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Abstract

Progressive striatal gene expression changes and epigenetic alterations are a prominent feature of
Huntington’s disease (HD), but the mechanistic basis remains poorly understood. Using chromatin
immunoprecipitation and sequencing (ChlP-seq), we show that the huntingtin protein (HTT) reproducibly
occupies specific locations in the mouse genome. Moreover, many genomic loci were differentially occupied by
HTT in striatal tissue from a homozygous knock-in mouse model of HD (B6.H(t?"""?""") when compared to
wildtype controls. Huntingtin ChiP-seq peaks were enriched in the coding regions of cell identity genes
important for striatal function, with many of these genes found to have reduced expression in the striata of HD
patients and mouse models, as well as reduced HTT occupancy in Htt?""?""" mice compared to controls.
Conversely, HTT ChlP-seq peaks were depleted near genes that are up-regulated in HD. ChIP-seq of bulk
striatal histone modifications, generated in parallel, revealed genotype-specific colocalization of HTT with
active chromatin marks (H3K4me3 and H3K27ac), and with enhancer of zeste homolog 2 (EZH2), a key
enzymatic component of the PRC2 complex. Near genes that are differentially regulated in HD, greater HTT

occupancy in HQ111/Q111

vs. wildtype mice was associated with increased EZH2 binding, increased histone H3
lysine 4 (H3K4me3), and decreased histone H3 lysine 27 (H3K27me3). Our study suggests that huntingtin-
chromatin interactions may play a direct role in organizing chromatin and promoting cell type-specific gene

expression, with loss of HTT occupancy predicting decreased gene expression in HD.

Keywords

huntington’s disease, huntingtin, chromatin, epigenetics

Introduction

Huntington’s disease (HD) is a fatal dominant neurodegenerative disease caused by expansion of a

glutamine-coding (polyQ) CAG tract near the 5’ end of the Huntingtin (HTT) gene[1]. Clinical symptoms include
2


https://paperpile.com/c/73ovlD/h0sJS
https://doi.org/10.1101/2020.06.04.132571
http://creativecommons.org/licenses/by-nc-nd/4.0/

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

(WK W ot CErTed By ey Faww) S T aLOTLNGEE who hab oranted BIOROI & REGhoa 1o Pl The praptt it perpewty. e made
available under aCC-BY-NC-ND 4.0 International license.
deficits in motor control and cognition, as well as psychiatric symptoms. HD progression is linked to the
selective death of spiny projection neurons (SPNs) in the striatum[2]. Transcriptional[3] and epigenomic[4—7]
dysregulation are among the earliest phenotypes in cells and tissues expressing mutant HTT protein (mHTT)
and are highly reproducible in brain tissue from humans with HD[8-10]. However, the molecular mechanisms
by which mHTT mediates these transcriptional changes are poorly understood.

A straightforward hypothesis is that HTT directly contributes to transcriptional dysregulation in HD
through interactions with chromatin-bound DNA. In the cell, HTT protein dynamically shuttles between the
cytoplasm and nucleus[11]. Mis-localization of mHTT to the nucleus is an early phenotype in HD animal
models, roughly coincident with the onset of transcriptional changes, and is a critical driver of mMHTT-mediated
neuronal death, both in vitro and in mouse models[11-13]. To date, specific interactions of HTT with chromatin
remain obscure, but they are supported by several lines of indirect evidence: (i) chromatin immunoprecipitation
indicates that HTT affiliates with chromatin DNA[14]; (ii) the HTT protein contains a series of HEAT domains,
which are capable of serving as DNA binding domains[15]; and (iii) HTT forms direct protein-protein
interactions with a variety of transcriptional regulatory proteins in the nucleus, including transcription factors
(TFs) and chromatin remodeling factors[16]. Perhaps the best understood of such interactions involve
chromatin remodeling complexes that mediate gene repression and heterochromatin formation. HTT binds in a
polyQ-length sensitive manner to polycomb repressive complex 2 (PRC2), the chromatin remodeling complex
responsible for trimethylation of lysine 27 on the histone 3 tail (H3K27me3), a repressive mark associated with
bi-valent, or poised chromatin regions that are critical to developmental fate commitment[17]. Ablation of PRC2
in SPNs reproduces several of the cellular phenotypes in HD, including aberrant de-repression of transcripts
that code for developmentally regulated transcription factors, loss of SPN identity gene expression, and
prolonged cell death[18]. We[19] and others[4,10] have observed that a common transcriptional feature of HD
is a reduction of cell-type appropriate gene expression, providing additional impetus to understand changes in
PRC2 function in HD, given its key role in the regulation of cell fate[20].

To investigate the hypothesis that HTT occupies specific locations on chromatin DNA, we performed
chromatin immunoprecipitation and deep sequencing (ChlP-seq) to map HTT genomic occupancy in striatal
tissue from the Ht<""?""" knock-in mouse model of the HD mutation and in wildtype Htt"* controls. We

analyzed these data together with publicly available RNA-seq and with newly generated ChlP-seq of the
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histone modifications H3K27me3, H3K9me3 and H3K4me3, and the PRC2 histone methyltransferase effector
subunit EZH2, generated in parallel from the striatum of age-matched of Htt%'""* mice. We describe thousands
of reproducible HTT ChlIP-seq peaks, both in Htt"* and Htt?"""?""" mice, and observe robust genotype-specific
patterns of occupancy, which are correlated with epigenetic and transcriptional changes seen in HD. These

results provide, for the first time, a genome-wide map of HTT genomic occupancy and suggest that altered

transcription in HD arises, in part, via alterations in direct HT T-chromatin interactions.

Results

HTT Reproducibly Occupies Thousands of Locations in the Mouse Genome

We set out to map the genomic occupancy of HTT and assess its relationship to HD mutations in the
striatum of Htt?"""""" and wildtype mice. Htt?'"" is a well-characterized, genetically precise knock-in mouse
model of a mutation associated with juvenile-onset HD, in which a human allele of HTT exon 1 with
approximately 111 glutamine-encoding CAG repeats has been inserted into the endogenous mouse Hit locus.
For maximal fidelity to genetics of human HD patients, most studies utilize heterozygous Htt?"""* mice.

However, for HTT ChIP-seq experiments homozygous HftQ"""Q111

mice are preferred to avoid the confound of
two isoforms of HTT being present in each sample. HD is inherited in a fully dominant fashion, and HD patients
with compound heterozygous HD mutations generally experience symptoms equivalent to heterozygous
patients with a single mutant allele. Likewise, the progression of disease-related phenotypes is comparable in
heterozygous Htt?"""* mice and Htt?""”?""" homozygotes, with four months of age representing an early time
point. At this age, we[8,21] and others[10] have detected hundreds of differentially expressed genes in striatal
tissue and misfolded HTT isoforms in the nuclei of many striatal SPNs from Htt?"""* mice, but there is not yet
any discernible striatal cell death or glial proliferation[21]. Chromatin immunoprecipitation and deep sequencing
(ChIP-seq) was performed using striatal tissue from four-month-old Htt?"'"/?""" and wildtype mice, using a well-

validated antibody, EPR5526[22], which recognizes an N-terminal epitope of the HTT protein with no known

differences in affinity for wildtype vs. mutant HTT isoforms. We sequenced three biological replicates from
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HitQ""Q11T mice and three from Hitt”* mice, with each biological replicate consisting of pooled striata from three
mice (Fig. 1A).

Initial inspection suggested that HTT occupies broad domains along chromatin DNA (e.g. Fig. 1C-D).
We conducted peak-calling using MACS[23] in broad peak mode, which revealed 9,656 reproducible peaks, of
which 9,624 peaks were not overlapping blacklisted regions and 4,900 peaks were conditionally reproducible,
i.e. identified independently in at least two biological replicates from each genotype (Fig. 1B; Tables S1 and
S2). Reproducible HTT peaks (HTT, mHTT, and shared) were found in both genic and intergenic regions: 0.1%
in the 5 UTR, 31% within 3kb upstream of TSS, 1.1% in the first exon, 3.6% in other exons, 10.7% in the first
intron, 28.1% in other introns, 4.4% in the 3’ UTR, with 20.8% < 300kb downstream or in distal intergenic
regions (Fig. 4A). A HTT-sequence-specific control experiment supports the hypothesis that these regions
accurately reflect HTT occupancy rather than non-specific signals. Namely, we observe fewer HTT ChIP-seq
peaks in brain tissue from mice treated with an antisense oligonucleotide (ASO) to reduce HTT levels in the
brain (Fig. S1).

Robust HTT peaks were found within 1 Mb of 2,628 protein-coding genes. Importantly, most genes do
not contain HTT binding sites, suggesting that HTT occupancy in the vicinity of a given gene may reflect a
specific regulatory role limited to this subset of genes, rather than promiscuous binding to every gene. Manual
examination of the HTT peaks in gene bodies shows greater HTT occupancy near the 3’ end of the coding
region, rather than binding as a sharp peak in a promoter or enhancer, as would be expected if HTT acts as a
transcription factor[14]. Genes with this HTT occupancy pattern include canonical markers for SPNs such as

Ppp1r1b (DARPP32) and Pde10a (Fig. 1C-D), which has previously been shown to have altered chromatin

conformation in HttQ"#%Q"0 striatum(7].
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Figure 1: Reproducible huntingtin ChIP-seq peak profiles in 4-month-old Htt”* and Htt?"""?""" mice. A)
Schematic of experiment. B) Venn diagram depicting the number Htt"*-specific, Htt?'"?"""_gpecific, and
shared HTT peaks reproducible at FDR < 0.01 in at least 2 biological replicates from each genotype. C-D)

Normalized genomic coverage at representative HTT ChIP-Seq peaks in Hit"* mice (peach) and HftQ"""Q1"1
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mice (blue), with Hit"”* input control sample (gray). Chromosomal locations and Refseq genes (mouse

genome MM10) are indicated. Genes upstream of Pde10a in D) have been omitted for labeling clarity.

Differential Occupancy in HttQ""/ Q11T mijce

tQ111/Q111

Next, we quantified HTT occupancy in Ht vs. wildtype mice using Di f fBind[25]. We found 244

tQ111/Q111

peaks with significantly lower occupancy in Ht compared to wildtype mice, and 4 peaks with higher

occupancy in Htt?"""""" mice (FDR < 0.1; Fig. 2A; Supplementary Table S3), suggesting a bias towards

tQ111/Q111 tQ111/Q111

reduced occupancy in Hf samples. Notably, genes with nearby reduced peak occupancy in Ht
striata include important SPN identity genes - many with robust HTT ChIP-seq signal across the coding region
- such as Pde10a and Rgs9 (Fig. 2A). To more formally establish the gene sets associated with genes near
Dif fBind-nominated peaks, we assigned peaks to the nearest annotated gene if they overlapped the TSS (-
1kb to +100bp), TTS (-100 bp to +1kb), exon, intronic, or intergenic regions (1kb to 1Mb), and conducted

Q11111 mice relative

enrichment analyses using enrichR[26]. Genes near HTT peaks that are reduced in H
to Hit"* mice were more likely to be markers of striatal identity, as cataloged by the Mouse Gene Atlas[27] (Fig.
2B; Supplementary Table S4). No such enrichments were found for genes near HTT peaks that are higher in

the HttQ"""?""" mice relative to Hit”* mice (data not shown). Next, we investigated enrichments in a collection of

2,579 manually curated HD-relevant transcriptional signatures from the Huntington’s Disease Molecular

Signatures Database (HDSigDB; https://hdsigdb.hdinhd.org/, 2021 mouse version). Genes near HTT peaks

with decreased occupancy in Htt?""?""" mice were markedly enriched amongst many gene sets from HD
mouse studies (Fig. 2C). Most notably, these included genes that are downregulated in the striata of preclinical
HD mouse models. These data suggest a pattern of reduced HTT genomic occupancy near SPN identity

genes that are transcriptionally downregulated in the striatum across HD model systems.
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Figure 2: Differential chromatin binding by Huntingtin in Htt"* and Htt?"""?""" mice. A) Volcano plot
summarizes the results of the Di f fBind analysis — the X-axis indicates the fold change and the y-axis the
adjusted p-value. Di f fBind peaks for which the FDR is less than 0.05 and/or the absolute fold-change is >
0.26 are identified by the nearest gene symbol. Dif fBind peaks not matching those criteria are indicated
with gray dots. B) 244 genes with reduced peaks in the Ht?"""?""" mice (FDR < 0.1) were examined using
enrichR for enrichment amongst a number of different mouse tissues. The bar graph indicates the results
of these genes amongst mouse tissues with significant enrichments. Only the terms “dorsal striatum” and
“nucleus accumbens” meet the stringency threshold P.q < 0.05. C) Enrichment of Di f fBind nominated
peaks in HDSigDB gene sets reveals strikingly enriched sets, notably those that include genes which are

down-regulated in the striatum of HD mouse models.

Histone Methylation and EZH2 Occupancy in Htt?'""* Mice

To compare HTT occupancy and chromatin states of interest, we generated ChIP-seq of Histone H3
modifications associated with specific chromatin states: trimethylation of lysine 27 (H3K27me3), trimethylation
of lysine 9 (H3K9me3), trimethylation of lysine 4 (H3K4me3) and acetylation of lysine 27 (H3K27ac). These

marks are associated with active promoters (H3K4me3), active promoters and enhancers (H3K27ac),
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facultatively repressed promoters and enhancers (H3K27me3), and constitutively repressed regions
(H3K9me3). These experiments used striatal tissue from mice of the same age as the Htt?"""?""" animals used

27" mice to

in our HTT ChIP-seq experiments described above (N=3/genotype), but utilized heterozygous H.
enable matched comparisons to published gene expression datasets from heterozygous Htt?"""*
mice[8,10,21]. After library construction, sequencing, input normalization and peak calling, we identified 17672,
25315, 22304, and 27337 reproducible peaks for H3K4me3, H3K27me3, H3K9me3, and H3K27ac,
respectively. As expected, H3K4me3 was localized primarily at promoters, H3K27ac and H3K27me3 in
enhancers and promoters, and H3K9me3 in more distal regions (Fig. 4A). Using these data, we examined
differential methylation, acetylation or occupancy of each dataset in Htt%"""* vs. Htt"* samples. At FDR < 0.1,
there were no robust peak differences for H3K9me3, H3K4me3, or H3K27ac, suggesting that any genotypic
differences in these marks are subtle. However, we identified 42 H3K27me3 differentially methylated regions
(DMRs) at FDR < 0.1 (Supplementary Table S5; Fig. 3A). Notably, 41 of 42 H3K27me3 DMRs (98%) had
reduced levels of methylation in H#t"""* vs. Hit"*. At a more lenient p-value (P < 0.05), there were 2018
H3K27me3 DMRs, of which 1926 (96%) had reduced methylation in Htt?"""”* samples. These results suggest

that HD mutations lead to changes in H3K27 trimethylation in the 4-month-old Ht?"""*

striatum, including a
previously undescribed reduction in H3K27me3 levels in many genomic regions.

The reduction of H3K27me3 in Hit?"""* vs. Hitt** striata suggested a possible partial change of PRC2
function, the enzymatic complex responsible for “writing” the H3K27me3 mark[20]. We investigated the genes
proximal to H3K27me3 DMRs (p-value < 0.05) to gain insight into their potential biological consequences.
Functional annotation of H3K27me3 DMRs with GREAT [28] and Genekitr [29](Fig. 3B; Supplementary Table
S6) revealed that negative DMRs in Htt?"""* striata were enriched near genes that impinge on development
and morphogenesis (e.g. GO:0001822, Kidney Development, p.q = 4.4e-06), genes involved in synapse
formation and stability (e.g. GO:0007416, Synapse Assembly, p.q = 1.4e-10), and genes related to cognitive
processes (e.g. GO:0007611, Learning or Memory, paq = 5.3e-07). Genes associated with decreased
H3K27me3 levels were enriched for molecular functions at the synapse (Fig. 3C), including glutamate binding
(GO:0016595, pagi = 4.8e-04) and calcium channel activity (GO:0005262, paq = 9.7e-08). Assessment of

negative H3K27me3 DMRs for transcription factor-associated chromosomal localization using enrichR

indicated enrichment at known PRC2 target genes (i.e. those associated with PRC2 subunits EZH2 and
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SUZ12; Fig. 3D), many of which are involved in cell fate determination[30]. Notable examples of
developmentally important genes near negative H3K27me3 DMRs include the TFs Sox77 and Foxp2.
Therefore, mHTT expression in the striatum is associated with reduced H3K27me3 levels in the vicinity of
synaptic, as well as developmentally important genes, including transcription factors that are targets of the
PRC2 complex. To further explore this, we performed ChlP-seq of EZH2, the enzymatic component of PRC2

that is responsible for methylation of H3K27, in the striatum of four-month-old Htt?"""*

and wildtype mice (n =3
/ genotype), identifying 12388 reproducible peaks. Interestingly, this analysis revealed no differentially
occupied sites (Fig. 3A), suggesting that HD does not alter the localization of the EZH2-containing PRC2
complex itself at this age.

We next tested the hypothesis that HTT ChIP-seq peaks co-localize with histone modifications and
EZH2 (Fig. 3E; Supplementary Table S7). We found a striking overlap between our HTT peaks and EZH2
(log2FC = 3.2; pagi = 3.2e-05), H3K27ac (log2FC = 2.0; pagi = 3.2e-05), and H3K4me3 (log2FC = 2.6; paq = 3.2e-
05). We did not observe global overlap between constitutive heterochromatin marked by histone H3 lysine 9
trimethylation (H3K9me3; log2FC = -0.2; paqj = 0.41), and we observed a depletion of HTT peaks in H3K27me3
peak regions (log2FC = -1.5; pag = 3.2e-05). This apparent discrepancy between HTT peaks being enriched in

EZH2 regions, but depleted from H3K27me3 peak regions, may indicate differences in the association of HTT

with sites of active EZH2-containing PRC2 complexes versus stably methylated H3K27.
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Figure 3. ChiP-seq analysis reveals early changes in H3K27me3 near developmentally important
genes in Htt?"""* mice. A: Volcano plots summarizing differential histone modifications for H3K27me3,
H3K9me3 and H3K4me3 and differential occupancy for EZH2 in striatal tissue from four-month-old in
Hit"""* vs. Hit"* mice. The x-axis indicates the log.FC and the y-axis indicates the -logio(p-value) for the
comparison of peak read depth between genotypes. Regions with greater levels or occupancy in the Htt"*
mice are shown in blue, regions with greater levels or occupancy in the Htt?"""* mice are shown in pink/red.
The dashed horizontal line indicates an FDR of 0.1 and vertical lines are Log2FC = +/-0.26. B) Network
depiction of Gene Ontology Biological Processes enrichment near differentially methylated regions with
reduced H3K27me3 in Ht?"""* mice. C) Gene Ontology Molecular Function enrichment near differentially
methylated regions with reduced H3K27me3 in Hit?"""* mice. D) Enrichment of 495 genes in nominally
differentially methylated regions with reduced H3K27me3 in Htt?"""* mice (unadjusted p < 0.005) amongst a
consensus transcription factor/target gene databases (i.e. ENCODE and ChEA Consensus TFs from the
enrichR package). Robustly enriched transcription factor lists include: SUZ12 CHEA (93/1,684; paq =
8.3e13; EZH2 CHEA (19/237; paqi = 2.0e04); SMAD4 CHEA (27/584; paq = 2.6E02); REST CHEA (48/1,280;
Padi = 2.8€02). E) Enrichment of EZH2 and indicated chromatin mark ChlP-seq peaks (MACS FDR < 0.05) in
huntingtin ChlP-seq peak regions. Y-axis indicates the log-transformed fold change (enrichment or depletion)
in the number of overlapping base pairs compared to the average from 100,000 re-sampling permutations of

genomic coordinates. Plotting color indicates the p-value, derived from these same permutations.

HTT Binds Specific Chromatin Domains

To explore a role for HTT in gene regulation, we compared the locations of all 9624 HTT peaks we
observed to known genomic features using the ChIPseeker Bioconductor package[24]. HTT’s occupied
genomic regions differed substantially compared to the other marks (Fig. 4A), with a notable enrichment within
introns, consistent with HTT’s consistent coverage over coding regions of target genes. Considering the
abundance of all peaks relative to the transcriptional start site (TSS), huntingtin peaks were substantially less

enriched near the TSS compared to marks canonically associated with active transcription and open chromatin
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(H3K4me3, H3K27ac) and those of EZH2, which also occupied regions upstream of the TSS of target genes,
and less enriched in distal intergenic regions than H3K9me3 (Fig. 4B). HTT peaks had a distinct profile relative
to the TSS compared to each of the other mark examined (Fig. 4B), and of the marks surveyed here were the

only ones with increased signal near the transcription termination site (TTS; Fig. 4C).
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Figure 4. Huntingtin peaks occupy specific chromatin functional regions. A) Summary of genomic
regions occupied by huntingtin and other histone mark / EHZ2 occupancy peak sets generated in this study.
The percentage of peaks for each dataset are indicated on each vertical line, with boxes indicating the

percentage of that marks found in each of the categories indicated. B) Localization of peaks for the indicated
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chromatin-associated protein at binned distanced from an averaged transcriptional start site (TSS). C) Peak
count frequencies of genic ChlP-seq peaks across the normalized transcript length of all mouse transcripts.
The average peak count is indicated via the black bar, from 5’ (left) to 3’ (right). Genomic regions are
indicated as percentages, with 100% spanning from the TSS to the transcriptional termination site (TTS).
Shading indicates bootstrapped 95% confidence intervals calculated with resampling (ChIPSeeker

package).

HTT occupancy predicts effects gene expression in HD

The selective enrichment of HTT binding within regions of chromatin bearing marks associated with
active transcription (H3K4me3 and H3K27ac; Fig. 1E), and its depletion from a mark associated with
repressive transcription (H3K27me3; ibid) raised the possibility that HTT may directly contribute to HD-related
changes in gene expression. We mapped potential HTT target genes whose TSSs were located within +/- 20
kb of a HTT ChIP peak. Assigning regulatory elements to their target genes is inevitably inexact, but previous
work has shown that summing the regulatory elements within 20 kb of a TSS optimizes sensitivity and
specificity for detecting gene regulatory interactions[31]. Given HTT’s striking occupancy at specific genes (e.g.
Fig. 1C-D, Fig. 2), we considered whether it might more generally occupy regions near genes with disease-
relevant changes in gene expression. We first considered the simplest category of interest: genes that are up-
or down-regulated in the striatum of HD model mice, with a focus on the Htt?"""* striatum at 6 months of age,
taken from a larger allelic series study[10]. We find enrichment of HTT peaks (irrespective of peak category, or
“All Reproducible”) near genes that are downregulated in the striatum of 6-month-old Htt?"""* mice (Fig. 5A;
log2FC = 0.73, pagi = 1.4e-30) and depleted near genes that are up-regulated (Fig. 5A; log2FC = -0.33, pag =
5.3e-05). Expanding this analysis to differentially expressed genes in other mouse lines and timepoints from
the allelic series study reinforced our observation that HTT-occupied chromatin peaks are more likely to be
associated with down-regulated genes than up-regulated genes (Fig. 5B, Supplementary Table S8).

We next examined the enrichment of our HTT peaks amongst all manually curated gene sets cataloged
in the HDSigDB database (Fig. 5C, Supplementary Table S9). As with our Di f fBind-nominated peaks with
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differential binding in Htt?"""?""" versus Hit”* mice (Fig. 2), this analysis revealed a striking enrichment
amongst genes that are dysregulated in a number of studies, and particularly in striatal genes that are down-
regulated in HD (e.g. Fig. 5B). A particularly notable gene set is the “Striatum RNA M2 Module (blue)” from an
exhaustive molecular network characterization of an allelic series of HD knock-in mice[10]. This module of
genes is notable for being tightly correlated with CAG length and age in the striatum of mHTT-expressing mice
and contains many striatal identity genes. This suggests that our HTT peaks are markedly enriched amongst
striatum-expressed genes, including SPN identity genes which are down-regulated in HD. Given PRC2’s role
in regulating cell-specific gene expression and described interactions with HTT[17], we specifically focused on
PRC2-relevant gene sets in HDSigDB. Our shared HTT peaks, those found in both wildtype and Q111/Q111
mice, were strikingly enriched in bivalent genes whose expression is increased at 3- (Fig. 5C; Odds ratio =
16.7, FDR = 7.6e-05) and 6-months of age (Fig. 5C; Odds ratio = 6.2, FDR = 3.6e-03) in the striatum of mice
lacking PRC2 expression in SPNs (Ezh1”";Ezh27")[18]. This suggests that our peaks are near genes that are
both down-regulated in HD, and up-regulated in the context of PRC2 knockout, supporting the hypothesis that
HTT binding at a small set of bivalent genes may play an important role in gene dysregulation in HD.
Consistent with our own data (Fig. 3D), revealing a depletion of HTT peaks in H3K27me3 regions, our mutant-

specific HTT peaks were depleted near H3K27me3-enriched genes in purified SPNs (Fig. 5C; Odds ratio =

16.7, FDR = 7.6e-05)[18] .
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Figure 5. Genotype-specific HTT occupancy in genomic regions surrounding HD DEGs and other

CAG-sensitive gene sets of interest. A-B) Enrichment or depletion of HTT ChIP-seq peaks in the regions
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+/- 20 kb from the transcription start sites of up- and down-regulated differentially expressed genes (DEGs)
in the striatum of knock-in mouse models of HD mutations, based on RNA-seq from [10,46]. Y-axis indicates
fold enrichment of base pair overlap compared to the average from 100,000 re-sampling permutations. C)
Heatmap showing HDSigDB gene sets enriched in the regions +/- 20 kb of WT-specific, Q111-specific, and
Shared HTT ChIP-seq peaks. The plotting color indicates the -log1o(p-value) for the strength of the
enrichment, based on 100,000 re-sampling permutations. Rows are ordered by hierarchical clustering, based

on p-values.

Correlations Between HTT Binding and Epigenetic Features Near HD DEGs

We hypothesized that the negative correlation between HTT occupancy and HD-related gene
expression may be mediated by PRC2 and histone modifications. To investigate this, we integrated our data
on HTT occupancy, histone modifications, and transcription, focusing on the genomic regions proximal to
DEGs in 6-month-old Htt?"""* versus Htt%?** mice (Fig. 6A-C; Table S8 [10]). We defined intervals of interest
+/- 20 kb of the TSS of each HD DEG and calculated the fold change in Htt<"""?""" ys. Htt** mice for HTT,
H3K27me3, H3K4me3, and EZH2 occupancy within the same interval. Consistent with our hypothesis, the fold
changes in H3K27me3 were constitutively lower and negatively correlated with HTT occupancy near genes
differentially expressed in HD (Fig 6B; Spearman’s rho = -0.22; p = 1.3e-3). This suggests that Htt?"""* mice
have generally lower H3K27me3 levels near HD DEGs, and that increased HTT binding in a region is
associated with reduced H3K27me3 in the same interval. Conversely, in those same regions we observe
constitutively higher, and positively correlated, relationships across genotypes between HTT binding and
H3K4me3 (Fig 6C; Spearman’s rho = 0.27; p < 1e-300) and EZH2 (Fig. 6A; Spearman’s rho = 0.14; p = 1.5e-
2). That is, in Htt?"""* mice, near HD DEGs, levels of EZH2 occupancy and H3K4me3 were generally higher,
with increased HTT binding in that region associated with more EHZ2 occupancy and higher H3K4me3 levels

tQ111/+

in that same interval. Conversely, levels of H3K27me3 near HD DEGs were lower in Ht mice, and greater

local HTT binding predicts lower H3K27me3. Importantly, these relationships appeared to hold true both for

ttQ1 11/+

up- and down-regulated genes in H mice. Thus, concordant changes in PRC2 localization and histone
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methylation/demethylation may coincide with alterations in HTT occupancy in these regions in both Hft<"""*

and Htt"”* mice.
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Figure 6. Increased HTT occupancy is negatively associated with H3K27me3 and positively
associated with H3K4me3, near genes that are dysregulated in HD. Each plot indicates the fold change
of HTT occupancy in Htt?""?""" ys_ Hit"* mice (x-axis) compared to the fold change in the same regions for
EZH2 (A), H3K27me3 (B), and H3K4me3 (C) on the y-axis. Analysis is restricted to 263 HTT peaks located
+/- 20 kb from the TSSs of genes that are significantly up- or down-regulated in the striatum of six-month-old
knock-in mouse models of HD mutations. Each point represents a single HTT ChlP-seq peak. Point color
indicates the fold change in gene expression in the striatum of HD knock-in mice (up = yellow; down =

purple), and point size corresponds to the p-value for differential expression.

Discussion

This study was motivated by the question of whether transcriptional dysregulation in Huntington’s
disease could occur due to interactions between HTT and chromatin. Previously, we investigated whether
specific transcription factors demonstrated differential genomic occupancy and compared this with gene
expression changes in Htt?"""”* mice, finding that the transcription factor SMAD3 demonstrated differential
binding between wildtype and mutant mouse brain tissue[10,32]. This finding led us to ask what role the HTT

protein itself might play with regards to codified chromatin interactions.
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ChiIP-seq of the HTT protein reveals thousands of robust and reproducible sites of HTT genomic
occupancy in the mouse striatum, the brain region most vulnerable to HD pathology and in which the most
pronounced transcriptional dysregulation occurs. Many HTT peaks are enriched across the coding sequence of
genes of particular interest in HD, with a surprising enrichment near the 3’ end of many transcripts. We further
observed, for the first time, a reduction in the levels of H3K27me3 in the striatum of young Htt?"""* mice,
suggesting these changes represent a very early stage of chromatin alterations in the most vulnerable brain
region in HD, which experiences the greatest burden of transcriptional changes in HD. HTT peaks are enriched
near genes that are down-regulated in HD, and depleted near genes that are up-regulated, supporting a link
between these HTT:chromatin interactions and bi-directional gene expression changes in HD. An integrated
analysis of HTT binding and histone marks suggests that local HTT binding near HD DEGs is associated with
increased H3K4me3 and EZH2 binding, and reduced H3K27me3 levels.

HTT physically interacts with transcriptional regulatory proteins such as p53 and CREB-binding
protein[33]. In addition, previous ChIP-gPCR experiments with HTT antibodies suggested occupancy in
promoter regions of specific genes[14]. With the improved resolution of genome-wide ChIP-seq, we observed
thousands of robust HTT:chromatin interactions in a specific subset of genes. However, these HTT peaks are
not primarily localized to the promoters. Instead, distributions of HTT occupancy across genic regions were
more reminiscent of marks such as H3K36me3[34,35] and RNAPII Ser2[36,37] that are associated with
transcriptional elongation and enriched at the 3’ end of the gene, a pattern distinct from active marks such as
H3K4me3 that are more strongly associated with TSSs[38,39]. Thus, both the gene identity and pattern of HTT
binding in those genes argues for a specific, selective, role for HTT-chromatin interactions. This argument is
strengthened by the fact that the specific genes with robust HTT occupancy in the striatal tissue we profiled are
enriched for SPN identity genes which we [19], and others[10,19], have found to be strikingly downregulated in
HD.

Many genes with HTT peaks identified in our study are targets of the PRC2 complex, a critical regulator
of cell identity via regulation of the H3K27me3 mark near genes important for cell-fate commitment[20],
including in SPNs of the striatum[18], the most vulnerable brain region to HD pathology[2,18]. Direct
interactions between HTT and the PRC2 complex have been described, and HTT has been proposed to

directly enhance the activity of the enzymatic activity of the PRC2 complex[17]. The enrichment of HTT within
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well-annotated PRC2 target genes supports a role for HTT in regulating their expression, however, in the
aggregate, the occupancy patterns of EZH2 and HTT are quite distinct (Fig. 4A-C). And while, genome-wide,
we observe robust overlap between HTT and EZH2 peaks, we observe a depletion of HTT in H3K27me3 peak
regions (Fig. 3D), suggesting HTT is unlikely to occupy all chromatin-bound PRC2 complexes, nor remain
associated with facultative heterochromatin, once formed. Given its role in scaffolding functional protein-protein
interactions[17,40], and dynamic shuttling between the nucleus and cytoplasm[41], we hypothesize that HTT
may play a role in regulating the balance between active and repressed chromatin at select PRC2 target
genes.

Several potential mechanisms for HTT’s involvement in transcriptional regulation via the PRC2 complex
deserve attention in future studies. A functionally important role for interactions between HTT and the
repressor element 1 silencing transcription factor (REST), which plays important roles in repressing neuronal
gene expression in non-neuronal cells, have been described[42]. Namely, HTT and REST bind, and HTT aids
in confining REST to the cytoplasm, thereby preventing aberrant expression of REST target genes in non-
neuronal cells. Expression of mHTT results in the aberrant accumulation of REST in the nucleus, and
consequential dysregulation of REST-mediated signaling. With this background, we were intrigued with our
results demonstrating that regions with lower H3K27me3 in the striata of Htt?"""* mice are enriched in both
PRC2 and REST target genes (Fig. 3D), especially considering data suggesting that REST may be involved in
targeting PRC2 to specific loci[42,43]. Recently, a new pathway for regulation of PRC2 function via cytoplasmic
retention of embryonic ectoderm development (EED), a PRC2 subunit critical for formation of the complete
trimeric structure, has been described[44]. In post-mitotic myotubes, a short cytoplasmic form of PRC2 subunit
EZH1 (EZH1B) sequesters EED in the cytoplasm, preventing formation of the PRC2 complex at target genes in
the nucleus. Future work focused on understanding whether HTT plays a role in the regulation of PRC2
signaling via cytoplasmic sequestration of PRC2 subunits may be a fruitful area of investigation.

We complemented our HTT ChiIP-seq findings with ChlP-seq of histone modifications and EZH2
binding, which revealed reductions in H3K27me3 in the striatum of young Htt?"""* mice, similar to those seen
in Htt?** mice[7] and particularly near important striatal cell identity genes (e.g. Pde10a). Our differential
acetylation data do not recapitulate large-scale genotype-dependent changes in H3K27ac previously seen in

HD mouse model striatum, which could be due to our use of bulk tissue versus fluorescence-activated nuclear
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sorted neurons[7]. Further, while we do see association of HTT peaks with H3K27ac (Fig. 4E), HTT shows less
association than with EZH2 and H3K4me3, suggesting that HTT is likely not localized to super-enhancers but
instead to gene bodies (Fig. 3A). The observed reduction in H3K27me3 in Ht?"""* mice is consistent with a
hypothesis of PRC2 complex dysfunction and/or trafficking disruption occurring at the earliest stages of
progression in this model, though other chromatin modifiers could also play roles. The identified lower levels of
H3K27me3 seen in heterozygous polyQ HTT-expressing striatum and lack of changes in EZH2 occupancy in
particular may implicate H3K27-targeted histone demethylases such as KDM6A/UTX in epigenetic changes
observed in HD[45]. While correlational, our integrated analysis of HTT, EZH2 binding, and histone marks
suggests that increased HTT binding near HD DEGs in Ht?"""* mice predicts increased H3K4me3 and EZH2
binding, with reduced H3K27me3 at these same loci. We believe detailed mechanistic experiments focused on
elucidating the pathways linking these events could provide important new insights into HTT’s role in
transcriptional dysregulation in HD.

This study has several important limitations. Like all ChlP-seq studies, peak detection is sensitive to
background noise, antibody cross-reactivity, and other sources of bias. We have tried to control for this by
using a relatively large number of technical and biological replicates. Another consideration is the reliance on
antibodies, which limits us to establishing chromatin regions associated with specific epitopes of HTT. Future
work using phospho-specific antibodies, and other dynamic epitopes is likely to nominate additional HTT-
chromatin interactions, which are of great interest. Functional enrichment analyses of our diffbind results from
wildype HTT versus mHTT rely on gene assignment that may be biased towards longer genes, propagating
these biases through the enrichment tools. This is likely less of an issue for HTT, since many of its peaks are
directly over gene bodies, but highlights that predicting the potential regulatory functions of distal peaks is
difficult. Finally, our ChlP-seq experiments relied on bulk striatal tissue, whereas single-nuclei RNA
sequencing has indicated bidirectional effects of HD mutations across cell types, especially for PRC2
targets[19]. Emerging techniques enabling ChlP-seq of single cells and sorted cell populations[19,46] should
enable additional refinements of the findings presented here.

While ChIP-on-chip has been performed to identify HTT binding sites at promoter sequences[14], this
work provides the first genome-wide map of HTT-chromatin interactions and has identified key changes in

these interactions due to HD mutations. It suggests that aberrant de-repression of CAG-sensitive genes in HD
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samples—including cell identity genes—may be due to molecular interactions of HTT and chromatin. We find
that altered HTT-chromatin occupancy is accompanied by novel histone modification changes — notably,
reductions in H3K27me3 — in the Hit?"""* striata, which are associated with genotype-selective HTT occupancy
in the same regions. In fact, the strength of HTT occupancy predicts increased H3K4me3 and EZH2

occupancy, and reductions in H3K27me3, consistent with a model in which HTT plays a functional role in

regulating PRC2 activity, perhaps by helping recruit PRC2 to specific loci.

Conclusions

Collectively, our data support a model of pathogenesis in which perturbation of normal HTT chromatin
regulatory functions precipitates transcriptional dysregulation in HD, leading to epigenetic changes and loss of

cell type-specific gene expression.

Materials and Methods

Mouse Breeding, Genotyping, and microdissection. The B6.Htt%""" mice (Strain 003456; JAX) used for the
ChIP-seq study have a targeted mutation replacing mouse Htt exon 1 with the corresponding portion of human
HTT exon 1, including an expanded CAG tract. The targeted Hit allele was placed from the CD-1 background
onto the C57BL/6J genetic background by selective backcrossing for more than 10 generations to the
C57BL/6J strain at Jackson laboratories. Cohorts of homozygote, heterozygote and wildtype littermate mice
were generated by crossing B6.Htt?"""* and B6.Htt"* mice. Male mice were sacrificed at four months of age via
a sodium pentobarbital based euthanasia solution (Fatal Plus, Henry Schein). Brain tissues were snap frozen
in liquid nitrogen and stored in -80°C until ChIP was performed. Experiments were performed following NIH
animal care guidelines and approved by Western Washington University’s Institutional Animal Care and Use

Committee under protocols 14-005 and 16-011.
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Huntingtin knockdown in cortex. Four-month-old male mice underwent unilateral intracerebroventricular
injection of 500ug pan-huntingtin antisense oligonucleotide (lonis #444652) or received no treatment. Tissue
was collected as above at four weeks post-injection; a time shown to have maximal HTT reduction in BACHD
mice[47]. Cortical tissue contralateral to the injection was used to assess HTT knockdown by western blot as

described[48], and ipsilateral tissue was used for ChlIP as performed below.

HTT ChlIP-seq. We prepared replicate (n = 3) ChlP samples using an anti-huntingtin antibody from four-month-
old male Htt?"""Q""" and age-matched Hit"”* mice. For each ChIP preparation, chromatin DNA was prepared
using the combined striatal tissue from both hemispheres of three mice. Preliminary experiments suggested
that this was the minimal amount of material required to provide enough material for multiple IPs. Striata were
transferred to a glass Dounce on ice and homogenized in cold phosphate-buffered saline with protease
inhibitors. For ASO-treated cortices, two cortices were pooled for each replicate (n = 1). High-resolution X-
ChiIP-seq was performed as previously described [49], with slight modifications[32]. IPs were performed using
Abcam anti-huntingtin EPR5526 (#ab109115). ChlP-seq library preparation and sequencing reactions were
conducted at GENEWIZ, Inc. (South Plainfield, NJ, USA). Sequencing was performed on an lllumina HiSeq
4000 using 2x150 Paired End (PE) configuration. Sequencing reads were aligned to the mouse genome
(mm10) using HISAT2. Peak-calling was then performed with MACS2.2, scaling to the size of the input control
library. The final set of reproducible peaks was obtained using the dba function in the DiffBind R
package[25], retaining peaks that were reproducible at FDR < 0.01 in at least two samples and excluding
artifactual blacklist regions from ENCODE. Sequence reads have been deposited in gene expression omnibus,

accession GSE150750.

Histone mark and EZH2 ChIP-seq. Fresh frozen striatal tissue from five male four-month-old Htt<'""* and
age-matched Hitt”* mice were pooled per replicate for n = 3 samples. Further processing was performed at
Active Motif (Carlsbad, CA). Tissue was fixed in 1% formaldehyde, lysed, and disrupted with a Dounce
homogenizer. DNA was sonicated to an average fragment length of 300-500bp, and 25ug chromatin plus
200ng Drosophila spike-in chromatin was incubated with antibody targeting EZH2, H3K27me3 or H3K4me3

(Active Motif catalog numbers 39901, 39155 and 399159, respectively). Antibody against H2Av was also
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present in the reaction to ensure efficient pull-down of the spike-in chromatin. Complexes were captured using
protein A agarose beads (Invitrogen). lllumina sequencing libraries were prepared from ChIP and Input DNA by
end-polishing, dA-addition, and adaptor ligation. Libraries were quantified and sequenced on lllumina’s

NextSeq 500 (75nt single end reads).

Analysis of striatal HTT ChIP-seq data. For the primary striatal HTT ChlP-seq dataset, sequencing reads
were aligned to the mouse genome (mm10) using bowtie2 [50]. Peak-calling on each sample was performed
with MACS v2.1 [23], scaling each library to the size of the input DNA sequence library to improve
comparability between samples. We retained peak regions with a MACS p-value < 0.001. Filtered peak calls
were concatenated across all Hit"”* and Htt?""”?""" samples to produce a combined set of peak calls and

removed peaks overlapping artifactual blacklisted regions of the genome[51].

Analysis of cortex HTT ChIP-seq data. Sequencing reads were aligned to the mouse genome (mm10) using
HISAT2. Aligned reads from the four ChIP libraries were down-sampled to the size of the smallest sequencing
library using samtools view -s[52]. Aligned reads from the input genomic DNA of all four samples were
merged into a single control BAM file. Peak-calling was then performed with MACS2.2, scaling to the size of
the input control library. The final set of reproducible peaks was obtained using the dba function in the
DiffBind R package, retaining peaks that were reproducible at FDR < 0.01 in at least two samples and
excluding artifactual blacklist regions from ENCODE [38]. We then used dba . count to count the reads in
each peak region from each ChIP sample and from the control sample. Next, a generalized linear model was
fit, using the dba.analyze DESeq2 wrapper, and we performed log-ratio tests to estimate effects of ASO
treatment on HTT occupancy in each peak region. Genotype was treated as a blocking factor. Control read
counts were subtracted for each site in each sample before fitting the model. This experiment was
underpowered to detect statistically significant changes in occupancy at individual peak regions. Therefore, our
primary test was for global depletion of HTT occupancy in ASO-treated mice across peak regions. For this
purpose, we computed one-sided binomial tests with binom. test, comparing the number of peaks with

increased vs. decreased occupancy.
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Analysis of histone mark and EZH2 ChlIP-seq. Reads were aligned consecutively to the mouse (mm10) and
Drosophila (dm3) genomes using the BWA algorithm (default settings). The number of mouse alignments used
in the analysis was scaled to the number of Drosophila spike-in alignments [53]. Peak-calling was performed
with MACS v2.1. We selected peaks that were reproducibly identified in at least two samples of the same
genotype. For analyses of differential occupancy, reads mapped to each peak region were normalized to total

library size. Generalized linear models and log-ratio tests were fit with edgeR [54] to identify differentially

methylated regions.

Enrichment of peaks in genomic regions and gene sets. Over-representation of HTT peaks in chromatin
states, genomic regions marked by histone modifications, and gene sets were calculated using the Genomic
Association Tester (GAT; [55]). GAT calculates the number of base pairs overlapping between two genomic
annotations and estimates its fold enrichment and significance based on re-sampling permutations within the
mappable genome. Results described in this manuscript are based on 100,000 re-sampling permutations.
Accession numbers for comparison datasets are shown in the Key Resources Table. For ChromHMM and
ChIP-seq comparison datasets, we downloaded published tables of peak regions from the ENCODE portal or
from the Gene Expression Omnibus. Similarly, for analyses of gene sets, we downloaded gene lists from
HDSIigDB (https://www.hdinhd.org/2018/05/22/hdsigdb/), and we defined the regions of interest as +/- 20 kb of

the canonical TSSs of the genes in each set.

Code and Data Availability. Code used in the analysis of ChlP-seq data is publicly available:
https://github.com/seth-ament/ament-carroll-collab. ChlP-seq data have been deposited in the Gene
Expression Omnibus (GSE150750). Processed ChlP-seq data, including peak locations (BED files) and
genomic coverage (bigWig files), have been deposited in the Neuroscience Multi-Omic Archive (NemO
Archive), where we have created a TrackHub, suitable for viewing in the UCSC Genome Browser:

http://data.nemoarchive.org/other/grant/sament/sament/htt-chipseq/.
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Supplementary Figure 1: Treatment with a HTT-lowering ASO reduces HTT ChlIP-seq peaks. A) Mice
underwent unilateral intracerebroventricular injection with HTT-targeted ASO. Cortex ipsi- and contralateral
to the injection were collected at four weeks post-injection. HTT lowering was assessed in the contralateral
cortex, while ChIP was performed on the ipsilateral cortex. B) Quantification of western blots probed with
anti-HTT EPR5526 show HTT lowering of 53% in the contralateral cortex at four weeks post-ASO injection

(ANOVA, Treatment effect p = 4.11e09). C) Volcano plot demonstrating 13,820 reproducible HTT-associated
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peaks in the cortex, 8,308 (60%) showing Log(fold change) < 0 with ASO treatment. Likelihood that more
than 50% had negative fold changes, p = 4.2e126 (binomial test). Of differentially occupied peaks (p <

0.05): 502 out of 622 had negative fold changes (80%) with ASO treatment. Despite the small sample size
and partial HTT knockdown, we detected a global depletion of HTT occupancy in the cortex of mice treated

with HTT-lowering ASOs.

Supplementary Table 1 — Significant HTT peak calling results, including proximal gene names,
including genotype category labels. The “MACS Significant HTT Peaks” tab includes the MACS peak calling
results - annotated with the most proximal gene and the distance to it. The “Peak.Label” column indicates
whether each peak is in the category of “mHTT-specific”, “WT-specific”, or “WT-mHTT-shared” — see text for

details on these categories.

Supplementary Table 2 — HTT Peaks Per Gene. A per-gene summary of HTT peaks across the categories of

“‘mHTT-specific”, “WT-specific”, or “WT-mHTT-shared.”

Supplementary Table 3 — HTT DiffBind. Differential HTT occupancy in Htt?'""Q""" ys, Htt**. Used to

generate volcano plot Fig. 2A.

Supplementary Table 4 — HTT DiffBind Enrichr Results. Geneset enrichment results for differential HTT

peak occupancy in Figs. 2B, 2C.

Supplementary Table 5 — DiffBind Summary ActiveMotif. Differential occupancy of EZH2, H3K27ac,

H3K27me3, H3K4me3, and H3K9me3, peak regions. These results were used to generate Fig. 3A.

Supplementary Table 6 — H3K27me3 Enrichment. Enrichment of H3K27me3 peaks with lower occupancy in

HitY""""* vs. Hit*striatum (p < 0.005) assessed for enrichment using Enrichr. Tabs correspond to terms for
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Gene Ontology Biological Process (GOBP), Gene Ontology Molecular Function (GOMF), and ENCODE and

ChEA Consensus Transcription Factors (ENCODE-CHEA_tfs). Used to generate Figs. 3B-D.

Supplementary Table 7 — HTT Enrichment ActiveMotif Peaks. Summary of GAT results testing the
enrichment of HTT ChIP-seq peaksets amongst EZH2, H3K27ac, H3K27me3, H3K4me3, and H3K9me3, peak

regions. These results were used to generate Fig. 3E.

Supplementary Table 8 - HTT Peaks, ActiveMotif and RNASeq Integration. Includes integrated ChIP-seq
and RNA-seq data for all intervals containing robust HTT peaks. For each HTT peak (“PeakRegion.ID”),
available changes in RNA expression of included genes (“Langfelder et. al. RNA-Seq”) and our other ChIP-seq
data (“Re-analysis of ActiveMotif ChIP-Seq”) are shown. These results were used to generate Fig. 5A-B and
6A-C.

Supplementary Table 9 - HTT HDSigDB Overlap. Includes enrichments for HTT Peak sets and the genes
included in each HDSigDB gene set. HDSigDB gene set meta information is included on the tab

“HDSigDB.Genesets”. These results were used to generate Fig. 5C.
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