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Abstract: Orienting behaviors provide a continuous stream of information about an organism’s sensory experiences and
plans. Thus, to study the links between sensation and action, it is useful to identify the neurons in the brain that control
orienting behaviors. Here we describe descending neurons in the Drosophila brain that predict and influence orientation
(heading) during walking. We show that these cells have specialized functions: whereas one cell type predicts sustained
low-gain steering, the other predicts transient high-gain steering. These latter cells integrate internally-directed steering
signals from the head direction system with stimulus-directed steering signals from multimodal sensory pathways. The
inputs to these cells are organized to produce “see-saw” steering commands, so that increasing output from one brain
hemisphere is accompanied by decreasing output from the other hemisphere. Together, our results show that internal and
external drives are integrated to produce descending motor commands with different timescales, for flexible and precise
control of an organism’s orientation in space.

Introduction

Orienting behaviors provide basic clues about an organism’s perceptions and memories (Schone, 2014). For
example, animals will often orient readily toward novel or attractive stimuli, so orientation can provide information about
perceived salience or valence (Simion and Shimojo, 2007; Sokolov, 1960). Animals also actively stabilize their orientation
relative to the environment, and the dynamics of this behavior provide clues about mechanisms of sensorimotor
integration (Go6tz, 1972). Animals can estimate their orientation over time by keeping track of their rotational movements,
providing a way to study mechanisms of working memory (Goodridge et al., 1998; Seelig and Jayaraman, 2015). Finally,
animals can orient toward a remembered target in the environment, and so orientation can provide insights into spatial
learning (Summerfield et al., 2006).

Ideally, we would like to study these behaviors by identifying the neurons in the brain that generate orienting
movements. In principle, this would allow us to work backward from these neurons to understand the convergence of
upstream orienting cues from sensory regions, as well as regions involved in higher cognition. Recent work has identified
descending neurons in the mammalian brainstem that influence orienting during locomotion (“steering”): these cells are
active when the animal is executing a locomotor turn, and their unilateral activation can drive turning during locomotion
(Cregg et al., 2020; Usseglio et al., 2020). These brainstem descending neurons respond to perturbations of striatal
neurons (Cregg et al., 2024), but we still do not fully understand how brain dynamics generate locomotor dynamics, in
part because of the anatomical complexity of the mammalian brain, and the challenges involved in obtaining
neurophysiological data with high temporal and spatial resolution.

Some of these experimental challenges are easier to overcome in Drosophila melanogaster. In particular, the
advent of large-scale Drosophila connectomes (Cheong et al., 2023; Dorkenwald et al., 2023, 2022; Eckstein et al., 2024;
Li et al., 2020; Phelps et al., 2021; Scheffer et al., 2020; Schlegel et al., 2023; Zheng et al., 2018) has made it easier to
identify descending neurons (DNs) that might be involved in specific behaviors (Simpson, 2024). Moreover, it is possible
to perform targeted in vivo electrophysiological recordings from specific cells in these connectomes, and to relate these
recordings to ongoing locomotor behaviors or brain dynamics. Several recent studies have linked specific Drosophila DNs
to escape (Lima and Miesenbock, 2005; von Reyn et al., 2014), backward walking (Bidaye et al., 2014), grooming (Guo et
al., 2022; Hampel et al., 2015), flight (Suver et al., 2016), and landing (Ache et al., 2019). A recent imaging study also
found that multiple DNs are active when a walking fly executes voluntary turns, but technical limitations prevented most
of these DNs from being matched with cells in the connectome (Aymanns et al., 2022). We therefore set out to identify
DN in the connectome with clear functional roles in steering.

Here we describe two DN types in the Drosophila brain that predict steering during walking. Using targeted in
vivo single-cell electrophysiological recordings in walking flies, we find that one type (DNa02) predicts high-gain
steering, while the other (DNa01) predicts low-gain steering. DNa02 is recruited first, on average, and its activity is more
transient. DNa02 lies two synapses downstream from head direction neurons, and we demonstrate that these DNs are
recruited during memory-directed steering that is guided by the head direction system. DNa02 also receives multimodal
sensory input from reinforcement learning centers, and we show that this DN is recruited by multimodal sensory inputs
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with differing valence. Using dual recordings from both
copies of DNa02, we show that the fly’s turning velocity is
linearly related to the right-left difference in DNa02
activity; then, through analysis of large-scale connectome
data, we show how the feedforward inputs to this cell from
the head direction system and from sensory pathways
suggests a “see-saw” model of steering control, where
excitation of one DN copy is accompanied by inhibition of
the contralateral copy. Together, our results show how a
motor control problem (steering) can be re-framed as a
problem of generating a specific pattern of brain activity
via converging sensory and cognitive pathways.

Results

Two descending neuron types that predict different
features of steering

DNaOl and DNa0O2 project to all three leg
neuromeres in the ventral nerve cord (Fig. 1A), where they
form selective connections onto leg-control networks
(Braun et al., 2024; Cheong et al., 2023). These DNs are
anatomically similar to cricket neurons that are active
during turning (Brodfuehrer and Hoy, 1990; Staudacher
and Schildberger, 1998; Zorovi¢ and Hedwig, 2011), and a
calcium imaging study reported that DNa0Ol is
asymmetrically active in the ventral nerve cord when flies
are turning (Chen et al., 2018). On the other hand, an
optogenetic perturbation study reported that bilateral
activation of DNaO1 or DNa02 drives a global increase in
walking (Cande et al., 2018). Together, these observations
suggested a role in locomotor control, but the specific
functions of these cells were unclear. In analyzing the
ventral nerve cord connectome (Cheong et al., 2023), we
noticed that DNa02 makes more direct synaptic
connections onto motor neurons, as compared to DNaOl
(Fig. 1B). Moreover, very few of the postsynaptic cells
targeted by these two DN types are shared in common
(Cheong et al.,, 2023) (Fig. 1C). These connectome
analyses suggested that, if both DNs are involved in
locomotor control, their functions are likely distinct.

To investigate this idea, we made genetically
targeted whole-cell recordings from both DN types in flies
walking on a spherical treadmill. We made single-cell
recordings as well as dual recordings from these DN, to
understand their correlation with behavior, and with each
other (Fig. 1D). To perform dual recordings, we used a
combination of transgenes that targets both cells (Fig. S1).
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Fig. 1: DNa01 and DNa02 predict different features of steering.

A) Schematic morphologies of these DNs (Namiki et al., 2018),
which have distinct projections in the ventral nerve cord (VNC).

B) Output synapses in the VNC (Cheong et al., 2023; Marin et al.,
2024; Takemura et al., 2023), categorized by postsynaptic cell type.
C) Number of VNC cells postsynaptic to each DN. Both DN types are
restricted to one side of the VNC.

D) Example recording of the fly’s movement on a spherical treadmill,
together with a simultaneous dual recording from DNa(Ol and DNa02,
both on the left brain hemisphere. Both cells are depolarized just
before the fly steers in the ipsilateral direction (asterisks). Both cells
are hyperpolarized when the fly briefly stops moving (arrowhead).
Here and elsewhere, ipsi and contra are defined relative to the
recorded DN(s); thus, in this case, ipsilateral is left .

E) Correlation between DNa01 and DNa02 firing rates, as a function
of the time lag between the two cells. Each line is a different paired
recording (4 flies).

In single-cell recordings, we defined the ipsilateral side of the body as the side of the recorded DN, allowing us to pool
data from cells recorded on the right and left sides of the brain. During each recording, we tracked the fly’s fictive
locomotion in all three axes of motion (forward, sideways, and rotation). When a walking fly steers it tends to rotate while
stepping sideways (Fig. 1D, Fig. S2) (DeAngelis et al., 2019; Katsov et al., 2017). We found that both DN types tended to
increase their firing rate just before a steering maneuver. Notably, DNa02 had more transient fluctuations, as compared to
DNa01 (Fig. 1D, Fig. S2). Moreover, spike rate fluctuations in DNa02 typically preceded the spike rate fluctuations in

DNa01 (Fig. 1D,E).
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For both DN types, we computed the linear filters that describe the relationship between firing rate and behavioral
dynamics. These filters tell us how behavior changes after a brief increase in firing rate — i.e., a firing rate “impulse”. To
compute these filters, we cross-correlated firing rate with the fly’s rotational velocity, sideways velocity, or forward
velocity. We then normalized each filter by the autocorrelation in the cell’s firing rate (Fig. S2). These filters showed that
DNa0O1 and DNa(2 firing rate increases were typically followed by relatively large changes in rotational and sideways
velocity (Fig. 2A,B). DNa01 and DNa02 firing rate increases were not consistently followed by large changes in forward
velocity (Fig. 2C).

We also found several interesting functional differences between DNaOl and DNa02. First, steering filters (i.e.,
rotational and sideways velocity filters) were larger for DNa02 (Fig. 2A,B). This means that an impulse change in firing
rate predicts a larger change in steering for this neuron. In other words, this result suggests that DNa(O2 operates with
higher gain. This may be related to the fact that DNa02 makes more direct output synapses onto motor neurons (Fig. 1B).
Moreover, we found that DNa02 steering filters were biphasic, whereas DNaOl steering filters were monophasic (Fig.
2A,B). A biphasic filter converts a sustained input into a transient output, while a monophasic filter converts a sustained
input into a sustained output. This result suggests that DNa02 produces more transient changes in steering, as compared to
DNa0O1. This may be related to the fact that DNa02 and DNaO1 target largely non-overlapping populations of postsynaptic
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Fig. 2: DNa02 and DNa01 have different firing rate dynamics and steering gain.

A) Linear filters describing the relationship between rotational velocity and DN firing rate. Specifically, these filters describe the average
rotational velocity impulse response, given a delta function (unit impulse) in firing rate. Thin lines are filters for individual flies (n=13
single-cell recordings for DNa02, n=10 single-cell recordings for DNaOl). Thick lines are averages.

B,C) Same for sideways and forward velocity.

D) Variance explained by each filter type. Data points are flies. Boxplots show interquartile range (IQR), whiskers show range of data
(except for diamonds, observations >1.5xIQR).

See also Figs. S1-S2.

E) The rotational velocity filter for each cell was convolved with its firing rate to generate rotational velocity predictions. Whereas DNa02
over-predicts large rapid steering events, DNaO1 under-predicts these events.

F) Slope m of the linear regression fitting rotational velocity v, to each cell’s firing rate f (v=mf+b). The difference between cell types is
significant (p=10"*, paired t-test, n=4 flies).

G) Binned and averaged rotational velocity as a function of DNaO1 and DNa02 firing rate, for an example paired recording. Rows represent
the relationship between DNaOl and turning, for each level of DNa02 activity. Columns represent the relationship between DNa02 and
turning, for each level of DNa01 activity. Gray bins have too few datapoints to plot.

H) Same as (G) but for voltage changes rather than firing rate changes.
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cells in the ventral nerve cord (Fig. 1C). Finally, we found
that steering filters for DNa02 were more accurately
predictive of behavior — i.e., when we convolved each
filter with the cell’s spike train, the DNa02 filters produced
a better prediction of the fly’s subsequent steering, as
compared to the DNaOl filters (Fig. 2D,E). This might
also be attributable to the fact that DNa02 makes more
direct output synapses onto motor neurons (Fig. 1B).

To recap, DNa(O2 fires more transiently than
DNa0l, and it is also recruited before DNaOl (Fig. 1D,E).
But even if we normalize for the firing rate dynamics of
each cell type, the behavioral impulse response is also
more transient for DNa02 than for DNa0O1 (Fig. 2A,B). In
other words, DNa02 impulses arrive in relatively transient
packets and each DNa02 impulse predicts a relatively
transient change in behavior; for both these reasons,
DNa02 is associated with more transient steering events, as
compared to DNaOl.

Next, we looked more closely at the magnitude of
the behavioral responses associated with each cell type.
Specifically, we compared neural activity with behavior
150 ms later, to account for the average lag between neural
activity and behavior (Fig. 2A-C); this lag may reflect a
biological delay and/or the inertia of the spherical
treadmill. We observed that rotational velocity was a
relatively steep function of DNa02 activity, but a
comparatively shallower function of DNa0Ol activity (Fig.
2F-H). This analysis supports the conclusion that there is a
higher-gain relationship between DNa(2 activity and
steering.

Right-left differences in descending neuron activity
predict rotational velocity

Next, to determine how steering depends on
DNa02 neurons on both sides of the brain, we made dual
recordings from DNa02 on the right and left (Fig. 3A). We
found that rotational velocity was consistently related to
the difference in right-left firing rates (Fig. 3B). This
relationship was essentially linear through its entire
dynamic range, and was consistent across paired
recordings (Fig. 3C). It was also consistent during
backward walking, as well as forward walking (Fig. S3).
We obtained similar results in dual recordings from DNa0Ol
neurons (Fig. S4).

We also extended our linear filter analysis to our
dual DNa02 recordings. Specifically, we computed each
cell’s linear filter, and we then convolved each filter with
the cell’s spike train to predict the fly’s rotational velocity.
By adding the predictions from simultaneously recorded
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Fig. 3: Bilateral differences in DN firing rate predict steering.

A) Example bilateral recording from DNa02. The neurons are
anti-correlated when the fly is turning, and hyperpolarized when the
fly stops moving (arrowhead).

B) Binned and averaged rotational velocity for each value of bilateral
DNa02 firing rates for an example paired recording.

C) Mean rotational velocity for each value of the bilateral firing rate
difference. Each line is a different fly (n=4 flies).

D) The rotational velocity filter for each cell was convolved with its
firing rate to predict rotational velocity. Combining the predictions of
the two cells (with equal weighting) generates a good prediction.

E) Top: predicted rotational velocity versus actual rotational velocity,
for both single-cell predictions for an example experiment. Bottom:
the dual-cell prediction for this experiment. Thick lines are LOWESS
fits. Each axis ranges from 800 °/s rightward to 800 °/s leftward, and
dashed lines denote 0 °/s.

right-left pair, we found that we could accurately predict turns in both directions (Fig. 3D,E).

To summarize, these dual recordings demonstrate that steering is consistently predicted by right-left differences in
DNa02 firing rate. This means that, in principle, turning could be driven by either ipsilateral excitation or contralateral
inhibition. As we will see, the neural networks in the brain presynaptic to these DNs are organized so as to recruit both

ipsilateral excitation and contralateral inhibition.
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Steering toward internal goals

Having identified steering-related DNs, we proceeded to investigate the brain circuits that provide input to these
DNs. Here we decided to focus on DNa(2, as this cell’s activity is predictive of larger steering maneuvers. First, we asked
whether DNa02 responds to changes in perceived head direction relative to an internal goal. Head direction neurons (EPG
neurons) (Seelig and Jayaraman, 2015) can influence steering (Giraldo et al., 2018; Green et al., 2019) via central complex
neurons that compare head direction signals with internal goal signals (Beetz et al., 2021; Martin et al., 2015; Mussells
Pires et al., 2024; Shiozaki et al., 2020; Westeinde et al., 2024). The central complex itself contains no DNs (Hulse et al.,
2021; Namiki et al., 2018), but there are strong anatomical pathways from the central complex to DNa02 (Hulse et al.,
2021; Mussells Pires et al., 2024; Rayshubskiy et al., 2020; Westeinde et al., 2024). This motivated our hypothesis that
DNa02 participates in steering toward internal goals.

To investigate the functional coupling between the head direction system and steering system, we made
whole-cell recordings from DNa02 while monitoring and manipulating EPG neurons. To track the dynamics of the head
direction system in real time, we imaged GCaMP6f in the entire EPG ensemble. Meanwhile, we micro-stimulated central
complex neurons called PEN1 neurons (Green et al., 2019) by expressing the ionotropic ATP receptor P2X, in PEN1
neurons under Gal4/UAS control (Lima and Miesenbock, 2005) and puftfing ATP onto their dendrites (Fig. 4A). PEN1
neurons relay information about the fly’s angular velocity to EPG neurons, and so micro-stimulating PEN1 neurons causes
the head direction system to register a fictive behavioral turn.

As expected from previous work, we found that there is a single bump of activity in the EPG ensemble whose
angular velocity generally correlates with the fly’s angular velocity (Green et al., 2017; Seelig and Jayaraman, 2015;
Turner-Evans et al., 2017). The position of the EPG bump constitutes a working memory of the fly’s heading direction.
Again consistent with previous work, we found that briefly micro-stimulating PEN1 neurons causes this bump to “jump”
to a new location (Green et al., 2019). As a negative control, we confirmed that bump jumps rarely follow ATP injection
when the Gal4 transgene is omitted (Fig. 4B). We only analyzed trials where the EPG bump was relatively stable prior to
ATP injection, implying that fly thinks it is walking in a straight line and is trying to steer toward an internal goal (Green
et al., 2019). During epochs of goal-directed steering, the EPG bump jump should create a mismatch (error) between the
fly’s internal goal and its perceived head direction. Accordingly, we find that the fly typically executes a compensatory
behavioral turn shortly after the EPG bump jump, as reported previously (Green et al., 2019). This compensatory turn
brought the EPG bump back to its initial location in 40% of trials, thereby re-orienting the fly toward its inferred internal
goal. Notably, in trials where the ATP injection caused the bump to jump clockwise, the behavioral turn was typically
rightward, which causes the bump to flow counter-clockwise (Fig. 4C,D). Conversely, on trials where the injection caused
the bump to jump counter-clockwise, the average behavioral turn was leftward, which causes the bump to flow clockwise
(Fig. 4C,D). Thus, the compensatory turn was in the correct direction to return the bump to its original location via the
shortest path. This implies that the mechanism that triggers the compensatory turn is sensitive to the direction of the error
(positive or negative). These results are consistent with previous work (Green et al., 2019) except that we observed a more
variable delay between the bump jump and the compensatory turn.

Throughout each experiment, we performed a whole-cell recording from DNa(2. Notably, we found that DNa(2
cells often fired a burst of spikes just before the fly performed its compensatory behavioral turn to bring the EPG bump
back to its initial location (Fig. 4E). To quantify this effect, we identified the time point in each trial where the bump’s
return speed was maximal. We used this time point to align the data across trials to account for the fact that the bump’s
return had different latencies on different trials (Fig. 4C,E). Because we always recorded from DNa02 cells on the left, we
focused on the trials where we expect a leftward behavioral turn — i.e., trials where the bump returned via a clockwise
path. In these trials, we found that the bump jump was typically followed by increased DNa02 firing on the left, and then a
leftward steering maneuver, and then a clockwise return of the bump (Fig. 4F). Moreover, we found that DNa(02 could
predict much of the trial-to-trial variability in the magnitude of compensatory behavioral turns (Fig. 4G).

Trials where the bump returned in the opposite direction (counter-clockwise) provide a negative control. In these
trials, the fly’s behavioral turn was typically rightward rather than leftward (Fig. 4E,H). Accordingly, we found no DNa02
firing rate increase on the left side (Fig. 4H). This shows that DNa02 is not activated bilaterally and thus nonspecifically.
Rather, DNa02 is recruited specifically on the side that predicts the direction of the behavioral turn.

In summary, our results show that DNa02 activity can predict the magnitude and direction of steering maneuvers
guided by the head direction system. This finding argues that the pathways from head direction system to DNa02 are
functionally strong, and they are recruited at the appropriate time to mediate steering commands issuing from the central
complex.
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Fig. 4: DNa02 participates in
compass-directed steering.

A) A bump of activity rotates
around the ensemble of EPG
neurons (compass neurons) as the
fly turns. We microstimulate
PEN1 neurons with ATP to evoke
a bump jump. This is followed by
a compensatory behavioral turn
that returns the bump to its initial
location. Here the brain is
depicted as viewed from the back
(as during our experiments). In
this view, a clockwise fly rotation
produces a counter-clockwise
bump rotation.

B) Percentage of trials with a
bump jump after the ATP puff.
Each point is a fly (each genotype
n=4). In controls lacking PENI
Gal4, ATP only occasionally
preceded bump jumps, which is
likely coincidental, as the bump
often moves spontaneously.

C1) Change in bump position after
ATP. The bump returns to its
initial position in many trials (red)
but not all (gray) in this sample
experiment.

C2) Red trials from C1 aligned to
the time of maximal bump return
speed, color-coded by the fly’s
steering direction during bump
return.

D) The fly’s rotational velocity
during the bump return, plotted
against the initial bump jump.
Clockwise bump jumps are
generally followed by rightward
turns (which drive bump return via
a counterclockwise path), and vice
versa. Clockwise bump jumps (18
trials) and  counter-clockwise
bump jumps (35 trials) are
followed by significantly different
mean rotational velocities (p<0.05,
t-tailed t-test, pooling data from 4
flies).

E) Example trial. Top: DNa02
activity. Middle: fly’s rotational
velocity toward the left side, i.e.,

the side of the recorded DNa02 neuron). Bottom: grayscale EPG AF/F over time, where each row is a 45°-sector of the compass, and red is
bump position. ATP causes a bump jump (arrowhead). Then, the left copy of DNa02 bursts, the fly turns left, and the bump returns via a
clockwise path (arrowhead).
F) Trials where the bump returned to its initial location via a clockwise path were aligned to the time of peak bump speed. Trials were

averaged within a fly, and then across flies (mean = SEM across flies, n=4 flies).

G) In an example experiment., rotational velocity correlates with DNa02 firing rate on a trial-to-trial basis (R*=0.51, p=3x107, two-tailed

t-test). Trials are color-coded as in (D). In all other experiments, p was also <0.05.

H) Data sorted by the direction of the bump’s return (mean+SEM across flies, n=4 flies). Whereas clockwise (blue) bump returns were
typically preceded by leftward turning, counter-clockwise (green) bump returns were preceded by rightward turning, as expected. On
average, the left copy of DNa02 was only excited on trials where the bump moved clockwise, meaning the fly was turning left.
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Stimulus-directed steering

Next, we asked whether DNa02
is functionally engaged in
stimulus-directed steering, which we
define as steering directly toward (or
directly away from) a sensory stimulus.
To generate an attractive sensory
stimulus, we expressed the
channelrhodopsin variant CsChrimson in
olfactory receptor neurons under the
control of an Orco-LexA transgene. We
then stimulated the right or left antennae
independently using two thin optical

fibers. This fictive odor stimulus
produced steering toward the stimulated
antenna (Fig. 5A), consistent with

previous studies showing that flies often
turn toward a lateralized odor (Borst and
Heisenberg, 1982; Gaudry et al., 2013).
We found that these lateralized stimuli
also produced asymmetric responses in
DNa02, with higher firing rates on the
ipsilateral side (Fig. SA). Interestingly,

these stimuli often produced
hyperpolarization and a suppression of
spiking in the contralateral DN,

suggesting that ipsilateral excitation is
accompanied by contralateral inhibition.
We also confirmed there was no neural or
behavioral response when the LexA
transgene was omitted (Fig. S5), as
expected.

To generate an aversive stimulus,
we expressed CsChrimson in the antennal
thermoreceptor neurons that are excited
by heat, under the control Gr28b.d-LexA
(Frank et al., 2015). As before, we
stimulated the right or left antenna
independently. These fictive warm stimuli
drove flies to steer away from the
stimulated antenna (Fig. 5B). These
stimuli again produced responses in
DNa02, but now with higher firing rates
on the side contralateral to the stimulus
(Fig. 5B). Thus, DNa02 activity was
higher on the side ipsilateral to the
attractive stimulus, but contralateral to
the aversive stimulus. In other words,
DNa02 encoded the laterality of the
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Fig. 5: DNa(2 participates in stimulus-directed steering.
A) CsChrimson was expressed in most olfactory receptor neurons. As a fly walked on a
spherical treadmill, a fiber-optic filament illuminated either the right or left antennae
alternately. Ipsi- and contralateral stimuli are defined relative to the recorded neuron. Top:
two example trials, one ipsi and one contra, showing the fly’s rotational velocity and
DNa02 activity on each trial. Bottom: mean + SEM across flies, n=4 flies. Gray shading

shows the 500-ms period of fictive odor.

DNa02 firing rate (spikes/s)

B) Same as (A) but for fictive heat. CsChrimson was expressed in heat-activated neurons
of the antenna. Fictive heat drives behavioral turning away from the stimulus, rather than

toward it.

C) Mean data on an expanded timescale to show that DNa02 firing rate increases precede
turning toward ipsilateral fictive odor (mean = SEM across flies, n=4 flies).

D) Trial-to-trial variability in an example experiment. Each datapoint is a trial where
fictive odor was presented on the ipsilateral side; gray line is linear fit (R*=0.33, p=107,
two-tailed t-test). In other experiments, R> ranged from 0.16 to 0.40, with p always

<0.005.

stimulus-evoked action, not the laterality of the stimulus itself.

On average, DNa02 was activated about 150 ms before the stimulus-evoked turn (Fig. 5C). Moreover, DNa02
could predict much of the trial-to-trial variability in the magnitude of stimulus-evoked turns (Fig. 5D). Together, these
findings suggest that DNa02 participates in reorienting the body in response to a lateralized stimulus. We obtained similar
results for DNaO1 neurons (Fig. S6), supporting the idea that DNa01 and DNa02 often function together.
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Although DNa02 hyperpolarized whenever the fly
stopped walking (Fig. 6A,B), it continued responding to
lateralized odors even when the fly was stopped. Indeed,
during immobility, the stimulus-evoked change in DNa02
firing rate was similar to what we observed during walking
(Fig. 6C,D). This observation suggests that DNa02 contains
information about latent steering drives, even in a quiescent
behavioral state where these drives produce no measurable
motor consequences. We cannot exclude the possibility that
DNa02 is driving postural changes when the fly is stopped,
and these postural changes are so small we cannot detect
them. In this case, however, there would still be an
interesting mismatch between the stimulus-evoked change
in DNa02 firing rate (which is large) and the
stimulus-evoked postural response (which would be very
small).

Converging brain pathways onto DNa(2

Our results thus far indicate that DNa02 integrates
several different types of steering signals. Specifically, it
receives internal goal-directed steering signals from the
central complex, as well as stimulus-directed steering
signals from the olfactory system and the thermosensory
system. It also receives locomotor state signals that make
the cell more depolarized when the fly is walking. These
results motivated us to examine the full-brain connectome
(Dorkenwald et al., 2023, 2022; Lin et al., 2024; Zheng et
al., 2018) for clues as to how these signals are integrated.

First, we identified DNa02 in the full brain FAFB
dataset (Dorkenwald et al., 2023, 2022; Scheffer et al.,
2020; Schlegel et al., 2023; Zheng et al., 2018); we then
proofread all the presynaptic inputs to DNa02, while also
matching each cell type with its equivalent in the hemibrain
connectome data set (Scheffer et al., 2020). We contributed
all this information (proofreading and cell type names) to
the FlyWire community platform (Dorkenwald et al., 2022)
as this study progressed. The identification of DNaOl is
taken from a comprehensive study of all DNs in the
FAFB-FlyWire dataset (Stiirner et al., 2024).

We found that the inputs to DNa(02 are largely
non-overlapping with those of DNaOl (Fig. 7A). This
provides an explanation for why DNa02 generally recruited
before DNaOl, and it also has a more transient pattern of
activity. Both cell types receive substantial input from
central brain intrinsic neurons; however, only DNa02
receives direct input from PFL3 cells (Fig. 7B). PFL3 cells
compare head direction signals with internal goal signals,
and they produce directional steering commands if there is
a mismatch between these angular values (Dan et al., 2024;
Goulard et al., 2021; Hulse et al., 2021; Matheson et al.,
2022; Mussells Pires et al., 2024; Rayshubskiy et al., 2020;
Westeinde et al., 2024). PFL3 neurons are therefore the
likely origin of the turning signals we see in DNa02 when
we chemogenetically inject an error signal into the head
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Fig. 6: Latent steering drives during immobility.

A) Example showing how DNa02 hyperpolarizes during immobility.
Total speed is defined as rotational speed + sideways speed +
forward speed.

B) Mean total speed and DNa02 firing rate during (left) the transition
to immobility and (right) the transition to activity (+ s.e.m. across
flies, n=7 flies). Transitions were detected by setting a threshold for
total speed (dashed line). The firing rate increase precedes the onset
of movement by ~250 ms.

C) Examples of DNa02 activity during fictive odor presentation
when the fly was active versus immobile. Note that, when the fly is
immobile, ipsilateral odor still evokes depolarization and spiking.
Note also that contralateral odor can still evoke hyperpolarization
during immobility.

D) Summary data (mean = s.e.m. across flies, n=4 flies) for active
versus immobile trials. Odor produces a similar change in neural
activity for trials where the fly is behaviorally active versus
immobile. However, the entire dynamic range of neural activity is
shifted downward during immobility, so that the peak firing rate (and
peak depolarization) is reduced.
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direction system (Fig. 4).

Notably, however, we found that PFL3 neurons also send many strong indirect projections to DNa02. Specifically,
PFL3 neurons project to two cells (DNa03 and LALO10) that make strong excitatory ipsilateral connections onto DNa(2
(Fig. 7C). These indirect connections should amplify the influence of central complex steering signals. Moreover, PFL3
neurons also project to several cell types that are positioned to inhibit the contralateral copies of DNa02, DNa03, and
LALO10 (Fig. 7C). Contralateral suppression should increase the right-left difference in DNa02 activity, thereby
increasing rotational velocity. In short, central complex projections are wired to have opposite effects on the two copies of
DNa02. This architecture suggests a “see-saw” model of steering, where an increase in excitatory synaptic input in one
DN (and/or a disinhibition of that DN) is often accompanied by an increase in inhibitory synaptic input to the contralateral
DN (Fig. 7D). This see-saw model is consistent with our observation that lateralized stimuli can excite one DN while
inhibiting the contralateral DN.

That said, some indirect connections onto DNa02 are actually bilaterally symmetric. For example, DNa03 and
LALO10 both receive strong bilaterally symmetric projections from another excitatory central complex output cell type,
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Fig. 7: Converging brain pathways onto DNa(2.

A) Number of cells in the brain connectome presynaptic to each DN (Dorkenwald et al., 2023, 2022; Lin et al., 2024; Zheng et al., 2018).

B) Input synapses in the brain, categorized by presynaptic cell type.

C) Major pathways from PFL3 cells to DNa02. Glutamatergic connections are likely inhibitory (Liu and Wilson, 2013). Line widths denote
the number of synapses connecting each cell type (see key). For example, as there are 12 PFL3 cells per hemisphere, their output weights are
summed to determine the width of each PFL3 output arrow (here and in E-F).

D) Schematic: how PFL3 cells might perform see-saw steering control. When the fly deviates to the left of its goal direction, PFL3 cells are
positioned to excite DNa02 on the right, while also inhibiting DNa02 on the left. When the fly deviates to the right of its goal direction, this
should occur in reverse.

E) Major pathways from PFL2 cells onto DNa02.

F) Major pathways from MBON32 cells onto DNa02.

G-H) Schematic: how MBON32 might drive steering toward an attractive stimulus (like an attractive odor), as well as steering away from an
aversive stimulus (like aversive heat).
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PFL2 (Fig. 7E). PFL2 neurons are recruited when the fly is oriented away from its internal goal, and direct activation of
PFL2 neurons increases the overall gain of steering commands, without specifying the direction of turning (Westeinde et
al., 2024).

Outside the central complex, there are many pathways for stimulus-directed steering. For example, there are
multiple pathways connecting olfactory and thermosensory peripheral cells to DNa02. However, the shortest pathways
involve the mushroom body output neuron MBON32 (Li et al., 2020). We found that MBON32 projections onto DNa02
are also organized to produce see-saw steering: excitation onto one DN is generally accompanied by inhibition onto the
other DN (Fig. 7F). Interestingly, MBON32 projections could drive turning toward an appetitive stimulus, as well as
turning away from an aversive stimulus (Fig. 7G,H). This idea derives from the fact there are generally two parallel
pathways connecting any set of antennal lobe projection neurons to MBON32: a plastic excitatory pathway, and a fixed
inhibitory pathway. In principle, depression of the excitatory pathway (via Kenyon Cells, or KCs) could therefore unmask
inhibition. Depression of KC—MBON32 synapses should be driven by aversive stimuli, via the dopamine neuron PPL103
(Cohn et al., 2015; Hige et al., 2015; Jacob and Waddell, 2020; Li et al., 2020; Perisse et al., 2016). Therefore, a stimulus
with appetitive associations, such as an appetitive odor, should produce excitation of MBON32, because the active
KC—MBON synapses should be strong (not depressed); this would then drive ipsiversive turning. Conversely, a stimulus
with aversive associations, such as aversive heat, should produce inhibition of MBON32, because the active KC—MBON
synapses should be weak (depressed), which would drive contraversive turning.

Finally, connectome data shows that DNa02 receives abundant visual input. Some of this input comes from a large
set of visual projection neurons, which project directly from the optic lobe to DNa02 (Fig. 7A) as well as DNa03 (Li et al.,
2020). Another major source of input comes from projection neurons in the anterior optic tubercle, downstream from
LC10 cells. LC10 cells are small object motion detectors that mediate steering toward visual objects (Hindmarsh Sten et
al., 2021; Ribeiro et al., 2018; Schretter et al., 2024). Some visual signals arrive via MBON32, which receives visual input
in addition to olfactory and thermo/hygrosensory input (Fig. 7F).

In summary, DNa02 is a site of integration for many steering control pathways. These pathways tend to be
arranged for see-saw steering control: when one copy of DNa02 is excited, the other is inhibited. Many of these pathways
involve parallel excitation and inhibition, which could provide a mechanism to specify steering direction based on
excitatory/inhibitory (E/I) balance. When one pathway is plastic, the change in E/I balance could provide a way to convert
memory recall into a bidirectional behavioral readout.

Contributions of single descending neuron types to steering behavior

Finally, we measured the causal influence of DNa02 on steering behavior. To do this, we used hs-FLP to
stochastically express the channelrhodopsin variant ReaChR (Inagaki et al., 2014) in DNa02 neurons. This produced
either unilateral expression or bilateral expression (Fig. 8A). As each fly walked on a spherical treadmill, we illuminated
its head from above to activate the ReaChR+ neuron(s). This illumination was symmetric on the two sides of the head.

In the flies with unilateral expression, we found that light evoked a small average steering bias in the ipsilateral
direction — i.e., the direction of the ReaChR+ neuron (Fig. 8B). To determine if this steering bias was significant, we used
control sibling flies with bilateral ReaChR expression in DNa02. Specifically, each fly with bilateral expression was
randomly assigned a label (“right expression” or “left expression”). Using these flies, we then computed the average
rotational velocity in the “ipsilateral” direction, just as we did for the flies with true unilateral expression. This simulation
was repeated independently for 1000 bootstrap replicates (resampling with replacement) to obtain the 95% confidence
interval of the mean, under the null hypothesis that there is only a random relationship between DNa02 expression and
steering behavior. We found that the mean of the data (with unilateral expression) was outside the 95% confidence interval
of the simulation outcomes (Fig. 8B,C). Thus, in flies with unilateral expression, the turning bias was significantly larger
than we would expect by chance.

In these experiments, symmetric illumination from above also caused changes in forward velocity. These effects
were likely due to visual startle, because they were indistinguishable in flies with unilateral expression, bilateral
expression, and no expression (data not shown). Due to the confounding effect of visual startle, we could not use this
dataset to investigate how optogenetic activation of DNa02 affects the fly’s forward velocity.

Next, to investigate the effect of bilateral DN inhibition, we expressed an inhibitory opsin (GtACR1) in either
DNa01 neurons or DNa02 neurons (Fig. 8D). As a genetic control, we also used an “empty” split-Gal4 line (Hampel et al.,
2015). As each fly walked in a small arena, we switched an overhead light on and off periodically (2 min on, 2 min off).
We analyzed behavior as a function of genotype (Gal4/control) and light (on/off) using a set of two-factor ANOVAs,
corrected for multiple comparisons. A significant (genotypexlight) interaction would be evidence for a behavioral effect
of DN inhibition.
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First, we analyzed the body movements that are correlated with DNaO1 and DNa02 activity — namely, rotational
and sideways movements (Fig. 8E). When DNaOl neurons were inhibited, sideways speed was significantly reduced.
Surprisingly, however, rotational speed was unchanged when either DNaO1 or DNa02 neurons were inhibited. Recall that
DNa0O1l and DNa(2 predict rotational movements about as well as they predict sideways movements (Fig. 1F). Moreover,
unilateral activation of DNa02 influences ipsilateral rotational movements (Fig. 8B,C). Why, then, is the body’s rotational
movement unaltered when these DNs are bilaterally inhibited? In freely walking flies, body rotation can be achieved via
many different leg maneuvers (DeAngelis et al., 2019; Katsov et al., 2017; Yang et al., 2024). For example, in some
body-rotation events, the stance duration of the inner back leg is prolonged relative to the other legs — in essence, the fly
pivots on its inner back leg — whereas this maneuver is absent in other body-rotation events (Fig. 8F). This raised the
possibility that DN hyperpolarization interferes with a specific leg maneuver, rather than body rotation per se. To
investigate this idea, we identified five leg maneuvers that often accompany body rotations in freely walking control flies
(Fig. S7). We then examined whether each leg maneuver was altered by DN inhibition. We found that inhibiting DNa0O1
produced a significant defect in stance prolongation in the inner back leg — i.e., it reduced the fly’s tendency to pivot on
the inner back leg during a body rotation (Fig. 8G). We observed the same trend when we inhibited DNa02, although here
the trend fell short of statistical significance. These results suggest that inhibiting DNaO1 (and possibly DNa02) causes a
defect in inner-back-leg-stance-prolongation, but this defect is evidently compensated via other mechanisms to achieve a
normal rotational movement of the body in freely moving flies. We also noticed that inhibiting either DNa0O1 or DNa02
altered the fly’s normal leg movement rhythm, regardless of whether the fly was walking straight or turning. Specifically,
step length increased, while step frequency decreased (Fig. 8H). Inhibiting DNaO1 also decreased the fly’s forward
velocity (Fig. 8H).

All these effects are weak, and so they should be interpreted with caution. Also, both DN split-Gal4 lines drive
expression in a few off-target cell types, which is another reason for caution (Fig. S8). That said, these results suggest that
both DNs can lengthen the stance phase of the ipsilateral back leg, which would promote ipsiversive turning. These results
are also compatible with a scenario where both DNs decrease the step length in the ipsilateral legs, which would also
promote ipsiversive turning. Step frequency does not normally change asymmetrically during turning, so the observed
decrease in step frequency during optogenetic inhibition may just be a by-product of increasing step length when these
DN are inhibited.

Discussion
Ensemble codes for steering

In this study, we showed that DNaOl and DNa02 are both recruited during turning bouts in walking flies.
However, connectome data shows these two DNs receive largely non-overlapping inputs in the brain, and they have
largely non-overlapping outputs in the ventral nerve cord, suggesting that they represent parallel and largely independent
pathways for steering control. Importantly, our electrophysiological results in this study support this hypothesis: these two
DN types have distinct functional profiles: DNa02 predicts large, rapid steering events, while DNa0O1 predicts smaller and
slower steering events. Moreover, DNa(2 predicts more transient changes in steering, as compared to DNa(O1. At the onset
of a steering bout, DNa(2 is recruited earlier, and its firing rate fluctuations are more transient than those of DNa0O1. All
these results argue that these two DNs play specialized roles.

Our study does not fully answer the question of how these DNs affect leg kinematics, because we were not able to
simultaneously measure DN activity and leg movement. However, our optogenetic experiments suggest that both DNs can
lengthen the stance phase of the ipsilateral back leg (Fig. 8G), and/or decrease the step length in the ipsilateral legs (Fig.
8H), either of which would promote ipsiversive turning. If these DNs have similar qualitative effects on leg kinematics,
then why does DNa(2 precede larger and more rapid steering events? This may be due to the fact that DNa02 receives
stronger and more direct input from key steering circuits in the brain (Fig. S9). It may also relate to the fact that DNa02
has more direct connections onto motor neurons (Fig. 1B).

It should be emphasized that other DNs also participate in steering during walking. This is consistent with our
finding that optogenetically inhibiting DNa0O1 produced only small defects in body velocity, and inhibiting DNa02 did not
produce statistically significant effects on body velocity. Indeed, while this study was in revision, several subsequent
studies identified additional steering DNs, namely DNgl3, DNb0S5, and DNb06 (Yang et al., 2023), DNall, DNae003,
DNa03, and DNae014 (Braun et al., 2024; Feng et al., 2024).

These subsequent studies also confirmed some of our key results regarding DNa02 and DNaO1. Specifically, Yang
et al. (2023) and Feng et al. (2024) tested the effect of unilateral excitation of DNa02 (using a different genetic strategy),
and found that this produced ipsilateral body rotation, consistent with our results. Feng et al. (2024) also confirmed that
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bilateral ablation of DNa02 significantly reduced the velocity of corrective turning maneuvers induced by errors in the
head direction system, and this supports our conclusion that DNa02 is recruited by the central complex for control of head
direction. Meanwhile, Braun et al. (2024) reported that bilateral optogenetic activation of DNa02 or DNa0Ol can drive
turning in either direction.

Interestingly, Yang et al. (2023) found that perturbing DNa02 mainly affected ipsilateral leg movements, whereas
(during voluntary turns) DNa02 activity was actually correlated with both ipsi- and contra legs, with opposite changes in
the step cycle on the two sides of the body (Yang et al., 2023). Our brain connectome analyses in this study actually
explain this effect. Specifically, we show that the brain inputs onto DNa02 are arranged so as to produce concurrent
excitation of one copy and inhibition of the other copy, a see-saw arrangement that should generate opposite leg
movement changes on the two sides of the body.

Yang et al. (2023) found that unilateral inhibition of DNa02 had no measurable effect on body rotation, but it
significantly increased ipsilateral step length. This is reminiscent of our finding that bilateral DNa02 inhibition decreases
step length bilaterally (as does bilateral inhibition of DNa01). Yang et al. (2023) did not find a specific effect of DNa02
perturbations on hind leg kinematics, but this may be due to the fact that the latter study focus on flies walking a spherical
treadmill, whereas our perturbation experiments focused on more naturalistic leg movements in freely walking flies.

Could these “steering DNs” also play a role in the control of the fly’s forward motion during straight-line
walking? A previous study reported that optogenetic activation of either DNa0l or DNa02 increases global locomotor
activity (Cande et al., 2018). In this study, we found that bilaterally optogenetically inhibiting DNaO1 decreased the fly’s
forward velocity. However, our electrophysiological results show that DNaO1 and DNa02 are only weakly correlated with
forward velocity during normal locomotion. In short, it seems that DNaO1 and DNa02 are normally recruited by the brain
for steering control, but bilateral perturbations can nonetheless produce forward velocity changes. It is perhaps not
surprising that bilaterally perturbing these DNs can change forward velocity, as these DNs can only drive steering via
laterally asymmetric changes in the step cycle (Cheong et al., 2023; DeAngelis et al., 2019; Feng et al., 2024; Strauss and
Heisenberg, 1990; Yang et al., 2023), and any imposed bilateral change in the step cycle will almost inevitably affect the
fly’s forward velocity. That said, it remains possible that DNaO1 and DNa02 contribute to modulations of forward velocity
during straight-line locomotion under some specific conditions.

Finally, there is emerging evidence that many DNs actually influence steering during walking. We found that
optogenetically inhibiting DNaOl produced only small defects in steering, and inhibiting DNa02 did not produce
statistically significant effects on steering; these results make sense if DNa02 is just one of many steering DNs. Indeed,
while this study was in revision, several subsequent studies identified additional steering DNs, including DNg13, DNbO0S5,
and DNb06 (Yang et al., 2023), DNall, DNae003, DNa03, and DNae014 (Feng et al., 2024), and DNb02 (Braun et al.,
2024). Several subsequent studies have also provided evidence that some DNs involved in steering control are organized
hierarchically, with specific “broadcaster” DNs subsequently recruiting other DNs with more specialized functions (Braun
et al., 2024; Sapkal et al., 2024). For example, DNa02 is downstream from DNa03, a broadcaster DN that seems to
promote decreases in forward speed as well as ipsiversive steering (Feng et al. 2024; Westeinde et al. 2024); DNa02 is
also downstream from DNp09, a broadcaster DN that can promote increases in forward speed as well as ipsiversive
steering (Bidaye et al., 2020; Braun et al., 2024; Sapkal et al., 2024).

Behavioral state and latent motor commands

The DNs that target the wings and the legs are largely distinct populations (Namiki et al., 2018), and the DNs
currently implicated in steering during flight are distinct from those we have identified here (Ros et al., 2024; Schnell et
al., 2017). However, DNa02 does have indirect connectivity onto wing motor neurons, suggesting it contributes to steering
during flight (Cheong et al., 2023). Moreover, a study subsequent to this work reported that DNa03 activation can promote
turning in flight, as well as turning during walking (Feng et al., 2024). Interestingly, the GABAergic cell VES041 can
suppress steering during flight (Ros et al., 2024), and we predict that it has a similar role during walking, based on its
connectivity upstream from DNa02. It will be interesting to learn how much upstream brain circuitry is shared for flight
control and walking control, and what happens to each of these systems during the behavioral state when they are not
currently in use.

In this regard, it is notable that we observed clear responses to lateralized sensory stimuli in steering DNs even
when the fly was not walking. Similarly, a recent study found that Drosophila DNs that evoke landing during flight are
still responsive to visual stimuli when the fly is not flying (Ache et al., 2019). We might think of these residual DN
responses as a latent bias toward action, or a preparation for an action that never ultimately occurs (Kien, 1990). In this
regard, it is relevant that mammalian corticospinal neurons can be active in the absence of movement, either in the period
preceding a movement (Tanji and Evarts, 1976) or when a movement is being simply observed (Kraskov et al., 2014).
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These latent corticospinal signals may represent movement preparation, which may additionally involve neurons which
are not actually active during movement (Churchland et al., 2010), and they may be responsible for driving latent activity
in spinal neurons in the absence of movement (Prut and Fetz, 1999). The discovery of latent motor activity in the
Drosophila brain provides a potential starting point for future mechanistic investigations of brain dynamics during motor

preparation.

Behavioral state transitions may be organized, at least in part, via the network of cells presynaptic to DNs
(“pre-DNs”) in the lateral accessory lobe (Namiki and Kanzaki, 2016). Our analyses highlight the anatomical features of
several pre-DNs, most notably DNa03 and LALO10, which both receive bilateral input from cell types known to exert
high-level premotor control, namely PFL2 (Westeinde et al., 2024) and VES041 (Ros et al., 2024). Another pre-DN with
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Fig. 8: Behavioral results of directly
activating and silencing DNs.

A) As flies walked on a spherical
treadmill, they were illuminated
repeatedly for 500-ms epochs. ReaChR
was expressed uni- or bilaterally in
DNa02.

B) Ipsilateral rotational velocity, mean
of 16/17 flies (uni/bilateral ReaChR).
The mean of the unilateral data (thick
gold line) lies outside the 95%
confidence interval (thin blue lines) of
the distribution of outcomes we obtain
when we randomly assign bilateral
(control) flies to the “right” or “left”
expression group.

C) Ipsilateral rotational velocity. Each
data point is one fly (or simulated fly),
averaged across the illumination
epoch.

D) GtACRI1 was expressed bilaterally
in DNaOl or DNa02. Flies were
illuminated repeatedly for 2-min
epochs as they walked in an arena.

E) Sideways and rotational speed
distributions for light on/off in each
genotype. The p-values in black denote
ANOVA genotypexlight interactions
after Bonferroni-Holm correction; the
p-values in gray denote post hoc Tukey
tests comparing light on/off within a
genotype; n.s. = not significant, n.t. =
not tested (because genotypexlight
interaction was not significant). The
number of points (500-ms time
windows) in each distribution is shown
in italics; see Methods for fly numbers.
F) Stance duration of inner back (iB)
leg, normalized to other legs (oF, oM,
oB, iF) was measured in 500-ms time
windows (n=755 windows) and plotted
versus rotational speed. For some
windows where rotational speed is
high, iB stance duration is prolonged
i.e., the fly pivots on its iB leg.

G) Distribution of normalized iB
stance durations, for 500-ms time
windows where rotational speed
exceeded a threshold of 20 °/s for >100
ms.

H) Step frequency, step length, and
forward velocity distributions.
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similar connectivity (LALO13) has recently been shown to play an important role in modulating steering (Feng et al.,
2024).

From flies to vertebrates

Our work shows that steering is driven by combinations of DNs with distinct functional roles, recruited by distinct
parallel pathways in the brain, and targeting largely nonoverlapping sets of cells in the ventral cord. These results are
relevant to vertebrates, because any walking or running organism faces the same basic physical constraints (Dickinson et
al., 2000), and so it is likely that evolution has found a common set of solutions to these basic problems. In vertebrates,
recent work has begun to identify the DNs that influence steering (Cregg et al., 2020; Usseglio et al., 2020). Based on our
results, we would predict that vertebrate steering DNs should also be diverse and specialized.

In all species, orienting behaviors are fundamental and ubiquitous indicators of an organism’s perceptions and
intentions. As such, they provide a useful window into perception and cognition. Once we fully understand the
specializations of the DNs that control steering and orienting, we should be able to re-frame the problem of controlling an
organism’s orientation as a more concrete problem of generating a specific pattern of DN dynamics. This motor-centric
perspective then allows us to understand sensory and cognitive computations as solutions to specific problems of
dynamical system control.
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Fig. S1: Discriminating DNa0l from
DNa02 in dual recordings

We combined the split-Ga4 line that targets
DNa0O1 (SS00731) with a Gal4 line that
targets DNa02 (R75C10-GAL4). With a
10XUAS-1VS-mCD8::GFP(attP40), this
combination of driver lines labeled only two
somata in the vicinity of DNa0l and DNa02.
Here we show that we can discriminate
known DNa01 flyt:cell2  fly2:cell2  fly3:cell2  fly4:cell2 DNa0Ol from DNa02 in dual recordings from
this genotype.

A) Top: spike waveforms from a known
DNa02 cell, recorded in the specific
split-Gal4 line (SS00730). Bottom: spike
waveforms from a known DNaOl cell,
recorded in a different specific split-Gal4 line
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every case, the classification was essentially unambiguous. Moreover, in every case, the classifier assigned the DNa01 label to the cell with
the smaller and deeper soma, consistent with our observation that the soma of DNa01 is somewhat smaller and deeper than the soma of
DNa02.
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Fig. S2: Forward and reverse linear filters for
DNa0O1 and DNa02 neurons

A) Firing rate autocorrelation for DNa0Ol and
DNa02.

B) Firing-rate-to-rotational-velocity filters for
DNa01 and DNa02.

C) Firing-rate-to-sideways-velocity filters for
DNa01 and DNa02.

D) Firing-rate-to-forward-velocity filters for
DNa01 and DNa02.

E) Firing-rate-to-total-speed filters for DNa0O1l and
DNa02, where total speed is the sum of the fly’s
speed in all three axes of movement. As DNa02
predicts large changes in rotational and sideways
movement,, it is not surprising that it is also
predicts large changes in total speed. Filters in
(C-F) can be convolved with neural firing rates to
predict behavior, where b(t) = H(t) * f(t). Filters in
(C-E) are reproduced from Fig. 1.

F) Variance explained by each forward filter, for
DNa0l and DNa02 neurons. Colors denote
variables in (C-F).

G) Behavior autocorrelation for each kinematic
variable.

H-K) Same as in (B-E), but in the reverse
direction. These filters can be convolved with a
behavioral variable to predict neural firing rates,
where f(t) = H(t) * b(t). Whereas the forward
filters in (C-F are normalized for the neuron’s
autocorrelation function, these reverse filters are
normalized for behavior autocorrelation.

L) Variance explained by each reverse filter, for
each kinematic variable, for DNaO1 and DNa02
neurons.

M) Rotational velocity and sideways velocity are
strongly correlated (left), whereas forward
velocity is not strongly correlated with steering
speed (defined as the absolute value of rotational
velocity plus sideways velocity, both in units of
°/s). Black lines are LOWESS fits; margins show
kernel density estimates (n=20 flies)
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Fig. S3: Forward versus backward walking

Binned and averaged rotational velocity versus right-left firing rate difference for
epochs of forward walking and backward walking. Each line is a different paired
recording (n=4 flies).
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Fig. S4: Dual recordings from the right and
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Fig. S5: Genetic controls for fictive sensory stimuli and behavioral responses in intact flies

A) Rotational velocity (left) and DNa02 firing rate (right) in genetic control flies where no LexA transgene was present (mean + SEM across
flies, n=4 flies). These flies were treated just like those in Fig. 5, meaning that each antenna was illuminated in the same way. There is
essentially no steering behavior or DNa02 response. This result confirms that the steering behavior and DNa02 responses we describe in Fig.
1 are not due to the visual or thermal effects of the fiber optic illumination per se. The lack of visual responses is likely related to the fact that
the fiber optic filament is very small (50 um diameter), and the illumination from the fiber is partially blocked by the antenna, which is
positioned very close to the fiber.

B) Behavioral responses in flies where no dissection was performed, i.e. we did not open the head capsule. Left: genetic controls lacking a
LexA driver (n=6 flies). Middle: fictive odor (Orco-LexA, n=9). Right: fictive heat (Gr28b.d-LexA, n=9 flies). Plots show mean +SEM across
flies. Note that behavioral responses are larger and less variable in these intact flies. The reduced behavioral performance of the flies in Fig. 5
is likely due to local removal of the peri-neural sheath and/or local disruption of the neuropil surrounding DNa02 somata during the patching
procedure. Nonetheless, the qualitative features of behavior in Fig. 1 are comparable to intact flies.
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Fig. S6: Lateralized fictive odor stimuli produce asymmetric responses in DNa(1.

Top: Rotational velocity during fictive odor presentations.

Bottom: DNa01 activity in the same experiments.

Each plot shows mean = SEM across flies (n=4 genetic controls with no LexA driver, n=3 flies harboring Orco-LexA). On average, DNa0l
activity is weaker than DNa02 activity during odor-evoked turning behavior (compare to Fig. 5), but qualitatively DNa01 and DNa02 have
similar relationships to odor-evoked turning.
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in every experiment by searching
forward in time for moments when rotational speed crosses a threshold of 20 °/s. We extracted a 500-ms time window around each
threshold-crossing. Events were constrained to be non-overlapping. Body rotation events were tabulated separately for light-on and light-off.
The number of time windows in each distribution is shown in italics. To determine if any metric was changed when DNa0Ol neurons were
silenced, we performed 5 two-factor ANOVAs and looked for a significant interaction between genotype (control/DNa01) and light (on/off);
these p-values were Bonferroni-Holm corrected to avoid type 1 errors (m=5 tests). Then, to determine if any metric was changed when
DNa02 neurons were silenced, we performed 5 two-factor ANOVAs and looked for a significant interaction between genotype
(control/DNa02) and light (on/ofY); these p-values were again Bonferroni-Holm corrected (m=5 tests); nonsignificant p-values are not shown.
In cases where these p-values were significant (D4, p=0.02, DNaO1 vs control) or nearly significant (D4, p=0.505, DNa02 vs control), we
followed up by performing a post hoc Tukey test to determine if there was a significant difference between light on/off in each genotype.
Interestingly, the only metric to show an effect was the stance duration metric (D4). In control flies, a prolonged stance duration is observed
in some but not all body rotation events (C4). This implies that body rotation can be driven by an inner-back-leg pivoting maneuver, but body
rotation does not absolutely require this maneuver. This idea is consistent with our finding that rotational speeds are overall unchanged when
DNa01 or DNa02 is silenced (Fig. 8E).
Note that the data for the stance duration metric (A4-D4) are reproduced in Fig. 8F,G, where this metric is called “inner back leg stance
duration (normalized)”, i.e. iB pivoting.

22


https://doi.org/10.1101/2020.04.04.024703
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.04.024703; this version posted March 30, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A GtACR1::eYFP expressed in DNa02 B GtACR1::eYFP expressed in DNa01

Figure S8: Expression of GtACR1::eYFP under the control of DN split-Gal4 lines

A) Confocal image showing GtACR1::eYFP expression under control of the split-GAL4 line used to target DNa02 (SS00730). The image of
the brain (left) shows anti-GFP immunofluorescence, and the image of the VNC (right) shows anti-GFP and anti-Brp immunofluorescence.
Genotype is +; R75C10-p65ADZp(attP40)/+; R87D07-ZpGdbd(attP2)/20XUASgtACRI::YFP(VK00005). This split-Gal4 line is largely
specific for DNa02, but it does drive off-target expression in specific optic lobe and VNC cell types. This off-target pattern is also observed
when this split-Gal4 line is used to drive GFP expression (https:/splitgal4.janelia.org/cgi-bin/splitgal4.cgi).

B) Same for the split-Gal4 line used to target DNa01 (SS00731). Genotype is +, R22C05-p65ADZp(attP40)/+;
R56G08-ZpGdbd(attP2)/20XUASgtACRI :: YFP(VK00005). This split-Gal4 line is largely specific for DNa01, but it does drive off-target
expression in a few superior brain neurons, as well as some ascending neurons and some neurons of the prothoracic neuromeres of the VNC.
neuromeres. Again, this off-target pattern is also observed when this split-Gal4 line is used to drive GFP expression
(https://splitgal4.janelia.org/cgi-bin/splitgal4.cgi).
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Figure S9: Comparing pathways to DNa02 versus DNa01.
A) Major pathways from MBON32 cells to DNa02, reproduced from Fig. 7F.
B) Same but for DNa01, analyzed using the same selection thresholds for connection strength (see Methods).

There are no mono- or disynaptic PFL3—DNa01 or PFL2—DNa01 pathways comparable to what we show in Figure 7 for DNa02.
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METHODS

Fly husbandry and genotypes

We used female flies 1-2 days post-eclosion, except where specified below. We used virgins to minimize
egg-laying, which tended to stop movement of the spherical treadmill. Flies were housed in a 25° incubator at 50-70%
relative humidity. Unless otherwise noted, flies were cultured on molasses food (B7 recipe, Archon Scientific) and kept on
a 12/12 light/dark cycle. Flies used in optogenetic experiments were cultured on molasses food and then transferred 0-1
days after eclosion onto a vial of standard cornmeal agar fly food supplemented with rehydrated potato flakes (Formula
4-24, Carolina Biological Supply) and 100 pL of all-frans-retinal (35 mM in ethanol; R2500, Sigma-Aldrich). These vials
were covered with aluminum foil to prevent photoconversion of all-frans-retinal by ambient light.

The split-Gal4 lines (Pfeiffer et al., 2010) targeting DNs (Namiki et al., 2018) were SS00730 for DNa02
(R75C10-p65ADZp in attP40; R87D07-ZpGdbd in attP2) and SS00731 for DNa01 (R22C05-p654ADZp in attP40;
R56G08-ZpGdbd in attP2); these were obtained from Gwyneth Card (Janelia Research Campus). Each of these split-Gal4
lines typically drives expression in one DN per brain hemisphere, although SS00731 occasionally drives expression in two
DN s per hemisphere. Images of these split-Gal4 lines are available from the FlyLight split-Gal4 image database
(https://splitgal4.janelia.org/cgi-bin/splitgal4.cgi). Both lines are relatively specific for the DNs in question, with limited
and reproducible patterns of off-target expression (Fig. S8).

R75C10-Gal4(attP2) (Jenett et al., 2012; Pfeiffer et al., 2008) and R60D05-LexA(attP40) (Pfeiffer et al., 2010)
were obtained from the Bloomington Drosophila Stock Center (BDSC). Images of these lines are available from the
FlyLight “Generation 1” image database (https://flweb.janelia.org/). VT7032906-Gal4(attP2) (Tirian and Dickson, 2017)
was obtained from the Vienna Drosophila Resource Center. An image of this line is available from the Virtual Fly Brain
database (https://v2.virtualflybrain.org/).

Orco-LexA (on chromosome 3) (Lai and Lee, 2006) was obtained from Tzumin Lee (Janelia Research Campus).
Gr28b.d-LexA (on chromosome 2) (Frank et al., 2015) was obtained from Marco Gallio (Northwestern University).
hsFLP. 122 (“Bloomington Drosophila Stock Center. Notes on X-linked insertions of heat shock-FLP constructs,” n.d.;
Chou and Perrimon, 1996; Golic and Lindquist, 1989) was obtained from Thomas Clandinin (Stanford University).
UAS-GtACRI::eYFP(VK00005) (Mauss et al., 2017) was obtained from Michael Crickmore (Boston Children’s Hospital).
PJFRC81-td3-Halo7::CAAX(attp18) was obtained from Greg Jefferis via Luke Lavis; this specific reagent has not been
published previously, although general methods of its construction have been published (Sutcliffe et al., 2017). UAS-P2X2
(chromosome 3) (Lima and Miesenbock, 2005) was obtained from Gero Miesenbock (Oxford University).

Finally, the following stocks were obtained from the BDSC: 10XUAS-1VS-mCDS8::GFP(su(Hw)attP8) (Pfeiffer et
al., 2010), 10XUAS-1VS-mCD8::GFP(attP40) (Pfeiffer et al., 2010), UAS(FRT.mCherry)ReaChR: :citrine(VK00005)
(Inagaki et al., 2014), p65.AD.Uw(attP40); GAL4.DBD.Uw(attP2) (Hampel et al., 2015),
13XLexAop2-1VS-GCaMP6f-p10(su(Hw)attP5) (Chen et al., 2013), 13XLexAop2-1VS-CsChrimson::mVenus(attP40)
(Klapoetke et al., 2014), 13XLexAop2-1VS-CsChrimson::mVenus(attP18) (Klapoetke et al., 2014)
13XLexAop2-1VS-CsChrimson: :mVenus(attP2) (Klapoetke et al., 2014).

Genotypes of fly stocks used in each figure are as follows:

DNa0?2 single/dual recording (Figs. 1 and 3; Figs. S2, S3)

. w, 10XUAS-IVS-mCDS::GFP(su(Hw)attP8) / w; R75C10-p65ADZp (attP40) / +; R87D07-ZpGdbd (attP2) / +
and

w8 13XLexAop2-1VS-CsChrimson: :mVenus(attP18) / w; 10XUAS-1VS-mCD8::GFP(attP40) /
R75C10-P65ADZP(attP40); Orco-LexA / R87D07-ZpGdbd(attP2)

DNa01 single/dual recording (Fig. 1; Figs. S2 and S4)
v, w, 10XUAS-IVS-mCD8.::GFP(su(Hw)attP8) / w; R22C05-p65ADZp(attP40) / +; R56G08-ZpGdbd(attP2) / +

DNa01/DNa02 dual recording (Fig. 2; Figs. S1, S3)
v, w, 10XUAS-IVS-mCD8.::GFP(su(Hw)attP8) / w; R22C05-p65ADZp(attP40) / 10XUAS-1VS-mCD8: : GFP(attP40);
R56G08-ZpGdbd(artP2) / R75C10-GAL4(attP2)

Fictive odor with DNa02 recording (Fig. 5; Fig. S5)
w8 13XLexAop2-1VS-CsChrimson: :mVenus(attP18) / w; 10XUAS-1VS-mCD8:: GFP(attP40) /
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R75C10-P65ADZP(attP40); Orco-LexA / R87D07-ZpGdbd(attP2)

Fictive heat with DNa0?2 recording (Fig. 5; Fig. S5)
v, w, 10XUAS-IVS-mCD8.::GFP(su(Hw)attP8) / w; R75C10-P65ADZP(attP40) / Gr28b.d-LexA,; R87D07-ZpGdbd(attP2)
/ 13XLexAop2-1VS-CsChrimson::mVenus(attP2)

Fictive odor with DNa01 recording (Fig. S6)
v, w, 10XUAS-IVS-mCD8.::GFP(su(Hw)attP8) / w; R22C05-p65ADZp(attP40) / Orco-LexA,; R56G08-ZpGdbd(attP2) /
13XLexAop2-1VS-CsChrimson: :mVenus(attP2)

No-LexA control for fictive odor and fictive heat, DNa(02 recordings (Fig. S5)
v, w, 10XUAS-IVS-mCD8:: GFP(su(Hw)attP8) / w; R75C10-P65ADZP(attP40) / +; R87D07-ZpGdbd(attP2) /
13XLexAop2-1VS-CsChrimson::mVenus(attP2)

No-LexA control for fictive odor and fictive heat, DNa0l recordings (Fig. S6)
v, w, 10XUAS-IVS-mCD8:: GFP(su(Hw)attP8) / w; R22C05-p65ADZp(attP40) / +; R56G08-ZpGdbd(attP2) /
13XLexAop2-1VS-CsChrimson::mVenus(attP2)

Calcium imaging and DNa(0?2 recording during central complex stimulation (Fig. 4)
w, pJFRC81-td3-Halo7::CAAX(attP18) / w; R75C10-P65ADZP(attP40) / R60D05-LexA(attP40),
13XLexAop2-1VS-GCaMP6f-p10(su(Hw)attP5); R87D07-ZpGdbd(attP2) / UAS-P2X2, VT032906-Gal4(attP2)

Central complex-evoked turning, genetic control lacking PENI Gal4 (Fig. 4)
w, pJFRCS81-td3-Halo7::CAAX(attP18) / w; R75C10-P65ADZP(attP40) / R60D05-LexA(attP40),
13XLexAop2-1VS-GCaMP6f-p10(su(Hw)attP5);, R87D07-ZpGdbd(attP2) / UAS-P2X2

Unilateral optogenetic activation of DNa02 (Fig. 8)
v, w, hsFLP.122 / w; R75C10-P65ADZP(attP40) / +; R87D07-ZpGdbd(attP2) /
UAS-FRT.mCherry.FRT ReachR: :citrine(VK00005)

Bilateral optogenetic silencing of DNa01 (Fig. 8; Figs. S7-S8)
w; R22C05-p65ADZp(attP40) / +; R56G08-ZpGdbd(attP2) / UAS-GtACRI::eYFP(VK00005)

Bilateral optogenetic silencing of DNa02 (Fig. 8; Figs. S7-S8)
w; R75C10-P65ADZP(attP40) / +; R87D07-ZpGdbd(attP2 ) / UAS-GtACRI::eYFP(VK00005)

Genetic control for optogenetic silencing (“empty” split-Gal4) (Fig. 8; Fig. S7)
w; p65.AD. Uw(attP40) / +; GAL4.DBD.Uw(attP2) / UAS-GtACRI1 ::eYFP(VK00005)

Fly mounting and dissection for electrophysiology and calcium imaging

On the day of the experiment, a fly was cold-anesthetized and then inserted into the hole of a machine milled
(Harvard Medical School Research Instrumentation Core) or photoetched (Etchit) platform made of stainless steel shim
stock (McMaster-Carr). We secured the fly to the platform using UV-curable glue (AA3972 Loctite) applied on the thorax
and eyes.

We then extended the proboscis with forceps and waxed it in place to prevent brain motion (Electra Waxer,
Almore); prior to this step, a manual manipulator (MX160R Siskiyou) was used to lower a shield over the legs to protect
them from the tip of the waxer. We then covered the brain with extracellular saline composed of: 103 mM NaCl, 3 mM
KCl, 5 mM TES, 8 mM trehalose, 10 mM glucose, 26 mM NaHCO;, 1 mM NaH,PO0O4, 1.5 mM CacCl,, and 4 mM MgCl,
(osmolarity 270-275 mOsm). The saline was bubbled during the dissection with 95% O, and 5% CO, and reached an
equilibrium pH of 7.3. The top of the cuticle was removed, followed by air sacs and fat globules around the patching site.
Muscle 16 was severed to prevent brain motion. The frontal head air sac, which extends ventrally under the brain, was
also removed to improve illumination from below the brain. Finally, we mechanically removed the peri-neural sheath over
the patching site. (For behavior-only experiments in Figs. 8 and Fig. S7, all these dissection steps were omitted.)

Finally, we transferred the fly to the spherical treadmill, where we used a motorized three-axis manipulator

26


https://doi.org/10.1101/2020.04.04.024703
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.04.024703; this version posted March 30, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(MT3-Z8, Thorlabs) to adjust the fly relative to the ball. Two cameras (BFLY-PGE-13E4M, FLIR) were used to visualize
the fly during this adjustment.

Spherical treadmill and behavioral measurements

We used a sensor-based setup for tracking the movements of the spherical treadmill (Seelig et al., 2010). Briefly, a
hollow HDPE sphere (6.35 mm diameter) was floated on pressurized air, in a plenum mounted on a manipulator to allow
alignment of the center of the ball with two motion sensors located at a distance from the ball. The ball was painted with a
random dot pattern to make it easier for motion sensors to detect movement. We positioned two cameras 90° apart to track
the motion of the ball in three dimensions (rotational, sideways, forward velocity), and we took the fly’s fictive
movements in each direction as equal and opposite to the ball’s movements. These motion cameras were custom built by
housing the motion sensor array (ADNS-9800, JACK Enterprises) in a custom housing with a lens (M2514-MP2,
Computar). Data from the sensor was read out and translated into an analog signal using a digital-to-analog converter
(MCP4725, SparkFun) and an Arduino device (Due, Arduino). Analog data were digitized at 10 kHz with a multi-channel
NI DAQ board (PCle-6353, National Instruments), controlled via the Matlab Data Acquisition Toolbox interface
(MathWorks). Analog data were then smoothed using a 2nd-order lowpass Butterworth filter and downsampled to 100 Hz.

Motion sensor outputs were calibrated to obtain the conversion from sensor outputs to ball velocities. We
performed this calibration by rotating a ball using a planetary gear motor with an encoder (Actobotics, Part 3638298). The
motor was rotated at 6 different speeds in all 3 axes of motion, and linear regression was used to calculate the mapping
between the output of the motion sensors and the rotation of the ball.

We noticed that steering responses to sensory stimuli were larger and more consistent in intact flies, as compared
to flies used for electrophysiology experiments (Fig. S5). The reduced performance of flies used for electrophysiology
experiments is likely due to local removal of the peri-neural sheath and/or local disruption of the neuropil surrounding the
targeted somata. Nonetheless, the qualitative features of behavior are comparable in intact flies (Fig. S5) versus flies used
for electrophysiology (Fig. 5).

Electrophysiology

For patch clamp experiments, we illuminated the brain with an infrared fiber (SXF30-850, Smart Vision Lights)
mounted under the fly tethering platform in a sagittal plane at ~20° from the horizontal and a we visualized the brain with
a camera (BFLY-PGE-13E4M, Point Gray) mounted on a fluorescence microscope (BX51, Olympus).

Before attempting to obtain seals, we first used a large-diameter glass pipette filled with extracellular saline (4-5
MQ), to clear the area around the soma of interest by applying positive pressure and also gently sucking away any cells
lying on top of the soma of interest. Patch pipettes (9-11 MQ) were pulled the day of the recording and filled with internal
solution containing 140 mM KOH, 140 mM aspartic acid, 10 mM HEPES, 1 mM EGTA, 1 mM KCl, 4 mM MgATP, 0.5
mM Na;GTP, and 13 mM biocytin hydrazide (pH adjusted to 7.2 + 0.1, osmolarity adjusted to 265 = 3 mOsm). Whole-cell
patch-clamp recordings were performed from fluorescently labeled somata in current-clamp mode using an Axopatch
200B amplifier. Data were low-pass filtered at 5 kHz, digitized at 10 kHz by a 16 bit A/D converter (National Instruments,
BNC 2090-A), and acquired using the Matlab Data Acquisition Toolbox (MathWorks). Recordings were stable for at least
15 min and up to 2 hrs.

We always recorded from the neuron in the left hemisphere, except when we recorded from the same cell type
bilaterally. For bilateral recordings, we performed the cleaning and air-sac clearing steps on both sides of the brain. For
dual recording experiments of DNaO1 and DNa02, we performed recordings on the left side of the brain.

We targeted DNaOl using SS00731, and we targeted DNa02 using SS00730 (Namiki et al., 2018); the only
exception was that, in dual DNaOl and DNa02 recordings, we targeted DNaO1 using the SS00731, and we targeted DNa(2
using R75C10-Gal4. In these flies, we could identify DNaOl and DNa02 based on the depths of their somata (DNa02 is
more superficial), the sizes of their somata (DNa(2 is larger), and their spike waveforms (DNa02 spikes are larger).
Finally, to confirm the discriminability of DNa02 and DNaOl spikes, we quantified the performance of automated spike
waveform classification (Fig. S1).

Calcium imaging and electrophysiology during central complex stimulation

In the experiments for Fig. 4, the pitch angle of fly’s head was carefully adjusted during the dissection procedure.
This allowed patch-pipette access to the anterior side of the brain (where DNa(02 somata reside) as well as pressure-pipette
access to the protocerebral bridge on the posterior side of the brain (where PEN1 dendrites reside).
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To position the pressure-ejection pipette in the protocerebral bridge, and to obtain a patch recording from an
DNa02 somata, we visualized the brain and the patch pipette using an infrared fiber (SXF30-850, Smart Vision Lights)
mounted under the tethering platform in a sagittal plane at ~20° from the horizontal and a near-infrared camera
(GS-U3-41C6NIR FLIR) mounted on the widefield viewing port of a 2-photon microscope (Bergamo II, Thorlabs).

To obtain a recording from DNa02, we needed to fluorescently label DNa02 somata. However, we needed to label
DNa02 without also labeling PEN1 neurons (which also expressed Gal4), because PENI1 labeling could have
contaminated our GCaMP6f signal in the ellipsoid body. We therefore used a chemogenetic approach (Sutcliffe et al.,
2017). Specifically, we drove an expression of HaloTag under Gal4/UAS control, and we then applied SiR110-HaloTag
dye (Zheng et al., 2019) (a gift from Luke Lavis) to the preparation. The dye was prepared as a stock solution (500 uM in
DMSO), and then 1 uL of the stock was dissolved in 500 pL. of extracellular saline. Most of the saline in the recording
chamber was removed and the dye solution was added to the chamber. After a 15 min incubation, the chamber was rinsed
and re-filled with regular extracellular saline. We used a TexasRed filter cube (49017, Chroma) to visualize labeled
DNa02 somata. Because the perineural sheath was removed selectively in the vicinity of DNa02 somata, the bath-applied
SiR110-HaloTag dye bound mainly to DNa02 somata, with essentially no binding to the ellipsoid body neuropil.

For GCaMP6f imaging of EPG neuron dendrites in the ellipsoid body, we used a volumetric, galvo-resonant
scanning 2-photon microscope (Bergamo II, Thorlabs) equipped with a 20%, 1.0 n.a. objective (XLUMPLFLN20XW,
Olympus) and GaAsP detectors (Hamamatsu). We used Scanlmage 2018 software (Vidrio Technologies) to control the
microscope. Two-photon excitation was provided by a Chameleon Ultra II Ti:Sapphire femtosecond pulsed laser with
pre-compensation (Vision-S, Coherent). To image GCaMP6f, we tuned the laser to 940 nm. The objective was translated
vertically using a scanner with a 400-um travel range (P-725KHDS PIFOC, Physik Instrumente). The ellipsoid body was
volumetrically imaged with 12 z-planes of 256%64 pixels separated by 4-5 um. We acquired ~12 volumes/s.

For PENI stimulation, we followed a published procedure (Green et al., 2019). We prepared a solution of ATP
(A7699, Sigma, 0.5 mM) and Alexa594 dye (A33082, FisherScientific, 20 pM) in extracellular saline. This solution was
used to fill a glass pipette slightly smaller than a patch pipette. We used a red emission filter cube (49017, Chroma) to
visually locate the pipette via the microscope eyepieces. The tip of the pipette was placed into the protocerebral bridge,
where the dendrites of PEN1 neurons are located, generally close to glomerulus 4 (Wolff et al., 2015). To eject ATP and
dye, we delivered a 50-100 ms pulse of pressure to the back of the pipette (10-20 p.s.i.) using a pneumatic device gated by
a voltage pulse (PV820; World Precision Instruments). We confirmed ejection by observing a bolus of dye appear in the
center of the protocerebral bridge neuropil, and the resulting stimulus-locked rotation of the EPG bump in the ellipsoid
body.

In a given experiment, we noticed that the bump tended to jump to the same location in every trial. We used that
fact to try to obtain large bump jumps. Specifically, we manually timed the ATP injection in each trial to maximize the
size of the resulting bump jump. We ejected ATP every 15-25 s for a total of 87 + 10 stimulations per fly.

As a negative control, we performed the same type of experiment in flies lacking the PEN1 Gal4 line, and we
confirmed that the ATP puff only rarely preceded bump jumps in this genotype (Fig. 4B). This negative result
demonstrates that the bump jump in the experimental genotype is primarily driven by P2X2 expression in PEN1 neurons.
Bump jumps in control flies are likely coincidental, as the bump is often moving in a typical EPG imaging experiment. In
control flies, in the few trials where the bump jumped, the bump returned to its initial location 35% of the time. These
returns are not unexpected, because the bump’s location is thought to be continuously compared to an internal goal
location stored downstream from EPG neurons, and any deviation from the fly’s angular goal is corrected via
compensatory turning maneuvers.

Note that, in these experiments, EPG neurons expressed GCaMP6f (under the control of 60D05-LexA4), PEN1
neurons expressed P2X, and HaloTag (under the control of V7032906-Gal4), and DNa02 neurons also expressed P2X,
and HaloTag (under the control of SS00730). We took several steps to verify that ATP directly stimulated PEN1 neurons
but not DNa02 neurons. First, we used dye to check that the ATP bolus was confined to the protocerebral bridge. Second,
we confirmed that DNa02 neurons were not depolarized during the period when PEN1 neurons were depolarized and the
bump therefore jumped, i.e. in the first 0.5 s after ATP ejection (mean DNa(02 voltage change in the 0.5 s after ATP
ejection was 0.12 £ 0.27 mV in experimental flies and 0.14 £ 0.27 mV in genetic controls lacking the PEN1 Gal4 driver).
Rather, DNa02 neurons were only excited just before the fly made a compensatory steering maneuver, which usually
occurred 1.0-1.5 s after the bump jump. Third, we verified that DNa0O2 was only recruited when the bump returned to its
initial location via a clockwise path; if ATP had been directly exciting DNa02, then the side where DNa02 was active
should not be contingent on the bump’s path.

Fictive odor and fictive heat stimuli

28


https://paperpile.com/c/pLk5a2/IsRZR
https://paperpile.com/c/pLk5a2/IsRZR
https://paperpile.com/c/pLk5a2/2YasG
https://paperpile.com/c/pLk5a2/Z8NNB
https://paperpile.com/c/pLk5a2/SScxE
https://doi.org/10.1101/2020.04.04.024703
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.04.024703; this version posted March 30, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

In Fig. 5 (and Figs. S5 and S6), we used the LexA system to express Lex4AOp-CsChrimson::mVenus under the
control of either Orco-LexA (Lai and Lee, 2006) or Gr28b.d-LexA (Frank et al., 2015). To illuminate the antennae, we
fixed a pair of 50-um fiber optic cannulas (10 mm long, FGOS0UGA, Thorlabs) to the underside of the recording
platform, so that each fiber was directed at one antenna. Alignment of each cannula was confirmed in every experiment by
looking for uniform and symmetric illumination of each antenna (Gaudry et al., 2013). A 660 nm light source was
fiber-coupled to each cannula (M660F1, Thorlabs). Stimulation lasted for 0.5 s, with an inter-stimulus interval of 11 s.

Stochastic ReaChR expression

We expressed ReaChR stochastically in DNa02 neurons to obtain unilateral optogenetic activation of these neurons. Flies
expressed FLP under the control of a heat-shock promoter, and they expressed UAS-FRT.mCherry.FRT ReachR::citrine
under the control of the DNa02 split-Gal4 line (SS00730). These flies were allowed to develop at room temperature
(~21°C), as we found that this was sufficient to produce stochastic labeling. We took 1-day old female virgin flies from
this culture and we fixed them into our standard platform, but no dissection was performed prior to making behavioral
measurements, i.e. the head cuticle remained intact. After the flies acclimated to the spherical treadmill, orange light (617
nm, M617L3, Thorlabs) was delivered from above the head, so that the left and right sides of the head were illuminated
symmetrically. The power density at the fly’s head was 68 pW/mm?. Light was switched on for 0.5 s every 11 s for a total
of 150 trials. The experimenter remained blind to the fly’s behavior throughout these trials. At the end of these trials, the
dorsal cuticle was dissected away and ReaChR expression was scored. In a total of 73 experiments, we observed bilateral
expression in 47 brains, left-only expression in 9 brains, right-only expression in 8 brains. and no expression in 8 brains.
After ReaChR expression was scored, flies were divided into data analysis categories and behavioral data was analyzed
accordingly.

EM reconstruction

To identify DNa02 in the (FAFB) dataset (Dorkenwald et al., 2023, 2022; Scheffer et al., 2020; Schlegel et al., 2023;
Zheng et al., 2018), we traced all the neurites with large cross-sections in the tract where DNa02’s primary neurite resides,
in the vicinity of the ventral lateral accessory lobe. All these primary neurites were reviewed by two experts, who agreed
that only one neuron resembled DNa02. We then fully reconstructed the skeleton of this DNa02-like neuron. Next, we
confirmed that this neuron bore an excellent resemblance to skeletons we traced from two 3D confocal images of the
DNa02-specific split-Gal4 line (SS00730) driving CD8::GFP expression. The first of these images was provided to us by
Gwyneth Card (Namiki et al., 2018). The second image we obtained via immunostaining and confocal imaging using
standard procedures. We registered both 3D images to a common template brain, JFRC2013 (Bates et al., 2020), using the
neuropil counterstain (anti-Bruchpilot immunostaining). Image registration was carried out as described previously
(Cachero et al., 2010) using the CMTK registration suite (https://www.nitrc.org/projects/cmtk). Single neurons were
manually traced from 3D confocal images using the Simple Neurite Tracer plugin (Longair et al., 2011) in ImageJ. For
comparison with light-level data, the EM skeleton was also registered onto the JFRC2013 template brain. DNa01 was
identified using similar approaches, which are now detailed in (Stiirner et al., 2024); note that this pair of neurons was
identified as present in the line SS00731 and distinct from the neurons (incorrectly) labeled as DNa0O1 in hemibrain:v1.2.1
dataset. In FAFB / FlyWire v783, root IDs of these cells are as follows: DNa02R 720575940604737708, DNa02L
720575940629327659, DNaO1R 720575940644438551, and DNaO1L 720575940627787609. DNa01 and DNa02 outputs
in the ventral nerve cord were retrieved from the male VNC connectome (manc v1.2.1) using neuprint+ (Plaza et al.,
2022) and analyzed using neuprint-python (https://connectome-neuprint.github.io/neuprint-python). DNa0O1 and DNa02
inputs in the brain were retrieved from the female brain connectome (FAFB/FlyWire), specifically materialization version
783; cell and synapse counts were analyzed using fafbseg (Bates et al., 2020). The major central complex and
olfactory/thermosensory pathways upstream from DNa02 were analyzed using Codex and fafbseg. Neurotransmitters
associated with FAFB cells are taken from automatic predictions (Eckstein et al., 2024). To select cell types for inclusion
in Figures 7C, we identified all individual cells postsynaptic to PFL3 and presynaptic to DNa02, discarding any unitary
connections with <5 synapses. We then grouped unitary connections by cell type, and then summed all synapse numbers
within each connection group (e.g., summing all synapses in all PFL3—LAL126 connections). We then discarded
connection groups having <200 synapses or <1% of a cell type’s pre- or postsynaptic total. Reported connection weights
are per hemisphere, i.e. half of the total within each connection group. For Figure 7F we did the same, but now discarding
connection groups having <70 synapses or <0.4% of a cell type’s pre- or postsynaptic total. In Fig. S9, we used the same
procedures for analyzing connections onto DNaOl.
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Data processing and analysis
Data alignment

Behavioral, stimulus, and imaging data were aligned using triggers acquired on the same NI-DAQ board.
Data analysis — spherical treadmill data preprocessing

Kinematic data used in computing linear filters, signal autocorrelations, LOWESS-fit scatter-plots, and
event-triggered analysis were processed as follows. First, the zero-point of each kinematic signal was corrected for small
artifactual offsets by finding the median of periods of inactivity, defined as regions with instantaneous difference of less
than 0.025°/s. The offset value during these periods was largely consistent throughout the entire experiment, so a global
subtraction was used to remove this offset for each experiment.

We then lightly smoothed each kinematic variable by convolving with a 50-ms Gaussian kernel bounded from
-3.5 o to +3.5 o, and re-normalized. In order to remove remaining high frequency noise while preserving large signal
excursions, we then used Gaussian process smoothing. This smoothed the data by fitting the time series to a Gaussian
random walk process and taking the maximum a posteriori probability (MAP) estimate for each time point, as found with
the L-BFGS-B optimizer. The model was implemented with PyMC3 (Salvatier et al., 2016). Briefly, the model is as
follows:

Zi~Normal z. + W 1-o)* o Equation 1
1

2 .
Y~ N ormal(zi, a*o) Equation 2
Where each time point Y, was modeled as a draw from a normal distribution parameterized with mean z + U and standard

deviation a * 02, where a acts as a factor to assign signal variance to a moving average or normally distributed noise. All
variables except a were fit using the approximate inference software; | was given a large initial prior standard deviation
(100000, or 5-6 times the largest value present in the data) and it quickly converged to a stable value. We set a to 0.2 to
assign 20% of signal variance to noise and the remaining 80% to the random walk. All time series were scrutinized to
ensure proper baseline correction and smoothing.

Total speed was calculated by taking the absolute value of rotational velocity (vr) sideways velocity (vs), and

forward velocity (v f)’ and then summing these values:
total speed = |vr| + |vs| + |v f| Equation 3

where v, v, and v ; are all expressed in units of °/s (i.e. sideways and forward velocity were not yet converted into units

of mm/s). This metric quantifies the overall level of fly movement, irrespective of the direction of movement.
Data analysis - electrophysiology data preprocessing

To compute mean changes in membrane voltage relative to baseline (mean Avoltage) in Fig. 2E (and Figs. S4,
S6), we first removed spikes by median-filtering the raw voltage trace. To compute firing rates in Figs. 2C-E, 3B-C, 4, 5,
6 (and Figs. S3, S4, S5, S6), we first detected spikes by using a relative prominence metric in the Matlab findpeaks
function. We then counted spikes in 10-ms non-overlapping bins, and smoothed them with an exponential filter using the
smoothts function in Matlab with a 30-ms window size to generate a continuous waveform of firing rate versus time.

For Figs. 1, 2B, and 3D.E (and Fig. S2), firing rate was calculated as follows. First, data were conservatively
band-pass zero-phase filtered using a first-order Butterworth filter with natural (3 dB) frequency of 100 Hz. Filtered time
series were then normalized to a 500-ms rolling estimate of the median absolute deviation (MAD). MAD is defined as the
median of absolute deviations from the median of the entire dataset. We used a corrected version of this estimate to
maintain asymptotically Normal consistency by multiplying by 1.4826. This aids spike detection when firing rates are
high. Spikes were then detected using the relative prominence metric in the find peaks function in the SciPy Python
library, where the prominence of a given spike was defined over a 10-s period. Prominence values were selected for each
experiment and neuron. While requiring threshold tuning for some experiments, this method was robust in all DNaO1 and
DNa02 recordings. To estimate the firing rate, detected spikes were then binned at 1.25 ms and smoothed by convolving
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with a 2.5-ms Gaussian kernel as described above. All steps of firing rate calculation were scrutinized to ensure proper
behavior by plotting periods known to be difficult or easy to estimate (i.e. small inter-spike-interval or high MAD).

To compute autocorrelations (Fig. S2) and linear filters (Figs. 1, 2B, 3D.E, and Fig. S2), we processed
electrophysiology data as follows. We first estimate an initial “offset” by taking the median of the first 30-60 s. We then
median-filtered the entire time series using a kernel length of 35 ms. This window length was empirically selected to
optimally preserve low-frequency voltage modulations while excluding most of the spike waveform. We then removed
high frequency artifacts remaining after median filtering by convolving with a 5-ms Gaussian kernel (bounded from -3.5¢
to +3.5¢ and re-normalized). The resulting time series was then detrended by subtracting the average of linear fits to
voltage data over every 30 s and 120 s, and then adding back the initial offset. All time series were scrutinized to ensure
that median filtering and detrending were successful.

To compute neuron-behavior relationships, firing rates and membrane voltage values were downsampled to the
same sampling rate as the spherical treadmill data. This was done by applying an upsampling by a factor of 4, applying a
linear-phase finite impulse response filter, and then downsampling.

Data analysis - Signal autocorrelation analysis

Kinematic variable autocorrelation and neuron firing rate autocorrelation were calculated using the correlate
function in the python library SciPy (Fig. S2, https://scipy.org/) or using the xcorr function in Matlab (Fig. 2A).

Data analysis - Linear filter analysis

Linear filters (Figs. 1, 2B, 3D,E, and Fig. S2) were calculated using the sampling rate of the spherical treadmill
data, meaning that electrophysiology data were downsampled as described in the preprocessing section. We calculated
these linear filters by treating one signal as input and the other as output. We found the fast Fourier transform (FFT) of
1-sample overlapping 4-s windows of both input and output, and then computed

F(Q) = (input (Q)xoutput(Q))/(input (Q)xinput()) Equation 4

where input represents the complex conjugate of input. The denominator of this equation is the input power spectrum,
and the numerator is the cross-correlation between input and output in the frequency domain. We then applied the inverse
of the fast Fourier transform to F to yield the linear filter relationship between input and output. For filter analyses, all
behavioral variables were represented in units of /s (i.e., sideways velocity and forward velocity were not converted from
°/s to mm/s). This was done so that all filters had the same units (°/s in Fig. 1 and Fig. S2B-F, or s/° in Fig. S2H-L),
allowing direct comparison of different filter amplitudes. Because walking behavior appeared consistent over the course
of the experiments in general, linear filters were found using the first 20% of the experiment, further restricting this data to
exclude times when there was optogenetic stimulation.

Our input and output signals have little high-frequency content, and so division in the frequency domain
introduces some noise into the linear filter. Moreover, each class of input-output relationship has its own characteristic
frequency content. For this reason, we low-pass filtered the linear filters to remove this noise differently for each class.
Behavior—Neuron filters were filtered with a 0™ order Slepian window of 6 Hz bandwidth, whereas Neuron—Behavior
filters were low pass filtered using a 0™ order Slepian window of 15 Hz. These windows maximize energy in the central
lobe and were empirically selected to avoid distortion of spectral content within the window.

To generate behavioral predictions, we convolved each cell’s firing rate estimate with its Neuron—Behavior
filters using the final 80% of the experiment, again excluding periods with optogenetic stimulation. To find the variance
explained by each filter, we linearly regressed the predicted output against the actual output and took the R? value (Fig.
1H, Fig. S2F,L). Since each experiment differed in signal-to-noise, and low pass filtering was applied globally, the length
of filter used in prediction was optimized within valid bounds for each neuron (100 ms to 4 s). In general, we found that a
shorter filter was optimal for rotational velocity and sideways velocity, whereas a longer filter was optimal for forward
velocity and total speed, consistent with the differing timescales of the autocorrelograms of these variables (Fig. S2). In
scatter plots of predicted turning we excluded periods of inactivity for clarity (Fig. 3E). We defined inactivity here using a
histogram-based method to robustly classify movement versus non-movement. Briefly, we constructed a histogram using
the outlier-robust Freedman Diaconis estimator to generate bins centered around the modal timeseries value for each of
the three kinematic variables, then found all points in the fly’s behavior where all three variables were within these bin
edges (close to zero net ball motion). For generating a two-cell behavioral prediction from DNa02 dual recordings, we
simply summed the predictions of both filters, again using only periods when the fly was active (Fig. 3E).
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Data analysis - transitions between movement and immobility

To generate Fig. 6B, we defined total speed (in units of °/s) according to Equation 3. We applied a threshold of
75°/s to the fly’s total speed in each experiment in the increasing direction (to detect “starts”) and also the decreasing
direction (to detect “stops”). We then discarded starts where the fly was not consistently stopped before starting (i.e., in
the window 750 ms before threshold crossing, 90% of data points were not less than or equal to Y4 the threshold value),
and we also discarded starts where the fly was not consistently moving after threshold crossing (i.e., in the window 750
ms after threshold crossing, 90% of the data points were not greater than the threshold value). Conversely, we also
discarded stops where the fly was not moving consistently before stopping (i.e., in the window 750 ms before threshold
crossing, 90% of the data points were not above the threshold value), and we also discarded stops where the fly was not
consistently stopped after the threshold crossing (i.e. in the window after threshold crossing, 90% of the data points were
not less than or equal to %2 the threshold value). Our conclusions based on this analysis were generally insensitive to the
length of the window chosen. Finally, we aligned events by the time of threshold crossing, and we averaged data across
events within each experiment before averaging across experiments.

Data analysis — colormaps of behavioral data in 2-neuron space

To generate the colormaps in Figs. 2 and 3 (and Fig. S3 and S4), we shifted the neural data forward by 150 ms to
account for the delay in behavior relative to neural data. We then divided both neural data and behavioral data into 50-ms
non-overlapping time windows. We computed the average firing rate or membrane voltage in each window; these values
were then used to bin the behavioral data in 2-dimensional firing rate space or 2-dimensional membrane voltage space.

Data analysis - central complex stimulation

For the imaging data in Fig. 4, imaging planes through the ellipsoid body (EB) were resliced to obtain coronal
sections. Using custom Matlab code, we manually divided the EB into 8 equal wedge-shaped sectors. We then calculated
AF/F for each EB sector, defining F as the average over time of the lower half of the raw fluorescence values for that
sector.

We estimated the position of the bump of activity in EPG neurons by computing a population vector average
(PVA) (Seelig and Jayaraman, 2015). Our experimental design required that we focus on trials where the bump was
clearly visible and stable, jumped after the ATP puff, and then returned to its initial position; our goal was to study DNa02
neuron responses during this sequence of events. We therefore discarded trials where the bump amplitude faded during the
trial — specifically, where PVA magnitude dropped below the 7th percentile (for that experiment) for more than 1 s during
the trial. We then discarded trials where the bump was already moving during the 1 s prior to the ATP puff, meaning that
the standard deviation of the bump’s position during that period was >1.5 sectors. At this point, we computed the “initial
position” of the bump in each trial as its mean position during the 1 s prior to the ATP puff. Next, we discarded trials
where the bump did not jump in response to the ATP puff, i.e. where the bump’s position did not move by at least 0.5
sectors. We also discarded trials where the bump did not return to dwell within 0.5 sectors of its initial position (i.e., its
position before the bump jump) for at least 0.5 s. Our results were not especially sensitive to the precise values of any of
these data inclusion criteria.

We defined the bump’s return period as the time window beginning with the maximum excursion of the bump
(from its initial position) and ending with the bump’s return to a position within 0.5 sectors of its initial position. We found
the time point during each trial where the bump’s return speed was maximal. We then aligned trials by this time point
before averaging data across trials and experiments. We confirmed that counterclockwise bump movements are generally
associated with rightward behavioral turns, while clockwise bump movements are associated with leftward behavioral
turns, as described previously (Turner-Evans et al., 2017).

Data analysis - optogenetic inactivation of DNa0l or DNa02

We removed 27-s video chunks where the fly moved less than one body length. We then cropped each chunk, with
the field of view centered around the center of the fly, and we used these videos as inputs to the DeepLabCut (Mathis et
al., 2018) annotation software. In 1300 frames from 12 flies, we manually annotated 8 body parts in each frame: the tarsi
of each leg, the posterior tip of the abdomen, and the center of the anterior edge of the head. Frames were chosen for
manual annotation to maximize diversity of walking angles in the field of view. Training was performed on 95% of this
1300-frame dataset, and the remaining 5% was used to visually evaluate model performance by comparing the locations
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of manually labeled points and auto-labeled points. When the model mislabeled frames, it was generally because of an

unusual walking angle or lighting condition, and so we added frames with these conditions to our training set and

recomputed the detection model to improve performance in these situations. We also excluded stretches of data when the
fly was grooming, jumping, or walking on the ceiling of the arena, because all these events reduced the model’s
performance. We labeled a leg “in stance” if the smoothed instantaneous velocity of the limb was <8 mm/s (averaged over

3 consecutive frames); otherwise the leg was labeled “in swing”.

Sideways speed and rotational speed (Fig. 8E) Taking data from all three genotypes, we divided each video chunk into

non-overlapping 500-ms windows. We then computed the vector between the head and the abdomen tip. We used this

vector to compute the fly’s forward velocity, sideways speed, and rotational speed, for each frame, averaged over all
frames in the window. We discarded windows where the fly’s average forward velocity was <2.0 mm/s. To determine

whether there was a significant effect of DNa01 silencing on sideways speed or rotational speed, we performed a

two-factor ANOVA with genotypes (DNaO1/control) and light (on/off) as factors, and we examined the p-values

associated with genotypexlight interaction, after p-values were corrected for multiple comparisons (Bonferroni-Holm
correction, m=2 tests). We used the same procedure to determine whether there was a significant effect of DNa02
silencing.

Leg movements associated with body rotation events (Fig. 8F,G and Fig. S7) We analyzed five metrics intended to

capture the multi-leg kinematic features associated with body rotations. These metrics were based on previous

descriptions of leg movements during body rotations (DeAngelis et al., 2019; Strauss and Heisenberg, 1990). Importantly,
we determined the number of metrics we would test, and we fixed the exact definitions of those metrics, based on data
from control genotypes alone. Our goal was to identify leg-kinematic features associated with body rotation in control
flies, in order to subsequently determine if any of these features were altered when DNs were silenced. To analyze
leg-kinematic features associated with body rotation, our first step was to detect body-rotation events by searching
forward in time for moments where the fly’s rotational speed exceeded a threshold of 20°/s and stayed above that
threshold for at least 0.1 s. We then extracted a 500-ms window of data starting 100 ms prior to the threshold crossing.

(We explored several window sizes, and chose 500 ms because it produced the strongest relationship between the

multi-leg metrics and rotational movement, considering all five metrics taken together.) Next, for each leg, we detected

every complete swing epoch and every complete stance epoch in the window. Then, in each window, we computed the
following metrics (iF = inner front, iM = inner middle, iB = inner back, oF = outer front, oM = outer middle, oB = outer
back):

1. Stance direction (Fig. S7, row 1): The vector pointing backward along the body’s long axis was taken as 0°. We
measured each leg’s movement direction (in body-centric coordinates) during each stance. When the fly is walking
forward, leg stance directions are close to 0° (i.e., every leg is moving almost straight in the backward direction relative
to the body). During left turns, the legs in stance tend to move rightward (0° < 6 < 180°), while conversely, during right
turns, the legs in stance tend to move leftward (0° > 0 > -180°); see Fig. STB1. The stance direction metric was defined
as the mean of the stance directions of the oF, iF, and iM legs (averaged over all epochs in the window).

2. Swing direction (Fig. S7, row 2) The vector pointing forward along the body’s long axis was taken as 0°. We measured
each leg’s movement direction (in body-centric coordinates) during each swing. When the fly is walking forward, leg
swing directions are close to 0° (i.e., every leg is moving almost straight in the forward direction relative to the body).
During left turns, the legs tend to swing leftward (0° < 8 < -180°), while conversely, during right turns, the legs tend to
swing rightward (0° > 6 > 180°); see Fig. S7TB2. The swing direction metric was defined as the mean of the stance
directions of the oF, iF, and iM legs (averaged over all epochs in the window).

3. Swing distance (Fig. S7, row 3) We measured the distance each leg moved during its swing epochs. The swing distance
metric was defined as the mean of the swing distances of the OF and OM legs (averaged across swing epochs), divided
by the mean swing distances of the iM and iB legs (averaged across epochs in the window).

4. Stance duration Fig. S7, row 4 and Fig. 8F,G) We measured the time each leg spent in each of its stance epochs. The
stance duration metric was defined as the stance duration of the iB leg (averaged over stance epochs), divided by the
mean stance durations of the iF, oF, oM, and oB legs (averaged across epochs in the window).

5. Swing duration (Fig. S7, row 5) We measured the time each leg spent in each of its swing epochs. The swing duration
metric was defined as the mean swing duration of the iM and iB legs (averaged across epochs in the window).

To determine whether there was a significant effect of DNaO1 silencing on any metric, we performed a two-factor

ANOVA with genotypes (DNa0O1/control) and light (on/off) as factors, and we examined the p-values associated with

genotypexlight interaction, after p-values were corrected for multiple comparisons (Bonferroni-Holm correction, m=5

tests). We used the same procedure to determine whether there was a significant effect of DNa02 silencing.

Step frequency, step length, and forward velocity (Fig. 8H) We divided each video chunk into non-overlapping 500-ms

windows. We discarded windows where the fly’s time-averaged forward velocity was <2.0 mm/s. Step frequency was
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defined as the mean frequency of stance onset for all six legs, averaged across all complete stride epochs within that
window, for all legs. Step length was defined as the mean stride distance of all six legs, averaged across all complete stride
epochs within that window, for all legs. Forward velocity was defined as the velocity of the vector connecting the
abdomen tip to the head, in the direction of that vector, for each frame, and then averaged over the window. To determine
whether there was a significant effect of DNa(1 silencing on any of these three variables (step frequency, step length,
forward velocity), we performed a two-factor ANOVA with genotypes (DNaO1/control) and light (on/off) as factors, and
we examined the p-values associated with genotypexlight interaction, after p-values were corrected for multiple
comparisons (Bonferroni-Holm correction, m=3 tests). We used the same procedure to determine whether there was a
significant effect of DNa02 silencing.

For the leg-centric metrics above, if any leg included in a given metric did not complete at least one of the
relevant epochs during a particular time window, then that window was omitted. Moreover, for the ANOVAs described
above, if a fly did not contribute at least 5 time windows to the dataset for that particular metric, then the fly was omitted.
The number of flies that contributed data to each panel was as follows (control/DNa01/DNa02 genotypes): Fig. 8E
(7/11/6); Fig. 8F,G (5/8/6); Fig. 8H — step frequency (6/8/6), step length (6/10/6), forward velocity (7/11/6). For Fig. S7,
the values are: row 1 (6/9/6); row 2 (6/9/6); row 3 (6/9/6); row 4 (5/8/6); row 5 (6/9/6).

Post hoc statistical tests: When any ANOVA yielded a significant genotypexlight interaction, we followed up by
performing a post hoc Tukey test to determine whether, for each genotype, there was a significant effect of light on/off.
Finally, to confirm that it was reasonable to treat each time window as an independent datapoint, we performed a separate
two-factor ANOVA with fly ID and light as factors, and we verified that variance due to fly ID is much smaller than total
variance.

Data inclusion

In analysis of electrophysiology experiments, we excluded cells where the recording lasted <=15 minutes. Late in
a recording, the membrane voltage sometimes became depolarized, which we interpret as a sign of poor recording quality;
we therefore discarded any extended epoch where the membrane voltage was more depolarized than -33 mV.

In Fig. 5 (and Figs. S5, S6), flies were excluded that displayed highly asymmetric stimulus-evoked steering
behavior. For example, we excluded a fly if on average, she displayed significant stimulation-evoked turns to the right but
not to the left. These cases are likely due to asymmetric positioning of the fiber optic filaments near the antennae. This
excluded 2/6 flies for fictive odor experiments and 3/7 flies for fictive warming experiments.

In Fig. 4, flies were excluded if there were <6 trials that passed the checks described above (see Data analysis —
central complex stimulation). This excluded 4 of 8 recordings.

In single-cell recordings (Figs. 1, 4, 5, 6; Figs. S2, S5, S6), we excluded 1 DNa0O1 cell (out of 8 total) and 1
DNa02 cell (out of 11 total) where the recording quality fluctuated substantially over time.

DATA AND CODE AVAILABILITY: Data and code are available upon reasonable request.
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