conditions, namely Alzheimer's disease (AD), acute myeloid
leukemia (AML), cardiovascular disease (CVD), inflammatory bowel disease (IBD), multiple
sclerosis (MS), sepsis, and tuberculosis (TB) (Table S1) (Figure S1). Among the 253 studies, 153
pertained to human studies, while 100 focused on non-human studies. To assess metadata


https://doi.org/10.1101/2021.11.22.469640
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.22.469640; this version posted July 7, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

availability, we manually reviewed the phenotypic information within the textual content of
publications, including both the main text and supplementary materials. To retrieve metadata
from the public repositories, we developed the custom Python scripts (Methods Section). To
increase the generalizability of our analysis, we randomly selected over 61 thousands studies
from the Gene Expression Omnibus®® (GEO) repository, encompassing a total of over 2.1 million
samples (D2 dataset) (Supplementary table 2). For both D1 and D2 datasets, we examined the
four common phenotypes shared by both human and non-human studies, which included
organism, sex, age, and tissue types. In addition to the common phenotypes, we investigated
the human-specific phenotype of race/ethnicity/ancestry and the non-human-specific
phenotype of strain information.

Limited availability for essential phenotypes accompanying 253 studies

Our analysis has unveiled that more than a quarter of phenotypes are not shared in
either the textual context of the publication or public repositories (Figure S2). While all studies
shared at least one phenotype, on average, only 11.5% of studies managed to encompass the
entire set of phenotypes. In contrast, over a quarter of studies shared a significant 80% of the
phenotypes, and more than a third of studies shared 40% of the phenotypes. Additionally, 4.7%
of the studies shared less than 20% of the phenotypes (Figure 1a). Among the six phenotypes,
organism information was the most commonly shared phenotype with all the studies sharing
such information (Figure 1b). Meanwhile, up to 80% of the studies reported tissue information,
and similarly, 80% of the non-human samples reported strain information (Figure 1b). About
60% of the studies have available sex and age information (Figure 1b), with, on average, half of
the samples within the studies reporting this information in both sources. Importantly, the
race/ethnicity/ancestry information was the least frequently reported phenotype with only up
to 20% of the human studies reported this essential phenotype information (Figure 1b), with
only about 10% of the samples, on average, sharing such information within the studies in both
sources. Our analysis revealed a substantial improvement in metadata reporting practices,
particularly in studies released after 2018 (Figure 1c). Most of the phenotypes experienced a
drastic increase in availability after 2018, including age, organism, sex, tissue, and strain
information. In contrast, studies published before 2010 show a significant limitation in the
availability of the six phenotypes (Figure S3).

Inconsistent practices of metadata sharing across the textual content of publications and
corresponding public omics repositories

We compared metadata availability across the 253 studies reported in the textual
content of publications versus in the corresponding public repositories. The metadata
availability in original publications was more than 3% lower than the metadata availability in
public repositories, which was 62.0% (Figure 1d). In comparison to the textual context of the
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publications, public repositories share more complete phenotypes for organism, sex, age,
strain, and race/ethnicity/ancestry, while the textual content of publications share more
complete tissue information (Figure 1e). Organism information was the most completely and
consistently shared phenotype in both public repositories and the textual content of the
publications with all such information available across all the 164,909 samples (Figure 1e).
Notably, organism information was fully available in the public repositories in contrast to 99.2%
availability in the textual content of the publication (Figure 1e). In contrast, age was the least
consistently shared phenotype between the textual content of publications and public
repositories, with 17.9% more samples having age information in public repositories (Figure
le). Tissue information was reported in both platforms for over 60% of the samples, 20% of
samples only report such information in the textual content of the publications, while only
about 10% shared it only in public repositories. About 50% of the samples shared sex and
race/ethnicity/ancestry information between both sources, and 30% of the samples only shared
such information in public repositories (Figure 1f).

Non-human studies demonstrated an enhanced commitment to sharing metadata

We compared the metadata reporting practices for the common phenotypes across 153
non-human and 100 human studies. The metadata availability for human samples was 56.1%
and for non-human samples was 60.86% (Figure 1g). Human and non-human samples had
more complete metadata reported in public repositories (66.6% and 62.0%, respectively) than
in the textual content of publications (54.6% and 59.7%, respectively) (Figure S4). Non-human
studies reported more complete metadata for age and sex, while human studies reported more
complete metadata for tissue information (Figure 1h). In the human and non-human studies,
organism information is widely available (Figure 1h). Tissue information is also widely available
in human studies; conversely, only up to 60% of the non-human samples had available tissue
information. While organism and tissue information was commonly reported in human studies,
sex data was provided by only 49.4% of human studies, age data by 48.9%, and
race/ethnicity/ancestry details by a mere 22% of human studies (Figure 1h). For non-human
studies, other than the organism data, strain information was the most reported, available for
76.5% of samples. Age, and sex information has over 60% availability in non-human studies
(Figure 1h). We observed that both human and non-human studies shared more complete
metadata in public repositories than in the textual content of publications. Of the 153 human
studies, 97 had consistent metadata sharing practices between original publications and public
repositories, 36 had lower metadata availability in the textual content of publications, and 20
had higher metadata availability in the textual content of publications (Figure 1i). Of the 100
non-human studies, 59 had more complete metadata in public repositories than in the textual
content of publications, 28 had the same extent of metadata availability in both sources, and 13
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had more complete metadata in the textual content of publications than in public repositories
(Figure 1i).

We observed significant discrepancies in metadata sharing among non-human species
and aim to assess the overall completeness of metadata across these species. We analyzed
metadata availability in the textual content of publications and public repositories for the top
five non-human organisms in the 153 non-human studies, including Mus musculus, Parus major,
Glycine max, Danio rerio, and Gallus gallus. Mus musculus and Parus major had similar
metadata availability levels (up to 60%) in both sources. In contrast, Glycine max, Danio rerio,
and Gallus gallus demonstrate a notable difference in metadata availability between the textual
content of publications and public repositories. Specifically, they reported more comprehensive
metadata in the textual content of publications than in public repositories (Figure S5).

Sharing experiment-level metadata remains a common practice

The concept of experiment-level metadata availability was characterized by the sharing
of only summarized information regarding the phenotypes of the samples, omitting detailed
per-sample phenotypic information. It remains a common practice to offer an overall
description of the study or experiment's participants, while refraining from providing detailed
descriptions of each individual's phenotypes. Among human studies, 14.8% of metadata was
exclusively shared at the experiment-level, while non-human studies exhibited a comparable
pattern, with 6.8% of metadata exclusively shared at the experiment-level. In human studies,
approximately 60% of the samples reported available age information only at the experiment-
level (Figure S6). Up to 20% of the human samples only shared experiment-level metadata for
disease, sex, and race/ethnicity/ancestry information (Figure S6 and Figure S7). In non-human
studies, 20% of the non-human samples only reported tissue information at the experiment-
level. Sex information was often presented in a summarized format, with approximately 40% of
this information available at the experiment level. In contrast, less than 10% of the sex
information was available at the sample level (Figure S6 and Figure S7). Notably, the
experiment-level metadata for sex, age, and race/ethnicity/ancestry information accounts for
approximately half of the human samples’ phenotypic information availability (Figure S7).

Discrepancies in metadata sharing practices were observed across seven disease conditions
Next, we examined metadata sharing practices for seven disease conditions, including
Alzheimer's disease (AD), acute myeloid leukemia (AML), cardiovascular disease (CVD),
inflammatory bowel disease (IBD), multiple sclerosis (MS), sepsis, and tuberculosis (TB), in
human studies. The metadata completeness for the six phenotypes varies across the seven
disease condition studies (Figure 2). All seven diseases have fully reported metadata for
organism and tissue types (Figure 2). The reporting practices of three phenotypes (sex, age, and
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race/ethnicity/ancestry information) exhibited variability across the seven diseases. For the sex
information, CVD studies had reported the highest availability for such information (75.9%),
followed by AD studies, sepsis studies, AML studies, IBD studies, and TB studies , while MS
studies had the lowest (10.8%). For the age information, sepsis studies had reported the highest
availability of such information (67.9%), followed by AD studies, AML studies, IBD studies, CVD
studies, and TB studies (32.4%), while MS studies had the lowest (9.7%). For the
race/ethnicity/ancestry information, most studies rarely reported such information, and
notably, none of the samples in the IBD and MS studies reported race/ethnicity/ancestry
information (Figure 2).

Analysis of 61,000 studies encompassing 2.1 million samples across public repositories
confirms limited metadata availability

We investigated the availability of the six phenotypes reported for 2,168,620 samples
from 61,950 studies available at the Gene Expression Omnibus (GEQ) (D2 dataset). The overall
availability of metadata among the 61,950 studies was 63.2% (Figure S8). Notably, we
discovered that studies preceding 2010 exhibited a lack of shared metadata (Figure S9). We
discovered that human studies exhibited a lower average metadata completeness (47.4%)
compared to non-human studies (63.5%) (Figure S8). As a result, the availability of metadata in
non-human samples surpasses that in human samples (Figure S8 and Figure S9). Human
samples invariably share organism and tissue information (100% and 99.9%, respectively), but
less frequently report age (19%) and sex (13.8%), with race being the least disclosed at 4.2%
(Figure S10); Conversely, all non-human samples report organism and tissue data, with strain
and age information present in 56.7% and 37.4% of samples, respectively, while only 24.15%
include sex information (Figure S10). Tissue, sex, and age metadata are more comprehensively
reported in non-human samples compared to their human counterparts (Figure S10).

Discussion

In our study, we focused on six phenotypic attributes—organism, tissue type, strain, sex,
age, and race/ethnicity/ancestry (REA)—as representative indicators of metadata
completeness. This selection was guided by a combination of field-wide reporting standards
and their relevance to downstream analyses. We used standardized descriptors—such as
organism, tissue or cell type, and experimental strain—guided by international minimum-
information checklists (e.g., MIAME®*, MINSEQE®>, MIBBI*®, GA4GH Phenopackets’’), as these
phenotypes are consistently reported across studies and essential for selecting appropriate
reference genomes, expression atlases, and functional annotations. Their omission has been
shown to inflate false-positive rates in differential-expression pipelines when samples from
distinct tissues or mouse substrains are inadvertently pooled. In particular, strain information in
non-human model organisms (e.g., mice, rats, zebrafish) is essential for reproducibility in
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molecular studies, especially in areas such as epigenomics, where strain-specific genetic
backgrounds can significantly influence DNA methylation patterns, histone modifications, and
chromatin accessibility. For example, studies have shown that genetically similar mouse strains
exhibit distinct epigenetic profiles that affect disease susceptibility, gene regulation, and
developmental phenotypes. The absence of such metadata can lead to misinterpretation of
epigenetic variation as disease-related rather than background-driven®**!.

Certain phenotypic variables—such as sex, age, and ancestry—carry substantial
biological and analytical value, and their inclusion is essential for accurate, reproducible, and
equitable interpretation of genomic data. The NIH “Sex as a Biological Variable” (SABV) policy
(NOT-0OD-15-102) codifies sex as essential for reproducibility; meta-analyses of pre- and post-
policy publications show that failure to stratify by sex conceals up to 22 % of significant

32734 As a result, sex is widely recognized as a critical biological variable;

expression differences
it has been strongly recommended by the NIH and others as essential for identifying sex-
specific disease mechanisms, treatment responses, and biological variability®>. Age profoundly
modulates transcript abundance (e.g., >40 % of protein-coding genes in GTEx exhibit age-
dependent expression), alters epigenetic drift, and drives batch effects in single-cell atlases;
downstream analyses that ignore age confounders mis-estimate effect sizes and disease

35738 Race/Ethnicity/Ancestry (REA) captures population-specific allele frequencies

signatures
and gene-environment interactions. Large-scale surveys consistently show that >80 % of GWAS
participants are of European ancestry; re-analyses demonstrate that polygenic risk scores
trained on such data lose predictive power in under-represented groups, underscoring the
necessity of REA metadata for equitable translational research®. Recent studies have also
emphasized that the lack of ancestral diversity in genomics undermines generalizability and
equity in data-driven discoveries*®*.

Collectively, these six attributes represent the intersection of (i) widespread
standardisation, (ii) availability across public repositories, and (iii) demonstrable influence on
downstream bioinformatic pipelines. Their absence hampers sample matching, inflates hidden
confounders, and ultimately erodes reproducibility—as evidenced by the replication failures
cited above. While additional clinical variables (e.g., disease stage) are invaluable in specific
contexts, they are neither universally reported nor mandated by current standards, precluding
systematic cross-study assessment at present. Our definition of metadata completeness
therefore reflects a pragmatic yet stringent baseline that is both measurable and maximally
informative across heterogeneous study designs.

Although additional metadata elements—such as disease severity, batch, or sampling
location—can be valuable in specific study contexts, the six we selected are expected to be
routinely collected and are broadly informative across study designs, even if not always publicly
available. The absence of these variables can limit sample stratification, introduce confounding,

and reduce the ability to replicate study findings—thereby undermining reproducibility and
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interpretability in secondary analyses. Our analysis emphasized phenotypes that are broadly
available and comparable across a wide range of study types. While clinical metadata—such as
treatment history, disease severity, or comorbidities—are essential in clinically focused
research, such information is often absent in basic or translational studies that fall under
disease categories but focus primarily on molecular or mechanistic biology. In these contexts,
clinical metadata may not be reported or applicable, making systematic extraction and cross-
study comparison challenging. We acknowledge the importance of assessing clinical phenotype
availability and view this as a valuable direction for future research, particularly in studies that
target clinical datasets.

Our study is the first to systematically analyze metadata completeness across multiple
organisms and phenotypes, revealing limited availability of metadata both in textual content of
publications and public repositories. While metadata completeness varies by phenotype,
organism and tissue types are consistently reported, whereas age, sex, strain, and
race/ethnicity/ancestry information are often missing (Figure S2). Notably, non-human studies
demonstrated an enhanced commitment to sharing metadata than human studies. Several
factors may contribute to the observed differences in metadata availability between human
and non-human studies. Firstly, the nature of the research focus plays a crucial role. Human
studies are typically subject to stricter ethical guidelines and consent requirements, and data

#7%% These regulations may limit the extent of metadata that can be

42,44-46
’ . As a

sharing regulations
collected, whereas non-human studies may not encounter the same constraints
result, non-human studies may enjoy easier access to metadata due to less stringent privacy
and consent regulations, facilitating more extensive data collection efforts*’~*°. Data sharing
norms may further influence metadata availability. Non-human studies often have a stronger
tradition of data sharing, motivating researchers to provide more complete metadata to
promote transparency and collaboration®’.

Different research fields have specific requirements and conventions for metadata,
which can explain the varying availability between human and non-human species. The nature
and objectives of a study often dictate which metadata elements are deemed essential. For
example, in disease model research—particularly cancer studies using mouse models®*—
detailed metadata such as sex, age, genetic background, and strain are often critical, as these
variables can substantially influence phenotypic outcomes, tumor progression, and treatment
response. In some studies, sex is not only a biological descriptor but also a key experimental
variable, prompting researchers to prioritize and report such information comprehensively to
ensure scientific rigor, reproducibility, and translational relevance®. Conversely, studies
situated within evolutionary biology or population genetics tend to emphasize broader-scale
attributes, such as species classification, sampling location, or population structure, while
individual-specific metadata (e.g., age, sex, strain) may be of secondary importance or entirely
absent. This difference in research focus leads to variable metadata completeness across
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species and study types. Additionally, standardization and reporting practices differ between
research communities: fields with mature metadata standards and well-established reporting
frameworks (e.g., biomedical mouse model research) typically exhibit greater metadata
completeness, whereas emerging or interdisciplinary areas may lack uniform metadata
protocols, resulting in inconsistencies™>. Repository policies also play a role. Some genomic
repositories enforce strict metadata submission guidelines for certain study types or species,
while others offer more flexibility, contributing to the heterogeneity in metadata quality. Taken
together, these contextual and infrastructural factors help explain why metadata reporting
practices vary substantially across non-human studies and reinforce the importance of tailoring
metadata standards to the needs of specific research communities.

Our study is also the first to investigate metadata availability at both the experiment
and sample levels. Our previous analysis did not distinguish among the various methods of
metadata sharing, whether it involved sharing metadata information for each sample
individually or just providing summary statistics for the entire study'. Typically, sample-level
metadata is more valuable for ensuring the transparency and reproducibility of reported results
and for secondary analysis than experiment-level metadata, because it provides detailed
information about each sample rather than a summary of the entire study>*. Researchers who
want to replicate or expand on an experiment or perform secondary analyses on the raw data
need sample-level metadata®. In contrast, experiment-level metadata provides a
comprehensive description of the study, but it may not be enough for many types of analyses
that require a granular level of detail. When conducting analyses for new research questions,
the specificity of sample-level metadata enables researchers to reuse the existing dataset to
answer novel research questions and draw meaningful conclusions. We observed that
metadata is often reported at the experiment-level, not the sample-level. In most textual
content of publications, metadata is only available at the experiment level. We found that half
of the human samples with available metadata for sex, age, and race/ethnicity/ancestry have
only experiment-level metadata. Note that all studies have shared a portion of information
pertaining to the metadata of the samples, implying a conscientious effort by the authors to
provide relevant details about the samples' metadata; however, such effort remains
incomplete. However, there are several limitations in our study. First, we were able to only
extract commonly reported phenotypes and were unable to assess the availability of study-
specific phenotypes. Additionally, our analysis focused solely on the availability of metadata
reported and did not address the quality or accuracy of metadata reported.

Making metadata widely available in public repositories such as GEO can enhance the
transparency and reproducibility of research, facilitate cross-study comparisons, and contribute
to the advancement of scientific knowledge by providing comprehensive contextual
information about datasets. To ensure the quality and usefulness of clinical data, metadata
reporting in all categories must be improved and shared across domains on public repositories,
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in addition to the text of publications®. Additionally, sharing metadata solely within the text of a
publication is not an optimal approach for metadata sharing for several reasons. Firstly, when
metadata is embedded within textual content, it becomes a challenge to locate and extract,
especially for those researchers who may be sourcing multiple papers for comprehensive data.
Additionally, the metadata presented within a publication might not always be complete; key
details might be overlooked or omitted due to space constraints or editorial decisions. This
potential for incompleteness can lead to inaccuracies when researchers rely on this data for
their work. Moreover, when metadata is constrained within a publication, it's not easily
shareable. Digital repositories or databases, on the other hand, allow for streamlined sharing
and collaboration. Thus, relegating metadata solely to the text of a publication creates barriers
to efficient research and collaboration. Sharing metadata on public repositories can reduce the
efforts in metadata mining directly from the textual content of publications or from the request
to the authors since the both processes can be time-consuming and error-prone™>®>%,
Leveraging previously published data for novel biological discoveries could be facilitated when
the metadata accompanying its raw omics data is reported, present in a standardized format,

and made available in online repositories™>>"°°

. Improving the availability of metadata in public
repositories could provide valuable and accurate information for downstream analyses, and
further enhance the usefulness of the public repositories.

To address the observed gaps in metadata availability, we outline several actionable
strategies for improving reporting practices across the community. To improve metadata
reporting in omics research, we propose four key strategies centered on standardization,
automation, enforcement, and community coordination. First, adopting standardized metadata

schemas based on the FAIR (Findable, Accessible, Interoperable, Reusable)”>*%

principles is
essential for ensuring data reusability and interoperability. Frameworks®® such as MIxS from the
Genomic Standards Consortium®®, GA4GH models®®, and Clinical Data Interchange Standards
Consortium® (CDISC) templates provide structured guidelines for genomic and clinical
metadata reporting. By adopting these frameworks, researchers can ensure that their metadata
is comprehensive and consistent, thereby enhancing data integration and interoperability.
Second, integrating automated tools can enhance metadata accuracy and reduce manual effort.
Tools like Omics Metadata Management Software® (OMMS) and MARMOSET®’ enable
standardized and automated metadata curation for various omics datasets, streamlining data
preparation for analysis and sharing. Third, journals and funding agencies should mandate the
inclusion of comprehensive metadata using standardized checklists aligned with FAIR principles.
This requirement would promote transparency and reproducibility across research outputs. For
instance, the Digital Repository of Ireland®® (DRI) emphasizes the importance of adhering to the
FAIR principles to enhance data sharing and reuse. By enforcing such standards, journals and
funding bodies can drive cultural change towards more transparent and reproducible research
practices. Finally, establishing community-wide minimal metadata reporting guidelines tailored
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to specific omics data types can reduce ambiguity and improve data integration. Efforts led by
groups like the Genomic Standards Consortium (GSC) have demonstrated the value of domain-
specific consensus standards®>°>®°. By implementing these strategies, the scientific community
can address current challenges in metadata reporting, thereby enhancing the reproducibility,
reliability, and collaborative potential of omics research®.

Our overall findings highlight the need for improved metadata reporting and sharing
practices in biomedical research. The limited availability of metadata in both textual content of
publications and public repositories impedes data reuse and reproducibility, and the disparities
in completeness across different phenotypes make it difficult to conduct secondary analyses.
We encourage authors to routinely report all relevant metadata, including organism, tissue
type, age, sex, strain, and race/ethnicity/ancestry information, in both their publications and
public repositories. Improving the accessibility and reliability of metadata would significantly
benefit the broader scientific community by facilitating data-driven research and fostering
secondary analysis within the biomedical research field.

Our metadata extraction strategy focused on structured MINiML XML records available
from the Gene Expression Omnibus (GEO) via the NCBI FTP server. These XML files were
selected because they represent the only uniformly formatted, machine-readable metadata
source consistently provided for every GEO study. Their standardized schema and widespread
accessibility make them a pragmatic choice for cross-study and cross-domain assessments of
metadata completeness. Prior studies have shown that structured formats like XML enhance
transparency and reusability, especially when accompanied by schema definitions and parsing
tools’®. To evaluate the accuracy of our XML-based extraction pipeline, we manually reviewed
all 253 studies in our curated D1 subset. This included studies labeled by the pipeline as missing
one or more of the six core attributes. In each case, we confirmed that the XML output
accurately reflected the metadata reported in the GEO record and associated publication
materials. This validation provides strong support for the fidelity of our automated approach,
particularly in large-scale applications where manual inspection is infeasible. Nonetheless, we
acknowledge that metadata stored exclusively in alternative formats—such as HDF5 (.h5ad), R
data files (.rds), spreadsheets, or supplemental PDFs—was not captured by our pipeline. These
formats are often fragmented, lack standardization, or are embedded within proprietary
analysis environments, limiting their accessibility to non-specialist users. While our findings
reflect the most structured and broadly accessible metadata available in GEO, this design
choice may lead to a modest underestimation of overall metadata availability—especially in
rapidly evolving areas such as single-cell omics. Future efforts may benefit from extending
metadata extraction tools to accommodate these emerging formats.

Moreover, metadata reporting across studies is often inconsistent, varying in
terminology, structure, and completeness. These inconsistencies introduce challenges in
automated parsing and can impact the comparability of results across datasets. For example,
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key attributes such as race/ethnicity/ancestry (REA) and tissue type are frequently labeled in
non-standardized ways, making them difficult to detect reliably. While our study focused on
assessing the prevalence of reported metadata, a comprehensive evaluation of the quality,
accuracy, and downstream scientific impact of missing metadata is outside the current scope.

To partially mitigate these limitations, we conducted a detailed manual review of 253
studies to evaluate metadata availability beyond what could be captured automatically.
However, we acknowledge that even this curated subset may not fully capture metadata
provided exclusively in complex or proprietary formats. Moving forward, the development of
more adaptable, format-aware extraction tools and benchmarking against manually annotated
corpora will be essential for improving both the accuracy and comprehensiveness of metadata
completeness assessments in large-scale omics repositories.

Several developments around 2018 may have contributed to improved metadata
reporting practices observed in public repositories. For instance, many journals began adopting
standardized data policies aimed at enhancing transparency and reproducibility. Springer
Nature, for example, implemented standard data policies across over 1,500 journals,
encouraging researchers to share data and associated metadata openly’’. Concurrently,
community-driven efforts such as Crossref’s reintroduction of Participation Reports helped
promote open metadata standards by providing feedback on the completeness of metadata
records. Moreover, the broader open science movement gained momentum during this period,
with initiatives such as Plan $” advocating for immediate open access to research outputs and
reinforcing the importance of metadata for enabling data reuse. While these initiatives likely
influenced the trends we observed, we acknowledge that our current study does not establish a
direct causal relationship between policy changes and metadata completeness. Further
investigation would be required to systematically assess the impact of these external factors.
Lastly, while the GEO constitutes a highly comprehensive repository for omics data and
associated metadata, it represents only a singular component within the broader ecosystem of
publicly accessible genomic repositories. Our analysis focused specifically on the GEO and
consequently excluded other significant repositories such as the Sequence Read Archive (SRA),
European Nucleotide Archive (ENA), ArrayExpress, or domain-specific databases. Future
research endeavors should aim to broaden this analysis to encompass a more comprehensive
suite of these resources. Such an expanded investigation would yield a more robust and
representative assessment of metadata reporting standards and practices across the wider
genomics research landscape.

Methods
Datasets

We examine the per-sample metadata completeness within the D1 dataset, spanning
253 mammalian multi-omics studies retrieved from NCBI's Gene Expression Omnibus (GEO)
and comprising a total of 164,909 samples. This dataset included 20,047 human samples from
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153 studies and 144,862 non-human samples from 100 studies. The human studies covered a
variety of diseases, including Alzheimer's disease, acute myeloid leukemia, cardiovascular
disease, inflammatory bowel disease, multiple sclerosis, sepsis, and tuberculosis. The remaining
100 studies involved non-human samples, including Mus musculus, Parus major, and Glycine
max (Figure S1). Additionally, for the D2 dataset, we randomly selected 61,950 studies from the
GEO repository, encompassing a total of 2,168,620 samples. Among the studies in the D2-
dataset, 2,119,749 samples were non-human samples, while 48,871 samples were human
samples.

Examined phenotypes

We examined the metadata for the six phenotypes among the human and non-human
studies in the D1 and D2 dataset. For human samples, we examined the human-specific
phenotype of race/ethnicity/ancestry information, along with four common phenotypes,
including organism, age, sex, and tissue types. Conversely, for non-human samples, we
investigated the additional non-human-specific phenotype of strain information, along with the
four common phenotypes, including organism, age, sex, and tissue types. In the D2 dataset, we
examined the metadata for the same six phenotypes as in the D1 dataset, including tissue
types, organism, sex, age, strain information (non-human samples), and race/ethnicity/ancestry
(human samples).

Extraction of metadata from the textual content of publications

We manually extracted metadata from the main text and supplementary materials of
each publication. Based on the information provided, we classified metadata availability into
two categories: sample-level metadata available and experiment-level metadata available.
Sample-level metadata was categorized as available only if the study explicitly shared metadata
for individual samples. Additionally, if the metadata was not explicitly provided for each sample
but could be inferred with reasonable certainty (e.g., study says that all samples are female),
we also classified it as sample-level metadata. In contrast, studies that provided only summary
metadata without individual sample-level details were classified as experiment-level metadata
available and they don't indicate that all samples carry the same phenotype. These studies
usually included summary metadata information that could not be linked to specific samples’
metadata information.

Extraction of metadata from the public genomic repositories

Accession list generation

On 12 April 2025 we retrieved the GEO “series family” index and compiled 61 312 unique Series
(GSE) accessions covering studies released between 2008 and 2024. For each accession we
recorded the location of its MINiML archive on the NCBI FTP server, housed in the tranche
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directory corresponding to its numeric range (e.g. the archive for GSE123456 resides in the
directory GSE123nnn).

Automated download

A custom Python workflow established anonymous FTP sessions and systematically
downloaded every MINiML-formatted XML archive. Compressed files were decompressed in
situ, and automatic retry logic resolved transient network interruptions. The final retrieval
success rate exceeded 99.9 %.

XML parsing and metadata normalisation
Each MINIML file was parsed and converted into structured tabular form. Two tables were
produced per study:

e a Series-level table recording accession, title, submission date, release date and overall
experimental design;

e a Sample-level table capturing six core phenotypic attributes—organism, tissue/cell
type, strain, sex, age and race/ethnicity/ancestry (REA)—together with additional
descriptors such as library strategy and sample description.

Free-text entries were harmonised by applying rule-based string matching and ontology look-
ups against widely used vocabularies (NCBI Taxonomy, Uberon, Cell Ontology and HANCESTRO).
Manual validation

To evaluate the accuracy of our metadata extraction pipeline, we conducted a manual review of
all 253 studies in the curated validation subset (D1), including those flagged by the automated
workflow as missing one or more core attributes. For each study, we cross-validated the
extracted XML metadata against information available elsewhere in the corresponding GEO
entry or associated publication. This audit revealed complete concordance (100%) between the
automated extraction and manual inspection for all six core attributes.

Scope and limitations

The pipeline operates exclusively on the MINiML XML channel—the standardized, machine-
readable metadata format provided for all GEO submissions. Phenotypic information available
solely through other formats (e.g., HDF5, R data files, spreadsheets, or PDF supplements) is not
captured. Manual validation of 253 studies suggests that such instances are rare and do not
impact the prevalence trends reported here. However, this design choice may modestly
underestimate absolute metadata completeness, as discussed in the Discussion section.
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Figure 1. Completeness of public metadata accompanying omics studies (a) The distribution of

Human Non-human

studies that share 100% of metadata (all phenotypes), 80% of metadata (four phenotypes), 60%
of metadata (three phenotypes), 40% of metadata (two phenotypes), and 20% of metadata
(one phenotype) in the D1 dataset. (b) The availability of the six phenotypes information in the
textual content of publications and/or public repositories in the D1-dataset. (c) The cumulative
metadata availability of the D1-dataset over the years. (d) The overall metadata availability in
the textual content of publications and public repositories in the D1-dataset. (e) The sample-
level metadata across seven phenotypes among all the samples in the D1-dataset reported in
the textual content of publications and public repositories. (f) The proportion between the
studies shared the six phenotypes in both sources, including textual content of the publication
and public repositories, the studies shared the six phenotypes only in the textual content of the
publication, and the studies shared the six phenotypes only in the public repositories. (g) The
overall metadata availability for human and non-human samples in the D1-dataset. (h) Right:
The overall composition of sample-level metadata availability across six phenotypes in the
textual content of publications and public repositories across the human samples in the D1-
dataset; Left: The overall composition of sample-level metadata availability across five
phenotypes in the textual content of publications and public repositories across the non-human
samples in the D1-dataset. (i) The percentage of non-human and human studies in the D1-
dataset that reported the sample-level metadata in the textual content of publications the
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same as, exceeds, or falls below the sample-level metadata reported in the public repository.
(The REA* (race/ethnicity/ancestry) information is analyzed over the human samples only; The

strain** information is analyzed over the non-human samples only.)
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Figure 2. Metadata completeness across human studies. (a). Metadata completeness for
Alzheimer's disease (AD) studies. (b) Metadata completeness for acute myeloid leukemia (AML)
studies. (¢) Metadata completeness for cardiovascular disease (CVD) studies. (d) Metadata
completeness for inflammatory bowel disease (IBD) studies. (e) Metadata completeness for
multiple sclerosis (MS) studies. (f) Metadata completeness for tuberculosis (TB) studies. (g)
Metadata completeness for sepsis studies. (The REA* (race/ethnicity/ancestry) information is
analyzed over the human samples only; The strain** information is analyzed over the non-

human samples only.)
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Figure S1. The proportion of non-human samples across 100 studies encompassing 144,862
samples in the D1 dataset.
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Figure S2. The metadata availability reported in the D1-dataset from the textual content of

publications and public repositories. (Red line: the mean metadata availability among the
samples in the D1-dataset.)
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Figure S3. The cumulative metadata availability of the six essential phenotypes in the D1-

dataset over the years.
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Figure S4. The human and non-human metadata availability in the textual content of

publications and public repositories for the D1-dataset.
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Figure S5. The metadata availability between the textual content of publications and public
repositories among the top five non-human organisms represented in the D1 dataset.
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Figure S6. The comparison of the availability of sample-level and experiment-level metadata
between human samples (six phenotypes) and non-human samples (five phenotypes) in the D1-
dataset.
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Figure S7. Right: The overall composition of sample-level and experiment-level metadata
availability across six phenotypes in the textual content of publications and public repositories
across the human samples in the D1-dataset; Left: The overall composition of sample-level and
experiment-level metadata availability across five phenotypes in the textual content of
publicationss and public repositories across the non-human samples in the D1-dataset.
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Figure S8. The comparison of the human and non-human metadata availability in the D2-
dataset.
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Figure S9. The cumulative metadata availability of the D2-dataset over the years.
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Figure S10. The separate metadata availability of human and non-human samples in the D2-
dataset.
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Figure S11. The proportion of organisms among the 2,168,620 samples of the 61,950 studies
from the D2 dataset.
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