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Learning to detect, identify or select stimuli is an essential requirement of many behavioral tasks.
In real life situations, relevant and non-relevant stimuli are often embedded in a continuous sensory
stream, presumably represented by different segments of neural activity. Here, we introduce a neural
circuit model that can learn to identify action-relevant stimuli embedded in a spatio-temporal stream
of spike trains, while learning to ignore stimuli that are not behaviorally relevant. The model uses
a biologically plausible plasticity rule and learns from the reinforcement of correct decisions taken
at the right time. Learning is fully online; it is successful for a wide spectrum of stimulus-encoding
strategies; it scales well with population size; and can segment cortical spike patterns recorded

from behaving animals.

Altogether, these results provide a biologically plausible framework of

reinforcement learning in the absence of prior information on the identity, relevance and timing of

input stimuli.

I. INTRODUCTION

Human beings have an unmatched ability to learn to
abstract information from the environment, use this in-
formation to predict the consequences of their actions
and develop appropriate behavioral strategies. A major
component of this skill is the ability to identify the rel-
evant cues and stimuli from the environment and deter-
mine what to do in response to them. Identifying relevant
stimuli is a crucial aspect of many cognitive tasks includ-
ing decision making. Apart from a few exceptions that,
however, do not yet admit a biological implementation
[1], the great majority of learning and decision making
models [2, 3] typically assume that the relevant stimuli
are known to the learning agent. In these models, learn-
ing refers to the process of associating known relevant
stimuli with their predicted outcome for the purpose of
making decisions (see e.g. [] for a general framework).
The underlying assumption is that relevant stimuli can
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be identified by a form of bottom-up, unsupervised pre-
processing; for example, relevant stimuli are so because
statistically different from other stimuli. Although this
could be the case for perceptually salient stimuli that
‘stand out’ from the background, in many real-life situa-
tions it is not clear which segments in a continuous sen-
sory stream are action relevant, and relevant segments
may blend seamlessly into irrelevant ones. Here, we
present a spiking network model (the learning agent, or
‘agent’ for short) able to detect relevant stimuli from the
environment by trying to maximize the reward obtained
for correct decisions at the right time. The agent is re-
quired to solve a detection and a decision task simultane-
ously: detect which stimuli are behaviorally relevant and
decide what to do in response to them. The stimuli are
modeled as spatiotemporal patterns of spike trains, and
the agent has initially no knowledge of their identity, tim-
ing, or required response. Everything must be discovered
by trial and error by exploiting reward feedback received
after each decision. This is all the more challenging as rel-
evant and non-relevant stimuli were built so as to have
the same overall spike train statistics, so that different
segments appear seamlessly embedded in a homogeneous
input stream (see Figs. |2 and [4| for examples).

We emphasize that decisions are self-paced and never
enforced in this paradigm, and no feedback is given in the
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absence of decisions. This is a particularly demanding
requirement because the quiescent state (i.e., the net-
work state where no decisions are ever taken) is a lo-
cal maximum of the average reward, and can result in
the pernicious behavior of forgoing decisions altogether.
Here we show that, in a large variety of situations, our
agent can learn to identify the relevant stimuli embedded
in patterns of spike trains and take the correct decision
in response to them. Although more slowly, the agent
also learns to ignore non-relevant stimuli. We also show
that the agent is equally successful at segmenting pat-
terns of cortical spike trains recorded from behaving ro-
dents. These results were achieved through a fully online
synaptic plasticity rule modulated by reward and feed-
back from the population decision. Overall, our model
provides a biologically plausible framework for learning
to segment an input stream for the purpose of solving
behavioral tasks, and may be one way to form concepts
out of seemingly unstructured stimuli [5].

II. RESULTS
A. Segmentation task with multiple action choices

We trained an ensemble of populations of spiking neu-
rons (the ‘agent’) to learn to detect specific stimuli em-
bedded as segments of a continuous input stream. The
agent had to produce a desired response to each of the
detected segments. Each segment was a spatio-temporal
pattern of spike trains lasting 500 ms (Fig. [lp). The
segments were noisy ‘realizations’ of a handful of pro-
totype stimuli (Fig. )7 temporally joined together in
random order to form a long, continuous stream of input
patterns. In the default setting, we built each prototype
by generating 50 independent Poisson spike trains, each
with constant firing rate randomly chosen according to
a uniform distribution between 2 and 24 spikes/s. Each
prototype stimulus was randomly assigned to being ei-
ther relevant or non-relevant for the task, a property in-
herited by their noisy realizations. The segments were
obtained by jittering the spike times of the prototypes
by a random amount of the order of 10 ms (see Fig.
and Sec. of Methods for details), but we will show
later that the model is robust to much longer jitter times
(see Fig. [Iic for an example segment with 100 ms jitter).
In the following, we shall use the term ‘segment’ or ‘stim-
ulus’ interchangeably.

The agent had to learn to detect the presence of a rel-
evant stimulus by initiating an ‘action’, while ignoring
the non-relevant segments (Fig. [lh). Only the appropri-
ate response to relevant segments would lead to reward,
while no reward was given for incorrect responses or for
actions taken in the presence of non-relevant stimuli. An
action occurred when the readout of the activity of one of
the populations (a measure of its cumulative spike count
rate) hit a fixed threshold. A correct decision was met
with reward and the removal of the stimulus, as if a tar-
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get had been hit or captured. Every action incurred a
cost (a small negative reward), to discourage the agent
from taking actions with high frequency. Neither reward
nor cost was given in the absence of actions.

The agent learned to segment the input stream by trial
and error, using a synaptic plasticity rule modulated by
reward and population activity (Fig. [Lh):

dw?
dt

X g(Rtvpt’u)Ezuy

where w} is the synaptic weight from input neuron ¢ to
decision neuron v of population p, R; is the reward (or
cost) received at time ¢, P} is the feedback on the spike
count rate of population p, g() is a function of R; and P/',
and EY is the ‘eligibility trace’ of the synapse. The lat-
ter detects the covariance between the presynaptic spikes
and the postsynaptic neural activity; only synapses with
sufficient eligibility are modified. The detailed descrip-
tion of the plasticity rule and the network model is re-
ported in Methods.

The plasticity rule reinforces correct decisions taken at
the right time. It is a variation of a learning rule devised
to work in more traditional tasks, where input stimuli are
all relevant and feedback is given at the end of each stim-
ulus presentation [6]. As mentioned in the Introduction,
here we deal with a much more difficult problem, since
the agent does not know what is relevant and feedback
is obtained only in the presence of a decision. This prob-
lem is akin to temporal stimulus segmentation combined
with a multiple-choice decision making task. As we show
next, our learning rule can solve this problem in a variety
of scenarios.

Detection task

We first illustrate the problem in the simplest possi-
ble scenario of one relevant stimulus embedded in an in-
put stream of non-relevant ones. A single population of
decision neurons (the learning agent) was trained to re-
spond whenever the relevant stimulus was on. As shown
in Fig.|2| the agent learned to successfully identify the rel-
evant stimulus and respond within 50 ms (or less) from its
onset, while learning to ignore the other stimuli (Fig.[2b).
This was achieved despite using equal spike train statis-
tics for relevant and non-relevant segments (notice how
the input stream appears uniform on visual inspection,
see e.g. the spike trains in black in Fig. ) The av-
erage learning curves across 150 training sets is shown
in Fig. Bp. High performance on relevant stimuli was
achieved at different times across independent training
sets, depending on the initial weights, the input proto-
types and stochastic decisions (dotplot in Fig. ) We
call the time to achieve high performance the ‘learning
threshold’, and quantify it as the first of 100 consecutive
correct responses to relevant stimuli, taken as a crite-
rion that learning has been accomplished. The learning
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FIG. 1. Stimuli and network architecture. a) Network architecture. Spike trains (‘input spike trains’) from M input
neurons project to Ng.. populations of spiking neurons (colored circles) through plastic synapses. Each population is responsible
for a different decision, which occurs when a measure of the spike count rate of each population first crosses a predefined
threshold. After each decision (and only then), feedback from reward (right vs. wrong) and the decision neurons’ activity
determines the change of synaptic weights between the input neurons and the population neurons responsible for the current
decision, according to Eq. b) A segment of the input stream comprising 50 spike trains. Each line is a spike train and each
dot is a spike time. The segment shown represents one stimulus prototype (black raster) together with a jittered version of it
(red raster; 10 ms random dispersion around the original spike times, see Sec. of Methods for details). The prototype
could represent a relevant or a non-relevant segment of the stream. ¢) Same prototype shown in panel b), this time jittered by

100 ms (red).

thresholds were reached in every training set and were
broadly distributed across independent training sets, as
shown in the inset of Fig. [Bp. Despite this variability,
the average learning curve appears to improve gradually
over time. Note that a variable learning threshold is an
unavoidable consequence of the nature of the task: if
the agent is initially set to take random and very sparse
decisions, feedback is rare and so are synaptic changes.
However, once the agent reaches the learning threshold
for relevant stimuli, it quickly reaches the maximal per-
formance for those stimuli. In the detection task, fewer
than 250 presentations per stimulus were sufficient to
reach criterion for half of the training sets (see inset of

Fig. B).

Multiple choice tasks

To implement multiple-choice decisions tasks, the de-
cision neurons were partitioned in multiple populations
(Fig. [Th). The different populations encoded different
decisions, i.e., were responsible for learning stimuli be-
longing to different decision classes.

Fig. shows successful performance in a segmenta-
tion task occurring simultaneously with a multiple-choice
decision task with 2, 3 or 4 relevant stimuli (in the pres-
ence of 6, 9 and 12 non-relevant stimuli, respectively;

learning thresholds were reached in every training set).
An example of network activity before and after learning
the 3-way decision task is shown in Fig.

Note from Fig. the nearly perfect overlap of the
learning curves for the different tasks, achieved by in-
creasing the number of decision neurons as the task gets
more complex. This suggests that learning becomes
faster when increasing the number of decision neurons
[6], as confirmed in Fig. Bc. This panel shows the perfor-
mance in the binary decision task when different numbers
of decision neurons per population are used. As shown
in the figure, a larger population size resulted in a faster
learning speed (the learning rate was kept constant to
allow for proper comparison).

Next, we tested whether the model could handle tasks
with multiple relevant stimuli in each decision class, as
well as various levels of stimulus sparsity (i.e., ratio of
relevant to non-relevant stimuli; see Fig. . Although
learning was slower for either a larger number of stimuli
or for larger ratios, the average performance after train-
ing was high in all cases (ranging from 94% to 99% on
relevant stimuli; see Fig. [S1]).
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FIG. 2. Learning the ‘detection’ task. a) Before learn-
ing. Top panel: readout of the single population of decision
neurons, P! (blue, low pass filter of the population spike rate;
see Eq. of Methods). A decision was taken when P} crossed
a threshold © p = 200 spikes/s (dashed horizontal line). Col-
ored shadings above the rasters mark the presence of a rele-
vant stimulus. Thirty milliseconds after a decision, the popu-
lation readout was reset to zero. If the decision was a correct
decision in the presence of a relevant stimulus, the stimulus
was removed and reward was given (red line at the bottom).
The initial decisions reflected the random initial weights of
the synaptic connections between the input spike trains and
the decision neurons. Bottom panel: raster plot of neural ac-
tivity, with input spike trains in black and output spikes of
decision neurons in blue. b) After training, the population
readout correctly (and rapidly) reaches the threshold only in
the presence of the relevant stimulus. In the input stream
were embedded 4 prototypical segments acting as stimuli, of
which 1 relevant (present during the blue shadings) and 3
non-relevant (present outside the blue shadings). Learning
was assessed after 2,000 presentations per stimulus; N = 50
decision neurons and N; = 50 input spike trains were used.

B. Robustness to encoding strategies

Stimuli encoding into patterns of spike trains (Fig. —
c) was meant to reflect two widespread features of cor-
tical activity: the relative stability of firing rates across
trials coupled to unreliability in the precise spike times
[TH9]. Learning in our model was very robust to jitter
in the spike times (a proxy for trial-to-trial variability),
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tolerating amounts of jitter so large as to cover the entire
duration of the stimulus (Fig. [S2)). The latter case was
obtained by generating the spike times anew at each stim-
ulus presentation and represents a full firing rate code.

The model was also robust to variations in coding
strategies. We tested the model in a ‘spike timing’ coding
mode wherein all input spike trains were generated from
a Poisson process with the same firing rate. Although dif-
ferences in the prototypes’ spike counts emerge from sam-
pling, they are smaller than in the default stimuli, and
therefore the information contained in the spike times
is now much more relevant (in very long spike trains,
the spike times would be the only way to discriminate
the stimuli). Learning was successful also in this case
(Fig. [3), despite the presence of substantial temporal
jitter in the spike times (100 ms jitter, Fig. ) Learning
was slower with larger jitter, but the asymptotic perfor-
mance was similar in all cases. The performance with
small jitter was comparable to the performance with full
firing rate coding (shown in green in Fig. )

Next, we tested the model’s robustness to reduced
stimulus dimensionality (i.e., smaller number of input
spike trains). Learning was faster for higher-dimensional
input patterns, but reached perfect asymptotic perfor-
mance for as few as 25 input spike trains (Fig. . Simi-
lar results were found with sparse connectivity, i.e., after
reducing the number of synapses projecting to the deci-
sion neurons (Fig. . In this case, each decision neuron
received input from a randomly chosen subset of input
spike trains. There was no difference in learning speed
between full and 80% connectivity, and no appreciable
degradation of final learning performance for levels of
connectivity down to 30% (Fig. [S4).

Finally, we tested the model with correlated input
stimuli. In all cases shown so far, the spike trains were
independently generated. Cortical spike trains however
have some finite degree of pairwise or higher order cor-
relations [TOHIT], which should result in more difficult
discrimination. We first tested the model on spike trains
with known pair-wise correlations. These spike trains
were generated with the method of the dichotomized
Gaussian model [I8], which allows to generate Poisson
spike trains with desired firing rates and pair-wise corre-
lations p (examples are shown in Fig. . After 2,000
presentations per stimulus, the model had reached per-
fect performance on relevant stimuli for p = 0.1 and
p = 0.3, and nearly perfect performance for p = 0.5
(Fig. [S5d); mean performance with non-relevant stimuli
was 94% or higher for any p.

C. Segmentation of cortical data

The correlated stimuli of the previous section allow to
quantify the learning performance as a function of a con-
trolled amount of pair-wise correlations. The ultimate
test, however, is the ability to learn real cortical data.
To this purpose, we built prototypes of relevant and non-
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FIG. 3. Average learning curves in temporal segmentation tasks. a) Detection task with 50 input spike trains and
N = 50 decision neurons (same model and task as in Figure . Solid curve: average fraction of correct decisions with relevant
stimuli across 150 training sets. Dashed curve: average fraction of (any) decisions in the presence of non-relevant stimuli (note:
perfect performance with non-relevant stimuli is achieved when the dashed line converges to zero). b) Learning curves across
100 training sets for 3 different tasks having D = 2 (blue), 3 (red) or 4 (green) decision classes and one relevant stimulus per
class out of 8, 12 and 16 total stimuli, respectively. In each case, there were D decision populations (regardless of the number of
stimuli), each containing 100 (blue), 150 (red) and 200 (green) neurons. c¢) Increasing the number of decision neurons reduces
the learning time. Shown are the mean learning curves for the binary decision task with 8 stimuli and N = 40, 50,75 or 100
decision neurons per population (means across 100 training sets except for N = 40 where 200 sets were used). d) Learning
with different encoding strategies: firing rate (green) and spike timing coding with a jitter c = 10 ms (blue) and ¢ = 100 ms
(red). The learning curves were averaged across 200 training sets for firing rate coding (green) and across 100 training sets in
the remaining tasks. In all panels, shaded areas define SEM bounds across training sets. Insets: dotplots of learning thresholds
(see the text) across training sets for each task (color coded as in the main plots); bars show median learning thresholds.

relevant segments from input spike trains recorded simul-
taneously from the gustatory cortex of awake behaving
rats [19, 20] (see Methods for details). The rats had to
press a lever to obtain one of 4 tastants (sucrose, citric
acid, sodium chloride and quinine). In between trials,
rats also received passive delivery of tastes at random
times. Data collected before and after passive taste de-
livery were used to build the prototypes (see Methods for
details). Ensembles of 5 to 9 single-units were recorded in
each session, and units from all sessions were combined
to obtain spike trains from 101 neurons (such patterns
for two sucrose trials are shown in Fig. [Fh). Of these, 50
neurons were randomly chosen to create prototype stim-
uli (Fig. [Bp; different subsets of neurons were sampled

for different training sets). This dataset was particularly
appropriate for our purposes due to its long inter-trial
intervals (a proxy for non-relevant stimuli) and because
the neuronal activity had been recorded simultaneously
from multiple single units. The learning problems were
the same as with the surrogate Poisson spike trains de-
scribed earlier. In the binary decision task, relevant stim-
uli were chosen to be the neural responses to two tastants
(e.g., sucrose and citric acid); the responses to three dif-
ferent tastants were used in the 3-way decision task, and
the responses to all four tastants were used in the 4-
way decision task. For each tastant, the portion of the
recordings immediately following stimulus delivery was
taken as the relevant segment, whereas recordings end-
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FIG. 4. Learning a multiple choice segmentation task.
a) Before learning. Top panel: readout of the population of
decision neurons for three decision populations (color-coded;
same keys as in Fig. . A decision was taken when the
corresponding population readout crossed the threshold ©p
(dashed horizontal line). Colored shadings above the rasters
mark the presence of a relevant stimulus (different colors cor-
respond to different stimulus classes). Reward was given after
a correct decision in the presence of a relevant stimulus (see
caption of Fig. 2| for details). Bottom panel: raster plot of
neural activity, with input spike trains in black and output
spikes of decision neurons in color (same color code as in top
panel). b) After training. Same keys as in panel a. Learning
was assessed after 2,000 presentations per stimulus; N = 150
decision neurons and N; = 50 input spike trains were used.

ing 1s before stimulus delivery were taken as non-relevant
segments (see Fig. [fh-b and Methods for details).

The results are shown in Fig. 5k and are similar to the
results obtained with surrogate spike trains (Fig. ) We
also tested the ability of the trained agent to generalize to
unseen stimuli of the same class (i.e., elicited by the same
tastant, but in trials not used for training). The results
are reported in Table (column ‘generalization’). To
assess the quality of generalization, its performance was
compared to the performance on unseen stimuli of a dif-
ferent class (i.e., elicited by a different tastant than used
for training; see Methods for details). As shown in Ta-
ble[S1| (compare columns ‘generalization’ with ‘control’),
the generalization performance was significantly higher
than control in all tasks (p < 0.015 or lower, Mann-
Witney U test; see the caption of Table for details).

6

Note that the low absolute value of generalization perfor-
mance (< 50%) was the consequence of training on one
stimulus per class while testing on 6 unseen stimuli of
each class. Generalization performance can be boosted
by the common practice of training on multiple stimuli.
For example, training in the binary decision task with 6
stimuli per class, and then testing on one unseen stimulus

of each class, gave a mean generalization performance of
74% (last row of Table[ST]).

III. DISCUSSION

Learning to abstract relevant information from the en-
vironment is a crucial component of decision making; yet,
standard approaches typically assume that the relevant
stimuli, and especially the times at which they occur, are
known to the decision maker [2TH23]. Even assuming par-
tial ignorance about the current state or about the rules
of a decision task [1]], there is usually no ambiguity about
the presence of a cue that, possibly incompletely, signals
the current state. This is especially true for the type of
decision tasks typically modeled by signal detection the-
ory [24]. For example, in psychophysical discrimination
tasks with random dot displays [25H27], the aggregate
direction of motion may not be perceptually clear, but
the presence of the random dot display occurs at known
times and there is no doubt on its relevance to the task.

In the problems studied here, relevant stimuli are con-
tinuously embedded in spatiotemporal patterns of neural
activity, and occur at times that are unknown to the
agent. Such a task requires the temporal segmentation
of the input stream, which is possible only if the agent
takes the correct action at the right time. Thus, both
the presence of relevant segments and the correct action
associated to each segment must be discovered by the
learning agent. Since this learning process ends up as-
signing meaning to the relevant segments, it is tempting
to speculate that this reward-based mechanism of pars-
ing input streams may be one way to form concepts out
of seemingly unstructured stimuli [28] 29].

Learning in this scenario was accomplished in a bi-
ologically plausible model with populations of spiking
neurons. The model is plausible in several ways: i) it
uses a local learning rule based on pre- and postsynap-
tic spikes as well as post-synaptic potentials, all quanti-
ties directly accessible to each synapse; ii) the learning
rule receives neuromodulatory feedback from reward and
decisions [30} B1]; (iii) learning can be achieved with er-
ratic cortical spike trains using different coding strategies
(spike timings or firing rates), in the presence of variable
degrees of correlations, and with no need to customize
the learning rule to each case separately. In the following,
we discuss the salient features of our approach and later
compare it with alternative approaches for reinforcement
learning and decision making.
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FIG. 5. Segmentation of cortical data. a) Procedure used to build stimulus prototypes from cortical spike trains. Shown
are spike trains from 101 neurons recorded over multiple sessions during the first two sucrose trials of each session (i.e., trials
in which the tastant ‘sucrose’ was delivered). Taste delivery occurred at time zero. b) Generation of a single training set from
cortical spike trains in (a). Data in a temporal window of [—2, —1] s were used to generate the prototypes for non-relevant
stimuli (grey rasters); data in a temporal window of [0,1] s were used to generate the prototypes for relevant stimuli (blue
rasters). The same random subset of 50 neurons were used for all relevant and non-relevant stimuli in each training set.
Prototypes for different tastants were built in the same way. Different random sets of neurons were used to generate different
training sets (see Methods for details). c¢) Average learning curves with the stimuli obtained as shown in panels (a-b) for 3
different tasks having 2 (blue), 3 (red) or 4 (green) decision classes and 1 relevant stimulus per class out of 8, 12 and 16 total
stimuli, respectively. Each curve is the average across 100 training sets generated from cortical data as described above (same
keys as in Fig. ) Inset: dotplots of learning thresholds for each task. Learning thresholds were reached in 87% (D = 4),

92% (D = 3) and 100% (D = 2) of training sets.

A. Scaling performance with population size

Reinforcement learning with spiking neurons is notori-
ously slow (e.g. [32H34]) and does not scale well with pop-
ulation size [35H37]. This is because larger populations of
neurons make the spatial credit assignment problem more
severe, resulting in slower learning [0}, 38]. A slowdown of
learning speed with population size is also contrary to the
principle of population coding, according to which per-
formance in any task should increase with population size
[39]. Thanks to a learning rule that averages the gradient
of the reward over the outcomes of each neuron, in our
model learning speed increases with the size of decision
populations (Fig. Bc). This means that increased task
difficulty can be compensated for by increasing the num-
ber of decision neurons, so that similar learning speeds
can be reached in more difficult tasks, for example, when
increasing the number of decision classes (Fig. ), the
number of input stimuli, or the number of non-relevant

stimuli embedded in the input stream (Fig. .

B. Flexibility to coding schemes

Our learning rule is also robust to a large class of cod-
ing schemes and can handle real cortical datasets. We
have shown successful learning in 3 different coding sce-
narios: i) when stimuli are coded by prototypical spike

patterns, despite large amounts of jitter in the spike
times (Fig. [3b and Fig. [S2)), ii) when stimuli vary only in
their spike timings across neurons, with equal firing rates
across neurons (spike timing coding, Fig. )), and 1iii)
when stimuli vary both in their firing rate patterns and
in their single neurons’ spike times (a full firing rate code;
green curve in Fig.[3d). We emphasize that in the case of
precise spike patterns (scenario ii), all stimuli had exactly
the same statistics, and thus they could not be encoded as
firing rate vectors, nor could be learned by an unsuper-
vised algorithm that looks for idiosyncratic regularities
in the stimuli. Successful learning occurred also in the
case of stimuli encoded as firing rate patterns, where the
spike trains had different firing rates but were generated
anew at each stimulus presentation. In these more chal-
lenging tasks learning was correspondingly slower, albeit
still comparable to the main coding scenario, as shown
in Fig. [3d. Moreover, the model performs well on stimuli
with correlated spike trains (Fig. as well as cortical
spike patterns recorded from behaving animals (Fig.
more on this later).

The fact that learning is successful in the case of
lax spike timing reproducibility is particularly appeal-
ing, giving that cortical spike trains are notoriously er-
ratic. Our results suggest that our model could work in
the face of the large trial-to-trial variability observed in
cortex [40], 41]. This is notable given that the learning
rule was initially designed to handle spike patterns that
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are precisely timed. We note that, within a framework
similar to ours, learning rules that depend directly on
firing rates can be built, an approach that would allow
for faster learning [42], at least in more traditional tasks.
We decided not to use this approach for the segmentation
task of this paper, in part for reasons of biological plau-
sibility, as it is not clear how plasticity could depend on
firing rates directly; and in part to obtain a more general
learning rule that could handle a wider range of codes.
The problem of neural coding is an open question and
this approach allowed us not to commit to a specific cod-
ing scenario. Our results demonstrate the flexibility of
our model in dealing with coding schemes interpolating
between precise spike timing and firing rate coding with
various degree of pairwise correlations, while also show-
ing robustness to low levels of connectivity (Fig. and
stimulus dimensionality (Fig.[S3).

Regarding the decision code, we have used the simple
and widely used approach of having separate populations
of neurons competing for decisions [2], [43]. Although it
is possible, in principle, to adapt the model to handle
decisions based on other coding scenarios, such as phase
coding [44H406] or latency coding [38| [47], we have not
tested these possibilities. The emphasis of this work was
on learning to segment unknown stimuli, with less rele-
vance given to the decision mechanism. It would be of
interest to develop a biologically plausible model capable
of learning its own ‘valid’ actions in addition to its own
relevant stimuli. This is left for future work.

C. Learning cortical spike patterns

The model can segment cortical spike train patterns
recorded in the gustatory cortex of behaving rats, with
good generalization performance to unseen segments
recorded under the same conditions. Testing the model
on cortical data has two main advantages over surrogate
stimuli. First, it allows a fairer evaluation of the gener-
alization performance. We expect generalization to sur-
rogate stimuli of the same class to be easy, given that
unseen stimuli would be generated by the same proto-
types used for training. Secondly, it allows to quantify
the ability of the model to extract essential features of
the data related to the external stimuli. This is par-
ticularly relevant during generalization. Evoked cortical
patterns in the gustatory cortex can be successfully de-
coded [48], [49], suggesting that some common features
of the data are preserved across stimulus presentations.
However, it is not clear how to extract these common
features. Previous efforts have analyzed the higher order
correlations of cortical spike trains in search for identi-
fiable features [TTHI5L 50], however the analysis of high-
order correlations and their relevance to pattern features
is a difficult task. It is important, and somewhat reas-
suring, that we can learn to extract the essential features
of spike patterns by reinforcement of correct decisions.
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D. Precision vs. recall

The performance of the model on relevant stimuli was
generally higher than on non-relevant stimuli, especially
with surrogate data. The tasks themselves were not sym-
metrical, since non-relevant stimuli must be simply ig-
nored and produce no reward. It is possible to improve
performance with non-relevant stimuli at the expense of
performance with relevant stimuli by choosing a differ-
ent cost/reward ratio. Our main goal, however, was to
demonstrate the ability to segment unknown relevant
stimuli. In order to learn, the agent must explore by
taking random actions, and acting during non-relevant
segments is a reasonable price to pay to discover the rel-
evant ones. In the language of pattern recognition, this
issue can be stated in terms of ‘precision’, the fraction
of relevant stimuli among those detected as relevant (i.e.,
true positives/(true positives+false positives), vs. ‘re-
call’, the fraction of relevant stimuli identified as such
(i.e., true positives/# of positives) [51} [52]. Lower per-
formance with non-relevant stimuli lowers the precision
while keeping the recall intact. We have basically priori-
tized the recall, i.e., the performance on relevant stimuli,
which is close to perfect in all our tasks. As learning
problems become more difficult, it is reassuring to know
that we may still attain a high recall at the cost of losing
precision, if necessary.

E. Comparison with previous work

Segmentation tasks are often solved by unsupervised
methods such as Hidden Markov Models (HMMs) [53],
which have been successfully applied to the segmentation
of cortical patterns of spike trains similar to those mod-
eled here [19, 47, [48] 54H56]. However, HMMs require
a-priori knowledge of the structure of the relevant stim-
uli (e.g., Poisson-HMM vs. Gaussian-HMM) and they
also require knowledge of the total number of relevant
stimuli (or hidden states, in HMM parlance). Although
non-parametric variations of HMM exist [57, [58], they are
based on recursive offline algorithms. Online procedures
to approximate the expectation-maximization steps re-
quired in HMM can learn to perform tasks based on the
temporal statistics of stimuli [59H62], but would not be
able to learn to segment a stream where the input spike
trains all have the same underlying firing rate, as is the
case of the spike timing code of Fig. 3d.

Our model also differs from the class of recurrent neu-
ral circuit models of decision making [2]. As most tradi-
tional models of decision making, these models require a
neural population encoding each input stimulus, whose
identity and timing are consequently known.

Similarly, in previous models of reward-modulated
learning by spiking neurons in continuous time [34], [35]
42, [63] [64], the relevant stimuli are known and need not
be inferred via segmentation of the input stream.

Previous work on detecting spatio-temporal spike pat-
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terns in continuous streams [65], 66], a task closer to
ours, has mostly used unsupervised learning, especially
through spike-timing-dependent plasticity (STDP). In
these approaches, the main focus has been on segmenta-
tion and representation rather than decisions; however,
it is possible that appropriate actions could be learned
by a separate system. For example, in Ref. [65] the
authors have used STDP to train a spiking network to
produce stimulus-specific firing patterns under a variety
of conditions. In this case, decisions could be learned
by a separate reinforcement learning system trained on
the stimulus-specific patterns. Since STDP is very sensi-
tive to spike-timing jitter [67], these methods have used
‘frozen’ spike patterns or only very limited spike timing
jitter in the stimuli, and presumably cannot handle firing
rate patterns.

Perhaps closest to our problem and approach is
“aggregate-label” learning [68]. In this approach, a neu-
ron or a small network are trained to respond to dif-
ferent stimuli with a different number of spikes to each,
with no a priori knowledge of which stimuli are relevant
and when they are being presented. Unlike our model,
aggregate-label learning is supervised or self-supervised,
using feedback on the total number of spikes required
in the current trial. This requirement, and the learn-
ing rule itself, seem less biologically plausible than our
model. On the other hand, aggregate-label learning can
solve a non-Markovian task, because the feedback is only
given at the end of a trial containing many stimulus pre-
sentations. This is currently beyond the reach of our
model, which perhaps could be extended along the lines
of Ref. [69], as discussed below.

F. Extensions

Our work can be extended in a number of directions.
One possible direction is to include non-stationary stim-
uli. In one example, spike patterns slowly appearing and
disappearing on top of a noisy background would have to
be detected and segmented according to action-relevance.
Different subsets of sensory neurons would encode differ-
ent stimuli, while the remaining neurons would repre-
sent streaming noise (different subsets for different stim-
uli). Preliminary computer experiments show encourag-
ing results, at least in the presence of 2-8 stimuli with
negligible coding overlap (not shown). Another possi-
ble direction is the extension to sequential decision tasks
[69], wherein actions and/or rewards are required only
after a sequence of relevant segments. In such a sce-
nario, decisions depend not just on current state but also
on previous history, and proper segmentation could lead
to context-dependent representations of relevant stimuli
(i.e., according to the sequence in which they are embed-
ded [70]). Neural representations of planning sequential
behavior are essential to many complex behaviors and
are related to concept learning and the representation of
abstract rules [5l, 28] [7TH75]. An extension of our frame-
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work to deal with more complex embeddings of stimuli
could potentially lead to context-dependent representa-
tions of relevant events or even abstract concepts. A
comprehensive investigation of these directions is left for
future studies.

IV. METHODS

A. The network model

Task and network architecture. The model net-
work comprised Ng.. populations of spiking neurons re-
ceiving input spike trains via plastic synapses (Fig. )7
with Nge. varying from 1 to 4 (see Table for all pa-
rameter values). Unless stated otherwise, each decision
population comprised N = 50, 100, 150 or 200 neurons in
tasks with Nge. = 1, 2,3 or 4 decision classes, respec-
tively, and received N; = 50 input spike trains. Except
in the study of reduced connectivity (Fig. , all in-
put spike trains projected to all decisions neurons. Each
population p coded for a specific decision and initiated
the corresponding action whenever a running measure of
population spike rate P! (defined below) crossed a deci-
sion threshold ©p = 200 spikes/s (the same for all pop-
ulations). As long as all population scores were below
threshold, no decisions were taken and no feedback was
given to the agent.

Stimuli were continuously presented to the agent as
streaming spatio-temporal patterns of spike trains, and
were divided into relevant and non-relevant stimuli (de-
tails in Section “Stimuli and computer experiments” be-
low). Each relevant stimulus was associated with a cor-
rect decision, one among the Ng.. possible decisions.
Thirty millisecond after a decision occurred, the stimulus
was removed and rewarding feedback was given. Every
decision (whether correct or incorrect) incurred a small
cost (R = —0.1) to deter the agent from continuously tak-
ing actions; positive reward (R = 1) was given only for
a correct decision in the presence of a relevant stimulus
(netting a total reward of R = 0.9). In the (rare) case of
multiple populations reaching threshold simultaneously,
only one was selected pseudorandomly as the population
responsible for the decision.

The model and simulation parameters are summarized
in Table [S21

Population scores and decision dynamics. A nat-
ural measure of ongoing population activity is the spike
count rate,

rh(t) =) o(s —ty), (1)
k

where t/ are the times of the spikes emitted up to time
t by neurons of population u, and §(t) is Dirac’s delta
function. To compute this quantity during the presen-
tation of a stimulus, the learning agent would need to
know when a stimulus starts and ends. To avoid this,
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r#(t) was approximated by a low-pass filter

Py ’
TP~ =~ P! +zkja(s—tg), (2)

with time constant 7p = 500 ms matched to the stimulus
durations (different 7p values between 50 and 2,000 ms
affected the learning curves but did not prevent learning).
Eq. [2| defines the online ‘population score’ P¥, which is
responsible for initiating a decision. A decision was said
to have occurred at the first time t4 such that P#(tg) >
Op for some population y, and at time t}; = t4 + 30ms
all population scores P! were reset to zero. The 30 ms
delay between the decision and the reset adds biological
realism while allowing a confidence signal to build up, as
follows. At time t}; following a decision by population p,
a feedback on the decision is given to all neurons in the
population through the quantity P* obeying

dP”
dt

Pi(t3) — O
50) )
3)
with 7, = 50 ms and 159, p» = 0 except for 50 ms after ¢},
when it is set to either +1 or to —1, depending on whether
or not the population p was responsible for the current
decision. The driving term P# has a double role: its
magnitude can represent the population’s own confidence
in the decision at time ¢}, and as such it was used to
attenuate learning (details in Sec. ; its sign was used
to build an individualized reward signal as proposed in

(see Eq. [13).

Tp

_ _pﬁ + ]150’Du exp (— <

B. The neuron model

The decision neurons producing scores P* were mod-
eled as spiking neuron models driven by post-synaptic
potentials and having a probabilistic threshold for spike
emission [76]. Specifically, neuron v was defined by mem-
brane potential u” obeying

E e Tm

treyv

o(t—t"),

(4)

u” (t|X) = umst—l—Zw PSP;(t,X)—
i

J

d 0 yv v
@87; w(Y7X) = (Zét—t

treyv

Since the synapses do not know the onset and offset
times of the stimuli, we replace the temporal derivative
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where: .5t = —1 is the resting potential (in arbitrary
units); wY is the synaptic weight connecting neuron v
to its presynaptic neuron ¢; X = {X;,Xs,..., Xy} is
the collection of the M presynaptic input spike trains,
where X; = {tgl), t(;), . ,tgf)} are the spike times of the
it" spike train; PSP;(t,X) is the postsynaptic potential
due to the input spike train X;,

PSP(t,X) = > 1
seX; Tm
with 7,,, = 10 ms being the membrane time constant of

the neuron; Y is the output spike train (comprising spike
times t); and ©() is the Heaviside function (O(¢) = 1
for t > 0, and ©(¢t) = 0 otherwise). A neuron with
membrane potential u in a short time bin dt emitted a
spike with probability

o(u)dt

Here, 8 = 5 controls the stochasticity of spike emission
whereas A, the firing rate at v = 0, has an additive or
subtractive effect on spike probability, i.e., changes in A
shift ¢(w) rightwards or leftwards. A was slowly modified
during learning to help keep the decision populations’
activities near the decision threshold (see Eq. .

Given input spike pattern X lasting from 0 to ¢, the
log-likelihood that a decision neuron produces the output
spike train Y is [70]

> Ing(u(t”)) /dtqb (7)

treyv

Ot — ), (5)

= \ePudt. (6)

Lo (YV]X) =

C. The learning rule

The learning rule was designed to maximize a measure
of reward during the fully online learning scenario de-
scribed in the main text. The starting point is the online
learning rule performing stochastic gradient ascent in the
average reward, which requires the temporal derivative of
the gradient of the log-likelihood L+ [6]:

dwY d 0

i g g P (V). )

where R, is the reward at time ¢. From Eqgs. [ [6] [7] we
get

— o(u (t))> PSFi(t,X). (9)

(

of the gradient with a low-pass filter,

'1/_ v d a v
TMmE} E! +dt8 v Lw(Y?X), (10)
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where 73y = 500 ms.
synapse wy .

With these quantities in hand, an online learning rule
performing gradient ascent in the average reward would
read

EY is called ‘eligibility trace’ of

dwy

dt

=nkE; (11)

where 7 is the learning rate and Ry is the reward at time
t. However, to alleviate the spatial credit assignment
problem, we follow [6] and replace the global reward with
an individualized reward signal r that equals 1 if neuron
v took the right decision, and equals —1 otherwise (see
subsection ‘Individualized reward’ below for its biological
implementation). Specifically, we used the learning rule

dw?
dt

= 1| Rela(PL)(r" = 1)EY, (12)

for each synapse onto postsynaptic neuron v belonging
to population u responsible for the current decision. Al-
though this learning rule can be applied to all synapses,
regardless of whether or not their post-synaptic neurons
were responsible for the decision, we found it sufficient to
apply it only to the latter. The factor a(P*) is an atten-
uation factor equal to 1 (no attenuation) for an incorrect
decision (R < 0) and equal to |]5“| for a correct decision
(R, > 0), with P* given by Eq. 3| Since R, is different
from zero only around a decision time (when reward is
given; see subsection ‘Individualized reward’ below), the
factor |R;| confines the synaptic update to a temporal
window around reward delivery. In all numerical experi-
ments reported here, n = 10 ms (note that EY has units
of 1/ms?).

Before describing each term of the learning rule in de-
tail, we make two observations:

(i) In the case of episodic learning with spike/no spike
coding, where decisions are binary and based on a ma-
jority rule in a single population, the learning rule Eq.
performs stochastic gradient ascent in a monotonic func-
tion of reward and population activity, as proved in [6].
The need to introduce the individualized reward signal
r¥ in this rule arises because otherwise learning wors-
ens as the population size increases [6]. Instead, learning
through Eq.[12]speeds up with population size, as demon-
strated in [6] for more standard tasks and in this work
(Fig. Bf) for the combined segmentation/decision-making
task.

(ii) The right hand side of Eq. |§| contains the product
of a postsynaptic term (the difference between the actual
firing rate >, 6(t —t”) and the average firing rate ¢(u")
of neuron v), and a term reflecting presynaptic input (the
postsynaptic potential PSP;). Together with the reward-
dependent term in Eq. the latter is a three-factor
synaptic plasticity rule as found e.g. in cortico-striatal
synapses, a major locus for reinforcement learning [77].

Learning attenuation. According to Eq. only
the synapses targeting neurons voting for the wrong de-
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cision (r¥ = —1) are updated after a decision. The de-
cision itself may be correct or incorrect. The update is
full in case of an incorrect decision and attenuated by a
factor | PH| ~ e~ (P(t)=60)*/O% (see Eq. [3) in case of a
correct decision. The rationale for this choice is the fol-
lowing: if P! is large or small compared to © p soon after
a correct decision, the population is highly confident of
its vote and no further learning is required (and indeed
in this case a(P*) = |P*| ~ 0 in Eq. ; otherwise,
if P#(t%) ~ ©p, the population is maximally undecided
about the current decision, and full learning is required
(a(PH) = 1).

Individualized reward. The individualized reward
signal could be made available locally at each synapse
by broadcasting feedback from the population activity
via three neuromodulatory signals: 1) P* (representing
the deviation from equilibrium of the concentration of a
neurotransmitter such as acetylcholine or serotonin), 2)
each neuron’s own activity Sy (e.g., through intracellular
calcium transients), and 3) the global reward feedback R,
(e.g., through extracellular dopamine). Using these three
signals, an online estimate of the individualized reward
signal for the ' neuron in population j, to be used in
Eq. was computed as

¥ = sign(Ry P*(SY — 0s)), (13)

where 65 = e~ is a threshold for S¥ (see below). The
reward signal R, was a low-pass filter of the global reward
R, transiently driven by R for 50 ms after each decision
time ¢}, and then decaying to zero exponentially with
time constant of 10 ms. S} tracks the neuron’s spiking
activity and was given by

sz—S—Jr 1-8Y) Zét—t” (14)

where the {t¥} are the neuron’s output spike times, and
7s = 500 ms. If, for example, the decision was correct
(R¢ > 0) and population u was above threshold (P > 0),
the neurons of the population which had been sufficiently
active (S” > 6g) had voted for the correct decision, hence
for them r” = 1, whereas those neurons that had not been
active (S < 0g) had voted against the correct decision,
and for them r¥ = —1. One can similarly work out all
other possible scenarios and confirm that the Eq. in-
deed provides the correct feedback in each case. In the
simpler case where the learning rule is applied only to
synapses onto neurons responsible for the decision (as
done here), ]55” is always positive and individualized re-
ward is driven by the covariation of reward and the posy-
synaptic neuron’s own activity.

The parameters 7¢ and g were chosen with the fol-
lowing rationale [6]. If the time constant 7g is equal to
stimulus duration, then one or more spikes occurring in
response to a stimulus yield a memory trace satisfying
SY > e~! at stimulus ending. Since reward R; peaks
some short time later, we used a smaller fg = e~ 1-1.
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Homeostatic mechanism. Neurons’ activities were
kept close to the decision threshold via a homeostatic
mechanism. This was implemented via the update of
the parameter X in Eq. [] controlling the neurons’ spike
probabilities. Specifically, for every neuron in population
W, A = A\ was changed according to

M~ M +q(0p — f1), (15)

where f{' is a running average of the population spike
count rate similar to P# (Eq. but without post-
decision reset and a with much longer time constant (4
seconds). The update rate 7 was 0.01 in all computer
experiments. The update Eq. |15 occurred at random in-
tervals distributed according to a uniform distribution
between zero and 2 seconds. In between updates, A
was kept fixed not to interfere with learning the weights.
AP was constrained to be positive and was the same for
all neurons in population p. Other update schedules gave
similar results and in general the mechanism was very ro-
bust to the mean length of the interval between updates
or the interval length distribution, see Fig. [S6] Mean
inter-update times as short as 50 ms also led to success-
ful learning (Fig. . Deterministic schedules wherein
A was updated at regular intervals (or every fixed num-
ber of presentations) worked just as well, however they
require knowledge of the time (or the number of stimu-
lus presentations) elapsed since the last update, and were
dismissed as less biologically plausible. This homeostatic
mechanism is beneficial because, as learning modifies the
weights, it also induces changes in population activity.
These may occasionally produce very low activity in some
populations, resulting in lack of decisions for those popu-
lations. When this occurs, the agent is trapped in a local
maximum of the average reward, and learning practically
stops for that population. In such a case, the homeostatic
mechanism slowly increases the firing probability in sin-
gle neurons until the desired population activity level is
restored and decisions are again possible.

D. Stimuli and computer experiments

Main stimuli. The stimuli were jittered versions of
prototypical spatiotemporal patterns of 50 Poisson spike
trains with constant firing rates sampled from a uniform
distribution between 2 and 24 spikes/s. In Fig. the
number of spike trains was varied from 25 to 200. Note
that the choice of a Poisson process is convenient but
not strictly necessary, i.e., other distributions could have
been used instead, including the empirical distribution of
cortical data [78 [79]. With the exception of Fig.[S4] all-
to-all connectivity between input spike trains and deci-
sion neurons was used. Each stimulus presentation lasted
for an average 500 ms (with small variations due to spike
times jittering, see below), except when removed early as
a consequence of a decision (learning was robust to vari-
ations in stimulus durations). Stimuli prototypes were
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initially generated and then, prior to each presentation,
temporal jitter was added to the spike times to produce
a noisy version of the prototypes. For each spike time
tsp, jitter was added by sampling from a Gaussian distri-
bution centered on ¢y, and having a standard deviation
of o = 10 ms (Fig. [Ib), unless specified otherwise to test
for robustness to larger values of jitter (Fig. . Stimuli
were presented as a continuous input stream while learn-
ing occurred online as described in previous sections. The
majority of the stimuli (a 3:1 ratio) were always defined
as ‘non-relevant’ and the agent had to learn to ignore
them not to incur the small cost attached to any deci-
sion (whether correct or incorrect; see Sec. . Differ-
ent ratios of relevant to non-relevant stimuli were used
to test robustness as shown in Fig. Contrary to stan-
dard reinforcement learning methods, decisions were not
enforced at stimulus offset. Thus, in the absence of deci-
sions, no learning would be possible.

Firing rate and spike-timing coding. For the re-
sults presented in Fig. 3, stimuli were encoded by either
firing rates only, or by spike timing only. In the former
case, the prototypes were generated as for the main stim-
uli, but at each new presentation the spike trains were
generated anew. This is akin to having a jitter in the
spike times covering the entire duration of the stimuli. In
spike-timing coding, the spikes trains of the prototypes
had all the same firing rate of 12 spikes/s; the spike times
were then jittered in time by ¢ = 10 or 100 ms before
each new presentation.

Stimuli with specified pair-wise correlations.
Spike trains with desired firing rates and pair-wise corre-
lations were generated by using the dichotomized Gaus-
sian model [I§]. The same distribution of firing rates
as for the main stimuli was used, with a desired pair-
wise correlation of 0.1, 0.3 or 0.5 (see Fig. for ex-
amples). One hundred training sets were generated for
each correlation level, and training proceeded as for the
main stimuli. In particular, each presented stimulus was
a jittered version of its prototype, with temporal jitter of
o =10 ms.

Learning stimuli from cortical datasets. Corti-
cal data were obtained from multi-electrode recordings
of single units as described in [20]. Briefly, Long-Evans
rats were trained to press a lever within two seconds of
hearing a pure tone to obtain one of 4 tastes delivered
directly into their mouth through an intra-oral cannula
(this procedure allows high temporal resolution on stim-
ulus delivery). Tastes and concentrations were: 100 mM
sodium chloride, 100 mM sucrose, 100 mM citric acid,
and 1 mM quinine. Water (50 pl) was delivered to rinse
the mouth 5 seconds after the delivery of each tastant.
Unexpectedly to the rats, the same tastants would also
be passively delivered at random times during the exper-
iment. In each session, rats performed 7 trials with pas-
sively delivered stimuli, and 7 trials with expected stim-
uli, for a total of 28 passively delivered tastants and 28
expected tastants. Multiple single-unit recordings from
the primary gustatory cortex were collected while the rats
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performed the task. Neurons with firing rates lower than
2 spikes/s and neurons exhibiting a large peak around the
6-10 Hz in the power spectrum of their spike trains, po-
tentially reflecting the motor response [49] [80, BI], were
excluded. The remaining 101 neurons would form the
patterns shown in Fig. [ph and were used to generate the
stimulus prototypes as follows.

To obtain each training set, we randomly sampled 50
(different) input neurons out of the 101 cortical neurons
(see Fig.[5b). To build relevant stimuli, we took the data
falling in a temporal window between zero and 1 s after
the passive delivery of a tastant; for non relevant stimuli,
we took data falling in a 1 s window ending 1 second be-
fore the passive delivery of a tastant (during the so-called
‘ongoing activity’, [I9]). Due to long and random inter-
trial intervals following water rinse (averaging about 40s),
it is reasonable to assume that no residual trace of the
previous stimulus was present at the time of a new de-
livery. Hence, the data prior to stimulus delivery can be
considered non-stimulus related and therefore suitable to
represent non-relevant stimuli. As with the main stim-
uli, cortical stimuli had average duration of 500 ms, and
their spike times were jittered by 10 ms before each pre-
sentation. For each stimulus in each training set, we had
7 prototypes, corresponding to the 7 experimental trials
with a given tastant; the 7 prototypes were considered
as relevant stimuli of the same class (i.e., demanding the
same decision; two prototypes for sucrose are shown in
Fig. [5b). In each decision task of Fig. [bk, we used 1 rel-
evant segment for each class (say, sucrose and citric acid
from trial 1 for the binary decision task), and 3 times
as many non-relevant segments, built as described above
and randomly selected from the pool of all non-relevant
segments. We trained the model on 100 training sets; for
each new training set, we resampled the 50 input neurons
from the 101 cortical neurons and repeated the procedure
just described.

After training, we tested the ability of the model to
generalize to unseen stimuli of the same class. Specifi-
cally, for each training set, we had the agent perform the
same task, with plasticity switched off, using, as relevant
stimuli, unseen stimuli from trials 2 to 7 of the same class.
For example, if the training stimulus was in the class of
sucrose, we tested the model on sucrose prototypes not
used during training. These relevant segments were pit-
ted against unseen instances of non-relevant segments.
Each generalization test included 10 presentations per
stimulus. In the binary task with 6 relevant stimuli per
class (see the last row in Table , generalization was
tested on the single, remaining unseen stimulus, of each
class.

To establish the significance of the generalization per-
formance, we compared the latter against the perfor-
mance in a ‘control’ task where we used stimuli from a dif-
ferent class than the class used for training. For example,
if sucrose and citric acid had been used for training in the
binary decision task, sodium chloride and quinine were
used for testing. For the 4-way decision task, in which
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all classes had been used for training, unseen instances of
class 2, 3 and 4 were used as instances of class 1; unseen
stimuli of class 1, 3 and 4 were used for class 2, and so
on. Note that not only these stimuli had not been used
during training, but they had been obtained in response
to different tastants during the experiments. Therefore,
performance in the control task was taken as a proxy for
chance performance on unseen stimuli. The generaliza-
tion performance across 100 validation sets (one for each
training set) was compared with the performance in the
corresponding control task using a Mann-Whitney U test
(Table [ST).

Computer experiments. Learning experiments
were run in Matlab using custom computer code. A
first-order Euler scheme was used for the numerical inte-
gration of differential equations with an elementary time
step dt = 0.2 ms (smaller values of dt had similar ef-
fects to increasing the learning rate and did not quali-
tatively modify our results; not shown). The membrane
potentials were initially set to their resting values. Initial
synaptic values were sampled from a Gaussian distribu-
tion with zero mean and standard deviation of 2. The
time course of learning performance (as shown e.g. in
Fig. |3) was quantified as the mean fraction f, of correct
decisions for relevant stimuli, and as the mean fraction
fanr of decisions taken in the presence of non-relevant
stimuli. Note that perfect performance is achieved when
fr=1and fgnr = 0. Both f,. and f4,, were averaged
across multiple training sets and then low-pass filtered
according to f, = (1 —0.01)f,_1 + 0.01f,, where f, is
the performance during stimulus exposure # n and f,
its running average up to exposure # n.

To ensure a fair comparison between learning curves
displayed in the same figure, the initial value of the pa-
rameter M\ in Eq. was selected so as to produce the
same initial rate of decisions in all learning problems.
This was particularly relevant when modifying the num-
ber of decision neurons (Fig. —c), the number of input
spike trains in each stimulus (Fig. 7 the level of input
connectivity (Fig. , or the amount of pair-wise corre-
lations (Fig. . The value of the learning rate, n = 10,
was kept the same across all tasks.
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Supplementary Figure 1: sparse stimulus embedding

1000

performance

0 500 1000 1500 2000
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FIG. S1. Average learning curves for varying numbers of stimuli and varying ratios of non-relevant to relevant stimuli in the
binary decision task (same keys as Fig. Bb). We trained the model with 16 (red), 24 (green) and 32 stimuli (purple). In each
case, 4 stimuli were relevant (2 stimuli in each decision class), giving rise to 4:1, 6:1 and 8:1 ratios of non-relevant to relevant
stimuli. The case with 8 stimuli of which 2 relevant is the same as shown in blue in Fig. and is shown here for comparison
(blue curves). Performance slightly decreased as the number of stimuli increased, but was high in all cases. We used N = 100
decision neurons except in the case of 32 stimuli (purple), where N = 200 decision neurons were used to boost performance.
Mean performance with relevant stimuli raised from 85% when N = 100 to 94% with N = 200; no difference was found for
non-relevant stimuli. Performance was computed in the last 1% trials of each training session and then averaged across 100
training sets for each task. Notice the faster initial learning speed with N = 200 due to a larger population size despite a
greater number of stimuli (see Fig. ) Inset: Dotplots of learning thresholds for each task, with: ‘2/8 = 2 relevant stimuli
out of 8; ‘4/16” = 4 relevant stimuli out of 16; and so on. Learning thresholds were reached in 100, 96,88 and 83 training sets
out of 100 for the task with 8,16,24 and 32 stimuli, respectively.


https://doi.org/10.1101/2020.12.22.424037
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.22.424037; this version posted October 14, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license. 18

Supplementary Figure 2: robustness to spike time jitter
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FIG. S2. Learning curves for varying jitter in the spike times of the input spike trains for the main binary decision task of
Fig. (same keys as Fig. ) Shown are the learning curves for a level of jitter o = 10 ms (the main stimuli; here in blue), 100
(red), 200 (green) and firing rate coding (magenta). In firing rate coding, the spike times were generated anew at each stimulus
presentation, mimicking jitter covering the entire stimulus duration. In each case we averaged across 100 learning curves except
for firing rate coding where we averaged across 200 learning curves (magenta). Inset: Dotplots of learning thresholds for each
task, with: 10, 100 and 200 being the value of o in ms. Learning thresholds were always reached for o < 200 ms, and were
reached in 65% of the training sets in the firing rate coding case. These results show that the model is tolerant to a high level
of jitter in the spike times, including jitter extending over the entire duration of the stimuli. Note that 10 ms jitter and firing
rate coding are, respectively, the easiest and the most difficult tasks, and therefore their learning curves (blue and magenta)
bound the learning curves obtained at intermediate levels of jitter.


https://doi.org/10.1101/2020.12.22.424037
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.22.424037; this version posted October 14, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license. 19

Supplementary Figure 3: robustness to stimulus dimensionality
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FIG. S3. Learning curves for varying numbers of presynaptic spike trains for the main binary decision task of Fig. (same
keys as Fig. Bb). We used 25 (blue), 50 (red), 100 (green) and 200 (magenta) input spike trains and mean learning curves
averaged across 100 training sets in each case. The initial value of the spike probability A (see Methods, Eq. @ was selected
so as to produce an equal initial rate of decisions as the number of input spike trains varied. Final performance with relevant
stimuli was high even with only 25 input spike trains, and overall learning performance improved with stimulus dimensionality.
Inset: Dotplots of learning thresholds for each learning problem, with labels representing the number of input spike trains.
Learning thresholds were reached for all training sets.
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Supplementary Figure 4: robustness to reduced connectivity
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FIG. S4. Learning curves for varying levels of input connectivity (average fraction of synaptic connections between input spike
trains and decision neurons) for the main binary decision task of Fig. (same keys as Fig. ) Connectivity values were
80% (blue), 50% (red) and 30% (green). The curve with full connectivity (blue curve in Fig. [Bp) almost completely overlapped
with the curve with 80% connectivity (not shown). To reduce the level of connectivity from 100% to ¢% < 100%, we removed
a uniformly random fraction of (100 — ¢)/100 synaptic projections to the decision neurons from the 50 input spike trains. This
was done independently for each prototype before training started and was then kept fixed during training in each training set.
Different randomly chosen synapses were removed in different training sets. The initial value of the spike probability A (see
Methods, Eq. @ was selected so as to produce an equal initial rate of decisions as connectivity varied. Decision performance
after training was high also when input connectivity was sparse. Inset: Dotplots of learning thresholds (labels represent levels
of input connectivity). Learning thresholds were reached for all training sets.
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Supplementary Figure 5: performance with correlated stimuli
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FIG. S5. Stimuli and learning curves for the main binary decision task of Fig. with correlated input stimuli. a, b, c)
Examples of correlated stimuli with pair-wise correlation p = 0.1,0.3,0.5, respectively, and firing rates uniformly distributed
between 2 and 24 spikes/s (same as for the main stimuli). The spike trains were generated with the method of the dichotomized
Gaussian model [I§] (see Methods). d) Average learning curves with correlated stimuli with p = 0.1 (blue), p = 0.3 (red) and

p = 0.5 (green) for the task with 2 decisions and 2 relevant stimuli out of 8 (same keys as Fig. ) For each value of p, 24

prototypes were generated and on each of 100 training sets, 8 out of 24 prototypes were randomly selected to be the input
prototypes, jittered by 10ms on each presentation as done with the main stimuli. Inset: Dotplots of learning thresholds (labels
represent pair-wise correlation). Learning thresholds were reached for all training sets.
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Supplementary Figure 6: robustness of the homeostatic mechanism
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FIG. S6. Learning curves for different mean update times T" of the homeostatic mechanism in the 2-way decision task of Fig. [3b.
In each case, the update times for the spike probability (Eq. of the main text) were uniformly distributed between zero
and 2T. T was changed from T = 50 ms (magenta) to T'= 16 s (green), with 7" =1 s (blue) being the default value used in
all other computer experiments presented in this paper. Shorter mean intervals resulted in faster learning times for 1" down
to our default value of 1 s, however the performance at the end of training converged to the same level for all values of T'.
Learning with mean update times of 50 ms was slower than with 7' = 1 s, however, results could be improved by simultaneously
decreasing the magnitude of change by decreasing the value of 7 (Eq. of the main text). For example, if 77 was decreased to
0.001 from 0.01, both the learning speed and the statistics of the learning thresholds with 7" = 50 ms matched that obtained
with 7= 1 s and 77 = 0.01 (not shown). Alternative update schedules were also tested, based on: i) intervals drawn from a
Gaussian distribution, ii) constant intervals, or iii) updates occurring exactly every 32 stimulus presentations. These alternative
schedules also gave similar results (not shown), confirming the robustness of the homeostatic mechanism with regard to its
specific implementation and timing. Inset: Dotplots of learning thresholds for each experiment, with 7' (in seconds) reported
under each bar. Learning thresholds were reached for all training sets.
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Supplementary Table 1: performance and generalization with cortical datasets

D|P (Pa)| N training generalization control
rel. — non-rel. rel. — non-rel. rel. — non-rel.
mean(SD) — mean(SD) |mean(SD) — mean(SD)|mean(SD) — mean(SD)
2] 8 (2) [100 99(2) — 99(1) 48(21) — 98(3) 37(20) — 98(6)
12 (3) [150 98(4) — 96(2) 40(18) — 94(7) 34(11) — 94(7)
4] 16 (4) |200 97(5) — 93(4) 38(13) — 84(15) 21(10) — 83(14)
(2] 18 (12)[300]  933)—92(7) |  74(17)—94(10) |  54(12) —93(9) |

TABLE S1. Average performance for learning and generalization of the tasks with cortical data, where ‘D’ was the number of
decisions, P was the number of stimuli, P..; was the number of relevant stimuli, and ‘N’ was the number of decision neurons in
each population. The learning curves of tasks with (D, P) = (2,8), D = 3 and D = 4 are plotted in Fig. [5]of the main text. The
task with D = 2 and P = 18 was used to train on 6 stimuli per class and test on one unseen stimulus per class (see the main text
for details). ‘Training’: performance after training (over the last 1% portion of all stimulus presentations) across 100 training
sets, reported as mean + SD in percentage units. ‘Generalization’: generalization performance to unseen stimuli of the same
class across 100 validation sets, one for each training set used for ‘training’. Each generalization run covered 10 presentations
per stimulus, with learning and homeostasis disabled. ‘Control’: average performance across 100 sets on unseen stimuli of
different class, used as a measure of chance generalization performance (see Methods). Performance on unseen relevant stimuli
was significantly higher on stimuli of the same class (‘generalization’) compared to stimuli of different class (‘control’): p-values
were p < 0.0004 for (D, P) = (2,8), p < 0.015 for D =3, p < 1.7-1077 for D = 4, and p < 1.3 - 107! for (D, P) = (2,18)
(Mann-Whitney U test).
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Supplementary Table 2: model parameters

Network architecture and population activity

Nyee 1-4 (default: 2) number of decision populations
N 40-200 (default: 100) number of neurons in each decision population
N; 25-200 (default: 50) number of input spike trains
C | 30-100% (default: 100%) connectivity
©p 0.2 spikes/ms decision threshold for population score P}
TP 500 ms time constant of population score P* (Eq. 2)
Tp 50 ms time constant of population feedback P* (Eq. 3)
ty (ta + 30) ms time of P} reset after a decision (¢4 = decision time)
Tf 4s time constant of running average of population activity (f} in Eq. 15)
’ Neurons ‘
Urest -1 resting potential (a.u.)
Tm 10 ms membrane time constant
B8 5 steepness of spike probability function
Ao 0.004-0.04 spikes/ms initial value of A (firing rate at u = 0; Eq. 6)
7 0.01 learning rate for A (Eq. 15)
T 0-2s default range of uniformly distributed update times for A (Eq. 15)
Synapses and learning rule ‘
n 10 ms™* learning rate (Eq. 12)
™ 500 ms time constant of the eligibility trace E} (Eq. 10)
R 1 reward for correct decisions during interval [t}, ¢} + 50] ms
cost —0.1 cost of any decision during interval [t},t} 4+ 50] ms
TR 10 ms time constant of R, (= reward at time t)
Os e 1 threshold for Sy (= feedback of neuron’s activity; Eq. 13)
TS 500 ms time constant of S}y (= feedback of neuron’s activity; Eq. 13)
Stimuli ‘
N; 25-200 (default: 50) dimensionality
Tstim 500 ms average duration
T 2-24 spikes/s range of uniformly distributed firing rates
o |10-500 ms (default: 10 ms) temporal jitter in spike times
Tt 12 spikes/s single firing rate for spike-timing coding stimuli
p 0.1-0.5 pair-wise correlation of correlated stimuli
’ Computer simulations
dt 0.2 ms elementary time step
u(0) -1 initial value of membrane potentials
wi; (0) Gaussian(0,2) initial values of the synaptic weights

TABLE S2. Model and simulations parameters. Values are often reported as ranges (middle column); values reported as default

are the values used in most simulations.
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