

1 **Single Nucleotide Resolution 4sU Sequencing (SNU-Seq) reveals**
2 **the transcriptional responsiveness of an epigenetically primed**
3 **human genome**

5 Umut Gerlevik^{1,2,*}, Philipp Lorenz^{1,*}, Anna Lamstaes^{1,*}, Harry Fischl¹, Shidong Xi¹, Aksel
6 Saukko-Paavola¹, Struan Murray¹, Thomas Brown¹, Alexander Welch¹, Charlotte George¹,
7 Andrew Angel^{1,3}, Andre Furger¹, Jane Mellor^{1,+}

8 ¹ Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU,
9 UK

10 ² Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, D-80539, Germany

11 ³ School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE,
12 UK

14 + Corresponding author: jane.mellor@bioch.ox.ac.uk

15 *Equal contribution

17 **Key words:** single nucleotide resolution 4-thio-uridine sequencing (SNU-Seq); size
18 fractionated 4sU-Seq (sf4sU-Seq); nascent transcriptomes; transcription modelling;
19 ATAC-Seq; primed chromatin; IFN γ ; Hep3B.

21 **Running Title:** Transcription at epigenetically primed chromatin

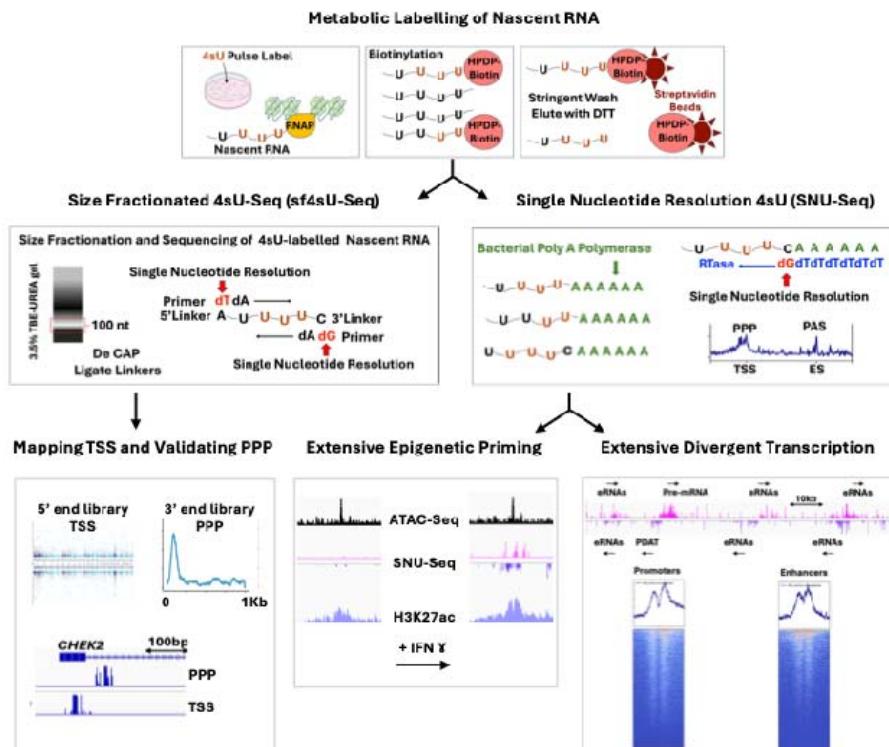
23 **ABSTRACT**

24 Genomes are pervasively transcribed, leading to stable and unstable transcripts that
25 influence 3-dimensional genome organisation and gene regulation. High sensitivity
26 and nucleotide resolution are required to resolve mammalian nascent transcriptomes.
27 Here, we exploit the sensitivity of 4-thio-uridine (4sU) metabolic pulse-labelling to
28 develop two nucleotide-resolution methods: Single-Nucleotide resolution 4sU
29 sequencing (SNU-Seq) and size-fractionated 4sU-Seq (sf4sU-Seq). sf4sU-Seq involves
30 gel isolation of abundant 4sU-labelled promoter proximal nascent transcripts,
31 enabling nucleotide resolution mapping of transcription start sites and promoter
32 proximal pauses (PPPs) on the same transcript. SNU-Seq exploits 3' end RNA-Seq,
33 using bacterial poly(A) polymerase (bPAP) to polyadenylate the 3' ends of nascent
34 transcripts and create oligo(dT)-primed libraries. The artificial poly(A) tail marks the
35 precise position of polymerase on a transcription unit. SNU-Seq read levels are
36 similar at pre-mRNAs and enhancers genome-wide and read spikes in pre-mRNA
37 outputs map pauses, PPPs and polyadenylation sites. SNU-Seq enables discovery of
38 thousands of unannotated regions of divergent transcription and helps define
39 hundreds of the more than 10,000 regions of primed non-transcribed acetylated open
40 chromatin that induce divergent nascent transcripts within 0.5h of IFN- γ treatment in
41 Hep3B cells. Thus, combining chromatin analysis with SNU-Seq reveals the
42 transcriptional responsiveness of an epigenetically primed human genome.

43

44

45


46

47

48 **HIGHLIGHTS**

- SNU-Seq maps nascent transcripts with bp resolution, high sensitivity and low cost
- sf4sU-Seq resolves TSS and PPP at the same gene, complementing SNU-Seq
- 1000's of divergently transcribed enhancers resolved by SNU-Seq
- Rapid IFNy dependent transcriptional induction from primed Hep3B epigenome

56 GRAPHICAL ABSTRACT

57

58

INTRODUCTION

61 Genomes are pervasively transcribed, leading to stable and unstable transcripts that
62 influence 3-dimensional genome organisation, the epigenome and gene regulation. Nascent
63 transcription remodels local and higher-order chromatin structures, simply through the act of
64 transcription, through retained nascent transcripts or by recruiting functional RNA-binding
65 proteins, potentiating new combinatorial responses to environmental signals. Routine
66 mapping of precisely where and when such transcription occurs and how it relates to
67 epigenomic features and production of pre-mRNAs requires a low-cost, sensitive method
68 with base-pair resolution to capture co-transcriptional events such as the promoter proximal
69 pause (PPP), pausing at exon-intron boundaries and pauses prior to nascent
70 polyadenylation. Nascent transcripts can be captured using four different approaches:
71 enrichment of nascent transcripts associated with RNA polymerase II (e.g., mNET-Seq) (1-
72 5); enrichment of chromatin-associated nascent transcripts from the nucleus (e.g., ChrRNA-
73 Seq) (6,7); “run-on” approaches in permeabilised cells (e.g., PRO-Seq) (8-12); metabolic

74 pulse-labelling coupled with affinity purification of nascent transcripts (e.g., 4sU-Seq, TT-
75 Seq) (13-19). These methods produce distinct metagene profiles over genes, consistent with
76 each technique capturing different aspects of transcription, but can be challenging to
77 conduct and/or lack base pair resolution (20,21).
78
79 Pulse labelling nascent transcripts with 4-thio-uridine (4sU) (22), as in 4sU-Seq (19) and TT-
80 Seq (15), is highly sensitive, as 4sU is rapidly taken up by cells, phosphorylated and
81 incorporated into transcripts. Both 4sU-Seq and TT-Seq provide information about where
82 transcription occurs during the labelling window (usually about 8-10 mins), but transcript
83 processing, library preparation and data smoothing reduce resolution to about 200 nt (TT-
84 Seq) or introduce a 5' bias (4sU-Seq) in read distribution. Thus, key events in transcription,
85 such as the PPP, are not resolved in TT-Seq metagenes (15,23). Ideally, information about
86 the position of the 3' end of the intact 4sU-labelled nascent transcripts would provide
87 nucleotide resolution data, as in mNET-Seq or PRO-Seq. To achieve this, Single-Nucleotide
88 resolution 4sU-sequencing (SNU-Seq) was developed for use in adherent mammalian cells
89 (HEK293 and Hep3B) with controls so that the precise source of reads can be determined.
90 Like TT-Seq and 4sU-Seq, SNU-Seq takes advantage of a 4sU pulse label, followed by
91 biotinylation and streptavidin bead capture of nascent labelled transcripts. Uniquely, after
92 enrichment of the labelled RNA (without the fragmentation step used in TT-Seq), the 3' end
93 nucleotide in the nascent transcripts is marked with an artificial poly(A) tail, using bacterial
94 poly(A) polymerase (bPAP). The aim is to allow precise nucleotide resolution mapping of the
95 last base incorporated into the 4sU-labelled nascent transcript. The addition of the artificial
96 poly(A) tail offers a cost-effective and straightforward method for library preparation with
97 standard oligo(dT) primer-based RNA-Seq library kits and commercially available 3' RNA
98 sequencing kits. Controls are focused on ruling out potential mapping biases and
99 determining the precise source of reads. These include removing reads resulting from
100 priming at internal poly(A) tracks within transcripts using an established computational
101 algorithm (24), an assessment of the proportion of reads from unlabelled transcripts or
102 rRNA, and an assessment of the contribution of polyadenylation by host poly(A) polymerase
103 (hPAP) during the labelling window, similar to those used in a study in *Saccharomyces*
104 *cerevisiae* (17). Here, 4sU labelling is coupled to direct sequencing of artificially (bacterial
105 poly(A) polymerase-dependent bPAP) polyadenylated RNA 3' ends, reporting the single
106 nucleotide next to the artificial poly(A) tail as the readout, marking the precise distance RNA
107 polymerases have travelled along the transcription unit and the frequency of pausing at that
108 site by increased read counts, revealing 5' promoter proximal pauses and the positions of
109 one or more polyadenylation sites (PAS) for RNA polymerase II (RNAPII or PolII) transcribed
110 genes. Controls lacking the bPAP treatment enable detection of host PAP-dependent events
111 during the labelling window, for example, close to the promoter (25), at PROMPTS/PDATs
112 (26) and at nascent PASs. Exact positioning and dependence of the readout on the bPAP
113 poly(A) tail status allow interrogation of transcription rates, RNA synthesis rates, and RNA
114 half-lives at high resolution from single RNA samples. The SNU-Seq protocol for mammalian
115 cells is innovative and straightforward, providing single-nucleotide resolution, good library
116 quality and reproducibility. SNU-Seq is applied to map nascent transcription around genes
117 and enhancers in HEK293 and Hep3B cells, providing new insights into the relationship
118 between chromatin and transcription, including the high number of regions primed for
119 transcription and showing IFN γ -dependent onset of divergent nascent transcription at
120 enhancers and gene promoters. The SNU-Seq readout was complemented with data from
121 sf4sU-Seq, here focused on the nucleotides at the 3' and 5' ends of short fragments

122 mapping to the promoter proximal regions, revealing the precise position of the PPP and
123 defining unannotated TSS, particularly for promoter divergent antisense transcripts.

124

125 RESULTS

126

127 Development of single-nucleotide 4sU-Seq (SNU-Seq)

128 The aim of this work was to use the effectiveness of a 4sU pulse-label to produce cost-
129 effective nucleotide resolution nascent transcriptomes in adherent human cells (Hep3B and
130 HEK293) together with appropriate controls to enable the precise source of each read to be
131 determined (**Fig 1A&S1A**). Optimal labelling times and reproducibility were confirmed by
132 performing TT-Seq in HEK293, HeLa and Hep3B cells (**Fig S1B**). Labelling time was
133 generally a function of growth rate with HeLa cells requiring an 8 min pulse label compared
134 to 10 mins for HEK293 and 10-12 mins for Hep3B cells, sufficient for cells to process the
135 4sU metabolic label into a triphosphate for incorporation into the nascent transcripts, but
136 short enough to capture primarily nascent, as opposed to processed transcripts, including
137 abundant non-coding transcripts upstream of *KAZALD1* (**Fig S1C**).

138

139 In SNU-Seq, a poly(A) tail is added to 3' end of the nascent transcripts using bacterial
140 poly(A) polymerase (bPAP) and the library sequenced using oligo(dT) priming, comparable
141 to 3' end RNA-Seq (27,28), reporting just the first base next to the newly added poly(A) tail
142 (**Fig 1A**). Although in both SNU-Seq and TT-Seq nascent transcripts are pulse labelled with
143 4sU and captured after conjugating HPDP-Biotin and binding to streptavidin beads, they
144 differ as the RNA is not subject to fragmentation in SNU-Seq, as it is in TT-Seq (compared in
145 **Fig S1D**), thus capturing the 3' end of intact 4sU labelled transcripts. For HEK293 cells,
146 approximately 65% of reads uniquely align, and biological repeats correlate well (**Fig S1E**).
147 Similar read coverage is observed in both HEK293 and Hep3B cells (**Fig S1F**), with no
148 major batch effects observed (**Fig S1G**). To determine the precise source of reads in the
149 SNU-Seq output from HEK293 cells, metagene profiles and heatmaps were prepared for
150 2,394 genes, including controls outlined in **Fig.1A** after data processing following the
151 scheme in **Fig S1A**.

152

153 In the normalised scaled SNU-Seq output, reads can arise from priming by oligo(dT) from
154 internal (A)-rich sequences. As described previously (24), 2.8% of the hg38 genome was
155 masked for genomic (A) residues using the “bedtools intersect -v” algorithm during data
156 processing (**Fig S1A**). After 10 min 4sU labelling, 5% of the samples were processed in
157 parallel as total RNA controls, before or after rRNA depletion (**Fig 1A**). For these samples,
158 metagenes and heatmaps revealed signal predominantly at the 3' end, expected from
159 oligo(dT) priming from the poly(A) tail of mature mRNA (**Fig.S2A**). Depletion of rRNA
160 improves the resolution of the remaining pre-mRNA signal (**Fig S2A**). When the total RNA
161 samples (Total no bPAP) are treated with bacterial poly(A) polymerase (Total + bPAP),
162 additional signals over the transcribed region are evident, likely representing 3' ends
163 generated by the synthesis and degradation of transcripts during the labelling window (**Fig
164 S2A**). Subtraction of total no bPAP from total + bPAP reveals the action of bPAP on the
165 transcripts (**Fig S2A**).

166

167 The remaining 95% of each sample was biotinylated, the labelled RNA enriched, rRNA
168 depleted, treated with bPAP (4sU labelled + bPAP -rRNA) and compared to the signal
169 obtained when no 4sU is added to cells (unlabelled + bPAP - rRNA) (**Fig 1B**). This indicated

170 virtually no background signal when nascent transcripts were not labelled, compared to the
171 SNU-Seq profile which has reads from the transcription start site (TSS) to the end site (ES)
172 and beyond.

173
174 The precise source of the reads in the SNU-Seq output was then examined. Theoretically,
175 reads could also arise from the host cell poly(A) polymerase (hPAP) adenylating nascent
176 4sU labelled transcripts during the labelling window at polyadenylation sites (PAS), as
177 observed in a similar technique developed for *Saccharomyces cerevisiae* (17). To control for
178 this, the SNU-Seq libraries prepared after treatment with bacterial poly(A) polymerase (4sU
179 labelled + bPAP -rRNA) were compared to the profiles for 4sU-labelled transcripts without
180 bPAP treatment (4sU labelled no bPAP - rRNA) (**Fig 1B**). In both samples, the predominant
181 signal at the 3' region maps to the transcript end site (ES), consistent with poly(A) tails
182 added during the labelling window by the host poly(A) polymerase (hPAP).

183
184 Subtraction of the signal in the 4sU labelled no bPAP samples (host PAP only) from the
185 SNU-Seq (4sU labelled + bPAP) samples (both host and bacterial PAP) reveals the bPAP-
186 dependent signal in SNU-Seq. This leaves peaks primarily in the promoter proximal region
187 and at the PAS (**Fig 1B&S2B**). The SNU-Seq output (4sU labelled + bPAP) was used for all
188 subsequent analysis, as this includes additional potentially valuable information on
189 polyadenylation site usage. No major batch effects are observed when comparing seven
190 4sU-labelled samples treated either with or without bPAP (**Fig S2C**).

191
192 Screenshots of IGV SNU-Seq profiles with controls at six genes were used to illustrate two
193 features evident at 3' regions (**Fig 1C,D**). First, increased read density and spikes in the
194 SNU-Seq (4sU + bPAP) overlap with mapped PAS evident in the SNU-Seq control (4sU no
195 bPAP, indicative of the action of host PAP during the labelling window) and in the total RNA
196 (Total no bPAP). Generally, these spikes are not evident in the TT-Seq (HEK293 cells, this
197 study), although, as previously described (15), a drop in read density occurs around the
198 annotated PASs. Second, the SNU-Seq readout (4sU + bPAP) often extends way beyond
199 the main PAS used in the mature mRNA (total RNA). Further analysis at *HNRNPU* and
200 *SCO1* revealed that this may reflect cleavage and polyadenylation occurring at alternative
201 annotated PAS often located far downstream, for example, the spike at pas6200, >10kb
202 downstream of *HNRNPU* and the two PAS (pas52715 and pas52720) at *SCO1* (**Fig 1D**).
203 Details analysis of 3' reads output in HEK293 cells when RNA is separated into nuclear and
204 cytoplasmic fractions reveals overlap with the 3' reads output in the nucleus and the spikes
205 in SNU-Seq profile. However, the profile of reads in the cytoplasm is markedly different,
206 often reflecting preferential accumulation of transcripts using the proximal PAS. Finally, no
207 signal in the control (4sU no bPAP; indicative of the action of the host poly(A) polymerase) is
208 evident at histone genes (*H2BC11*, *H2AC11*) whose 3' ends are not subject to
209 polyadenylation (**Fig 1C**). Thus, the SNU-Seq output also contains information about usage
210 of polyadenylation sites during the labelling window.

211
212 As SNU-seq is a simple technique, comparable to 3' end RNA-Seq (27,28), it potentially
213 offers real advantages compared to other methods for assessing nascent transcription at
214 genes and enhancers. Metagenes, heatmaps and a genomic snapshot in IGV around
215 *CERS6* and *DDIT4* illustrate the differences in the output signals generated by SNU-Seq
216 (This study), TT-Seq (This study and (29)), PRO-Seq (29), and mNET-Seq (30) in HEK293
217 cells (**Figs 2A,B&S3**). SNU-Seq generally shows a low variance in the signal height and

218 provides a flat profile, with the density of reads reflecting the amount of label incorporated
219 during the labelling window and spikes at the promoter proximal region, around
220 polyadenylation sites and pauses. The SNU-Seq output is distributed over both exons and
221 introns, supporting effective capture of nascent transcription before extensive pre-mRNA
222 processing (**Figs 2B&S3**). There is a notable difference between SNU-Seq and the two TT-
223 Seq profiles, particularly the inability of TT-Seq to resolve the 5' and 3' peaks (**Fig 2A,B**).
224 Both PRO-Seq and mNET-Seq resolve the spike at the promoter proximal region but not at
225 the position of the PAS. The SNU-Seq signal correlates well (Spearman correlation 0.672)
226 with mature transcript levels at 12,303 genes (31) in HEK293 cells (**Fig 2C**) and accurately
227 reflects transcription elongation profiles established for the TT-Seq protocol in K562 cells
228 (15,32) (**Fig 2D**). Finally, the ability of the four techniques to distinguish eRNAs
229 characterised enhancers around *DDIT4* in HEK293 cells was examined, using the chromatin
230 signature to map open chromatin (ATAC-Seq) surrounded by H3K27ac (E, red arrows, **Fig**
231 **S3B**). While divergent transcription is evident in the SNU-Seq read out, eRNA are not
232 reliability detectable in the TT-Seq, PRO-Seq or mNET-Seq outputs. For mNET-Seq this
233 reflects the specificity of antibodies used in the immunoprecipitation step. In PRO-Seq,
234 eRNA at the upstream enhancer are evident but not the two downstream enhancer
235 elements, even when the scales are optimised relative to *DDIT4* signal. Thus, SNU-Seq can
236 generate high-quality data for nascent transcripts in human cells, with multiple features of
237 nascent transcripts in one simple readout. Before validating these features, particularly the
238 promoter proximal pause (PPP) and eRNAs, the SNU-Seq data were used to calculate
239 transcription parameters in HEK293 cells.
240

241 **Synthesis and decay rates**

242 After thresholding and removing reads in ENCODE blacklisted regions, the synthesis rate
243 (SR) and decay rate (DR) were calculated for 2,394 genes in the annotation subset: DR = -
244 $(1/\text{time}) \times \log(1 - \text{RNA}_{4\text{su}}/\text{RNA}_{\text{total}})$, and SR = $\text{RNA}_{\text{total}} \times \text{DR}$, where time is 10 min, $\text{RNA}_{4\text{su}}$ is
245 the normalised SNU-Seq counts with bPAP treatment, exploiting the total RNA signal (no
246 bPAP) and the 4sU labelled (+ bPAP) nascent RNA signal from the same samples (15,32).
247 The density of reads over the gene body directly relates to their synthesis rates (Kendall's τ
248 = 0.99) (**Fig 3A**). Based on an elbow analysis of the calculated synthesis rates, k-means
249 clustering ($k = 3$) was applied and used to classify genes into fast, middle and slow groups.
250 In each group, fast synthesis rates have higher spike-in normalised counts and lower decay
251 rates, like parameters determined in *S. cerevisiae* (33) (**Fig 3B-D**).
252

253 **Splicing efficiency in nascent transcript output**

254 To assess the level of pre-mRNA processing captured during the labelling window by SNU-
255 Seq, the primary 3' end-Seq output obtained from the total RNA libraries ($n = 7$) and the
256 SNU-Seq (nascent RNA) libraries ($n = 6$) were used to calculate the splicing efficiency from
257 the ratio of spliced to unspliced reads at splice junctions. Using the SPLICE-q tool (34), the
258 mean splicing efficiency (SE) score was computed by averaging all measured splicing
259 events in the total RNA libraries and SNU-Seq libraries prepared from the same samples
260 (**Fig 3E, F**). The results indicated that SNU-Seq captures more transcripts with introns
261 (nascent RNA) in comparison to reads from the total RNA, which also includes fully
262 processed transcripts, as expected.
263

264 **5' end Pausing Index**

265 Metagene profiles and IGV snapshots indicate read peaks near the TSS of transcription
266 units, likely representing promoter proximal pausing of initiated RNA polymerase (see **Fig**
267 **1B**). This pause is generally only captured in 4sU labelled samples when treated with bPAP,
268 as the output from 4sU-labelled samples not treated with bPAP primarily captures reads due
269 to polyadenylation of pre-mRNAs undergoing 3' end formation during the labelling window.
270 The read counts within the TSS proximal window (-50 bp to +200 bp) were compared to
271 those from +200 bp to the start of the 3' UTR for the two data sets and indicate a much
272 higher ratio in the bPAP-treated nascent transcripts (**Fig 3G**). Next, the sensitivity of 4sU
273 labelling was exploited to isolate and characterise the short transcripts whose 3' ends are
274 found within the first 200 nt of genes.
275

276 **Using size fractionated 4sU-Seq (sf4sU-Seq) to explore the TSS-proximal peak in the**
277 **HEK293 nascent transcriptome.**

278 Heatmaps suggest that many genes have a read distribution consistent with short 4sU
279 labelled nascent transcripts in the region proximal to the promoter (see **Fig 1B**). Generally,
280 these short transcripts are not subject to polyadenylation by host PAP as there are no
281 significant reads in the control samples (4sU labelled no bPAP) (see **Fig 1B**). To investigate
282 these short transcripts, the biotinylated, 4sU-labelled RNA was subject to electrophoresis on
283 a polyacrylamide gel, similar to the approach used for size-fractionated NET-Seq in *S.*
284 *cerevisiae* (5) (**Fig 4A**). When compared to the total RNA from HEK293 cells, the nascent
285 thio-labelled RNA reproducibility yields a clear band at approximately 50-100 nt and a smear
286 from \approx 600 nt upwards on gels indicating that the nascent 4sU-labelled transcripts are not
287 subject to extensive degradation, which was confirmed once the short fraction was
288 sequenced (**Fig S4A, B**). The short RNA was isolated (**Fig S4C, D**) and subject to linker
289 ligation at both the 3' end (75 nt) and 5' end (54 nt) after decapping with RNA 5'
290 pyrophosphohydrolase (**Fig S4E**) and sequenced from both ends. The coverage showed
291 more the 86% of the library aligned to the human genome (**Fig S4F**), and after processing,
292 allows the first 5' and the last 3' nucleotides of the gel-purified nascent transcripts to be
293 reported, yielding base pair resolution.
294

295 Calibrated metagenes and density maps were created to examine the genome-wide
296 distribution of reads in the sf4sU-Seq libraries (**Fig 4B, C**). The highest density of 3' end
297 read signal is located around 60-80 bp downstream of the TSS (centred around 63 nts), and
298 a minor density peak is around 300 bp downstream of the TSS. These two peaks may
299 represent the promoter-proximal and promoter-distal pausing sites. Alternatively, they may
300 represent major unannotated transcription start sites (uTSSs) downstream of the annotated
301 site.
302

303 At individual genes, for example *CHEK2*, the 5' TSS proximal peak is evident in SNU-Seq
304 and in the sf4sU-Seq, but not in the TT-Seq data (**Fig 4D**). The 5' end of the sf4sU-Seq
305 fragment is consistent with the TSS mapped using TT-Seq and the 3' ends overlap with the
306 signal in the SNU-Seq readout at the pause site (**Fig 4E**). The SNU-Seq control (4sU no
307 bPAP) confirms that the promoter proximal short transcripts are generally not subject to
308 polyadenylation (**Fig 4E**), although there are exceptions, for example *ZNRF3*, where both
309 divergent short transcripts, including the PDAT/PROMPT (26), have a signal in the control
310 (4sU no bPAP) suggesting polyadenylation by hPAP (**Fig S4G**).
311

312 The TSS proximal signal from the sf4sU-Seq data (3' ends) was compared to mNET-Seq
313 data, which captures all forms of RNAPII, including the promoter proximal pause (2), using
314 an unsupervised machine learning approach. First, k-means clustering ($k = 6$) was
315 performed on the shape of human NET-Seq profiles for 2,748 genes to identify clusters of
316 genes with different shapes of promoter proximal profiles (**Fig 4&S4H**). This yielded one
317 cluster with a flat metagene (cluster 1), three clusters with a sharp peak directly downstream
318 of the TSS (clusters 2, 3, and 4), one cluster with a slightly broader peak (cluster 6), and one
319 cluster with a broad peak much further into the gene body (cluster 5). There was no
320 difference in the levels of transcription contributing to the shape of clusters, as SNU-Seq
321 reads over the first 1,000 nucleotides are similar in all six clusters (**Fig 4G**). In addition, there
322 is no evidence for a DRB-sensitive promoter proximal pause in the flat class, although the
323 “peaky” signal in the remaining clusters ($k = 4$; NET-Seq) increases in size over time of
324 DRB-treatment as release from the pause is inhibited (**Fig S4I**). sf4sU-Seq data were plotted
325 for the genes in each cluster, and remarkably, the patterns match those in the NET-Seq
326 data, suggesting that the position of the promoter proximal pause is captured by reads at the
327 3' end of the short fragments isolated in sf4sU-Seq (**Fig 4F**).
328

329 To provide additional evidence for the nature of the promoter proximal signal, ChIP-Seq data
330 for NELF, a pausing factor (35), INTS3, a subunit of integrator (36), linked to the pausing
331 signal by premature termination, and MED26 (37,38) with a role in recruitment of the
332 super elongation complex (SEC) to polyadenylated genes (39-43) was used to validate
333 these peaks as pauses or sites of early termination (**Fig S4H**). For all three factors, the
334 profiles reflect the NET-Seq and sf4sU-Seq profiles, although only the mediator ChIP-
335 Seq profile (MED26) shows the dual peaks in cluster 5, possibly representing alternative
336 start sites. This was confirmed using CoPRO, a nuclear-run on variation of PRO-Seq that
337 enriches for 5' end states of nascent RNAs (44) and ATAC-Seq data from HEK293 cells (45)
338 which revealed that the peak in cluster five is shifted significantly further downstream
339 compared to the other clusters (adjusted p-value $< 3.5 \times 10^{-5}$) (**Fig S4H**). The distribution of
340 the levels of NELF, INTS3, and MED26 over the first 300 nt was assessed (**Fig 4H**).
341 NELF shows the greatest enrichment in peaky clusters 2, 3 and 4, compared to INTS3
342 and MED26. This suggests that levels of NELF are the best predictor of a promoter
343 proximal pause, and that the majority of the 3' end reads in the sf4sU-Seq data mark the
344 position of the PPP.
345

346 A simple machine learning algorithm (logistic regression) was used to assess whether
347 NELF, integrator, or mediator levels alone are predictive of which cluster a gene may
348 belong to: pausy; clusters 2-4 or non-pausy; cluster 1 ($k=4$) (**Fig S5A-F**). NELF shows
349 the strongest predictive power, compared to integrator or mediator subunits, in terms of
350 being able to classify mNET-Seq-based clusters as pausy or non-pausy. This supports
351 the signals in the SNU-Seq data as primarily reflecting pausing around 60-80 nt
352 downstream of the TSS. As INTS3 also shows enrichment, some of the 3' end signals in
353 the sf4sU-Seq could arise due to integrator-dependent early termination of transcription
354 (25,46). To characterise the regulatory context, the calibrated pausing signal was obtained
355 by dividing the summed sf4sU-Seq signals for each gene (50 – 150 bp downstream of the
356 TSS) by the sum of TT-Seq reads for each gene (0 – 500 bp downstream of the TSS, **Fig**
357 **S5G**). Gene ontology analysis of the top and bottom deciles of genes ranked by their relative
358 pausing signal revealed that genes exhibiting pausing are involved in primary metabolic
359 processes, cell-cycle regulation and DNA-damage checkpoints (**Fig S5H**). This agrees with

360 previous analyses on promoter-proximal pausing based on Pol II ChIP-Seq (47). Because of
361 the single-nucleotide resolution, as well as the high sensitivity of this approach, highly
362 statistically significant results on the gene ontology of promoter-proximal pause were
363 generated compared to the ChIP-Seq approach, which generates low-resolution Pol II
364 positioning profiles rather than precise information about the act of transcription. Thus,
365 sf4sU-Seq validates the 5' peak in the SNU-Seq metagenes as the promoter proximal pause
366 (PPP) located 60-80 nt from the TSS.
367

368 **Using size fractionated 4sU-Seq (sf4sU-Seq) to discover unannotated TSS in the 369 HEK293 transcriptome.**

370 Based on the 5' end signal at the short fragments in the sf4sU-Seq data, a pipeline was
371 developed to facilitate annotation of transcription start sites and to discover new
372 unannotated TSS (**Fig 5**), using the same principle as for START-Seq annotations (48-50).
373 First, only 5'-end signals that overlap with ATAC-Seq peaks in HEK293 cells were used (45)
374 (**Fig 5A,B**). Second, the Paraclu TSS-clustering algorithm was used to group closely
375 positioned TSS, as used in CAGE-Seq (51-53). The sf4sU-Seq based clusters are
376 predominantly shorter than 10 bp (**Fig 5C**) and the cluster-centres map to ENCODE TSS
377 annotations as expected (**Fig 5D**). TSS candidates for which the TT-Seq signal (in HEK293
378 cells) in the first 1,000 bp downstream of the TSS candidate was lower than 5 times the
379 signal of the 1,000 bp preceding the TSS candidate were filtered out (**Fig 5E**). This resulted
380 in 4,383 candidate TSSs distributed widely over the genome (**Fig 5F**) and associated with
381 active transcription units mapped using TT-Seq (**Fig 5G**). Finally, TSSs were assigned as
382 previously annotated (observed TSSs or obsTSSs) or unknown/novel/unannotated TSSs
383 (uTSSs) using the open-source code TSScall (50) (**Fig 5H**). The vast majority of the 2,955
384 active TSSs map around ENCODE annotated TSSs (**Fig 5I**). Many of the 1,428 newly-
385 identified TSSs are predominantly divergent (antisense TSS, associated with PDATs or
386 PROMPTS (54)) and are located between 100 and 500 bp upstream of the sense TSSs (**Fig**
387 **5J**), and shown in metagenes aligned to ENCODE TSS (**Fig 5K**).
388

389 In conclusion, size fractionated 4sU-Seq is a viable method for transcription start site
390 annotation, here relying on a strict set of filters, such as ATAC-Seq peaks, and a 5-fold
391 increase in TT-Seq signal, which leads to a relatively small set of TSSs. Because of these
392 filters, these TSSs belong to transcription units that are transcriptionally active and found in
393 open and accessible chromatin. 4sU-based approaches, such as SNU-Seq, seem
394 particularly suitable when interested in detecting non-coding and antisense transcription.
395 This holds true for 4sU-based TSS annotations obtained through size fractionated 4sU-Seq,
396 too, given the 1,428 unknown TSSs that are antisense to the TSSs of already annotated
397 protein coding genes. To explore and expand these findings, we used SNU-Seq combined
398 with chromatin analysis (ATAC-Seq, H3K27ac, H3K4me3, CTCF) to assess transcription
399 from promoters and enhancers in Hep3B hepatocarcinoma cells, which, like hepatocytes,
400 are well characterised (55).
401

402 **Using SNU-seq and chromatin analysis to characterise functional elements in the 403 Hep3B genome**

404 To demonstrate that SNU-Seq (4sU labelled + bPAP; nascent RNA) can detect nascent
405 transcripts at enhancers (eRNAs) in Hep3B cells, previously characterised functional
406 enhancers interacting with the enhancer-looping factor LDB1 in hepatocytes (56) were
407 visualised in IGV (57). In addition to SNU-Seq, mature mRNA samples were prepared,

408 fragmentation was used to map regions of open chromatin (ATAC-Seq, n = 3), and
409 ChIPmentation was used to monitor regions enriched for H3K27ac (n = 2), H3K4me3 (n = 2)
410 and CTCF (n = 3).

411
412 At *SLC2A2*, four hepatocyte enhancers E1-E4 (56) are coincident with open chromatin,
413 peaks of H3K27ac and divergent nascent transcription in Hep3B cells, which within the
414 transcribed region are easiest to identify on the antisense strand (**Fig 6A**). Similarly, at
415 *ALCAM*, four potential enhancers are detectable in Hep3B cells, including 3 previously
416 characterised in hepatocytes within the transcribed region (56) (**Fig S6A**). At 3 regions
417 around *HNF4A*, encoding a liver-specific transcription factor (**Fig S6B**), at 4 regions around
418 *DDIT4* (**Fig S6C**, see also **Fig S3B**) and at *STAT1* (**Fig 6B**), regions with similar
419 characteristics are evident. To confirm that these regions are functional enhancers, Capture-
420 C anchored to the *STAT1* promoter (58) was used to identify a long-range interaction to the
421 5.5URR upstream enhancer (**Fig 6C-E**). Thus, open chromatin (ATAC-Seq), peaks of
422 H3K27ac and divergent nascent transcription extending > 1 kb in each direction are evident
423 at the *SLC2A2*, *STAT1*, *ALCAM*, *DDIT4* and *HNF4A* enhancers and promoters.

424
425 To examine how frequently these features occur, a genome-wide analysis was conducted by
426 identifying regions of open chromatin (derived experimentally using ATAC-Seq) (n = 64,536),
427 enhancers (FANTOM5, n = 63,285) or promoters (GENCODE annotated TSS -1 kb to +200
428 bp, n = 70,611). As many of these features overlap with each other, the datasets were
429 filtered by retaining only those on autosomal chromosomes (chr1-22) and identifying any
430 similar features closer than 5 kb and removing both. For ATAC-Seq annotations located up
431 to 1 kb from a GENCODE gene, only those 5 kb apart from any other ATAC-Seq peaks were
432 kept, using this gene's strand information. This yielded 17,367 annotations on the forward
433 (FWD) strand and 16,570 on the reverse (REV) strand. If features were > 1 kb away from a
434 GENCODE gene, only those at least 5 kb from other peaks were kept and annotated as
435 intergenic features (n = 13,434). All features, regardless of position, and at least 5 kb apart
436 from each other, constituted the third group, n = 45,289 (all). FANTOM5 enhancers were
437 filtered, retaining those at least 5 kb from any GENCODE annotated gene and 5 kb apart
438 from each other, yielding 6,911 features for analysis (**Table 1**). The filtered data were
439 stratified into subsets based on overlaps, and the number of overlapping features was
440 determined (**Table 1**).
441

442 Focused on the peak of open chromatin signals from the genome-wide ATAC-Seq data (all),
443 heatmaps and metagenes of the concatenated and \log_2 -transformed values for SNU-Seq,
444 H3K27ac and H3K4me3 were plotted (**Fig 6F-J&S6D-H**). 80-90% of accessible sites in
445 chromatin are subject to detectable levels of H3K27ac (**Fig 6F**) or H3K4me3 (**Fig S6D**)
446 including regions annotated as FANTOM5 enhancers with open chromatin (**Fig 6G&S6E**).
447 Metagenes and heatmaps were used to display the SNU-Seq signal at each of the genomic
448 regions and reveal the lowest number of reads at FANTOM5 annotated enhancers (13.99%
449 **Fig 6H**), then at intergenic ATAC-Seq peaks (21.8%, **Fig S6F**), then all ATAC-Seq peaks
450 (40.08% **Fig 6I**) and highest at GENCODE defined genes (49% **Fig S6G,H**). These results
451 suggest that open chromatin (ATAC-Seq) is by far the best predictor of divergent nascent
452 transcription and that relatively few annotated enhancers are subject to detectable divergent
453 nascent transcription (**Fig 6J**). Interestingly H3K4me3 was enriched at many of the ATAC-
454 Seq peaks, also evident in the IGV snapshots, which may reflect long range interactions with
455 promoters or other regions enriched with H3K4me3 (**Fig 6A,B&S6A-C**). Taken together,

456 these data strongly support the idea that many regions of the genome have open chromatin
457 and modified histones. However, less than half of the regions with open acetylated
458 chromatin were also subject to nascent transcription raising the interesting possibility that
459 these regions may be primed for subsequent transcription when appropriate signals are
460 received.

461

462 To explore this, a bioinformatic analysis was used to identify all filtered ATAC-Seq peaks (n
463 = 45,289) with different combinations of SNU-Seq (> 0 for $\log_2(x+1)$), H3K27ac and/or
464 H3K4me3 (> 1.25 for $\log_2(x+1)$) values to eliminate noise and reliably identify peaks (**Fig**
465 **S7A-C**). After thresholding using the average signal in each peak, a “+/-” annotation was
466 used to summarise the properties at each ATAC-Seq peak (**Fig 7A**). 56.26% (25,476) of all
467 ATAC-Seq peaks are enriched for both H3K27ac and H3K4me3. 31.39% (14,214) of all
468 ATAC-Seq peaks with H3K27ac and H3K4me3 also have divergent nascent transcription
469 (orange arrows in **Fig 7**) while 24.87% (11,262) are primed without a SNU-Seq signal (blue
470 arrows in **Figs 7&S7**). Other combinations of marks and transcription are also evident (**Fig**
471 **7A**) but here the focus is on the potentially poised signals with ATAC-Seq peaks decorated
472 with both H3K27ac and H3K4me3 but no transcription (blue arrows in **Figs 7&S7**). Examples of such regions in uninduced Hep3B cells are illustrated at an annotated promoter
473 (*CD274*) (**Fig 7B**), Fantom5 annotated enhancers (**Fig S6D**) or three unannotated
474 chromosomal locations (**Figs 7C&S7E**). Four of the five illustrated SNU-, 27ac+, K4+
475 ATAC+ peaks induce divergent nascent transcription after treatment with IFN γ , suggesting
476 they are primed for transcription. These regions illustrated include one gene (divergent
477 PDAT and pre-mRNA), two Fantom5 annotated enhancers on chromosome 15 (divergent
478 eRNAs) and two unannotated regions with characteristics of enhancers (divergent nascent
479 transcription) on Chr 6. One unannotated region on Chr 6 remains poised (cyan arrow in **Fig**
480 **S7E**), suggesting this region might respond to different signals. A genome wide analysis
481 revealed $\approx 11,262$ regions of H3K27ac marked open chromatin lacking nascent
482 transcription, 863 of which show IFN γ -dependent divergent nascent transcription (**Fig 7D**).
483 384 regions (44.5%) are located at gene promoters based on GENCODE annotations with
484 the remainder upstream, downstream or within genes (**Fig 7D**). This analysis confirms the
485 idea of a highly poised and responsive Hep3B epigenome revealed using SNU-Seq.
486

487

488 DISCUSSION

489 The aim of this work was to develop and validate methods to interrogate nascent
490 transcriptomes which combine the sensitivity of the 4sU pulse-label used in TT-Seq with the
491 single-nucleotide resolution offered by techniques such as PRO-Seq and NET-Seq, but with
492 simple library preparation to reduce cost and improve general accessibility for routine use in
493 mammalian cells and tissues. **Single Nucleotide resolution 4sU-Seq** (SNU-Seq) meets these
494 criteria and allows the generation of profiles of nascent transcripts in human cells with high
495 resolution, high sensitivity and low cost. As SNU-Seq retains full-length fragments followed
496 by mapping the last incorporated nucleotide, there is no 5' bias, unlike TT-Seq, where
497 sonication or chemical fragmentation reduces the 5' bias but does not eliminate it (16,59). In
498 addition, unlike TT-Seq, SNU-Seq allows the presence of a promoter proximal pause (PPP)
499 and multiple nascent polyadenylation sites to be defined in the same experiment. NET-Seq
500 and Pro-Seq define the PPP, but not polyadenylation site usage. Finally, the single-
501 nucleotide resolution allows accurate determination of transcription elongation rates. SNU-
502 Seq is robust and reproducible, producing similar profiles between repeats and different

503 human cell lines (n = 9 for HEK293 cells; n = 3 for Hep3B cells), with unique alignment of
504 approximately 65% of initial reads. SNU-Seq also allows synthesis and decay rates to be
505 derived, anchoring to previously obtained RNA-Seq data or, as done here, using 3' end-Seq
506 to sequence a small aliquot of the total RNA obtained from the same initial RNA preparation
507 used for SNU-Seq. SNU-Seq produces an even, uniform signal over gene bodies
508 representing productive elongation, with read density directly related to synthesis rate, and
509 can be used directly to parametrise simulations to enable other metrics of transcription to be
510 derived (60). In summary, unlike the other methods, SNU-Seq generates data on start site
511 usage, site of the promoter proximal pause (PPP), transcription elongation rates and
512 nascent polyadenylation site usage in one low-cost, straightforward, high-resolution protocol
513 in less than two days. In addition, divergent eRNAs, a signature of active enhancers, can be
514 resolved within genes or in intergenic regions using SNU-Seq, here validated at previously
515 characterised enhancers (56).

516
517 Controls were carried out to ensure that the “raw” SNU-Seq output can be used directly to
518 assess levels of nascent transcription, PPP, elongation rates and polyadenylation site
519 usage. There are minimal background reads in SNU-Seq preparations. Removal of rRNA
520 reads enhances resolution of the metagenes features such as the PPP. No evidence for
521 biased action of bacterial poly(A) polymerase at the 3' end of nascent transcripts could be
522 found. In addition, the gel purification step confirmed the broad size range of the 4sU-
523 labelled nascent transcripts, ruling out extensive degradation. Uniquely, the SNU-Seq
524 readout provides details of nascent polyadenylation during the labelling window. A control
525 library prepared with 4sU labelled RNA but no bPAP treatment can easily be used to confirm
526 this, and is exemplified here for *DDIT4*, *SRSF3* and *MYC*. The signal at the PAS in the SNU-
527 Seq readout overlaps with that from the total RNA 3'end-Seq library and in the 4sU-labelled
528 no bPAP readout, representing hPAP action during the 4sU labelling window. That these are
529 polyadenylation sites is confirmed by the lack of signal in the control libraries for histone
530 genes, which undergo non-hPAP-dependent 3' end processing (61). Interestingly, SNU-Seq
531 reports precise positioning of the transcription termination site at the histone genes, 6-12 nt
532 downstream of the consensus ACCCA cut site after the stem loop region (62). Many other
533 protein-coding genes, such as *HNRNPU* illustrated here, have complex patterns of
534 polyadenylation site usage, which can be resolved by nuclear/cytoplasmic fractionation of
535 processed transcripts (63). Certain isoforms of the transcripts are preferentially enriched in
536 the nucleus, suggesting either selective nuclear retention or cytoplasmic turnover. Peaks in
537 the SNU-Seq read-out match precisely with these isoforms. This confirms the very rich
538 patterns in the use of polyadenylation sites and a great deal of potential in the way mRNAs
539 with different 3'UTRs or with excluded exons may influence the proteome. Where multiple
540 polyadenylation sites are used and associated with distinct outcomes in terms of levels and
541 localisation, this appears to be hard-wired into nascent transcription, raising interesting
542 questions as to how particular transcripts are chosen to be retained, exported or translated
543 (64,65). SNU-Seq offers a useful tool for exploring this potential. This control was also useful
544 to detect nascent polyadenylation at the promoter proximal region due to early termination of
545 transcription. Although metagenes and heatmaps revealed that this is not a common event,
546 at certain genes, such as *ZNRF3*, endogenous hPAP polyadenylation is evident close to the
547 promoter in the sense (pre-mRNA) and antisense direction (PDATs) (25,46). The data from
548 size fractionated 4sU-Seq confirmed that the promoter proximal pause (PPP) presents a
549 nascent end of a ~63 nt transcript with the 5' end that maps to the annotated TSS or to the
550 TSS mapped by TT-Seq, with NELF enrichment being the best predictor of the pause. In this

551 respect, SNU-Seq shows a major advantage over TT-Seq, which is unable to resolve the
552 PPP.

553

554 SNU-Seq has the sensitivity to detect previously unannotated non-coding nascent
555 transcripts, including PDATs and promoter convergent antisense transcripts (PCATs) in the
556 vicinity of promoters and divergent eRNA from regions of the genome with characteristics of
557 enhancers. The SNU-Seq readout for non-coding nascent transcripts shows superior
558 sensitivity to those observed in PRO-Seq, mNET-Seq and our TT-Seq readout in HEK293
559 cells. Although complexes such as restrictor contribute to slowing polymerase to facilitate
560 early termination of transcription, particularly of non-coding transcripts (66), our data suggest
561 that these transcripts extend over 1kb from the TSS, whether associated with promoters
562 (PDATs) or enhancers (eRNAs), making them distinctly different from the short ~63 nt
563 transcripts with their nascent ends within RNA polymerase II at the PPP. In conclusion, 4sU-
564 based approaches such as SNU-Seq seem particularly suitable when interested in
565 detecting non-coding and antisense transcription. This holds true for 4sU-based TSS
566 annotations obtained through size fractionated 4sU-Seq, too, given the high proportion of
567 unknown TSSs that are antisense to the TSSs of already annotated protein coding
568 genes.

569

570 We explored the potential of SNU-Seq to discover new nascent transcripts in Hep3B
571 cells, using a chromatin analysis to define where these transcripts appear on the
572 epigenome. This revealed several distinctive features including the presence of
573 H3K4me3 at enhancers (67) as well as promoters, and extensive priming of the
574 epigenome for transcription. In Hep3B cells there were over eleven thousand regions of
575 open chromatin, defined using ATAC-Seq, flanked with H3K27ac and H3K4me3
576 modified nucleosomes but without nascent transcription. Rapid onset of divergent
577 nascent transcription occurred at over 800 of these sites in response to IFN γ stimulation.
578 SNU-Seq will be instrumental in understanding how regions of the genome with open
579 chromatin, but no nascent transcription, respond to new signalling pathways and
580 mapping changes in long-range interactions involving these regions, which correlate
581 strongly with phenotype (68). Furthermore, in a similar way to the approach used in yeast
582 (5), size fractionation of nascent transcripts and sequencing from the smallest to the largest
583 fractions will provide base pair resolution data on the extent of contiguous transcription
584 between overlapping genes and transcription units, which are excluded from this analysis to
585 ensure clarity. Overlapping transcription and transcriptional interference are significant
586 features of yeast genomes (69,70), and this approach will allow precise analysis of human
587 genomes, particularly when responding to extracellular signals.

588

589

590

591

592

593

594

595 **METHODS**

596 **Resources**

597 **Sequencing Data**

Dataset (+ Citation)	Cell Line	Accession / Source
SNU-Seq	HEK293	This Study/ GSE165251
SNU-Seq	Hep3B	This Study/ GSE172053
TT-Seq	HEK293	This Study/ GSE165251
TT-Seq (15)	K562	GSE75792
TT-Seq	HeLa	This Study/ GSE165251
ATAC-Seq (45)	HEK293	E-MTAB-6195
RNA-Seq (31)	HEK293	E-GEOID-57027
3'RNA-Seq	Hep3B	This study/
ATAC-Seq	Hep3B	GSE172053
ChIPmentation	Hep3B	This study/
Sf4sU-Seq	Hep3B	This study/ GSE172053
		This study/ GSE172053
		This study/ GSE172053

598

Kits and Reagents

Kit / Reagent Name	Provider	Code
NEBNext rRNA Depletion	NEB	E6350S
(Human/Mouse/Rat)		
Agencourt RNAClean XP	Beckman Coulter	A63987
NEBNext Multiplex Oligos (Set 1)	NEB	E7335L
NEBNext Ultra II Directional RNA Library Prep	NEB	E7765S
NEBNext Small RNA Library Prep Kit	NEB	E7300S
QuantSeq 3'end Kit for Ion Torrent	Lexogen	012.24A
μMACS Streptavidin Kit	Miltenyi Biotech	130-074-101
NextSeq 500/550 High Output v2.5 kit (150 cycles)	Illumina	20024907
4-thiouridine	Biosynth	NT06186
EZ-link HPDP-Biotin	Thermo Fisher	21341
DNase-I (RNase-free)	NEB	M0303S
<i>E. coli</i> Poly(A) Polymerase Kit	NEB	M0276S
SUPERase-In RNase Inhibitor	Thermo Fisher	AM2694
ThermoPol® Reaction Buffer Pack	NEB	B9004S
miRNeasy Micro Kit	Qiagen	217084
5-PRIME Phase Lock Gel Heavy	VWR	733-2478
Nextera XT DNA library prep	Illumina	FC-131-1096
MinElute PCR purification kit	Qiagen	28004
AxyPrep Mag PCR clean up kit	Appleton Woods	AX401
Anti-H3K4me3	MERCK	05-745R
Anti-H3K27ac	Millipore	07-360
Anti-CTCF	CST	3418S

Anti-H2AV Drosophila Ab	Active Motif	39715
PE Mouse IgG2b, Isotype Ctrl Antibody	Biolegend	400313
Monarch Spin RNA Cleanup Kit	NEB	T2040L
HighYield T7 mRNA Synthesis Kit	Jena Bioscience	RNT-101

599

600 **Software / Packages**

<u>Software / Package / Tool Name</u>	<u>Citation / Source</u>
Trim-Galore	Babraham Bioinformatics
Trimmomatic	(71)
BBTools	https://sourceforge.net/projects/bbmap/
fastqc	Babraham Bioinformatics
HISAT2	(72)
Bowtie2	(73)
STAR	(74)
samtools	(75)
bedtools	(76)
MACS2	(77)
UCSC utility tools	UCSC
featureCounts	(78)
Paraclu	(51)
TSScall	(50)
ggplot2	Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis, 2016 https://rpkgs.datanovia.com/ggpubr/
ggpubr	(79)
DESeq2	(80)
deepTools	(81)
Integrative Genome Viewer (IGV)	
R	R Core Team. R: A Language and Environment for Statistical Computing, 2022.
Python	Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual, 2009.
MATLAB	The MathWorks Inc.

601

602 **Cell Culture**

603 HEK293 and Hep3B cells were cultured in DMEM, supplemented with 10% (v/v) FBS and
604 1% (v/v) Penicillin-Streptomycin (Sigma cat #P0781). The incubator was set to 37 °C at 5%
605 CO₂. HEK293 and Hep3B cells were grown in three 15 cm dishes up to ~80% confluence
606 (~6 x 10⁷ cells). Cells were counted on a Nexcelom Biosciences Auto 2000 Cell Counter.
607 Hep3B cells were passaged 48hrs before harvesting at 80% confluence. After passage they
608 were left for 24hrs to adapt, then left untreated or treated with 10 ng/ml of IFN for 0.5, 2 or
609 24 hrs unless stated otherwise.

610

611 **TT-Seq**

612 TT-Seq was performed as described in the original publication (15). Sequencing libraries
613 were prepared using the NEBNext rRNA Depletion kit for Human Cells, followed by the
614 NEBNext II Ultra Directional RNA Library prep kit, following both kit instructions. Library
615 quality was assessed using the Agilent Bioanalyzer with a DNA-High Sensitivity chip. Pooled

616 libraries were sequenced on the Illumina NextSeq 500 platform using the High-Output
617 Illumina NextSeq 500 kit. For calibrated TT-Seq with spike-ins, instructions for thio-labelled
618 spike-in usage described in (15) were followed or prepared as follows. Briefly, 4sU-labelled
619 spike-in mRNA encoding *Renilla* luciferase was *in vitro* transcribed (IVT) using a HighYield
620 T7 mRNA Synthesis Kit (Jena Bioscience RNT-101). Plasmid DNA was linearized with
621 BspQI (NEB R0712) and purified by phenol-chloroform extraction followed by ethanol
622 precipitation to generate a template suitable for run-off transcription (1 mg template DNA
623 used in 20 μ L total IVT reaction volume). mRNA was transcribed according to the
624 manufacturer's instructions except from using 1.25 μ L UTP (100 mM) and 0.25 μ L 4sUTP
625 (100mM, Jena Bioscience NU-1156L) to label the mRNA with 20% 4sU. The IVT reaction
626 was incubated for 2 hr 20 mins at 37°C before treating with 2 μ L DNase I (NEB M0303) in a
627 total volume of 50 μ L for 15 mins at 37°C. IVT mRNA was purified using a Monarch Spin
628 RNA Cleanup Kit (50 μ g, NEB T2040L) and eluted in 50 μ L H₂O. Concentration of purified
629 mRNA was determined using a NanoDrop 2000 Spectrophotometer (Thermo Scientific).
630 Integrity of IVT mRNA was confirmed by agarose gel electrophoresis and mRNA was stored
631 at -25°C.

632

633 **TT-Seq - Sequencing Analysis**

634 Paired-end sequencing reads were quality-checked with FastQC and then quality trimmed
635 using Trim-Galore for a Q score below 20. Trimmed reads were then aligned to the human
636 genome (hg38) with HISAT2 (82) using the -no-mixed and the -no-discordant flags. Aligned
637 files in the sam format were then filtered by using samtools (75) with the flags -q 40, -f 99, -
638 F3852, -bS. Calibration of samples (if necessary) was achieved by calculating scaling
639 factors of spike-in counts between samples based on counts tables generated by
640 featureCounts (78). Bedgraph and bigwig files were generated from bam files using bedtools
641 (76), and wigToBigWig (UCSC utility tools), respectively.

642

643 **SNU-Seq**

644 SNU-Seq libraries were generated by following the TT-Seq protocol but omitting the
645 sonication step. Following treatments, cells were washed with cold PBS before lysing in
646 QIAzol on ice. Samples were spiked with 4sU-labelled *Saccharomyces cerevisiae* or *Renilla*
647 luciferase RNA (0.01%). 300 μ g RNA was biotinylated. Before library preparation, nascent
648 RNAs were polyadenylated using the NEB *E. coli* poly(A) polymerase (bPAP) following the
649 kit instructions. The reaction with 150 ng thio-labelled RNA was left for 45 minutes at 37 °C
650 before isopropanol precipitation. The pellet was resuspended in 11-22 μ L RNase-free water.
651 Qualities and amounts were checked on the Qubit fluorometer and the Agilent Bioanalyzer
652 (RNA Pico Chip) or the Agilent TapeStation (RNA High Sensitivity ScreenTape).

653

654 Libraries were prepared by using the maximum RNA input amount (5 μ L) following the
655 Quant-Seq Lexogen 3' mRNA kit (Ion Torrent or FWD for Illumina samples) instructions with
656 13 PCR cycles. Library qualities were checked using the Agilent Bioanalyzer (DNA High
657 Sensitivity Chip). Following the manufacturer's instructions, the chips prepared by the Ion
658 Chef were then sequenced on an Ion Proton Sequencing platform or by Lexogen GmbH's
659 (Vienna, Austria) services on an Illumina NextSeq2000 platform. The samples were single-
660 end sequenced with 100 nt read length (SR100). Different read depths were tried, such as
661 ~5 M for a batch and ~50 M for another, as a comparison. Of note, both read depths end up
662 with similar results, with 50 M having more duplicates but also capturing more non-coding
663 transcripts than 5 M, indicating an ideal read depth around 20-30M.

664

665 **SNU-Seq – Sequencing Analysis**

666 After quality control with fastqc, fastq files were trimmed with trimmomatic (71) or bbdsk.sh
667 (BBTools) to remove reads with a quality score below 20 in a sliding window of 5 bp. The
668 poly(A) reads were also removed. Sequences were then aligned with HISAT2 with the same
669 settings as for TT-Seq, or with STAR using “--outSAMtype BAM SortedByCoordinate --
670 outSAMunmapped Within --outSAMattributes All --outFilterMultimapNmax 10 --
671 winAnchorMultimapNmax 50 --alignSJoverhangMin 8 --alignSJDBoverhangMin 1 --
672 outFilterMismatchNmax 10 --outFilterMismatchNoverReadLmax 1 --outMultimapperOrder
673 Random --alignEndsType EndToEnd --alignIntronMin 11 --alignIntronMax 0 --
674 alignMatesGapMax 0”. Sorted bam files were generated using samtools. For alignment,
675 hg38 (GrCh38.p14) was used together with GENCODE (v46) annotations. Genomic A
676 stretches were masked by using the criteria: all regions with ≥ 4 A within 6 nt but no C or T
677 residues downstream or ≥ 12 A within 18 nt downstream of a given position, and all regions
678 with ≥ 15 A within 18 nt upstream of a given position (24), resulted in masking $\sim 2.8\%$ of the
679 hg38 genome, including scaffolds, alternate loci and assembly patches. These masked
680 regions, together with the blacklist regions published by ENCODE (83) were then removed
681 from each bam file via bedtools intersect -v function. Outliers were removed by determining
682 the top and bottom 0.5% of signal. Calibration of samples (if necessary) was achieved by
683 calculating scaling factors of spike-in counts between samples via DESeq2, based on counts
684 tables generated by featureCounts. Bedgraph and bigwig files were generated from bam
685 files using bedtools, and wigToBigWig, respectively. 3' end single nucleotide coverage was
686 achieved by using the bedtools genomecov function's “-3” option. A further normalisation for
687 no bPAP bedgraph and bigwig files were done by using 3' UTR counts obtained using
688 bedtools map function's “-o sum” option.

689

690 **Size fractionated 4sU-Seq**

691 Nascent, thio-labelled RNA was generated as described for SNU-Seq. The nascent RNA
692 was then run on a 3.5 % TBE-Urea gel (8M urea). For this, 250 ng of nascent RNA was
693 mixed with 2x loading dye and boiled for 2 minutes at 80 °C. The gel was kept on ice and
694 pre-run for 10 minutes at 80 V, using ice-cold ultra-pure TBE (1x) as the running buffer.
695 Wells of the gel were washed with TBE before loading samples. Samples were then run at
696 80 V for 90 minutes. The gel was transferred onto a square petri dish and incubated in 1x
697 ultra-pure TBE with SYBR Gold (1/10,000 v/v) for 5 minutes. The gel was rinsed twice in 1x
698 ultra-pure TBE before imaging.

699

700 For purification of the small nascent RNA fraction, the gel was incubated at -80 °C for 10
701 minutes. The small band of 50-100 bp size was cut using a razor blade. RNA was extracted
702 from the gel slice using dialysis: The gel slice, along with 0.8 mL 10 mM Tris-HCl (pH 7),
703 was placed into SnakeSkin dialysis membrane sealed by two Eppendorf caps. The dialysis
704 was run for 35 minutes at 80 V. The RNA was then purified with isopropanol precipitation
705 and eluted in 11 uL RNase-free water. Quality and size distribution of the size-selected RNA
706 was checked on the Agilent Bioanalyzer using an RNA pico chip.

707

708 The size fractionated nascent RNA was treated with 5' Pyrophosphohydrolase (NEB) in
709 ThermoPol® reaction buffer following the manufacturer's instructions. The reaction was
710 stopped with 1 uL 500 mM EDTA and heat-inactivated by incubation at 65°C for 5 minutes.
711 RNA was again purified with isopropanol precipitation and resuspended in 6 uL RNase-free

712 water. Libraries were generated using the NEBNext Small RNA Library kit for Illumina
713 following the kit instructions. Library quality was assessed with the Agilent Bioanalyzer using
714 a DNA High Sensitivity chip. Sequencing was performed on an Illumina NextSeq 500
715 platform. After sequencing, Fastq files were quality-trimmed with Trim-Galore and aligned
716 with bowtie2 (73). Sorted bam files were generated from aligned sam files using samtools
717 with a filtering step added to only retain reads that have a mapping quality score above 30 (-
718 q 30). 3'end single basepair resolution was achieved by using the bedtools -bg -3 option
719 when generating bedgraph files.

720

721 **TSS annotations**

722 To generate TSS annotations from the size fractionated 4sU samples, 5' end coverage was
723 generated using the -bg -5 option (instead of -3) when generating bedgraphs from bam files
724 in bedtools. To generate 5'end reads that only occur in nucleosome-depleted regions,
725 ATAC-Seq data in HEK293 cells (45) (E-MTAB-6195) were used. The ATAC-Seq fastq files
726 were trimmed with Trim-Galore, aligned with bowtie2, and converted to bam and bed files
727 using samtools and bedtools, respectively. Subsequently, MACS2 was used to call peaks
728 (no model assumed). The intersect option in bedtools was then used to retain only those
729 5'end from sf4sU-Seq signals that are located within ATAC-Seq peaks. The resulting
730 bedgraph files were then used as an input to identify TSS cluster centres using Paraclu (51)
731 which identifies clusters in a sliding window, and a cluster value threshold of 30 was applied.
732 Cluster-centres were calculated using the mean position of the cluster, and TSS candidates
733 were verified in Matlab as follows: Only those TSS candidates were assigned as true active
734 TSSs where the summed TT-seq signal (using HEK WT 10 minute-labelled TT-Seq) in the
735 1000 bp downstream of the candidate TSS was at least 5 times greater than in the 1000 bp
736 upstream of the candidate TSS. TSScall, a python code (50), was then used to identify
737 annotated and un-annotated (novel) TSSs using the comprehensive Gencode (v29)
738 annotation file which yielded 2955 previously annotated TSSs and 1428 novel transcription
739 start sites. The read threshold for this was set to 5, which corresponded to an FDR of 0.001.
740

740

741 **Annotation Preparation for Metagene Analysis and Mathematical Modelling**

742 GENCODE comprehensive gene annotations ($n = 70,611$) were filtered to keep genes within
743 chr1 to chr22 to exclude the biased/unmapped regions in the reference genome ($n =$
744 59,950). Then, only the genes with a minimum 3.5 kb distance to each other, regardless of
745 the strand, were kept ($n = 12,224$). From this subset, only the protein-coding genes ≥ 1 kb
746 were retained ($n = 2,807$). Finally, the UTRs within ± 100 bp of a gene end with a transcript
747 support level 1 to 5 were detected, and they are merged if there are multiple PAS/UTRs for a
748 gene. Only the genes with a 3' UTR annotation were kept ($n = 2,394$). This is the GENCODE
749 annotation subset that is used for metagene analysis and mathematical modelling.
750

750

751 **Mathematical Modelling and Determination of Transcription Constants**

752 Synthesis and decay rates were determined based on a previously published modelling
753 approach (15,32). HEK293 total or 3' end RNA-Seq counts from (31) or data from this study
754 were used. The pausing index was calculated as described (84). We used the ratio of
755 normalised TSS (-50 nt to +200 nt) counts to gene body (TSS + 200 nt to the 3' UTR start
756 site) counts.

757

758 **Metagene and Data Analysis**

759 deepTools was used for metagene calculation and visualisations. “scale-regions” mode was
760 used to compute metagene matrices with 5 kb gene body length, 2 kb flanking regions, 20-nt
761 bin size by averaging and skipping missing or zero-valued data. Each strand was calculated
762 separately with strand-specific annotations, then merged with “computeMatrixOperations
763 rbind” before visualisation. “computeMatrixOperations subset” was used to subset the matrix
764 for the libraries of interest.

765

766 p-values were determined using the non-parametric Wilcoxon rank sum test, and the
767 Bonferroni correction for multiple testing was applied when required. For correlations,
768 Pearson (r) was used for the correlation between repeats based on the counts, while Kendall
769 (t) was used for the correlation between synthesis rates and counts, and Spearman (ρ) was
770 used in all other cases. Principal Component Analysis (PCA) and data visualisation were
771 performed via deepTools (multiBigwigSummary followed by plotPCA) or in R using the
772 PCAtools and ggplot2 with ggpubr packages, respectively.

773

774 To compare the splicing levels in SNU-Seq and total RNA libraries, SPLICE-q (34) was used
775 to calculate splicing efficiency (SE) from the bam files. The SE score refers to the number of
776 splicing events based on the ratio of spliced to unspliced reads found around the splice
777 junctions. The SE score (between 0 and 1) indicates a higher number of splicing events
778 closer to 1. The mean SE was computed in each library.

779

780 To investigate the effect of the background signal (no 4sU) and the host polyadenylation
781 signal during the pulse labelling window (no bPAP), a signal subtraction was performed for
782 each nucleotide in the genome. For this exhaustive subtraction, deepTools bigwigCompare
783 was utilised with “--operation subtract --binSize 1” parameters.

784

785 **Nuclear and Cytoplasmic RNA Extraction**

786 Extraction of RNA from nuclear and cytoplasmic subcellular fractions was carried out with
787 HEK293 cells for 3 biological replicates (65). QuantSeq 3' mRNA-Seq Library Prep Kit for
788 Ion Torrent (Lexogen) was applied for nuclear (500 ng input) and cytoplasmic RNA (1,700
789 ng input) using 13 PCR cycles. Reads were aligned to the genome build using the Ion
790 Torrent Server TMAP aligner with default alignment settings (-tmap mapall stage1 map4).
791 Human poly(A) site (PAS) annotations were obtained from PolyA_DB3 (85). Each PAS was
792 extended 20 nt 3' and 200 nt 5' from the site of cleavage, and those that overlapped on the
793 same strand after extension were combined into a single PAS annotation. Mapped reads
794 were narrowed to their 3' most nucleotide and those which overlapped with the extended
795 PAS annotations were counted. PASs associated with non-coding RNAs and genes not in
796 the RefSeq (86) gene database were excluded. Genes with only one PAS were also
797 excluded.

798

799 **Chromatin analysis in Hep3B cells**

800 ATAC-Seq was performed as previously described (87). 5×10^6 Hep3B cells were washed in
801 cold PBS and resuspended in lysis buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM
802 MgCl₂, 0.1% IGEPAL). The nuclei were pelleted and resuspended in 1X TD with 2.5 l TDE1
803 (Nextera XT DNA library prep kit, Illumina). These were incubated for 30 min at 37 °C. The
804 fragmented DNA was purified using the MinElute PCR purification kit (Qiagen, 28004). Each
805 sample was amplified using the Nextera XT DNA library prep kit and Nextera XT index kit

806 (Illumina) with the following thermocycler programme: hold at 72 °C (5 min), 98 °C (30 s), 9
807 cycles of 98 °C (10 s), 63 °C (30 s), 72 °C (30 s) with a final 72 °C extension for 1 min. The
808 libraries were purified by adding 1.8 x volume of RT AxyPrep beads (AxyPrep Mag PCR
809 clean up kit) to each reaction. They were then size selected with a ratio of 0.6:1 beads, to
810 remove fragments larger than 600 bp. Libraries were run on the Agilent Bioanalyzer with a
811 DNA-High Sensitivity chip to assess quality. Paired-end sequencing was performed on a
812 NextSeq 500 with the 75 cycles NextSeq 500/550 High Output v2 kit (Illumina). FastQCs
813 were performed on each dataset to ensure good quality of the run. The adapter sequences
814 were trimmed and paired using Trimmomatic, removing reads with a quality score below 20
815 in a 5 bp sliding window and reads below a minimum length of 30 bp (71). Trimmed reads
816 were aligned to the hg38 genome if un-spiked, or to a combined hg38-dm6 genome if
817 spiked, using Bowtie2 (73). samtools were used to remove duplicates and filter out reads
818 with a MAPQ quality score < 30 as well as mitochondrial reads (75). MACS2 was used to
819 call peaks with a minimum FDR (q-value) of 0.01 (77). Following this, ENCODE blacklisted
820 regions were removed (83). For visualisation of tracts, reads were normalised based on
821 sequencing depth. Filtered BAM files were converted to bedgraphs using bedtools (76).
822

823 The ChIPmentation protocol used is largely based on the protocol published by Schmidl et
824 al. (88). ~10⁶ cells were washed and collected in cold PBS. The cell pellet was resuspended
825 in room temperature PBS and fixed for 5 min with 1% formaldehyde before quenching with
826 0.125 M Glycine. 5000 fixed Drosophila sg4 cells (0.05%) were added as a spike-in control.
827 The cell pellet was obtained, washed in cold PBS and incubated on ice in cold swelling
828 buffer (10 mM Tris-HCl pH 8, 10 mM NaCl, 0.2% NP-40, 1 mM AEBSF and 1X complete
829 mini EDTA-free proteasome inhibitor, Roche) for 10 min. The subsequent nuclear pellet was
830 resuspended in cold lysis buffer (10 mM Tris-HCl pH 8, 1% NP-40, 0.5% Na-deoxycholate,
831 0.1% SDS, 1 mM AEBSF and 1X complete mini EDTA-free proteasome inhibitor, Roche)
832 and sonicated for 90 min, 30 s on and 30 s off, at 4 °C (Bioruptor, Diagenode). One tenth of
833 the sample was taken as input control. The remaining sample was incubated overnight,
834 rotating at 4 °C with the antibody. Scaling factors were calculated based on spike-in counts
835 between samples, or based on sequencing depth for CTCF ChIP, and used when converting
836 the filtered BAM files to bedgraphs using bedtools (76). Bedgraphs were further converted to
837 BigWig files using bedGraphToBigWig (UCSC utility tools). Differential analysis between two
838 datasets was performed on unnormalised data using a custom R script employing the
839 DESeq2 package (79). To identify differential peaks rather than differential gene expression,
840 peak files for each repeat/sample were merged into a single file in which reads were counted
841 using featureCounts and differentially assessed (78). A cut-off threshold of FDR < 0.05 was
842 used to define statistical significance.
843

844 **Data Access**

845 Data from the Hep3B cells is available at GSE172053
846 <https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE172053>.
847 Data on HEK293 cells is available at GSE165251
848 <https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE165251>

849 **Competing interest statement**

850 JM acts as an advisor to and/or holds stock in Oxford Biodynamics plc and Sibelius Natural
851 Products Ltd. Neither company has any interest in the data presented in this manuscript.
852

853

854 **Acknowledgements**

855 This work was supported by: The Wellcome Trust (WT089156MA to J.M.); the BBSRC
856 (BB/P00296X/1 to J.M., BB/Y005848/1, BB/N001184/1 to A.F.); the Leverhulme Trust (RPG-
857 2016-405 to J.M.); a Wellcome Trust Strategic Award (091911); BBSRC and EPSRC
858 studentships (BB/M011224/1 to P.L. and EP/F500394/1 to T.B.); a Wellcome Trust
859 studentship (209897/Z/17/Z to A.L.) and a Royal Society University Research Fellowship
860 (UF120327 to A.A.). Umut Gerlevik received a PhD fellowship from the European Union's
861 Horizon 2020 Research and Innovation programme under the Marie Skłodowska-Curie
862 Actions Innovative Training Network (MSCA ITN) Cell2Cell grant agreement number
863 860675. We thank David Aitken for preliminary SNU-Seq data.

864

865 **Author Contributions**

866 SNU-Seq was developed and performed by PL, UG, SX and A.W. SNU-Seq in Hep3B cells
867 together with chromatin analysis and bioinformatics was carried out by AL and UG.
868 Bioinformatics analysis was done by PL, UG, AL, SM and CG. Mathematical modelling and
869 determination of transcription rate constants was carried out by UG, ASK and AA. HF
870 conducted the polyadenylation analysis supported by AF. TB, UG and PL performed the k-
871 means clustering and downstream analysis. Data was visualized by PL, AL and UG. JM, PL,
872 AL and UG conceived the experiments. The manuscript was written by JM with additional
873 input from UG, PL, AA, HF, AL and other authors.

874

875 **Figure Legends**

876

877 **Figure 1. Single-nucleotide resolution 4sU-Seq (SNU-Seq).** A Schematic flow diagram for
878 SNU-Seq. **B** Metagene profiles and heat maps for 3,883 GENCODE protein coding genes
879 after blacklisting with above threshold signal between the TSS and ES with the transcribed
880 region scaled to 5 kb (green double headed arrow) and the flanking 2 kb up and downstream
881 shown as \log_2 average normalised reads for 4sU labelled or unlabelled samples after
882 biotinylation and selection treated with or without bPAP. Samples were processed as
883 indicated. **C** SNU-Seq detects nascent polyadenylation sites. Snapshots of IGV outputs at
884 the loci indicated. The SNU-Seq output with (4sU + bPAP) or without (4sU no bPAP) bPAP
885 treatment is compared to the total RNA profile (no bPAP), the 3' RNA-Seq output using 3'
886 reads (28) and the TT-Seq profile (HEK293, this study). Scale is indicated. **D** Mapping
887 polyadenylation sites (PAS) at *HNRNPU* and *SCO1* in HEK293, with the RNA isolated as
888 three repeats from the nucleus (red) or cytoplasm (blue) (63), and SNU-Seq output (4sU +
889 bPAP, black). Annotated PAS (28) (blue boxes) on the negative strand are indicated with
890 arrows. Scales are indicated for comparison. See also **Figures S1** and **S2**.

891

892 **Supplemental Figure S1. Establishment of TT-Seq and SNU-Seq in HEK293 and Hep3B**
893 **cells.** A Schematic of data processing steps. **B** Scatter plot of log-transformed read counts
894 and alignment percentages for two repeats of 10, 15 and 20 min pulse-labelled TT-Seq
895 experiment in HEK293 cells. **C** IGV Genome Browser screenshot of TT-Seq and SNU-Seq
896 output at the *KAZALD1* locus from HEK293 cells and TT-Seq in HeLa cells (8 min pulse-
897 labelled). **D** IGV Genome Browser screenshot of SNU-Seq and TT-Seq output in HEK293
898 cells (this study) on a region of chromosome 2. **E** Scatter plot and alignment score of SNU-
899 Seq repeats read counts (log scale) in HEK293 cells. The Pearson correlation coefficient is
900 shown ($r = 0.921$). **F** IGV screenshot displaying a comparison of SNU-Seq in HEK293 cells
901 and Hep3B cells (this study) on a region of chromosome 1. **G** Principal component analysis

902 of SNU-Seq in HEK293 and Hep3B cells with two repeats each. The first (x-axis) and second
903 (y-axis) principal components are plotted against each other in a biplot. (Relates to **Figure**
904 **1**).
905

906 **Supplemental Figure S2. Single-nucleotide 4sU-Seq (SNU-Seq) reports nascent**
907 **transcription at high resolution. A,B** Metagene profiles and heat maps for 3,833
908 GENCODE protein coding genes after blacklisting with above threshold signal (input n =
909 8,743 genes) between the TSS and ES with the transcribed region scaled to 5 kb (green
910 double headed arrow) and the flanking 2 kb up and downstream shown as \log_2 average
911 normalised reads for total RNA (**A**), treated with or without bPAP and before or after
912 depletion of rRNA processed as indicated. **B** Unlabelled or 4sU labelled RNA treated with or
913 without bPAP. Samples were processed as indicated. **C** Principal component analysis of
914 SNU-Seq in HEK293 with seven repeats for 4sU labelled samples or unlabelled samples
915 treated with or without bPAP as indicated. The first (x-axis) and second (y-axis) principal
916 components are plotted against each other in a biplot (Relates to **Figure 1**).
917

918 **Figure 2. Comparison of SNU-Seq and other methods for assessing nascent**
919 **transcription. A** Metagenes and heat maps of SNU-Seq and TT-Seq plotted on the same
920 scale, illustrating the promoter proximal peak and PAS in SNU-Seq and compared to TT-
921 Seq, PRO-Seq and mNET-Seq (sources indicated) also in HEK293 cells. **B** IGV screenshot
922 around *CERS6* displaying a comparison of SNU-Seq (10 min 4sU pulse in HEK293, this
923 study n = 3), TT-Seq (10 min 4sU pulse in HEK293, this study n = 2), TT-Seq, PRO-Seq and
924 mNET-Seq also in HEK293 cells from sources indicated. **C** Correlation between SNU-Seq
925 (this study) and published RNA-Seq in HEK293 cells (31). The Spearman correlation
926 coefficient (rho) is indicated. **D** Ranked correlation plot of the synthesis-to-decay ratios
927 between SNU-Seq (this study) and the original TT-Seq dataset in K562 cells (15). The
928 Spearman correlation coefficient (rho) is indicated. (**See also Figure S3**).
929

930 **Figure S3. Comparison of SNU-Seq and other methods for assessing nascent**
931 **transcription. A,B.** IGV screenshot at *DDIT4* (**A**) and the region around *ANAPC16* and
932 *DNAJB12* including *DDIT4* (**B**) displaying a comparison of SNU-Seq (10 min 4sU pulse in
933 HEK293, this study n = 3), TT-Seq (10 min 4sU pulse in HEK293, this study n = 2), TT-Seq,
934 PRO-Seq and mNET-Seq also in HEK293 cells from sources indicated. ATAC-Seq and
935 H3K27ac signals are also indicated in **B** together with FANTOM5 annotations. Putative
936 enhancers are marked with red arrows and **E** in **B**. Scales are indicated and for TT-Seq,
937 PRO-Seq and mNET-Seq are adjusted in **B** to improve the detection of lower abundance
938 eRNA transcripts compared to SNU-Seq. (**Relates to Figure 2**).
939

940 **Figure 3. Transcription parameters derived from SNU-Seq data. A** Correlation between
941 synthesis rate and spike-in normalised counts, with Kendall's tau correlation coefficient ($\tau =$
942 0.99) and p-value ($p < 0.0001$). **B-D** Distributions of synthesis rate, decay rate, and spike-in
943 normalised counts grouped by synthesis rate clusters ($k = 3$). The 1,027 active genes are
944 distributed across three transcriptional activity clusters: Slow Synthesis ($n = 408$), Middle
945 Synthesis ($n = 403$), and Fast Synthesis ($n = 216$). The significance of differences between
946 clusters was assessed using the Wilcoxon test, with $****$ denoting $p < 0.0001$. **E-F** Splicing
947 efficiency and mean splicing efficiency derived for total RNA preparation (total RNA; $n = 7$)
948 compared to 4sU-labelled and selected nascent RNA (nascent RNA $n = 6$) in HEK293 cells.

949 **** p<0.0001, ** p < 0.01. **G** Pausing index comparing 4sU labelled RNA treated with bPAP
950 or without bPAP.

951

952 **Figure 4. Size fractionated 4sU-Seq (sf4sU-Seq) captures the promoter-proximal**
953 **pause.** **A** Workflow for 4sU-Seq with size-fractionation including thio-labelling, biotinylation,
954 and streptavidin purification, followed by a gel-based size fractionated step. After purifying
955 RNAs of a size range between 50 and 100 nucleotides and decapping, adapters were added
956 immediately for library preparation, retaining single-nucleotide resolution at both the 5' and
957 the 3' ends. **B.** Normalised metagene of size-fractionated 4sU-Seq reads around human
958 TSSs (n = 9,336). **C** 2-dimensional density plot showing the distribution of the maximum read
959 number of each gene against its location relative to the ENCODE transcription start site.
960 Density refers to the number of occurrences per pixel (n = 19,874). **D** IGV screenshot
961 displaying TT-Seq (HEK293, this study), SNU-Seq (HEK293, this study), and size-
962 fractionated 4sU-Seq (HEK293, this study) profile around the *CHEK2* locus on chromosome
963 20. Scales are chosen to highlight read spikes. **E** Zoomed in view at the 5' region of *CHEK2*
964 with additional SNU-Seq controls demonstrating no polyadenylation at the promoter proximal
965 signal, as indicated, and output from sf4sU-Seq at the 5' and 3' ends of the isolated
966 fragments. Scales are chosen to highlight clusters. **F** Generation of k-means clusters (k = 1
967 to k = 6) using human (HeLa) mNET-Seq (2). The same cluster indices for each gene were
968 applied to sort size-fractionated 4sU-Seq data (HEK293 cells). Metagenes are normalised to
969 make every gene contribute equally. **G-H** Statistical analysis of SNU-Seq, NELF, integrator,
970 and mediator occupancy within gene clusters. Boxplot diagrams for NELF, INTS3, MED26,
971 and SNU-Seq levels at the 5' end of genes for each cluster (300 bp window for ChIP-Seq
972 and 1,000 bp window for SNU-Seq). ChIP-Seq data were normalised to make each gene
973 contribute equally. For SNU-Seq, the raw counts were used. All data were log-transformed.
974 Triangular heatmaps of between-cluster significance for NELF, INTS3, MED26, and SNU-
975 Seq levels. p-values were calculated using the Wilcoxon-rank sum test and corrected using
976 the Bonferroni method. (See also **Figures S4 and S5**).

977 **Supplemental Figure 4. Size fractionated 4sU-Seq captures the promoter-proximal**

978 **pause. A-B** 3.5% TBE-urea gels run with total (**A**) and nascent 4sU labelled (**B**) HEK293 RNA.

979 **C-D** RNA pico-chip Bioanalyzer traces of nascent HEK293 RNA before (**C**) and after (**D**) gel-

980 based size selection. **E** sf4sU-Seq library preparation. DNA gel of sf4sU-Seq library products

981 after adaptor ligation and PCR amplification. The top bands represent the desired library

982 product, whereas the second-highest bands are a result of adaptor dimerisation. **F** sf4sU-

983 Seq sequencing depth and alignment percentage. **G** Snapshot of reads around *ZNRF3*

984 illustrating early termination and polyadenylation of promoter proximal pre-mRNA and

985 divergent PDAT transcripts and sf4sU-Seq outputs. Scales are shown for comparison. **H**

986 Clusters 1 to 6 based on shape of HeLa cell mNET-Seq data in **Fig. 4F**. The same cluster

987 indices for each gene were applied to NELF, INTS3, MED26 ChIP-Seq data (HeLa cells), to

988 TT-Seq (HEK293), to ATAC-Seq (HEK293 cells) (45) and CoPRO (K562 cells) (44) into the

989 respective clusters. Metagenes are normalised to make every gene contribute equally. **I**

990 Heatmaps and metagenes showing four clusters of normalised HeLa NET-Seq reads before

991 and after treatment with the CDK9-inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole

992 (DRB), resulting in accumulation of RNA polymerase at the 5' end of genes (89) for the time

993 indicated to illustrate the response of non-pausy (cluster 1) and pausy (clusters 2-4) genes.

994 Relates to **Figure 4**.

995

996 **Supplemental Figure 5: sf4sU-Seq defines the promoter proximal pause/site of early**

997 **termination. A** Classification approach of NELF, integrator, and mediator levels into NET-

998 Seq-based clusters. ChIP-Seq data preparation for a machine learning approach. 50-bp long

999 summed windows are generated with one window upstream (W1) and 6 windows

1000 downstream of the TSS of each gene (W2 to W7). **B** Logistic regression approach depicting

1001 the data partitioning into training and testing sets and the sigmoid hypothesis function for

1002 classification. The gradient descent and cost function equations are presented in the lower

1003 blue box. m denotes the total number of training examples (total number of genes, i.e.

1004 1845). J denotes the cost function, i denotes the training example (i.e. the gene), and j

1005 denotes the feature (i.e. the window). The vector containing the 7 parameters is termed θ . $x^{(i)}$

1006 is a vector containing the summed ChIP-Seq level for the i -th gene in the 7 windows. $y^{(i)}$

1007 denotes the value to be predicted, i.e. the cluster. h is the hypothesis function. **C** P-values

1008 associated with the probability of parameters being significantly different from zero are

1009 displayed for NELF (purple), INTS3 (pink), and MED26 (gold), as determined by the Wald

1010 test, which tests the hypothesis whether the variable assigned to the window can be removed

1011 without affecting the prediction model. P-values in the left half of the table are determined by

1012 ANOVA, which sequentially compares the model containing only the previous variables to

1013 the model containing the respective variable. Z-values indicate the magnitude of how this

1014 parameter influences cluster classification towards clusters 2-4. A negative number would

1015 indicate that higher levels in this window would make it more likely to classify the gene as

1016 belonging to cluster 1. The window to which the maximum z-values belong is indicated with a

1017 grey star. **D-F** Sensitivity vs FPR curves and the area under the curve for NELF (**D**), INTS3

1018 (**E**) and MED26 (**F**). **G** Calculation of the relative level of the pause signal. **H** Fold-

1019 enrichment and p-values of gene ontologies as determined by GORILLA are shown for genes

1020 that exhibit high levels of calibrated pausing (top decile) or no pausing (bottom decile). log₂-

1021 transformed values for the fold-enrichment and negative log₁₀-transformed values for p-

1022 values are shown. The top and bottom deciles each contained 934 genes (total number of

1023 genes was 9336). Genes with zero TT-Seq or zero SNU-Seq reads were ignored. Relates to
1024 **Figure 4.**

1025

1026 **Figure 5. sf4sU-Seq-based TSS characterisation. A, B, E, H.** A simplified overview of the
1027 steps involved in the TSS annotation workflow linked to the data output. 5' end signals of size-
1028 fractionated 4sU-Seq were filtered through ATAC-Seq peaks and, after clustering into TSS-
1029 clusters, filtered based on a minimum 5-fold increase in the TT-Seq signal immediately
1030 downstream of the TSS candidate. The verified TSSs were then classified as either
1031 previously annotated (obsTSSs) or novel / unannotated TSSs (uTSSs). **C** Clustering of
1032 sf4sU-based TSS candidates showing a histogram of the cluster lengths. **D** A metagene of
1033 the full-length clusters around ENCODE transcription start sites. The signal is normalised so
1034 that each locus contributes equally to the metagene by making the sum of reads for each
1035 cluster equal to 1. **F** Manhattan plot of sf4sU-Seq-based TSS annotations. The plot shows
1036 the location of each verified TSS annotation on the respective strand (+ or -) and
1037 chromosome. The y-axis corresponds to the number of reads that were associated with the
1038 original 5' end signal. The bars show the density of TSSs within each chromosome on each
1039 strand. **G** A heatmap of TT-Seq around sf4sU-Seq-based TSS annotations (signal range 0 -
1040 500 reads), ordered by number of reads from 1 bp downstream of the TSS in descending
1041 order and displayed in a 6 kb window around the TSS. **I** Metagene of already annotated
1042 TSSs (obsTSSs, n = 2,955) around protein-coding or lincRNA ENCODE TSSs. **J** Categories
1043 of sf4sU-Seq-based TSSs that have not been annotated previously are classified as either
1044 convergent or divergent if they are in the vicinity of already annotated TSSs and on the
1045 opposite strand. The size of the data points corresponds to the log-transformed read count.
1046 **K** Metagene of novel/unannotated TSSs (uTSSs, n = 1,428) around protein-coding or
1047 lincRNA ENCODE TSSs.

1048

Figure 6. The chromatin environment and nascent transcription in Hep3B cells. A,B
1049 Snapshots in IGV showing chromatin features and nascent transcription around two loci
1050 selected as containing previously characterised enhancers (*SLC2A2* **A**; *STAT1* **B**) and
1051 known to be expressed in Hep3B cells. Known enhancers are indicated by red arrows. **C-E**
1052 Normalised Capture-C data showing mean reads for the *STAT1* promoter (n = 2). Reads
1053 were normalised based on the number of cis reads per 100,000 reads. The data is
1054 smoothed based on mean reads within a 2 kb window. ATAC-Seq data is shown below the
1055 Capture-C data (**C**). **D** Significant differential Capture-C interactions between the *STAT1*
1056 promoter and enhancer. Reads are counted per NlaIII-digested fragment. The top tracks
1057 show cis-normalised mean data. Normalised ATAC and CTCF tracks are shown. The
1058 position of the *STAT1* probe is highlighted in grey, and the putative *STAT1* enhancer
1059 element is highlighted in orange. Bar chart showing the percentage of cis reads over the
1060 total reads for each Capture-C sample and repeat. Similar ratios indicate similar library
1061 qualities. **F-J** Metagenes and heatmaps showing H3K27ac distribution (**F, G**) or SNU-Seq
1062 signals (**H, I**) around all ATAC-Seq peaks (**F, I**) or at FANTOM5 annotations (**G, H**) centred
1063 around the peaks and extending 4 kb up or downstream. The proportion of total features
1064 enriched with H3K27ac or SNU-Seq reads over zero is shown below. **J** A direct comparison
1065 of the SNU-Seq reads at all ATAC-Seq peaks and FANTOM5 enhancers plotted on the
1066 same scale. Data in **J** were sorted by the ratio of H3K27ac/H3K4me3. **See also Figure S6.**

1067

Supplementary Figure 6. The chromatin environment and nascent transcription in
1068 **Hep3B cells. A-C** Snapshots in IGV showing chromatin features and nascent transcription

1069 around three loci selected to be expressed in hepatocytes with known (*ALCAM*; **A**) or
1070 putative (*HNF4A*; **B**; *DDIT4*; **C**) enhancers indicated by red arrows. **D-H** Metagenes and
1071 heatmaps showing H3K4me3 distribution around all ATAC-Seq peaks (**D**) or FANTOM5
1072 annotations (**E**), or SNU-Seq signals (**F-H**) around intragenic ATAC-Seq peaks, at genes on
1073 the forward (FWD) or reverse (REV) strands centred around the ATAC-Seq peaks and
1074 extending 4 kb up or downstream. The proportion of total features enriched with H3K4me3
1075 or SNU-Seq reads over zero is shown below. **Relates to Figure 6.**
1076

1077 **Figure 7 Primed sites of chromatin in Hep3B cells showing IFNy inducible nascent**
1078 **transcription compared to regions with constitutive transcription. A** Number of regions
1079 of open chromatin (ATAC-Seq) and associated histone marks and nascent transcripts in
1080 Hep3B cells. **B,C** Snapshots in IGV showing chromatin features and nascent transcription
1081 around two loci selected as lacking nascent transcription until induced with IFN γ (blue
1082 arrows) or with constitutive transcription (orange arrows) at genomic regions indicated. **D**
1083 Proportion of different genomic regions with IFN γ inducible transcription. **See also Figure**
1084 **S7.**
1085

1086 **Figure S7 Primed sites of chromatin in Hep3B cells showing IFNy inducible nascent**
1087 **transcription compared to regions with constitutive transcription. A-C** Classifying
1088 significant levels of H3K27ac, H3K4me3 and SNU-Seq. **D,E** Snapshots in IGV showing
1089 chromatin features and nascent transcription around two loci selected as lacking nascent
1090 transcription even when induced with IFN γ (cyan arrows) or at FANTOM5 annotated
1091 enhancers with (orange arrows) or without (blue arrows) nascent transcription until induction.
1092 **Relates to Figure S7.**

1093 **Table 1 Subsets of ATAC-Seq peaks, associated histone modifications and the SNU-**
1094 **Seq output in Hep3B cells. Relates to Figure 7.**

Subset	Signal	Total number of regions	Number of regions with signal	Percent of regions with signal
ATAC_peaks_filtered	K27ac_concat	45289	41850	92.41
ATAC_peaks_filtered	K4me3_concat	45289	41867	92.44
ATAC_peaks_filtered	SNUseq_concat	45289	18152	40.08
ATAC_peaks_filtered_fwd	K27ac_concat	17367	16208	93.33
ATAC_peaks_filtered_fwd	K4me3_concat	17367	16154	93.02
ATAC_peaks_filtered_fwd	SNUseq_concat	17367	8430	48.54
ATAC_peaks_filtered_rev	K27ac_concat	16570	15474	93.39
ATAC_peaks_filtered_rev	K4me3_concat	16570	15371	92.76
ATAC_peaks_filtered_rev	SNUseq_concat	16570	8279	49.96
ATAC_peaks_filtered_unstranded	K27ac_concat	13434	12166	90.56
ATAC_peaks_filtered_unstranded	K4me3_concat	13434	12369	92.07
ATAC_peaks_filtered_unstranded	SNUseq_concat	13434	2927	21.79
FANTOM5_filtered	K27ac_concat	6911	5690	82.33
FANTOM5_filtered	K4me3_concat	6911	5864	84.85

1095 **Supplemental Table 1.**

1096 **ERCC-Spike-in Mix Preparation for TT-seq**

I. Primer Design for PCR-amplifying ERCC-Spike-ins 2, 43, 92, 136, 145, 170 Spike in #	Forward Primer (with T7 promoter) 5' → 3'	Reverse Primer 3' → 5'	Reverse Primer 5' → 3' reverse compl.
ERCC-00043 (Mix 2)	TAATACGACTCACTATAAGGG AATACCTTACAAATGCTTA AC	ACAAGATGGTTAAAAAA AAAAAAAAAAAAAAA	TTTTTTTTTTTTTTTTTT TTTTTAACCCATCTTGT
ERCC-00170 (Mix 1)	TAATACGACTCACTATAAGGGT ATTGGTGGAGGGGCACAAG	ATGTCTTAGGTTAAAAAA AAAAAAAAAAAAAAA	TTTTTTTTTTTTTTTTTT TTTTTAACCTAAGACAT
ERCC-00136 (Mix 1)	TAATACGACTCACTATAAGGGT TTCGACGTTTGAAGGAG	GATTTCCCGGGTACAAA AAAAAAAAAAAAAAA A	TTTTTTTTTTTTTTTTTT TTTGTACCCGGGAAAAT C
ERCC-00145 (Mix 2)	TAATACGACTCACTATAAGGG ACTGTCCTTCATCCATAAG	CGGCGTGCATTAAAAAA AAAAAAAAAAAAAAA AAA	TTTTTTTTTTTTTTTTTT TTTTTTTAAATCGCACGC CG
ERCC-00092 (Mix 1)	TAATACGACTCACTATAAGGG AGATGTATATATGATGTC	CTTAAGCCGTGGAAAAAA AAAAAAAAAAAAAAA A	TTTTTTTTTTTTTTTTTT TTTTTCCACGGCTTAAA G
ERCC-00002 (Mix 2)	TAATACGACTCACTATAAGGGT CCAGATTACTCCATTTC	GCGTTTACCCATTAAAAAA AAAAAAAAAAAAAAA A	TTTTTTTTTTTTTTTTTT TTTTTAAGGGTAAAACG C

1097

1098 The red part of the sequence corresponds to the T7 promoter sequence. The green parts
1099 correspond to the 5' or 3' end of the Spike-in sequence. The blue parts correspond to the
1100 poly(A) tail at the 3' end of the RNA sequence.

1101

1102 References

1103

1. Fischl, H., Howe, F.S., Furger, A. and Mellor, J. (2017) Paf1 Has Distinct Roles in
1105 Transcription Elongation and Differential Transcript Fate. *Mol Cell*, **65**, 685-698
1106 e688.
2. Nojima, T., Gomes, T., Gross, A.R., Kimura, H., Dye, M.J., Dhir, S., Carmo-
1108 Fonseca, M. and Proudfoot, N.J. (2015) Mammalian NET-Seq Reveals Genome-wide
1109 Nascent Transcription Coupled to RNA Processing. *Cell*, **161**, 526-540.
3. Churchman, L.S. and Weissman, J.S. (2011) Nascent transcript sequencing visualizes
1111 transcription at nucleotide resolution. *Nature*, **469**, 368-373.
4. Schlackow, M., Nojima, T., Gomes, T., Dhir, A., Carmo-Fonseca, M. and Proudfoot,
1113 N.J. (2017) Distinctive Patterns of Transcription and RNA Processing for Human
1114 lincRNAs. *Mol Cell*, **65**, 25-38.
5. Xi, S., Nguyen, T., Murray, S., Lorenz, P. and Mellor, J. (2024) Size fractionated
1116 NET-Seq reveals a conserved architecture of transcription units around yeast genes.
1117 *Yeast*.
6. Mayer, A., di Iulio, J., Maleri, S., Eser, U., Vierstra, J., Reynolds, A., Sandstrom, R.,
1119 Stamatoyannopoulos, J.A. and Churchman, L.S. (2015) Native elongating transcript

1120 sequencing reveals human transcriptional activity at nucleotide resolution. *Cell*, **161**,
1121 541-554.

1122 7. Weber, C.M., Ramachandran, S. and Henikoff, S. (2014) Nucleosomes are context-
1123 specific, H2A. Z-modulated barriers to RNA polymerase. *Molecular cell*, **53**, 819-
1124 830.

1125 8. Core, L.J. and Lis, J.T. (2008) Transcription regulation through promoter-proximal
1126 pausing of RNA polymerase II. *Science*, **319**, 1791-1792.

1127 9. Kwak, H., Fuda, N.J., Core, L.J. and Lis, J.T. (2013) Precise maps of RNA
1128 polymerase reveal how promoters direct initiation and pausing. *Science*, **339**, 950-
1129 953.

1130 10. Barbieri, E., Hill, C., Quesnel-Vallieres, M., Zucco, A.J., Barash, Y. and Gardini, A.
1131 (2020) Rapid and Scalable Profiling of Nascent RNA with fastGRO. *Cell Rep*, **33**,
1132 108373.

1133 11. Chu, T., Rice, E.J., Booth, G.T., Salamanca, H.H., Wang, Z., Core, L.J., Longo, S.L.,
1134 Corona, R.J., Chin, L.S., Lis, J.T. *et al.* (2018) Chromatin run-on and sequencing
1135 maps the transcriptional regulatory landscape of glioblastoma multiforme. *Nat Genet*,
1136 **50**, 1553-1564.

1137 12. Mahat, D.B., Tippens, N.D., Martin-Rufino, J.D., Waterton, S.K., Fu, J., Blatt, S.E.
1138 and Sharp, P.A. (2024) Single-cell nascent RNA sequencing unveils coordinated
1139 global transcription. *Nature*, **631**, 216-223.

1140 13. Fuchs, G., Voichek, Y., Benjamin, S., Gilad, S., Amit, I. and Oren, M. (2014)
1141 4sUDRB-seq: measuring genomewide transcriptional elongation rates and initiation
1142 frequencies within cells. *Genome Biol*, **15**, R69.

1143 14. Sun, M., Schwalb, B., Schulz, D., Pirkl, N., Etzold, S., Lariviere, L., Maier, K.C.,
1144 Seizl, M., Tresch, A. and Cramer, P. (2012) Comparative dynamic transcriptome
1145 analysis (cDTA) reveals mutual feedback between mRNA synthesis and degradation.
Genome Res, **22**, 1350-1359.

1146 15. Schwalb, B., Michel, M., Zacher, B., Fröhlauf, K., Demel, C., Tresch, A., Gagneur, J.
1147 and Cramer, P. (2016) TT-seq maps the human transient transcriptome. *Science*, **352**,
1148 1225-1228.

1149 16. Gregersen, L.H., Mitter, R. and Svejstrup, J.Q. (2020) Using TT(chem)-seq for
1150 profiling nascent transcription and measuring transcript elongation. *Nature protocols*,
1151 **15**, 604-627.

1152 17. Schmid, M., Tudek, A. and Jensen, T.H. (2018) Simultaneous Measurement of
1153 Transcriptional and Post-transcriptional Parameters by 3' End RNA-Seq. *Cell Rep*, **24**,
1154 2468-2478 e2464.

1155 18. Erhard, F., Baptista, M.A., Krammer, T., Hennig, T., Lange, M., Arampatzi, P.,
1156 Jürges, C.S., Theis, F.J., Saliba, A.-E. and Dölken, L. (2019) scSLAM-seq reveals
1157 core features of transcription dynamics in single cells. *Nature*, **571**, 419-423.

1158 19. Garibaldi, A., Carranza, F. and Hertel, K.J. (2017) Isolation of Newly Transcribed
1159 RNA Using the Metabolic Label 4-Thiouridine. *Methods in molecular biology*
(Clifton, N.J.), **1648**, 169-176.

1160 20. Liu, M., Zhu, J., Huang, H., Chen, Y. and Dong, Z. (2023) Comparative analysis of
1161 nascent RNA sequencing methods and their applications in studies of
1162 cotranscriptional splicing dynamics. *The Plant cell*, **35**, 4304-4324.

1163 21. Yao, L., Liang, J., Ozer, A., Leung, A.K.-Y., Lis, J.T. and Yu, H. (2022) A
1164 comparison of experimental assays and analytical methods for genome-wide
1165 identification of active enhancers. *Nature biotechnology*, **40**, 1056-1065.

1166 22. Cleary, M.D., Meiering, C.D., Jan, E., Guymon, R. and Boothroyd, J.C. (2005)
1167 Biosynthetic labeling of RNA with uracil phosphoribosyltransferase allows cell-

1168

1169

1170 specific microarray analysis of mRNA synthesis and decay. *Nature biotechnology*, **23**,
1171 232-237.

1172 23. Michel, M., Demel, C., Zacher, B., Schwalb, B., Krebs, S., Blum, H., Gagneur, J. and
1173 Cramer, P. (2017) TT-seq captures enhancer landscapes immediately after T-cell
1174 stimulation. *Mol Syst Biol*, **13**, 920.

1175 24. Roy, K., Gabunilas, J., Gillespie, A., Ngo, D. and Chanfreau, G.F. (2016) Common
1176 genomic elements promote transcriptional and DNA replication roadblocks. *Genome*
1177 *Res*, **26**, 1363-1375.

1178 25. Kamieniarz-Gdula, K., Gdula, M.R., Panser, K., Nojima, T., Monks, J., Wisniewski,
1179 J.R., Riepsaame, J., Brockdorff, N., Pauli, A. and Proudfoot, N.J. (2019) Selective
1180 Roles of Vertebrate PCF11 in Premature and Full-Length Transcript Termination.
1181 *Mol Cell*, **74**, 158-172.e159.

1182 26. Ntini, E., Järvelin, A.I., Bornholdt, J., Chen, Y., Boyd, M., Jørgensen, M., Andersson,
1183 R., Hoof, I., Schein, A., Andersen, P.R. *et al.* (2013) Polyadenylation site-induced
1184 decay of upstream transcripts enforces promoter directionality. *Nature structural*
1185 *& molecular biology*, **20**, 923-928.

1186 27. Hoque, M., Ji, Z., Zheng, D., Luo, W., Li, W., You, B., Park, J.Y., Yehia, G. and
1187 Tian, B. (2013) Analysis of alternative cleavage and polyadenylation by 3' region
1188 extraction and deep sequencing. *Nat Methods*, **10**, 133-139.

1189 28. Zheng, D., Liu, X. and Tian, B. (2016) 3'READS+, a sensitive and accurate method
1190 for 3' end sequencing of polyadenylated RNA. *RNA*, **22**, 1631-1639.

1191 29. Wang, K., Wang, H., Li, C., Yin, Z., Xiao, R., Li, Q., Xiang, Y., Wang, W., Huang,
1192 J., Chen, L. *et al.* (2021) Genomic profiling of native R loops with a DNA-RNA
1193 hybrid recognition sensor. *Science advances*, **7**, eabe3516.

1194 30. Blears, D., Lou, J., Fong, N., Mitter, R., Sheridan, R.M., He, D., Dirac-Svejstrup,
1195 A.B., Bentley, D. and Svejstrup, J.Q. (2024) Redundant pathways for removal of
1196 defective RNA polymerase II complexes at a promoter-proximal pause checkpoint.
1197 *Molecular Cell*, **84**, 4790-4807.e4711.

1198 31. Banks, C.A., Lee, Z.T., Boanca, G., Lakshminarasimhan, M., Groppe, B.D., Wen, Z.,
1199 Hattem, G.L., Seidel, C.W., Florens, L. and Washburn, M.P. (2014) Controlling for
1200 gene expression changes in transcription factor protein networks. *Mol Cell*
1201 *Proteomics*, **13**, 1510-1522.

1202 32. Villamil, G., Wachutka, L., Cramer, P., Gagneur, J. and Schwalb, B. (2019) Transient
1203 transcriptome sequencing: computational pipeline to quantify genome-wide RNA
1204 kinetic parameters and transcriptional enhancer activity. *bioRxiv*, 659912.

1205 33. Miller, C., Schwalb, B., Maier, K., Schulz, D., Dumcke, S., Zacher, B., Mayer, A.,
1206 Sydow, J., Marcinowski, L., Dolken, L. *et al.* (2011) Dynamic transcriptome analysis
1207 measures rates of mRNA synthesis and decay in yeast. *Mol Syst Biol*, **7**, 458.

1208 34. de Melo Costa, V.R., Pfeuffer, J., Louloupi, A., Ørom, U.A.V. and Piro, R.M. (2021)
1209 SPLICE-q: a Python tool for genome-wide quantification of splicing efficiency. *BMC*
1210 *Bioinformatics*, **22**, 368.

1211 35. Su, B.G. and Vos, S.M. (2024) Distinct negative elongation factor conformations
1212 regulate RNA polymerase II promoter-proximal pausing. *Molecular Cell*, **84**, 1243-
1213 1256.e1245.

1214 36. Welsh, S.A. and Gardini, A. (2023) Genomic regulation of transcription and RNA
1215 processing by the multitasking Integrator complex. *Nature Reviews Molecular Cell*
1216 *Biology*, **24**, 204-220.

1217 37. Ranjan, A., Chen, S., Goode, Z., Sato, S., Sato, C., Takahashi, H., Conaway, R. and
1218 Conaway, J.W. (2020) Roles of Mediator subunit MED26 in Regulation of Post-
1219 initiation Events in RNA Pol II Transcription. *The FASEB Journal*, **34**, 1-1.

1220 38. Suzuki, H., Furugori, K., Abe, R., Ogawa, S., Ito, S., Akiyama, T., Horiuchi, K. and
1221 Takahashi, H. (2023) MED26-containing Mediator may orchestrate multiple
1222 transcription processes through organization of nuclear bodies. *Bioessays*, **45**,
1223 e2200178.

1224 39. Nojima, T., Rebelo, K., Gomes, T., Gross, A.R., Proudfoot, N.J. and Carmo-
1225 Fonseca, M. (2018) RNA Polymerase II Phosphorylated on CTD Serine 5 Interacts
1226 with the Spliceosome during Co-transcriptional Splicing. *Mol Cell*, **72**, 369-379 e364.

1227 40. Takahashi, H., Ranjan, A., Chen, S., Suzuki, H., Shibata, M., Hirose, T., Hirose, H.,
1228 Sasaki, K., Abe, R., Chen, K. *et al.* (2020) The role of Mediator and Little Elongation
1229 Complex in transcription termination. *Nat Commun*, **11**, 1063.

1230 41. Elrod, N.D., Henriques, T., Huang, K.L., Tatomer, D.C., Wilusz, J.E., Wagner, E.J.
1231 and Adelman, K. (2019) The Integrator Complex Attenuates Promoter-Proximal
1232 Transcription at Protein-Coding Genes. *Mol Cell*, **76**, 738-752 e737.

1233 42. Stadelmayer, B., Micas, G., Gamot, A., Martin, P., Malirat, N., Koval, S., Raffel, R.,
1234 Sobhian, B., Severac, D., Rialle, S. *et al.* (2014) Integrator complex regulates NELF-
1235 mediated RNA polymerase II pause/release and processivity at coding genes. *Nat
1236 Commun*, **5**, 5531.

1237 43. Liu, P., Xiang, Y., Fujinaga, K., Bartholomeeusen, K., Nilson, K.A., Price, D.H. and
1238 Peterlin, B.M. (2014) Release of positive transcription elongation factor b (P-TEFb)
1239 from 7SK small nuclear ribonucleoprotein (snRNP) activates hexamethylene
1240 bisacetamide-inducible protein (HEXIM1) transcription. *The Journal of biological
1241 chemistry*, **289**, 9918-9925.

1242 44. Tome, J.M., Tippens, N.D. and Lis, J.T. (2018) Single-molecule nascent RNA
1243 sequencing identifies regulatory domain architecture at promoters and enhancers. *Nat
1244 Genet*, **50**, 1533-1541.

1245 45. Weltner, J., Balboa, D., Katayama, S., Bespalov, M., Krjutskov, K., Jouhilahti, E.M.,
1246 Trokovic, R., Kere, J. and Otonkoski, T. (2018) Human pluripotent reprogramming
1247 with CRISPR activators. *Nat Commun*, **9**, 2643.

1248 46. Kamieniarz-Gdula, K. and Proudfoot, N.J. (2019) Transcriptional Control by
1249 Premature Termination: A Forgotten Mechanism. *Trends Genet*, **35**, 553-564.

1250 47. Day, D.S., Zhang, B., Stevens, S.M., Ferrari, F., Larschan, E.N., Park, P.J. and Pu,
1251 W.T. (2016) Comprehensive analysis of promoter-proximal RNA polymerase II
1252 pausing across mammalian cell types. *Genome Biol*, **17**, 120.

1253 48. Nechaev, S., Fargo, D.C., dos Santos, G., Liu, L., Gao, Y. and Adelman, K. (2010)
1254 Global analysis of short RNAs reveals widespread promoter-proximal stalling and
1255 arrest of Pol II in Drosophila. *Science*, **327**, 335-338.

1256 49. Scruggs, B.S., Gilchrist, D.A., Nechaev, S., Muse, G.W., Burkholder, A., Fargo, D.C.
1257 and Adelman, K. (2015) Bidirectional Transcription Arises from Two Distinct Hubs
1258 of Transcription Factor Binding and Active Chromatin. *Mol Cell*, **58**, 1101-1112.

1259 50. Lavender, C.A., Cannady, K.R., Hoffman, J.A., Trotter, K.W., Gilchrist, D.A.,
1260 Bennett, B.D., Burkholder, A.B., Burd, C.J., Fargo, D.C. and Archer, T.K. (2016)
1261 Downstream Antisense Transcription Predicts Genomic Features That Define the
1262 Specific Chromatin Environment at Mammalian Promoters. *PLoS Genet*, **12**,
1263 e1006224.

1264 51. Frith, M.C., Valen, E., Krogh, A., Hayashizaki, Y., Carninci, P. and Sandelin, A.
1265 (2008) A code for transcription initiation in mammalian genomes. *Genome Res*, **18**, 1-
1266 12.

1267 52. Kodzius, R., Kojima, M., Nishiyori, H., Nakamura, M., Fukuda, S., Tagami, M.,
1268 Sasaki, D., Imamura, K., Kai, C., Harbers, M. *et al.* (2006) CAGE: cap analysis of
1269 gene expression. *Nat Methods*, **3**, 211-222.

1270 53. Takahashi, H., Kato, S., Murata, M. and Carninci, P. (2012) CAGE (cap analysis of
1271 gene expression): a protocol for the detection of promoter and transcriptional
1272 networks. *Methods in molecular biology (Clifton, N.J.)*, **786**, 181-200.

1273 54. Chen, Y., Pai, A.A., Herudek, J., Lubas, M., Meola, N., Jarvelin, A.I., Andersson, R.,
1274 Pelechano, V., Steinmetz, L.M., Jensen, T.H. *et al.* (2016) Principles for RNA
1275 metabolism and alternative transcription initiation within closely spaced promoters.
1276 *Nat Genet*, **48**, 984-994.

1277 55. Wang, A.W., Wang, Y.J., Zahm, A.M., Morgan, A.R., Wangensteen, K.J. and
1278 Kaestner, K.H. (2020) The Dynamic Chromatin Architecture of the Regenerating
1279 Liver. *Cell Mol Gastroenterol Hepatol*, **9**, 121-143.

1280 56. Liu, G., Wang, L., Wess, J. and Dean, A. (2022) Enhancer looping protein LDB1
1281 regulates hepatocyte gene expression by cooperating with liver transcription factors.
1282 *Nucleic Acids Res*, **50**, 9195-9211.

1283 57. Thorvaldsdottir, H., Robinson, J.T. and Mesirov, J.P. (2013) Integrative Genomics
1284 Viewer (IGV): high-performance genomics data visualization and exploration.
1285 *Briefings in bioinformatics*, **14**, 178-192.

1286 58. Hughes, J.R., Roberts, N., McGowan, S., Hay, D., Giannoulatou, E., Lynch, M., De
1287 Gobbi, M., Taylor, S., Gibbons, R. and Higgs, D.R. (2014) Analysis of hundreds of
1288 cis-regulatory landscapes at high resolution in a single, high-throughput experiment.
1289 *Nat Genet*, **46**, 205-212.

1290 59. Akhtar, J., Renaud, Y., Albrecht, S., Ghavi-Helm, Y., Roignant, J.-Y., Silies, M. and
1291 Junion, G. (2021) m6A RNA methylation regulates promoter- proximal pausing of
1292 RNA polymerase II. *Molecular Cell*, **81**, 3356-3367.e3356.

1293 60. Uzun, U., Brown, T., Fischl, H., Angel, A. and Mellor, J. (2021) Spt4 facilitates the
1294 movement of RNA polymerase II through the +2 nucleosomal barrier. *Cell Rep*, **36**,
1295 109755.

1296 61. Mowry, K.L. and Steitz, J.A. (1987) Identification of the human U7 snRNP as one of
1297 several factors involved in the 3' end maturation of histone premessenger RNA's.
1298 *Science*, **238**, 1682-1687.

1299 62. Sousa-Luis, R., Dujardin, G., Zukher, I., Kimura, H., Weldon, C., Carmo-Fonseca,
1300 M., Proudfoot, N.J. and Nojima, T. (2021) POINT technology illuminates the
1301 processing of polymerase-associated intact nascent transcripts. *Mol Cell*, **81**, 1935-
1302 1950 e1936.

1303 63. Neve, J., Burger, K., Li, W., Hoque, M., Patel, R., Tian, B., Gullerova, M. and Furger,
1304 A. (2016) Subcellular RNA profiling links splicing and nuclear DICER1 to alternative
1305 cleavage and polyadenylation. *Genome Res*, **26**, 24-35.

1306 64. Bahar Halpern, K., Caspi, I., Lemze, D., Levy, M., Landen, S., Elinav, E., Ulitsky, I.
1307 and Itzkovitz, S. (2015) Nuclear Retention of mRNA in Mammalian Tissues. *Cell
1308 Rep*, **13**, 2653-2662.

1309 65. Fischl, H., McManus, D., Oldenkamp, R., Schermelleh, L., Mellor, J., Jagannath, A.
1310 and Furger, A. (2020) Cold-induced chromatin compaction and nuclear retention of
1311 clock mRNAs resets the circadian rhythm. *The EMBO journal*, **39**, e105604.

1312 66. Mimoso, C.A., Vlaming, H., de Wagenaar, N.P., Siegenfeld, A.P. and Adelman, K.
1313 (2025) Restrictor slows RNAPII elongation to promote termination at noncoding
1314 RNA loci. *Genes & development*, **39**, 868-885.

1315 67. Henriques, T., Scruggs, B.S., Inouye, M.O., Muse, G.W., Williams, L.H., Burkholder,
1316 A.B., Lavender, C.A., Fargo, D.C. and Adelman, K. (2018) Widespread
1317 transcriptional pausing and elongation control at enhancers. *Genes & development*,
1318 **32**, 26-41.

1319 68. Mellor, J., Hunter, E. and Akoulitchev, A. (2025) Paradigm Lost. *Cancers (Basel)*,
1320 17.

1321 69. Nguyen, T., Fischl, H., Howe, F.S., Wolosczuk, R., Serra Barros, A., Xu, Z., Brown,
1322 D., Murray, S.C., Haenni, S., Halstead, J.M. *et al.* (2014) Transcription mediated
1323 insulation and interference direct gene cluster expression switches. *Elife*, **3**, e03635.

1324 70. Mellor, J., Wolosczuk, R. and Howe, F.S. (2016) The Interleaved Genome. *Trends
1325 Genet*, **32**, 57-71.

1326 71. Bolger, A.M., Lohse, M. and Usadel, B. (2014) Trimmomatic: a flexible trimmer for
1327 Illumina sequence data. *Bioinformatics (Oxford, England)*, **30**, 2114-2120.

1328 72. Kim, D., Paggi, J.M., Park, C., Bennett, C. and Salzberg, S.L. (2019) Graph-based
1329 genome alignment and genotyping with HISAT2 and HISAT-genotype. *Nature
1330 biotechnology*, **37**, 907-915.

1331 73. Langmead, B. and Salzberg, S.L. (2012) Fast gapped-read alignment with Bowtie 2.
1332 *Nat Methods*, **9**, 357-359.

1333 74. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P.,
1334 Chaisson, M. and Gingeras, T.R. (2013) STAR: ultrafast universal RNA-seq aligner.
1335 *Bioinformatics (Oxford, England)*, **29**, 15-21.

1336 75. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
1337 Abecasis, G., Durbin, R. and Genome Project Data Processing, S. (2009) The
1338 Sequence Alignment/Map format and SAMtools. *Bioinformatics (Oxford, England)*,
1339 **25**, 2078-2079.

1340 76. Quinlan, A.R. and Hall, I.M. (2010) BEDTools: a flexible suite of utilities for
1341 comparing genomic features. *Bioinformatics (Oxford, England)*, **26**, 841-842.

1342 77. Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E.,
1343 Nusbaum, C., Myers, R.M., Brown, M., Li, W. *et al.* (2008) Model-based analysis of
1344 ChIP-Seq (MACS). *Genome Biol*, **9**, R137.

1345 78. Liao, Y., Smyth, G.K. and Shi, W. (2014) featureCounts: an efficient general purpose
1346 program for assigning sequence reads to genomic features. *Bioinformatics (Oxford,
1347 England)*, **30**, 923-930.

1348 79. Love, M.I., Huber, W. and Anders, S. (2014) Moderated estimation of fold change
1349 and dispersion for RNA-seq data with DESeq2. *Genome Biol*, **15**, 550.

1350 80. Ramírez, F., Dündar, F., Diehl, S., Grüning, B.A. and Manke, T. (2014) deepTools: a
1351 flexible platform for exploring deep-sequencing data. *Nucleic Acids Research*, **42**,
1352 W187-W191.

1353 81. Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S., Getz,
1354 G. and Mesirov, J.P. (2011) Integrative genomics viewer. *Nature biotechnology*, **29**,
1355 24-26.

1356 82. Kim, D., Paggi, J.M., Park, C., Bennett, C. and Salzberg, S.L. (2019) Graph-based
1357 genome alignment and genotyping with HISAT2 and HISAT-genotype. *Nature
1358 biotechnology*, **37**, 907-915.

1359 83. Amemiya, H.M., Kundaje, A. and Boyle, A.P. (2019) The ENCODE Blacklist:
1360 Identification of Problematic Regions of the Genome. *Sci Rep*, **9**, 9354.

1361 84. Day, D.S., Zhang, B., Stevens, S.M., Ferrari, F., Larschan, E.N., Park, P.J. and Pu,
1362 W.T. (2016) Comprehensive analysis of promoter-proximal RNA polymerase II
1363 pausing across mammalian cell types. *Genome Biology*, **17**, 120.

1364 85. Wang, R., Nambiar, R., Zheng, D. and Tian, B. (2018) PolyA_DB 3 catalogs cleavage
1365 and polyadenylation sites identified by deep sequencing in multiple genomes. *Nucleic
1366 Acids Res*, **46**, D315-D319.

1367 86. O'Leary, N.A., Wright, M.W., Brister, J.R., Ciufo, S., Haddad, D., McVeigh, R.,
1368 Rajput, B., Robbertse, B., Smith-White, B., Ako-Adjei, D. *et al.* (2016) Reference

1369 sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and
1370 functional annotation. *Nucleic Acids Res*, **44**, D733-745.

1371 87. Buenrostro, J.D., Wu, B., Chang, H.Y. and Greenleaf, W.J. (2015) ATAC-seq: A
1372 Method for Assaying Chromatin Accessibility Genome-Wide. *Current protocols in*
1373 *molecular biology / edited by Frederick M. Ausubel ... [et al]*, **109**, 21 29 21-21 29 29.

1374 88. Schmidl, C., Rendeiro, A.F., Sheffield, N.C. and Bock, C. (2015) ChIPmentation:
1375 fast, robust, low-input ChIP-seq for histones and transcription factors. *Nat Methods*,
1376 **12**, 963-965.

1377 89. Erickson, B., Sheridan, R.M., Cortazar, M. and Bentley, D.L. (2018) Dynamic
1378 turnover of paused Pol II complexes at human promoters. *Genes & development*, **32**,
1379 1215-1225.

1380

**Single Nucleotide Resolution 4sU Sequencing (SNU-Seq)
reveals the transcriptional responsiveness of an
epigenetically primed human genome**

Figures and Supplemental Figures for Gerlevik et al

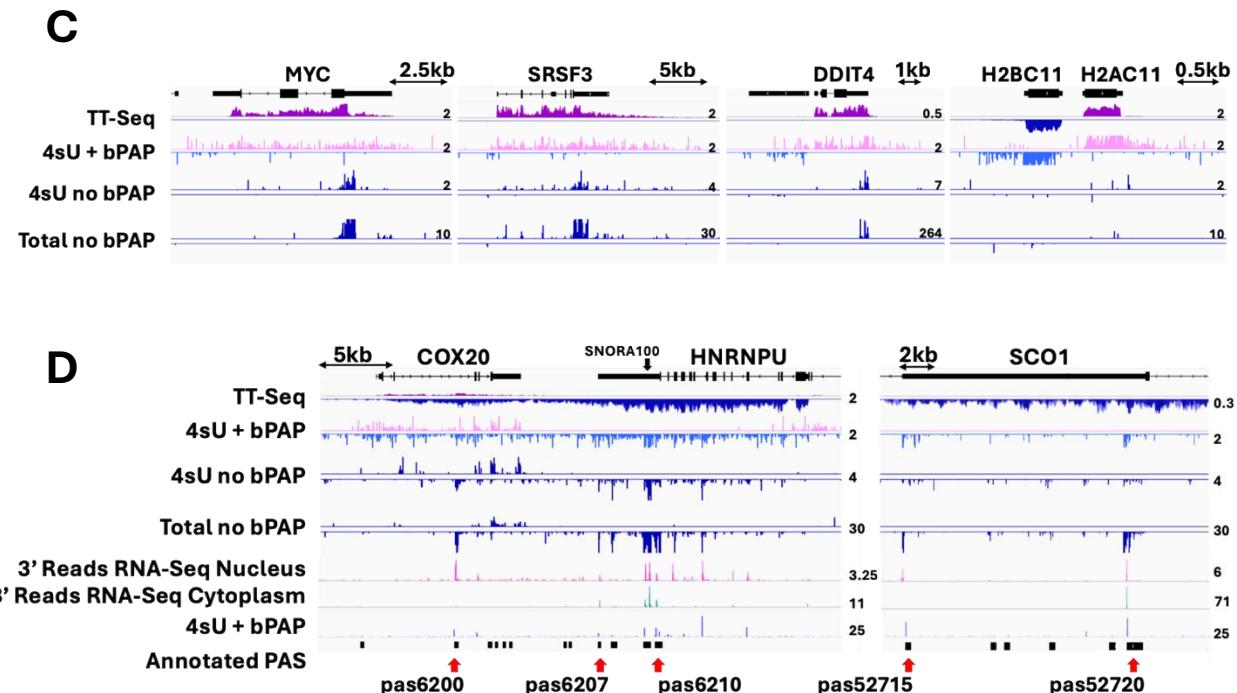
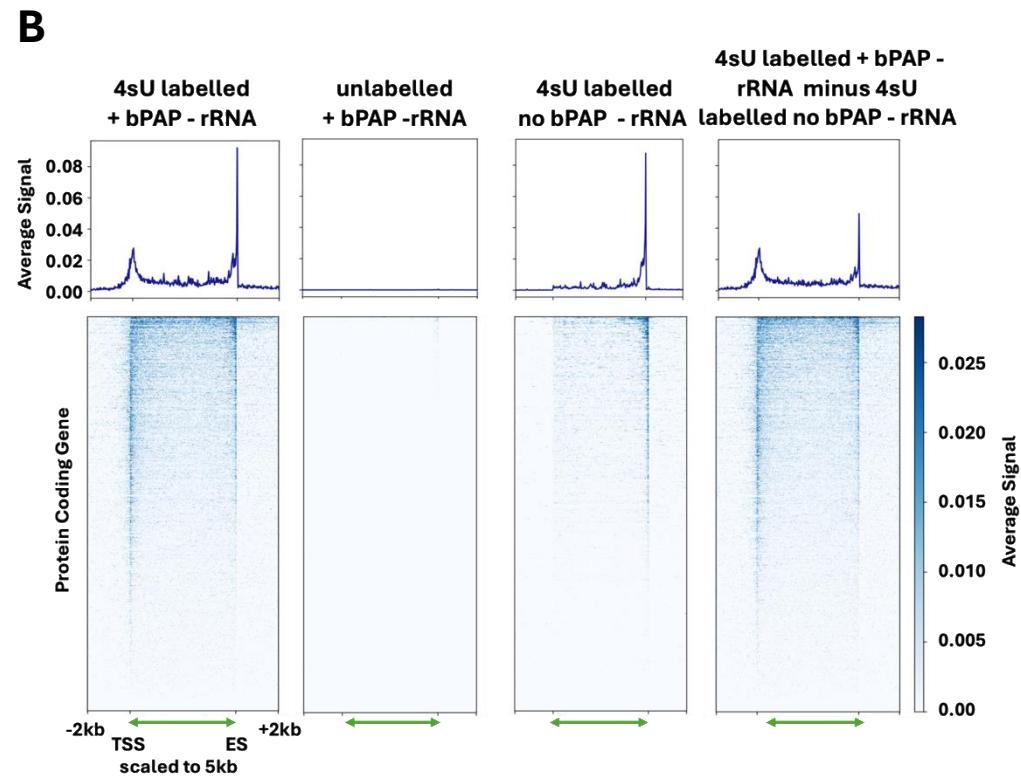
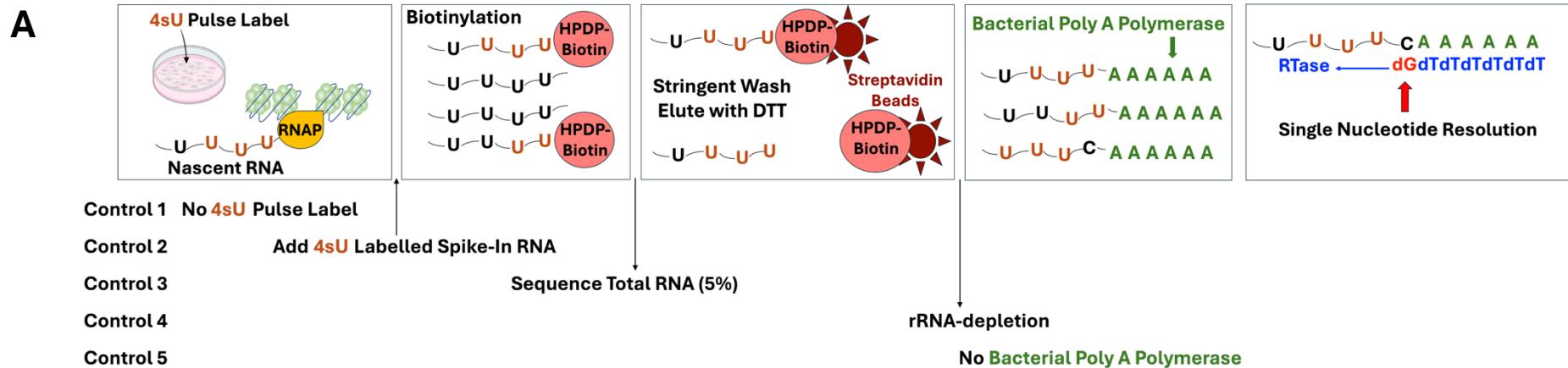




Figure 1

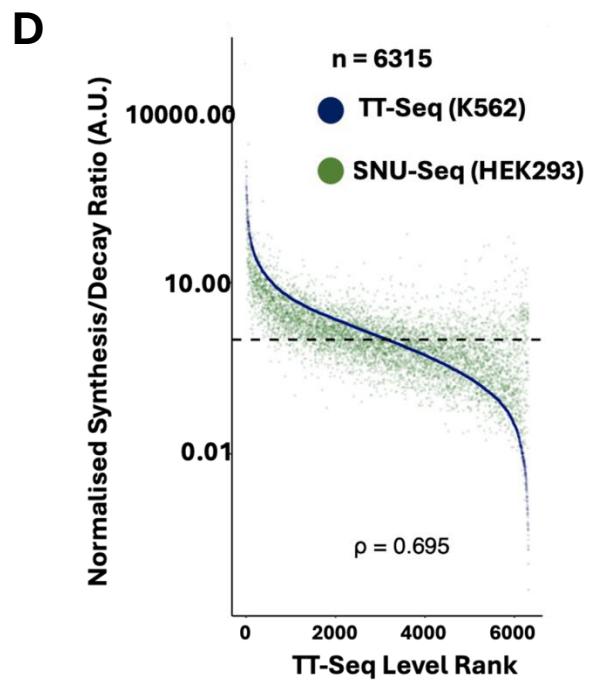
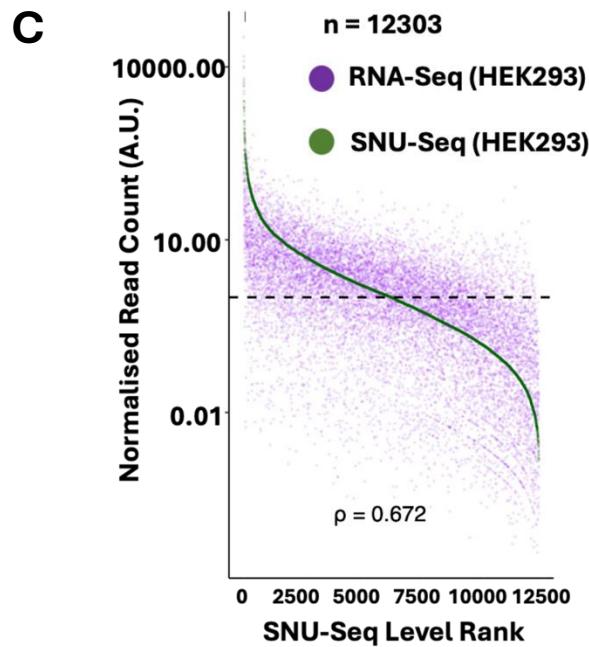
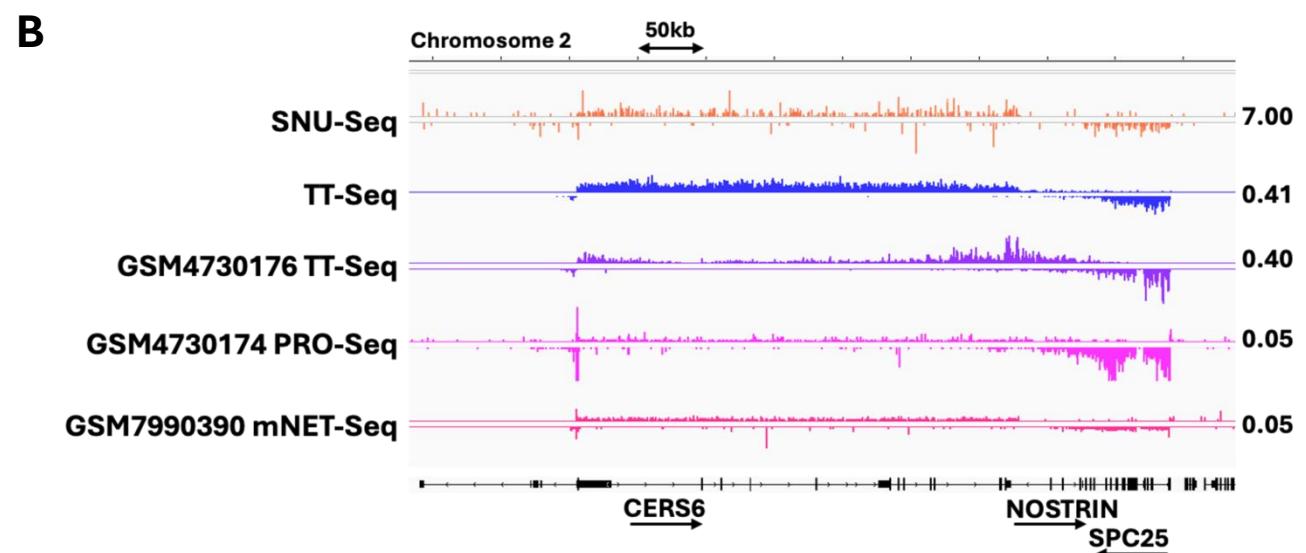
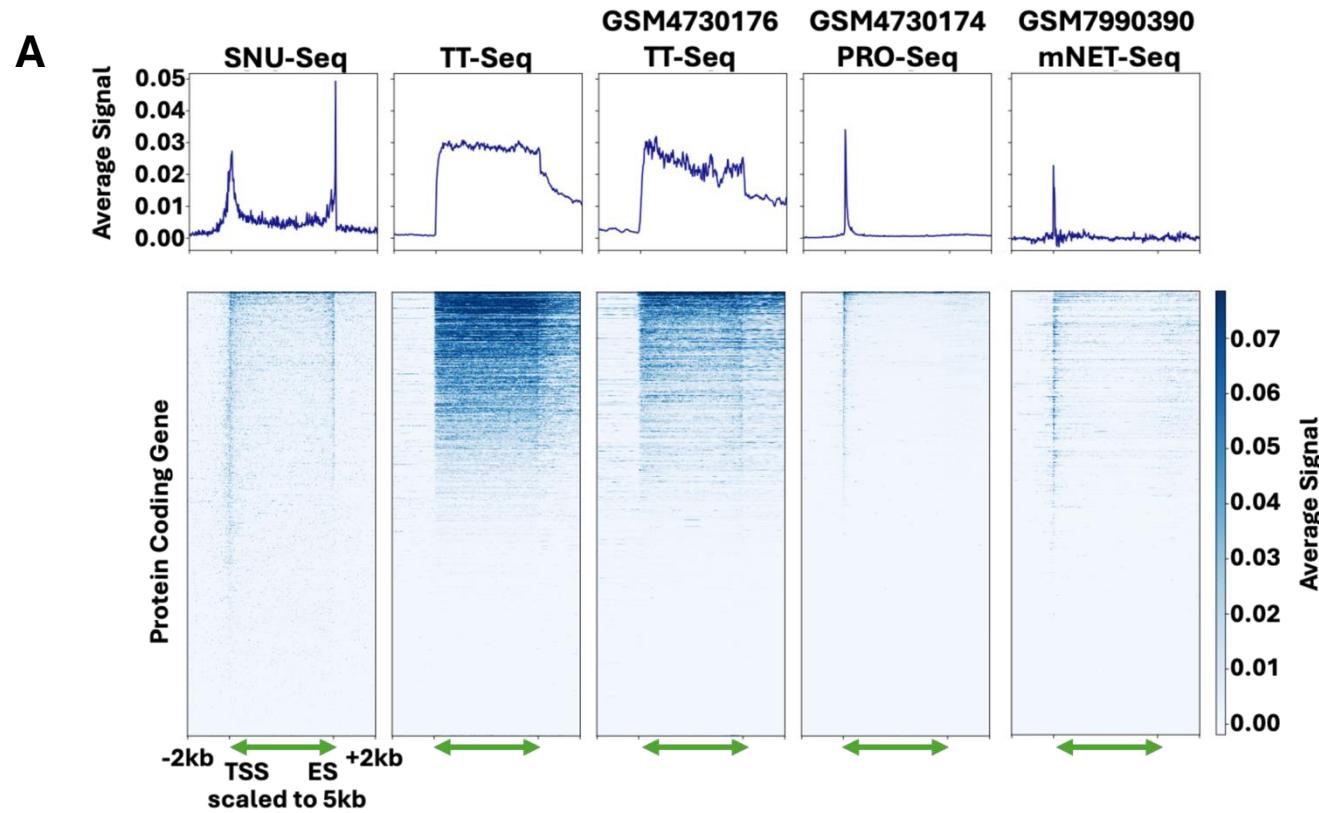





Figure 2

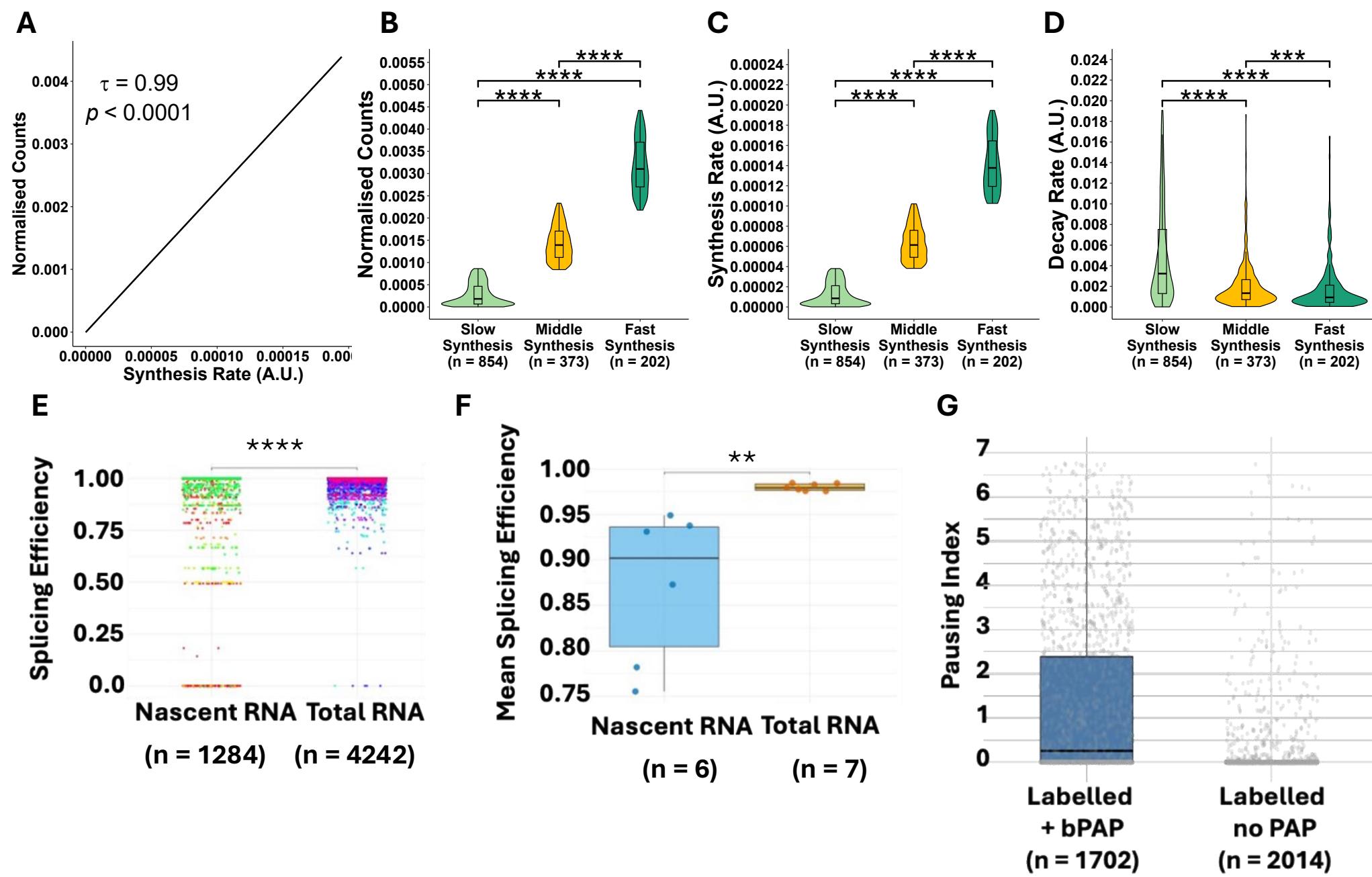


Figure 3

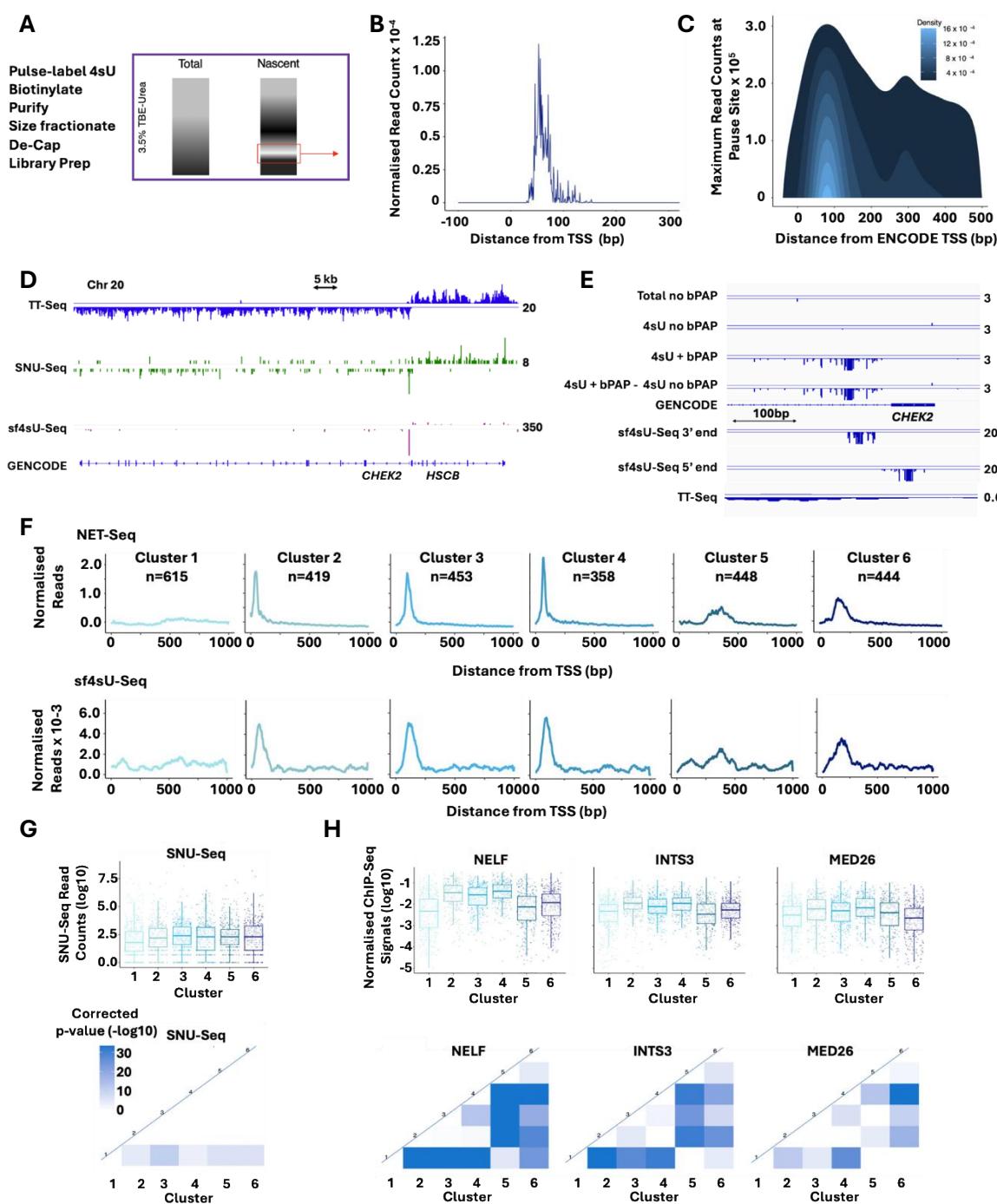


Figure 4

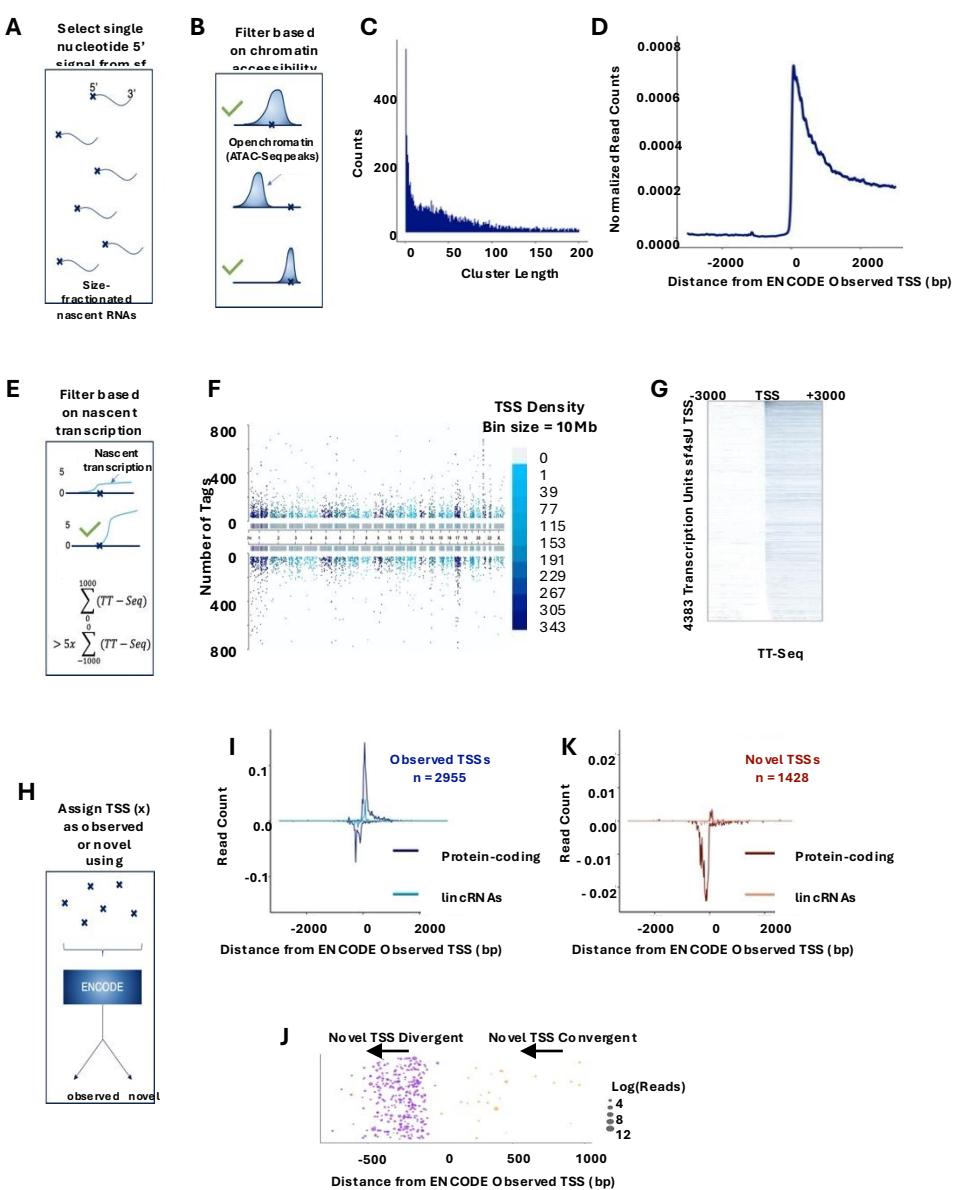
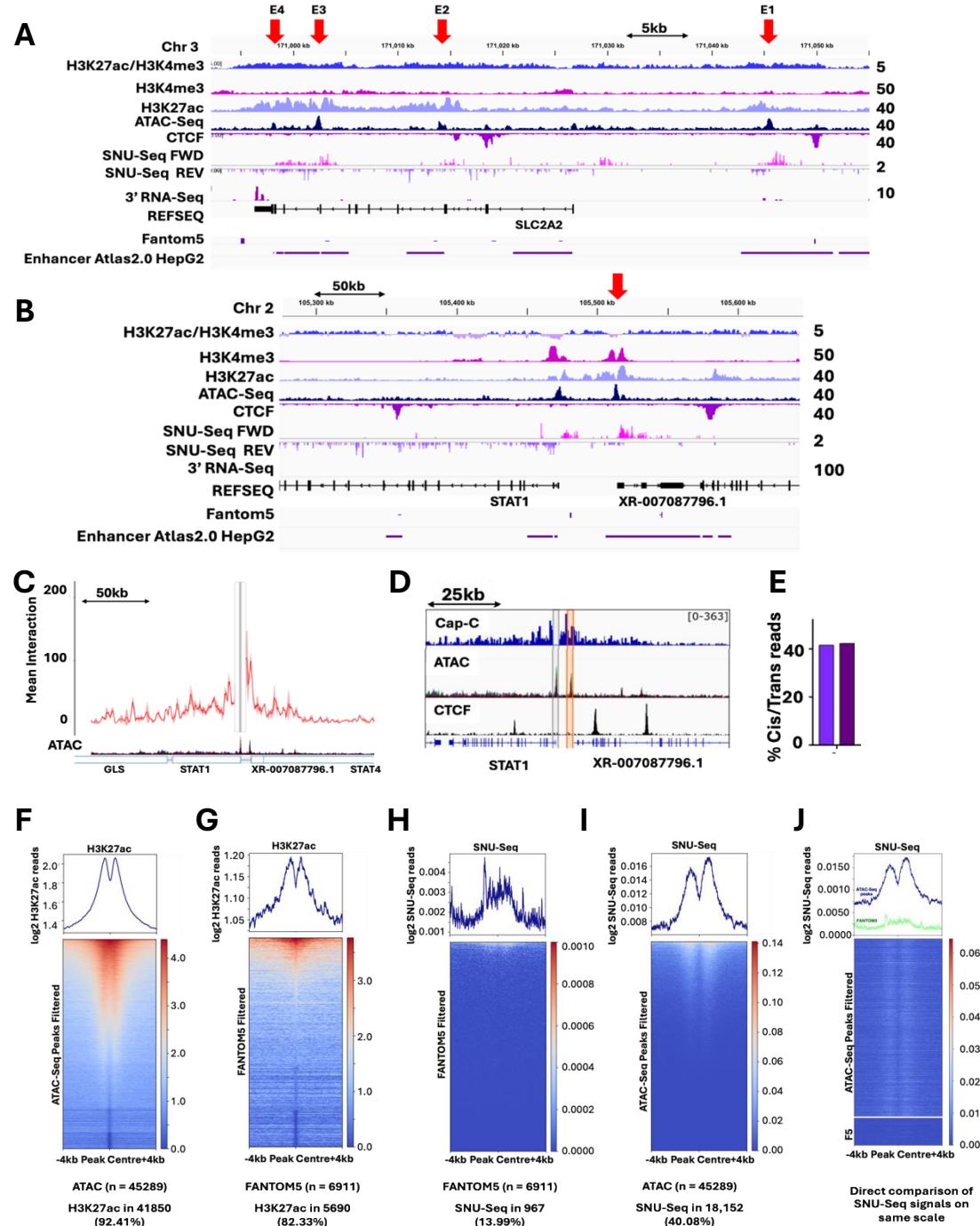
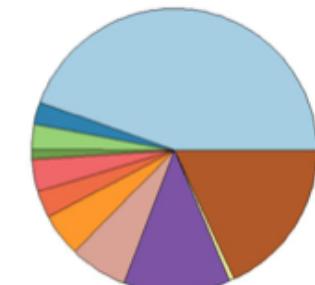




Figure 5

A

H3K4me3	H3K27ac	SNU-Seq	Number	Percent of all ATAC-Seq peaks
+	+	+	14214	31.39
+	+	-	11262	24.87
+	-	+	976	2.16
+	-	-	5198	11.48
-	+	+	2167	4.78
-	+	-	5474	12.09
-	-	+	785	1.76
-	-	-	5203	11.49

D

- Promoter (<=1kb) (44.5%)
- Promoter (1-2kb) (2.55%)
- Promoter (2-3kb) (2.9%)
- 5'UTR (1.04%)
- 3'UTR (3.71%)
- 1st Exon (3.13%)
- Other Exon (4.87%)
- 1st Intron (6.6%)
- Other Intron (12.05%)
- Downstream (<=300kb) (0.58%)
- Distal Intergenic (18.08%)

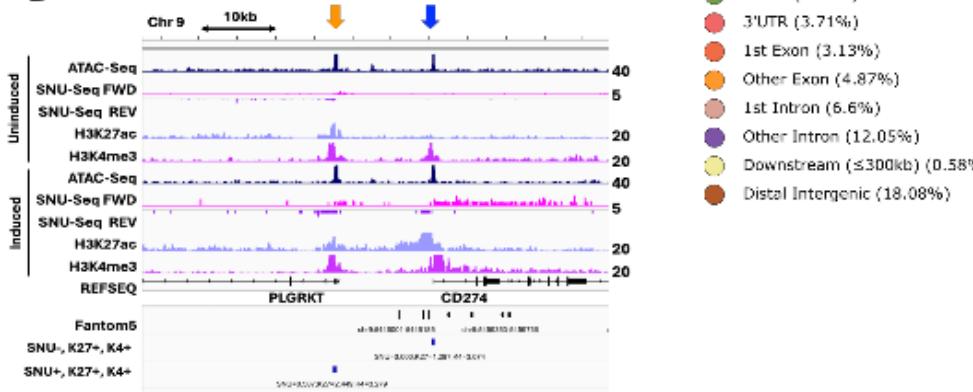
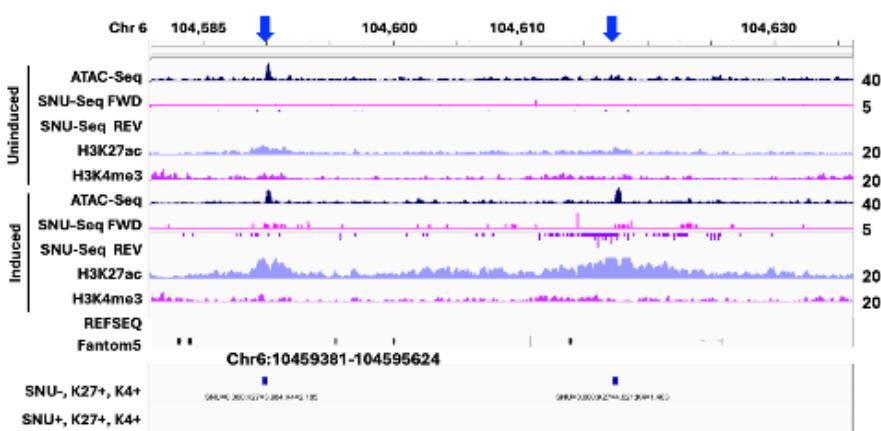
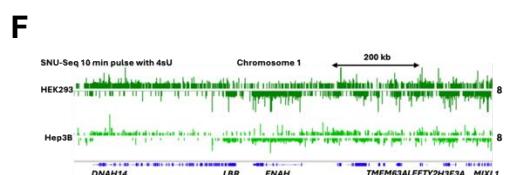
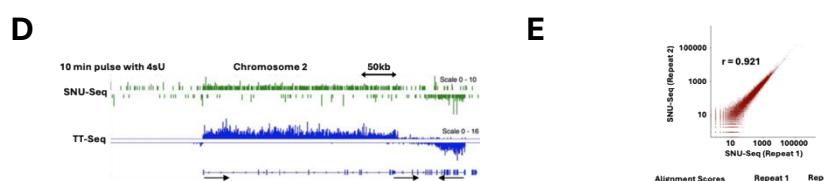
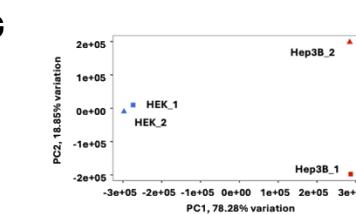
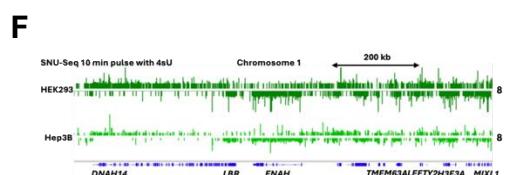
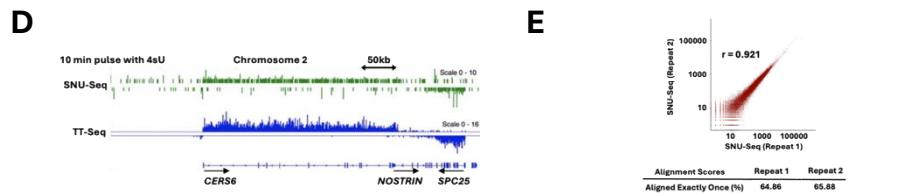
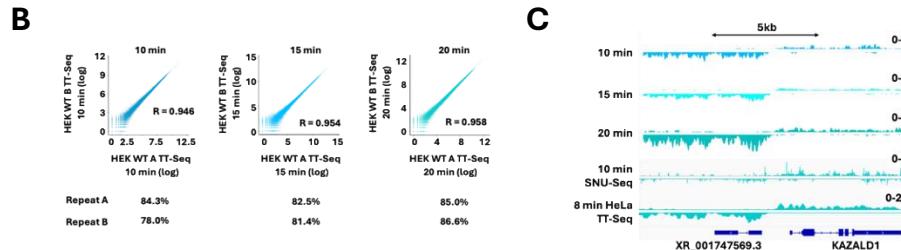
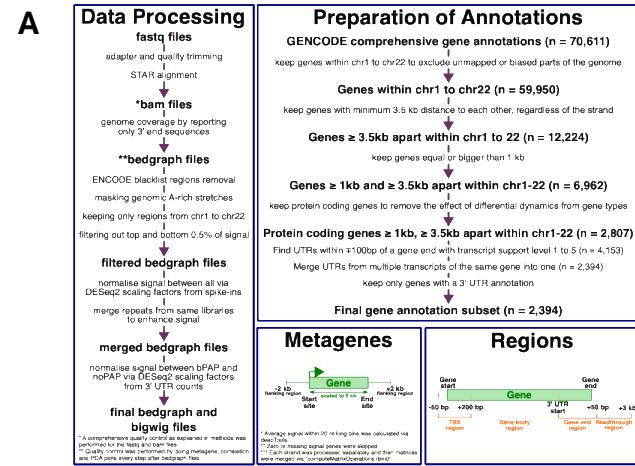
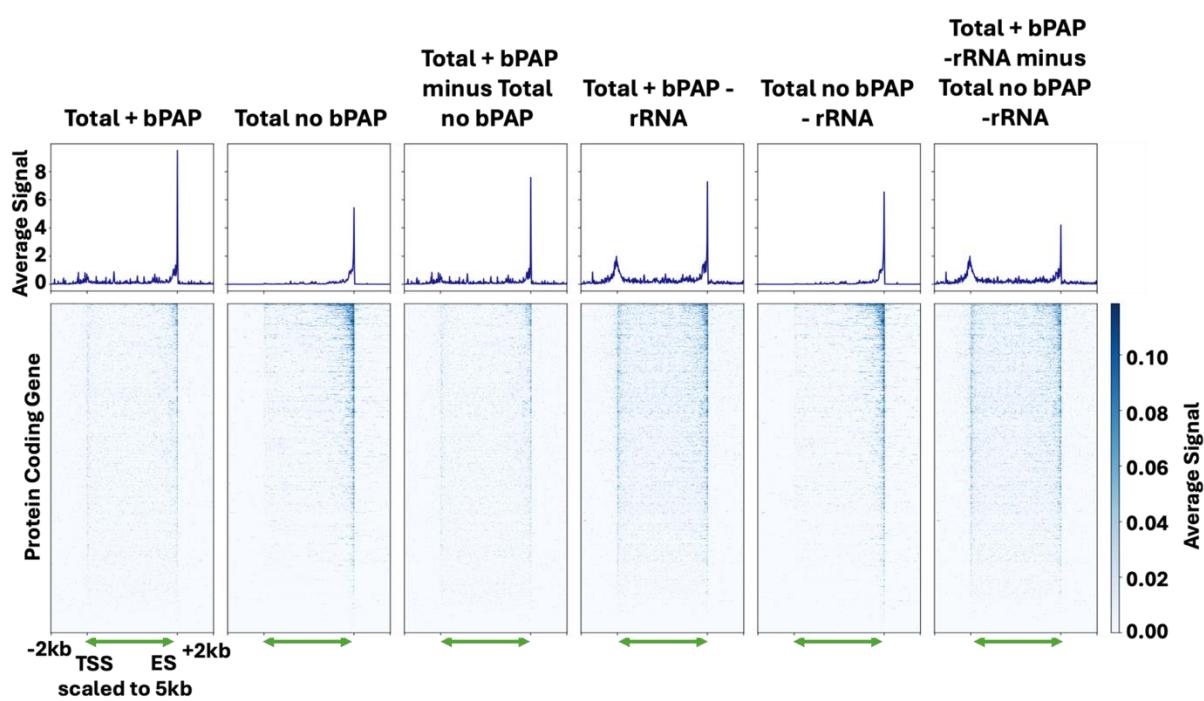
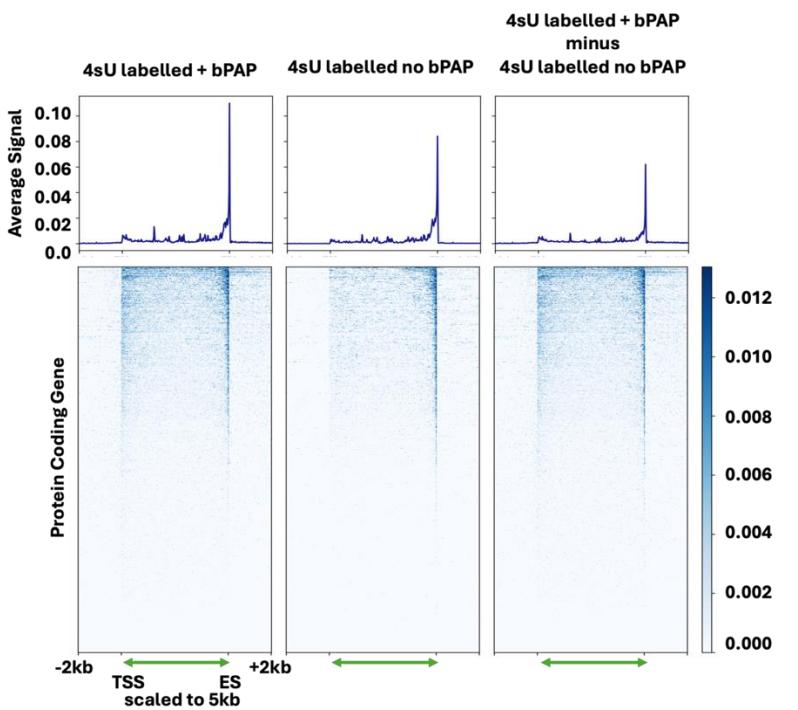
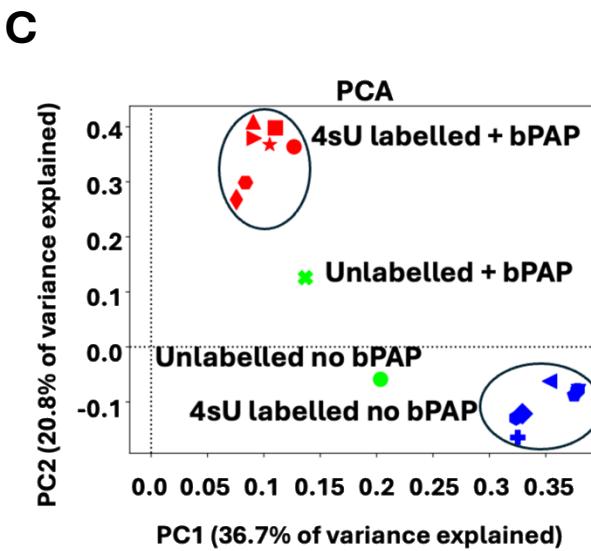












B**C****Figure 7**

Figure S1

A**B****C****Figure S2**

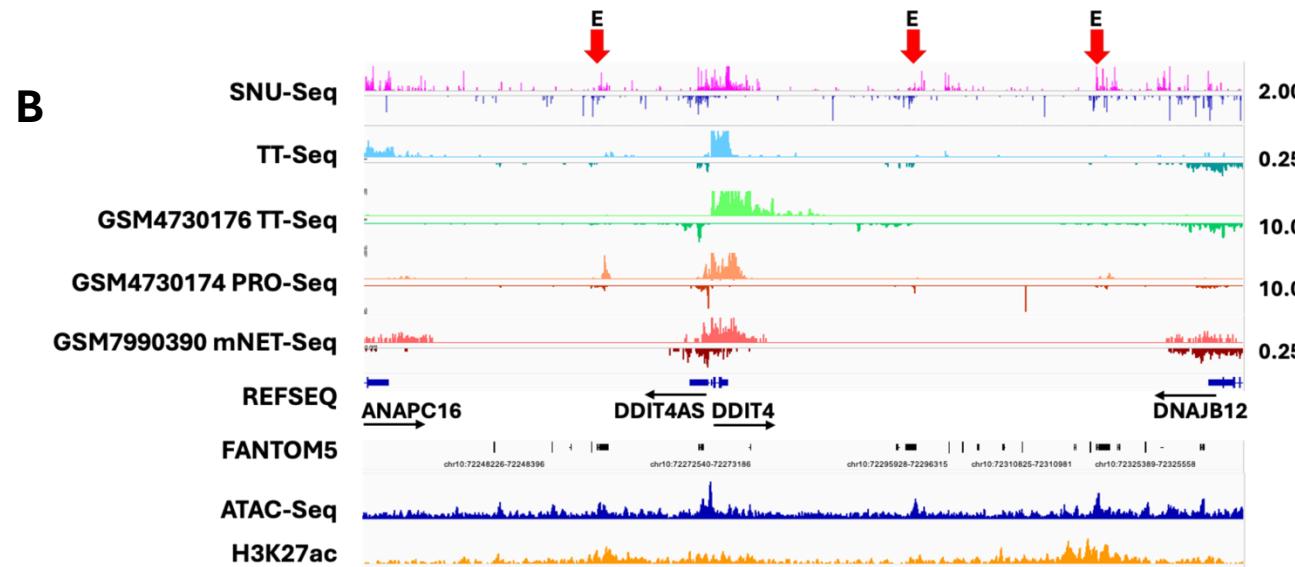
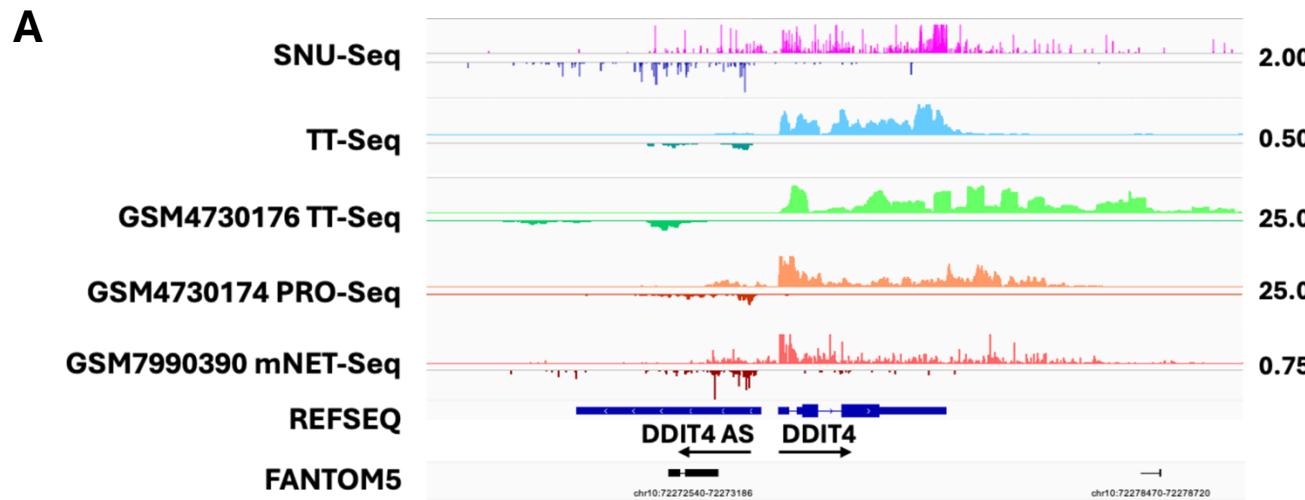



Figure S3

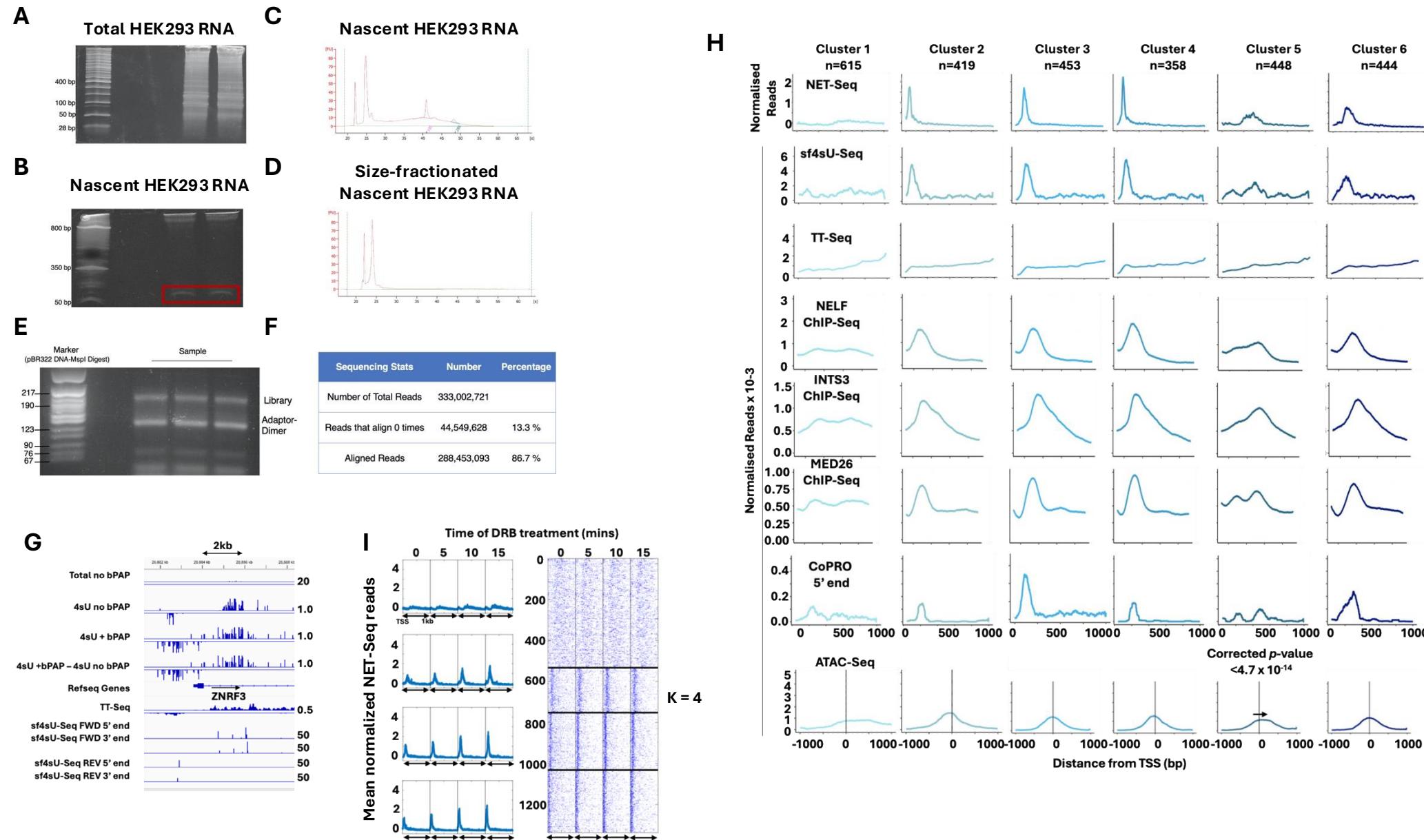


Figure S4 sfRNA-Seq methodology

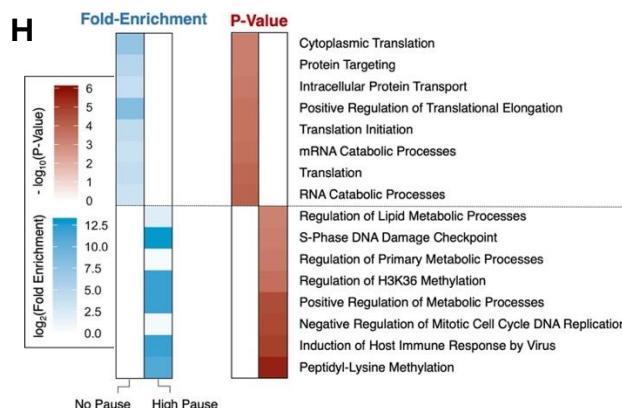
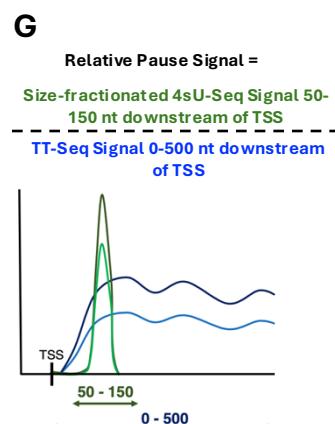
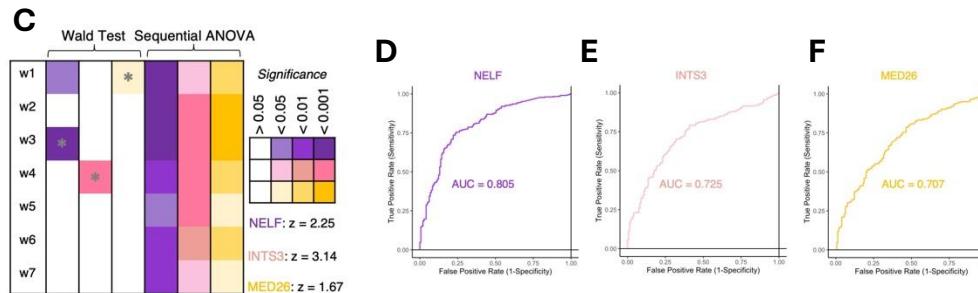
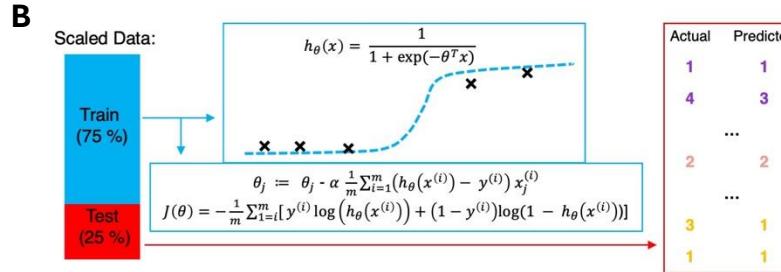
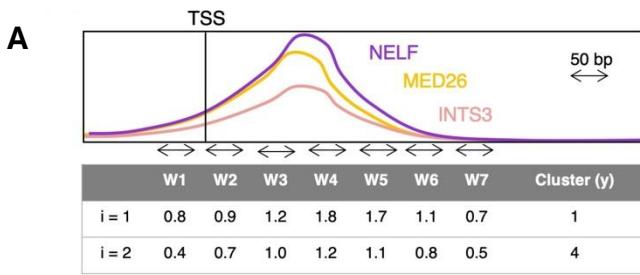






Fig. S5

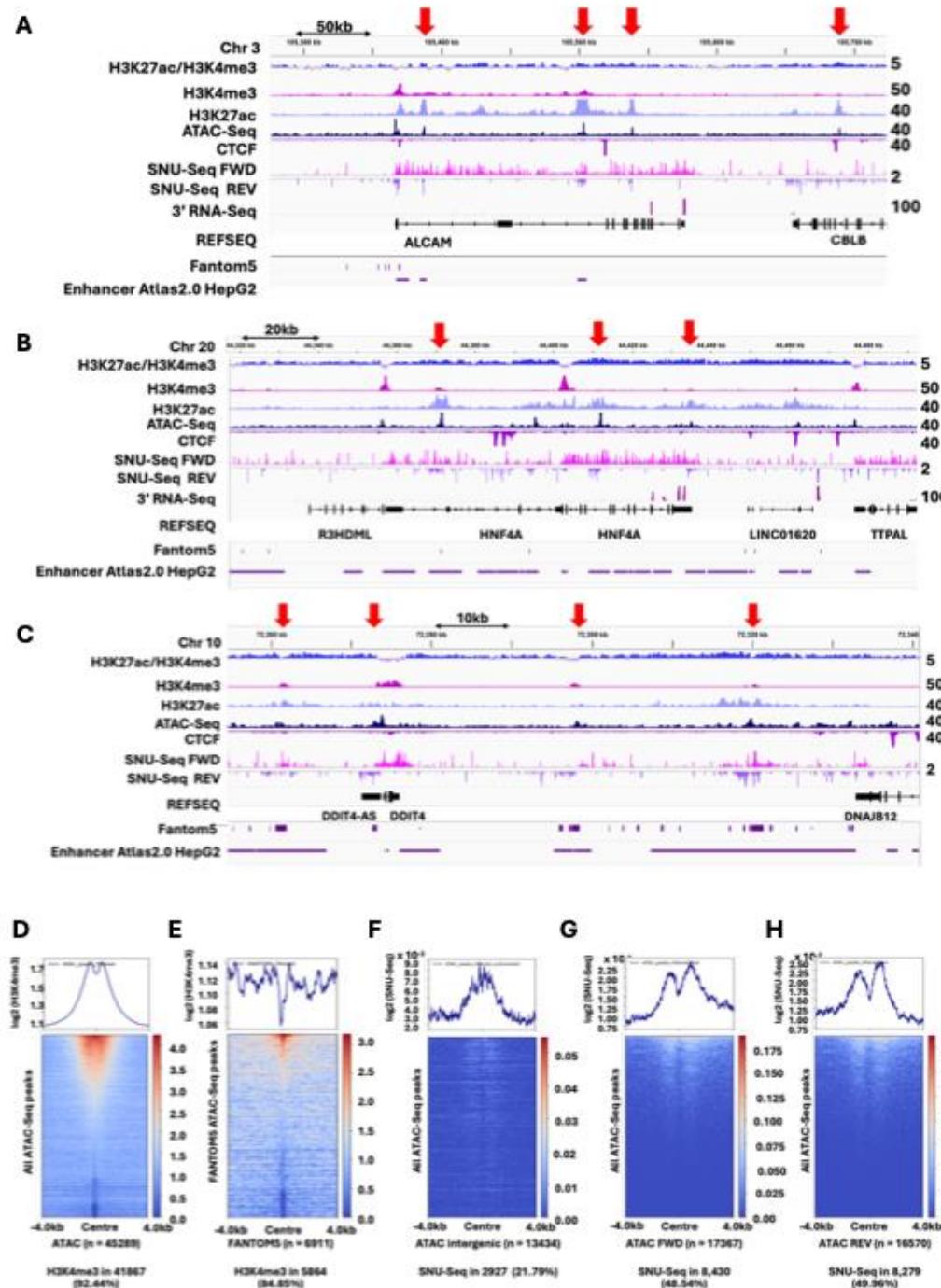


Figure S6

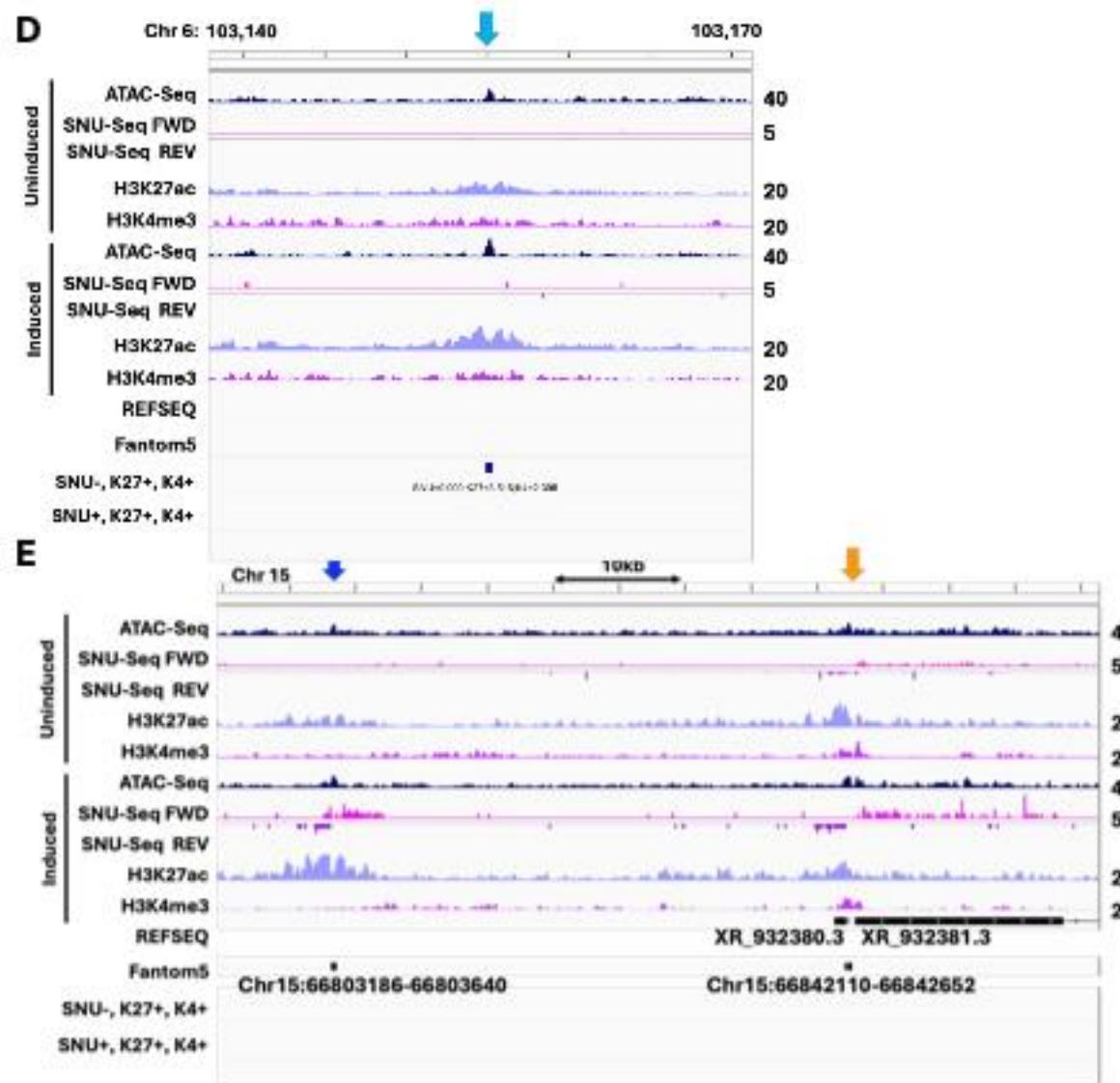
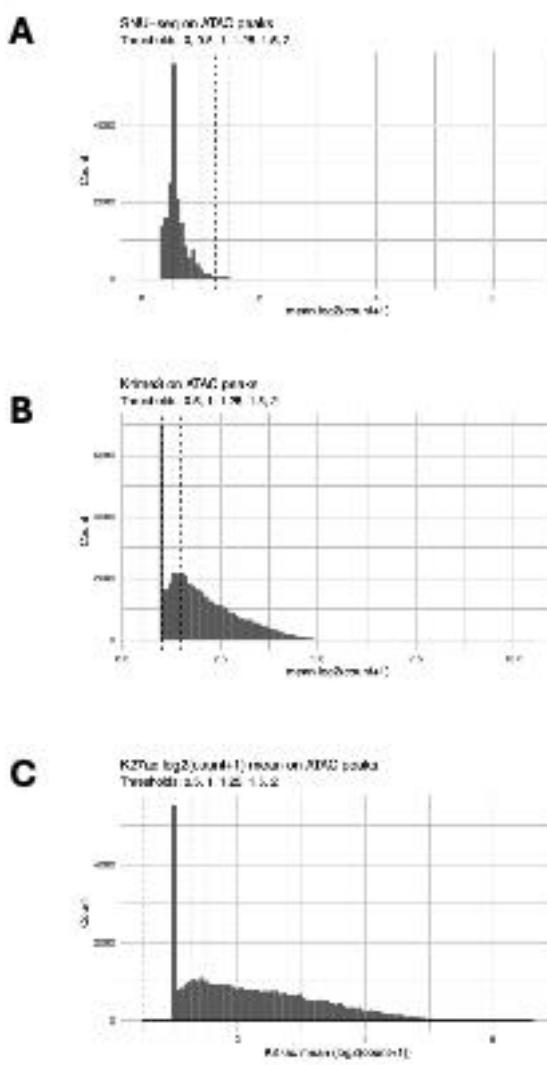



Figure S7