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328 A polygenic score (PGS) for Alzheimer’s disease (AD) was recently derived from data
329 ongenome-wide significant loci in European ancestry populations. We applied this PGS
330 to populationsin 17 European countries and observed a consistent association with AD
331 risk, age at onset, and cerebrospinal fluid levels of AD biomarkers, independently of
332  apolipoprotein E (APOE). This PGS was also associated with the AD risk in many other
333  populations of diverse ancestries. A cross-ancestry polygenic risk score (PRS)
334 improved the association with AD risk in most of the multi-ancestry populations tested
335 when the APOE region was included. Lastly, we found that the PGS/PRS, captured AD-
336 specific information because the association weakened as the diagnosis was
337 broadened. In conclusion, a simple PGS captures the AD-specific genetic information
338 that is common to populations of different ancestries, but studies of more diverse
339 populations are still needed for a better characterization of the AD genetics.

340 Over the last 15 years, genome-wide association studies (GWASs) have fostered the
341 development of powerful approaches for characterizing disease processes and proposed
342  diagnostic/prognostic tools such as polygenic scores (PGS)'2. Given the high estimated
343  heritability (60-80%, in twin studies) of Alzheimer’'s disease (AD)3 a number of PGSs have
344  been developed and their associations with AD risk or related phenotypes have been almost
345  systematically reported*>®7:8910 However, comparisons across studies are complicated by
346 marked differences in the populations analyzed, PGS-calculation methods, the summary
347  statistics used, and the variants included!. Furthermore, most PGSs have been developed
348 from studies of European-ancestry populations, and only a few studies have investigated PGS
349  performance in populations of different ancestries!21314.15,

350 In this manuscript, we first generated a PGS (PGS”*? including the genome-wide significant,
351 independent sentinel single nucleotide polymorphisms (SNPs) at the loci reported by
352  Bellenguez et al.'® excluding the apolipoprotein E (APOE) locus (n=83; see Supplementary
353  Table 1 for the list of variants). We studied the associations between PGS”- and AD risk or
354  relevant endophenotypes in populations from 17 European countries. We next extended
355 PGS study to populations of diverse ancestries from Asia, Africa, Latin and North America.
356 Finally, as already developed in other complex human diseases!” 81920 we generated a cross-
357  ancestry polygenic risk score (PRS) by integrating GWAS summary statistics from multiple
358  populations to potentially improve PGS”* predictive performance?2,

359  We first evaluated the association between PGSA'? and the risk of developing AD in case-
360 control studies of European countries (see Supplementary Table 2 for population description
361 and adjustments used per population; Supplementary Fig. 1-3 for PGSAY% distributions).
362 PGS** was significantly associated with AD risk irrespective of APOE adjustment (Extended
363  Fig. 1A and Supplementary Fig. 4). PGSA'* was similarly associated with AD risk in men and
364 in women (Extended Fig. 1B and Supplementary Fig. 6) and with a younger age at onset
365 (Extended Fig. 2). It is noteworthy that when the PGSs were adjusted for difference in PGSA
366  distribution between the European populations, the association with AD remained similar
367 (Supplementary Fig. 5).

368 As we did not identify any potential bias/heterogeneity when comparing PGS** in the
369 European populations, we performed a combined analysis (mega-analysis) of our European
370 datasets to assess the risk of developing AD within various PGSA'? strata: 0-2%, 2-5%, 10-
371 20%, 20-40%, 60-80%, 80-90%, 90-95%, 95-98%, and 98-100% with the 40-60% PGSA-*
372  stratum as the reference. We also generated a PGS that included both the sentinel AD GWAS
373  loci and the two SNPs defining the €2/¢3/e4 APOE alleles. As expected, the risk of developing
374  AD in the most extreme strata was particularly high when APOE was included (Fig. 1A). The
375 association with PGS was also significant in all strata analyzed, irrespective of APOE
376  adjustment. In the 0-2% and 98-100% strata, PGS”"* was respectively associated with a more
377  than 2-fold decrease in the AD risk and a more than 3-fold increase in the AD risk compared
378  with the 40-60% stratum (Fig. 1A and Supplementary Table 3).

379  Since these results suggested an association for PGSA independently of APOE, we took
380 advantage of our mega-analysis to determine how PGS interacts with the APOE genotypes.
381  We found a limited interaction between PGS** and the number APOE ¢4 alleles on the risk of
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382 developing AD (p=3x10%). We next stratified the mega-analysis into four APOE genotype
383  groups (e2e2/£2¢3, £€3¢3, £2¢4/£3¢4, and e4e4) and assessed the association between PGSA
384  and the AD risk per quintile (0-20%, 20-40%, 60-80%, and 80-100%) for each subpopulation
385 (reference: 40-60% stratum). PGSA? was similarly associated with the AD risk in all the strata,
386 even if a stronger association might be present among e4¢4 carriers (Fig. 1B and
387  Supplementary Table 4).

388 To determine whether PGS*** is associated with AD pathophysiological processes, we
389 analyzed GWAS data of CSF levels of AB42, tau and p-tau (n=13,051 individuals) as previously
390 described?®. PGS was associated with a decrement in AB4. levels and an increment in tau
391 and p-tau levels whatever the adjustment on APOE (Fig. 2A,B and Supplementary Fig. 7). We
392  also checked the available samples for a possible association between PGSA and AR levels,
393 tau and p-tau levels in quintiles (0-20%, 20-40%, 60-80%, and 80-100%); again, the 40-60%
394  stratum served as a reference. As expected, PGS”? was associated with the lowest and
395  highest levels of p-tau and AB4. in the 0-20% strata and, conversely, the highest and lowest
396 levels of p-tau and A4 in the 80-100% stratum. (Fig. 2C and Supplementary Table 5).

397 We then extended the PGS”“ analyses to other European-ancestry populations (USA,
398  Australia), populations from India, East Asia (China, Japan and Korea), North Africa (Tunisia),
399 sub-Saharan Africa (Central African Republic/the Congo Republic), South America (Argentina,
400 Brazil, Chile, and Colombia), and African-, Native- and Latino American ancestry populations
401  from US studies (i.e. more than 75% African or Native American ancestry or self-reporting for
402 Latino American populations; Extended Fig. 3A; supplementary Table 2 for population
403  description). With the exception of the analyses for Korea and Japan (where respectively 72
404 and 74 SNPs were available), most PGSs were constructed from 78 to 85 SNPs (including
405  APOE variants; Supplementary Table 1; Supplementary Fig. 8-10 for PGSA-* distributions).
406  The strength of the APOE ¢4-AD association differed by population, as previously described
407  inthe literature?*?°, ORs ranged from 1.36 in sub-Saharan Africa to 5.46 in Maghreb (Extended
408 Fig 3B).

409 As expected, the PGS”* association with AD risk was strongest in European-ancestry
410 populations in the USA or Australia. PGS**? was also significantly associated with the AD risk
411  in Maghreb, East Asia, Latino American and African American populations (Fig. 3A and
412  Supplementary Fig. 11). Lastly, PGSA? was not associated with AD risk in the sub-Saharan
413  African and Indian populations; this might be related to the small sample size and
414  corresponding lack of statistical power. PGS”- was associated with a younger age at onset in
415 most of the populations studied, with the notable exception of the Chinese and Korean
416  populations (Extended Fig. 4). It is noteworthy that the APOE £2/£3/e4 alleles influenced age
417  atonset in the two latter populations (Supplementary Fig. 12).

418  Torefine our analysis of these populations of diverse ancestries, we calculated the association
419  between AD and PGSA“ quintile (0-20%, 20-40%, 60-80%, and 80-100%; reference: 40-60%
420  stratum) and meta-analyzed them per ancestry (Fig. 3B and C, Supplementary Table 6 and
421  Supplementary Table 7). The Indian, Maghreb and sub-Saharan African populations were
422  excluded because of the small sample size. The strength of the association with PGSA
423  decreased from the European American, East Asian, and Latino American populations to the
424  African American population, in that order (Fig. 3B and supplementary Table 6). PGSA¢
425 generated from European-ancestry population GWAS performed poorly in African-ancestry
426  populations.

427  This latter observation was strengthened by analyzing the association between PGSA* and
428  AD risk as a function of the African American admixture. The strength of the association
429 decreased as the percentage of African-ancestry increased and ultimately reached a level
430 similar to that observed in our sub-Saharan African population: the association between
431  PGS”“4 and the AD risk in populations in whom more than 90% of the members were of African
432  ancestry had an OR of 1.09 (95%CI 0.98-1.21, P=1.4x101, adjusted on APOE). It is noteworthy
433  that a similar pattern was observed in the Alzheimer Disease Sequencing Project (ADSP)
434  Native American population: the strength of the association decreased as the Native American-
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435  ancestry percentage increased from OR=1.21 (95%CI 1.12-1.32), P=5.3x10° and OR=1.14
436  (95%CI 1.05-1.25), P=2.6x10°to OR=1.12 (95%CI 1.02-1.24, P=1.4x102 in the populations
437  with more than 50%, 75% and 90% of individuals of Native American-ancestry, respectively;
438  adjusted for APOE. A similar finding was seen in Chilean and Argentinian populations: the
439  PGS”“ association weakened as the proportion of Native American ancestry rose'4.

440 We next checked whether we had fully captured the genetic information within the GWAS-
441  defined loci in the non-European admixed populations. To this end, we developed a PGS
442  (PGSA**") that included other SNPs associated with AD risk in non-European ancestry
443  populations (p<10-) at the European-GWAS-defined loci (for details, see Online Methods). We
444  used the summary statistics generated by Kunkle et al.?®, Lake et al.?” and Shigemizu et al.?8,
445 and added 30, 13 and 47 variants to the initial 83 PGS”'Z variants for Latino American, East
446  Asian and African American ancestries, respectively (Supplementary Table 8). We did not
447  detect any increment in the strength of the PGS”-#* association with the AD risk or in PGSA-#*
448  predictive performance, relative to PGS (Supplementary Table 9).

449 By initially restricting our analyses to the genome-wide significant loci from European ancestry
450 AD GWAS, we likely excluded genetic information associated with the risk of developing AD
451  in these European populations and (especially) non-European multi-ancestry populations (for
452  which ancestry-specific loci may exist). Furthermore, the effect sizes used to construct PGSA?
453  were extracted from European ancestry populations without taking account population
454  differences. To deal with these various questions, we used the Bayesian polygenic modeling
455 method PRS-CSx to build a cross-ancestry PRS (PRS)?° which re-estimates variant effect
456  sizes, by coupling diverse summary statistics with external ancestry-matched allele
457  frequencies and local Linkage Disequilibrium structure, according to a sparseness parameter
458  of the genetic architecture of AD. We used GWAS summary statistics generated from
459 European (36,569 AD cases and 63,137 controls), African American (2,784 AD cases and
460 5,222 controls), Latino American (1,088 AD cases and 1,152 controls) and East Asian (3,962
461  AD cases and 4,074 controls) populations?27:28, Polygenic Risk Scores (PRS), all adjusted for
462  population structure, were generated in multi-ancestry populations from the Million Veteran
463  Program (MVP; European, Latino American and African American ancestries), EPIDEMCA
464  (Sub-Saharan Africa ancestry) and GARD studies (East Asian ancestry; Supplementary Fig.
465  13).

466  We assessed potential increment of PRS association with AD risk and predictive performance
467  when the summary statistics of the European, African American, Latino American or East Asian
468  populations were used independently (respectively, PRSEVR, PRSA, PRSY, PRSE4), or when
469 they were combined (PRSCCME) at multiple sparseness parameter (108, 107, 10, 10, 104,
470 102 and 1). We initially excluded the APOE region to enable a comparison with PGSA2. We
471  did not observe any increases in the association with AD risk or predictive performance in the
472  different multi-ancestry populations (Fig. 4, supplementary Figure 14, supplementary Table
473  10) with the exception of the Latin American MVP population. However, we cannot exclude the
474  possibility that this improvement is due to overfitting. Next, we included the APOE region when
475 generating the different PRSs. While no impact was observed in European-ancestry
476  populations when comparing PRSEYR and PRSCOME), we detected a potential increment in both
477  the strength of association with the AD risk and predictive performance when comparing
478  PRSEUYR and PRSCOME for all other populations, indicating that a cross-ancestry PRS is more
479  effective than a PRS constructed solely from European summary statistics when the APOE
480 region is included (whatever the global shrinkage parameter used; Fig. 5, supplementary
481  Figure 14, supplementary Table 10).

482  Lastly, we leveraged the MVP data to determine how the association between PGS”“% or
483  PRSC°MB (APOE region excluded) and the risk of AD changed in multi-ancestry populations as
484  a function of diagnostic specificity. That is, we looked at how a PGSA%/ PRSCOME derived from
485  AD case/control performed when the applied to cohorts when the diagnosis was broadened to
486 dementia. In all the multi-ancestry population studied, the association between PGSA-#/
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487 PRSC°MB and the AD risk weakened as the diagnosis became less specific (Fig. 6 and
488  Supplementary Table 11).

489  Several major points can thus be highlighted from our work: (i) In European populations, the
490 associations of PGS** with AD risk are potentially slightly impacted by the APOE genotype
491  (suggesting two independent genetic entities for sporadic AD; APOE e4-associated sporadic
492  AD, and APOE g4-unassociated sporadic AD as previously proposed?); (ii) this simple PGSA+
493  based on the largest GWAS from European populations and the resulting European GWAS-
494  defined loci appears to be enough to detect AD genetic risk in most of the different ancestry
495  populations. Our results thus suggest that most of the different ancestry populations are likely
496  to be affected by shared pathophysiological processes driven in part by genetic risk factors;
497  (ii) Conversely, it is observed in the genetics of complex traits®*® and other multifactorial
498 diseases!’*%2, a cross-ancestry PRS built with a Bayesian polygenic modelling method did
499  not systematically outperform a simple PGSAt? (when the APOE locus is excluded). The small
500 population size of GWAS for the different ancestry populations can significantly limit the power
501 of the PRS-CSx approach, potentially explaining this observation. However, this may also
502 indicate that a high proportion of AD genetic risk is already accounted for by the European
503  ancestry GWAS-defined loci; (iv) When PRS includes the APOE region, this region appears to
504 likely contain additional multi-ancestry genetic variability as already proposed3334353¢; (v)
505 Finally, the PGS/PRS associations mainly captures genetic information related to AD as their
506 association weakened as the diagnosis was broadened. This observation suggests that the
507 quality of the clinical diagnosis can interfere with the measurement of the association between
508 the PGS/PRS and the AD risk in a given population.

509 In conclusion, our study of diverse ancestry populations and AD highlights the importance of
510 cross-ancestry analyses for characterizing the genetic complexities of this devastating disease
511  and to evaluate AD risk assessments in various populations. However, the field of AD genetics
512 s still limited by the size of GWASSs in these diverse ancestry populations. In addition, it is likely
513 that the different ancestry populations will differ strongly regarding rare/very rare variants
514  associated with the AD risk. this could clearly impact PRSs association with AD risk and their
515 predictive performances®’. Both GWAS and sequencing studies of more diverse populations
516  are thus needed for a better characterization of AD genetics.
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658 METHODS Online

659  Sample and variant quality controls

660  To ensure that the s were completely independent of the summary statistics, all samples from
661 ADGC, CHARGE and FinnGen GWASs were filtered out. In addition, Sample overlap was
662  systematically assessed and there was no sample overlap between any of the non-US studies
663  analyzed. Overlap between ADSP and MVP is likely to be negligible (no more than a few
664  cases). For biomarker analysis, there is overlap of 460 samples between the American
665 samples used in the biomarker analyses and the ADGC (which is included in the summary
666  statistics we used to generate the B for the PGS*4). However, this overlap is limited (less than
667 2.5%) and in addition, we only analyzed in these samples the association of PGS*-* with
668  quantitative traits (p-tau, tau and Ap42 CSF concentrations), limiting the risk of inflated results.
669  After it met the conventional GWAS gold standard of sample quality control, each sample was
670 included in the analyses?. If a discordance in the variant dose or covariate or a discordance
671  between imputed and genotyped (if available) APOE status was observed, the sample was
672  discarded. After the quality control, a demographic description of each study is shown in
673  Supplementary Table 1%¢. Genotyped variants had to meet the gold standard GWAS variant
674  quality control'®. All the studies including genotyping data were imputed with the TOPmed
675 reference panel*®>®, If the variants were imputed, those with a Rsq below 0.3 were excluded.
676  For whole-genome sequencing data, only variants passing the corresponding quality control
677 were selected (see the supplementary information for the ADSP and China samples)
678  (Supplementary Table 2). The global ancestry of each individual in the ADSP samples was
679  determined with SNPweights v.2.1%° using a set of ancestry-weighted variants computed on
680 reference populations from the 1000 Genomes Project as in*!. By applying a global ancestry
681  percentage cutoff of >75%, the samples were assigned to the different ancestry populations.
682  The ancestry of MVP participants was determined using the harmonized ancestry and
683  race/ethnicity (HARE) method*?, which is similar to other genotype-based ancestry calling
684  methods, except that concordance is checked between self-report and genetically inferred
685  ancestry, and those with discrepant ancestry groups are not assigned a HARE category.
686  Within-group PCs for ancestry were computed using FlashPCA2%,

687

688 European mega-analysis methods

689  For the mega-analysis of European countries, we merged samples from five datasets: EADB-
690 core, GERAD, EADI, Demgene, and Bonn. To adjust for the population structure, we computed
691  principal components using the following procedure. From the list of 146,705 variants used in
692  the principal component analysis of EADB-core*?, we extracted TOPMed imputed variants
693  having an imputation quality =0.9 in each dataset; this resulted in 91,353 variants. Next, we
694  set a genotype to “missing” if none of the genotype probabilities was higher than 0.8. Lastly,
695 we merged all the datasets and removed variants for which the proportion of missing
696  genotypes was above 0.02. Ultimately, 90,471 variants were fed into the principal component
697  analysis (performed with FlashPCA2). The analyses were adjusted for the first 14 principal
698 components, the genotyping chip, and the center.

699

700 PGS and PRS Computations

701  The equation used to calculate the PGSs and the coPRSs is as follow:

702 PGS*“sample OF COPRSsampie = Xi-1 (B * genotype; sample)

703 where the PGS*/PRS is the sum per sample, of the product of the variant i effect size ;,
704  extracted from GWAS summary statistics, and the number of risk alleles of this variant i, either
705 as a dosage or as a genotype.

706  The PGS**includes the 83 independent signals associated with AD®3, listed in Supplementary
707  Table 1. We also calculated another PGS”"* combining the same 83 independent signals and
708  the two SNPs encoding the APOE £2 (rs7412) and APOE ¢4 alleles (rs429358). The PGSAPCE
709 includes only these two last SNPs. The stage | meta-analysis of EADB studies® without the
710 UK Biobank samples, contained 39,106 clinically diagnosed AD cases versus 25,392 in the
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711  stage Il meta-analysis (including the ADGC, CHARGE and FinnGen data)®®. To respect the
712 independence between the samples and the GWAS summary statistics, in the PGS analyses,
713  the European summary statistics used are from stage Il or (for APOE variants only). In the
714  PGS*/PRS analyses adjusted for difference in distribution between populations, the
715  European more powerful summary statistics, i.e. stage | meta-analysis of EADB were
716  preferred.

717  The PGS**#* score was developed to include additional SNPs within the GWAS-defined loci to
718  capture more genetic information in non-European-ancestry populations. Firstly, each locus’s
719  “start and end positions” (as specified in the GRCh38 assembly) were defined manually by
720 looking at the regional plots and extracting (i) recombination rate peak positions, (i) starts/ends
721  of chromosomes, (iii) specific variant positions, or (iv) start/end positions of regions containing
722 no variants. Next, insertions and deletions were excluded. Variants that were non ambiguous
723  (i.e. AIT or C/G) and present in the 1000 Genomes Phase 3 data (1000GP3) and had an
724  imputation quality above 0.3 in the EADB-core TOPMed imputations, were selected. To extract
725 information of these variants in non-European-ancestry populations, we used the summary
726  statistics generated by Lake et al., Shigemizu et al. and Kunkle et al. to represent Latino
727  American, East Asian and African-American ancestries, respectively?’?%26 Since these
728 summary statistics were based on the GRCh37 assembly, we lifted their positions and alleles
729 in the GRCh38 assembly by using the Picard LiftoverVcf tool (v2.27.5) and restricting the
730  process to variants with a minor allele frequency above 0.01. In order to remove variants in LD
731  with the sentinel variant of each locus, we computed the LD between each sentinel variant and
732 all other variants within the locus by using the 1000GP3 data restricted to samples representing
733  European ancestries (EUR super-population), Latino American ancestries (AMR super-
734  population plus IBS population), Japanese ancestries (JPT population) and African-American
735  ancestries (AFR super-population). Since one of the sentinel variant (chr9:104903697:C:G)
736 was not present in the 1000GP3 data, we replaced it with a proxy variant
737  (chr9:104903754:G:GC, R?=1 in the EUR super-population). In each set of summary statistics,
738  we removed variants with R?>0.1 in either the European summary statistics or the summary
739  statistics for the corresponding ancestry. Lastly, we performed a clumping procedure on the
740  remaining variants in each of the three ancestries by using plink v1.9, a p-value threshold of
741  1x103, a R? of 0.05 (as estimated in the corresponding 1000GP3 data samples, as described
742  above), and a distance of 1Mb. For the PGSA'#*, this led us to select 30, 13 and 47 variants
743  (in addition to the initial 85 PGS variants) for the Latino American, East Asian and African-
744  American ancestries, respectively.

745  PRS-CSx?°# was, by the time of analysis, one of the most performing cross-ancestry PRS
746 model method*“¢, without a validation dataset and using GWAS summary statistics. With a
747  Bayesian high-dimensional regression framework model based on continuous shrinkage
748  priors, the variant effect sizes were adaptively re-estimated, by coupling cross-ancestry GWAS
749 summary statistics'®2627.28  and external ancestry-matched allele frequencies and local
750 Linkage Disequilibrium structure, according to a global shrinkage parameter. This global
751  shrinkage parameter provides the sparseness of the genetic architecture of AD, by avoiding
752  over-shrinkage of true signals and by shrinking noisy signals. This sparseness was modeled
753  for the values of 1, 102, 10*%, 10°,10° 107 and 108 with the --meta option and the
754  Strawderman-Berger prior default parameters (a=1 and b = 0.5). The initial 1,297 432 variants
755 present in the 1000 Genomes reference panel, were lifted over in GRCh38. Then, new
756  ancestry-specific or joint-ancestry effect size estimates were obtained with PRS-CSx, leading
757  to a maximal number of 1,292 532 variants in the joint-ancestry summary statistics, potentially
758 included in the PRS computations. The coPRSs were computed per chromosome, with 1- joint-
759  ancestry and 2- European ancestry and 3- ancestry-specific PRS-CSx-effect size estimates,
760  using PLINK (v.2.0.a) software*’ and its --score option, then summed across all chromosomes.
761

762  Adjustment for difference in PGSA"4/PRS distribution across populations

763  To account for population structure, PRS;w and PGSA4,, were adjusted for difference in
764  distributions across populations*®. The adjustment was performed with a selection of 84,035
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765  variants, common to all studies, independent and well-imputed variants (R > 0.8). With this list
766  of variants, FlashPCA2 projected the samples into the 1000G Phase 3 PC-space and
767  calculated the projected PCs. For each study, the raw score was fit in a linear model, in
768  controls, according to the 5 first projected PCs. This model was used to compute a predicted
769  score in all the samples. The resulting adjusted score was the difference between the raw
770  score and the predicted score.

771

772  Statistical analyses

773  The different scores (PGS or coPRS) were standardized in a standard normal distribution,
774  using the mean and the standard deviation, calculated over all the samples. The associations
775  between AD status and the different scores were tested in logistic regression, named according
776  tothe score and the covariates. The name “ALZinclAPOE” was attributed, if the score included
777  variants in the APOE region (from 43Mb to 47Mb). The other covariates included age, sex, in
778  addition to covariates specific to each study (Supplementary Table 2).

779 - Model PGSAY: AD ~ PGSAY + COV

780 - Model PGSAY: AD ~ PGSAYZ + COV + the count of APOE ¢2 alleles + the count
781 of APOE ¢4 alleles (when adjusted on APOE)

782 - Model PRS: AD ~ PRS + COV

783 - Model PRS: AD ~ PRS + COV + the count of APOE ¢2 alleles + the count of
784 APOE ¢4 alleles (when adjusted on APOE)

785 _ Model pRsALZinclAPOE: AD ~ pRsALZinclAPOE + COV

786  To estimate the proportion of phenotypic variance explained by the variance of the score, we
787  computed the Nagelkerke's Pseudo-R?ru using the function Nagelkerke implemented in the
788  package rcompanion in R**°. A Pseudo-R%yu was computed including only the covariates.
789  The adjusted Pseudo-R? is the difference between Pseudo-R%u and the tied Pseudo-R?wu.
790 This adjusted Pseudo-R? corresponds to the phenotypic variance explained by the genetic
791  score only. The adjusted Pseudo-R? was also transformed into a liability scale, for ascertained
792  case-control studies®?, using a prevalence value of 0.15.

793  We chose a prevalence of 15%, which we consider to be consistent for populations with an
794  average age over 75. However, this prevalence is different in multi-ethnic populations of the
795 same average age. Furthermore, the AD prevalence increases with age, so the genetic liability
796 is not homogeneous across all age groups. AD heritability cannot be expressed as a single
797  number because it depends on the ages of the cases and controls®2.

798

799 Quantile or percentile analyses

800 Depending on the value of the corresponding PGS*', the samples were classified into the
801 reference group or into one of the test groups. In the mega-analysis, the reference group
802  corresponded to the 40-60% percentile and was tested across different percentiles (0-2%, 2-
803 5%, 5-10%, 10-20%, 20-40%, 60-80%, 80-90%, 95-98%, and 98-100%). In the APOE-stratified
804  analysis and in the multi-ancestry analyses, the reference group was defined as the 40-60%
805  percentile and was tested across different quintiles (0-20%, 20-40%, 60-80%, 80-100%). The
806  multi ancestry analyses were performed for each population and then meta-analyzed per
807  genetic ancestry using the inverse variance method, as implemented in METAL®3. It should be
808 noted that the Indian, North African and sub-Saharan African populations were excluded
809  because of their small sample size.

810 - Model PGSAY: AD ~ Groupoi1(PGSAY) + COV

811 - Model PGSAY: AD ~ Groupon(PGSAY4) + COV + number of APOE &2 alleles +
812 number of APOE ¢4 alleles (when adjusted on APOE)

813 - Model PGSALZINCAPOE: AD ~ Groupo/1(PGSAHNCAPOE) + COV

814

815 Data Availability
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816  1000GP3:

817  http://ftp.1000genomes.ebi.ac.uk/voll/ftp/data collections/1000 genomes project/release/20
818 190312 biallelic SNV_and INDEL/)

819 ADSP: https://dss.niagads.org/datasets/ng00067/

820

821 Code availability

822  The sets of scripts are available upon request.
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860  Figure 1: Associations between the various PGSs and the risk of developing AD, as a function
861 of APOE status. (A) The risk of developing AD, by PGS”* stratum (0-2%, 2-5%, 10-20%, 20-
862  40%, 60-80%, 80-90%, 90-95%, 95-98%, and 98-100%). The 40-60% PGSA stratum was
863 used as the reference. (B) Risk of developing AD, by PGS stratum (0-20%, 20-40%, 60-
864  80%, and 80-100%) and the APOE genotype (by grouping together the £2g2/¢2¢3, €3¢3,
865  £2c4/e3e4, gde4 carriers). The 40-60% PGSAY stratum was used as the reference.

866

867  Figure 2: Association of PGS*? with the level of AB4. and p-tau in the cerebrospinal fluid (A)
868  across European-ancestry populations and (B) according to PGSA* strata (0-20%, 20-40%,
869 60-80% and 80-100%). The 40-60% PGSA* stratum was used as the reference. Ncases,
870 number of cases; Ncontrols, number of controls, OR, Odds ratio per standard deviation. The
871 lines in the Forest plots indicate the 95% confidence interval for the ORs. If HetP <0.05,
872  randome-effect is shown for the meta-analysis results.

873

874  Figure 3: Association of PGSAL across multi-ancestry populations. (A) Association of PGSA
875  with the risk of developing AD in multi-ancestry populations. European-ancestry meta-analysis
876 includes MVP and Australia. African-American-ancestry (more than 75% AA ancestry) meta-
877  analysis includes MVP and ADSP. East-Asia meta-analysis includes China, Korea and Japan.
878  Latino-American ancestry (self-reporting) meta-analysis includes MVP and ADSP. South-
879  America meta-analysis includes Argentina, Brazil, Chile and Colombia. (B) Risk of developing
880  AD according to PGS”'4 (adjusted or not for APOE or included APOE variants) strata (0-20%,
881  20-40%, 60-80% and 80-100%) in multi-ancestry populations. The 40-60% PGS"-* stratum
882  was used as the reference in each population and results were meta-analyzed. European-
883  ancestry meta-analysis includes MVP and Australia. African-American ancestry meta-analysis
884  includes MVP and ADSP. East-Asia meta-analysis includes China, Korea and Japan. Latin-
885  American ancestry meta-analysis includes MVP and ADSP. South-America meta-analysis
886 includes Argentina, Brazil, Chile and Colombia.

887 Ncases, number of cases; Ncontrols, number of controls; OR, Odds ratio per standard
888  deviation. The lines in the Forest plots indicate the 95% confidence interval for the ORs. If
889 HetP <0.05, random effect is shown for the meta-analysis results. EUR, European; LA, Latino-
890  American; AA, African American.

891

892  Figure 4. Comparison of the association of PGS”*? or PRS (excluding APOE region) with AD
893 risk and the corresponding predictive values (adjusted Nagelkerke R? and Liability R?). All
894 PGS”“ and PRS were adjusted for difference in distribution between populations; OR, Odds
895 ratio per standard deviation; PRSEUR were generated by using only European ancestry
896  summary statistics; PRSMB were generated by combining European, African American (AA),
897  Latin-American (LA) and East Asian ancestry summary statistics. Sparseness parameter at
898 10% 107, 10°, 10°, 104 103, 102 or 1.

899

900 Figure 5: Association of PRS (including APOE region) with AD risk and the corresponding
901 predictive values (adjusted Nagelkerke R? and Liability R?). All PGSA? and PRS were adjusted
902 for difference in distribution between populations; OR, Odds ratio per standard deviation;
903 PRSEYR were generated by using only European ancestry summary statistics; PRS°M® were
904 generated by combining European, African American (AA), Latin-American (LA) and East
905 Asian ancestry summary statistics. Sparseness parameter at 108, 107, 10, 10°, 104, 107,
906 102or 1.

907

908 Figure 6: Association of PGS”- or PRSOME (excluding the APOE region) with AD, AD and
909 related dementia (ADRD) and dementia in MVP and the corresponding predictive values
910 (adjusted Nagelkerke R? and Liability R?). PGS”? and PRS were adjusted for APOE and for
911  difference in distribution between populations; OR, Odds ratio per standard deviation; PRS-
912 CSx were generated by combining European (EUR), African American (AA) and Latin-
913  American (LA) and East Asian ancestry summary statistics. Sparseness parameter at 10 and
914 10,
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915 Extended Figure 1: Association of PGS”* with the risk of developing AD (A) in 17 European
916 countries and (B) in Men and Women. Ncases, number of cases; Ncontrols, number of
917  controls; OR, Odds ratio per Standard deviation. The lines in the Forest plots indicate the 95%
918 confidence interval for the ORs.

919

920 Extended Figure 2: Associations between (A) PGS”“* or (B) PGS adjusted for APOE and
921 age at onset of AD in European countries. Ncases, the number of cases. Since HetP <0.05, the
922  random effect is shown for the meta-analysis results.

923

924  Extended Figure 3: Distribution and association of APOE ¢£2/e3/¢4 alleles with AD risk
925  worldwide. (A) World map showing the populations analyzed. A color gradient indicates the
926  strength of the association between APOE £2/¢3/e4 alleles and the risk of developing AD in
927  different countries (B) frequencies of APOE &£2/e3/¢4 alleles in case and controls as well
928 association of APOE &4 alleles with the risk of developing AD in different countries.

929

930 Extended Figure 4: Association between (A) PGS”“% or (B) PGS”'* (adjusted for APOE) and
931 age at onset of AD in multi-ancestry populations. Ncases, Number of cases. The African-
932  American-ancestry meta-analysis (more than 75% of the population with African-American
933  ancestry) included the MVP and ADSP datasets. The East Asia meta-analysis included
934 datasets from China, Korea, and Japan. The Latin American (LA) ancestry (self-reporting)
935 meta-analysis included the MMVP and ADSP datasets. The South America meta-analysis
936 included the datasets from Argentina, Brazil, Chile, and Colombia. * not used in the meta-
937 analysis.
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A PGS** (Adjusted on APOE)

Country Ncases  Ncontrols OR 95% Cl P-value Hetlsq HetPVal

European American MVP 4,561 84,587 1.42 [1.37-1.47] 1.73e-88 .
Australia 544 1,190 1.42 [1.26-1.59] 3.71e-09 e
Meta-analysis EUR Ancestry 5,105 85,777 1.42 [1.37-1.47] 4.68e-96 0 9.72e-01 .
Maghreb 58 187 1.40 [0.95-2.09] 9.15e-02

Sub-Saharan Africa 85 1,091 1.11 [0.88-1.38] 3.76e-01 —

African American MVP 713 19,405 1.23 [1.12-1.34] 5.38e-06 —a—
African American ADSP 1,108 2,325 1.14 [1.05-1.23] 1.23e-03 —a—
Meta-analysis AA Ancestry 1,821 21,730 117 [1.11-1.24] 5.68e-08 40.1 1.97e-01 ‘

US LA Ancestry MVP 375 7,166 1.32 [1.16-1.49] 1.47e-05 —_—
US LA Ancestry ADSP 1,629 2,456 1.27 [1.19-1.36] 3.31e-12 ——
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A
Country Ncases
Finland 1,118
Norway 1,327
Sweden 1,466
Denmark 398
United Kingdom 4,622
The Netherlands 2,428
Belgium 1,211
Germany 2,190
Austria/Switzerland 175
Czech Republic 177
Bulgaria/Greece 735
Italy 2,973
France 3,789
Spain 3,103
Portugal 80
Meta-analysis 25,792
B
Country Gender
Finland Females
Males
Norway Females
Males
Sweden Females
Males
Denmark Females
Males
United Kingdom Females
Males
The Netherlands Females
Males
Belgium Females
Males
Germany Females
Males
Austria/Switzerland Females
Males
Czech Republic Females
Males
Bulgaria/Greece Females
Males
Italy Females
Males
France Females
Males
Spain Females
Males
Portugal Females
Males

Meta-analysis

Ncontrols

1,770
1,179
3,078
650
8,414
2,024
1,431
3,141
372
60
1,195
1,251
9,026
1,615
74

35,280

Ncases
402

840
487

926
540

227
171

2,633
1,989

1,354
1,074

783
428

1,347
843

112
63

107
70

445
290

2,015
958

2,383
1,406

2,076
1,027

60
20

Females 16,024

Males

9,768

OR
1.41
1.56
1.62
1.54
1.53
1.46
1.57
1.52
1.25
1.62
1.39
1.51
1.49
1.62
1.30

1.52

Ncontrols
914
856

622
557

1,898
1,180

354
296

4,323
4,091

885
1,139

890
541

1,755
1,386

204
168

40
20

676
519

715
536

5,540
3,486

1,027
588

56
18

19,899
15,381

PGS

ALZ (

12=17.8 , HetP = 2.54e-01

95% CI P-value
[1.29-1.55] 2.32e-14
[1.42-1.71] 8.43e-20
[1.51-1.75] 2.27e-37
[1.32-1.79] 2.08e-08
[1.46-1.61] 3.13e-73
[1.35-1.57] 6.50e-24
[1.42-1.74] 2.20e-17
[1.42-1.62] 9.18e-37
[1.08-1.52] 2.32e-02
[1.10-2.45] 1.81e-02
[1.20-1.61] 1.52e-05
[1.41-1.63] 2.15e-27
[1.43-1.56] 4.69e-73
[1.50-1.75] 2.91e-36
[0.92-1.86] 1.42e-01
[1.49-1.55] 4.93e-353

PGS (

OR
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A

Country

Finland

Norway

Sweden
Denmark

United Kingdom
The Netherlands
Belgium
Germany
Austria/Switzerland
Bulgaria/Greece
Italy

France

Spain

Meta-analysis (random effect)

B

Country

Finland

Norway

Sweden
Denmark

United Kingdom
The Netherlands
Belgium
Germany
Austria/Switzerland
Bulgaria/Greece
Italy

France

Spain

Meta-analysis (random effect)

Ncases
1,118
1,327
1,466
398
4,622
2,428
1,211
2,190
175
735
2,973
3,789
3,108

25,535

Ncases
1,118
1,327
1,466
398
4,622
2,428
1,211
2,190
175
735
2,973
3,789
3,103

25,535

ALZ

PGS
12=62.4 , HetP = 1.42¢-03
Beta 95% ClI P-value
-0.47 [-0.95;0.02] 5.99¢-02 —a—
-0.29 [-0.77;0.19] 2.39¢-01 —
-1.45 [-2.01;-0.88] 5.30e-07 —
-0.39 [-1.16;0.38] 3.19e-01 .
-0.57 [-0.85;-0.29] 7.29¢-05 ——
-0.05 [-0.47;0.36] 8.00e-01 .
-0.63 [-0.93;-0.32] 5.95¢-05 — B
-0.92 [-1.30;-0.54] 2.79e-06 e
-0.46 [-1.35;0.42] 3.04e-01
-0.13 [-0.74;0.48] 6.67e-01 _—.
-0.34 [-0.66;-0.02] 3.76e-02 —
-1.04 [-1.38;-0.69] 3.18e-09 —
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I T T 1
15 1 05 0 0.5
Beta
PGS"* (Adjusted on APOE)
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Beta 95% Cl P-value
-0.33 [-0.81;0.15] 1.72e-01 —
-0.28 [-0.75;0.20] 2.57e-01 — s
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-0.40 [-1.16;0.35] 2.93e-01 -
-0.53 [-0.81;-0.25] 2.01e-04 ——
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-0.61 [-0.91;-0.31] 6.06e-05 —B—
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5 O R & 4
5
4
3
2
B
Country Cases Controls oR:, Country Cases Controls ORe,
‘EA 83 EZ E4 83 82 EA 83 Ez 84 83 82
Finland 042 056 0.02 016 079 0.05 3.85 [3.33-4.46] European American 026 0.68 0.06 012 080 0.08 2.96 [2.78-3.15]
Norway 043 054 0.03 017 076 0.08 4.23 [3.62-4.95] African American 036 057 0.07 020 070 0.11 2.59 [2.35-2.84]
Sweden 041 057 0.03 016 077 0.08 3.90 [3.47-4.39] US LA Ancestry 023 073 0.04 010 0.85 0.05 2.25 [2.02-2.52]
Denmark 034 060 0.07 015 076 0.09 3.51[2.71-4.53] Maghreb 027 072 0.02 010 0.87 0.03 5.46 [2.50-11.94]
United Kingdom 033 063 0.04 013 079 0.08 3.39[3.14-3.67] Sub-Saharan Africa 028 0.62 0.1 023 065 0.12 1.36[0.91-2.03]
The Netherlands 042 055 0.03 019 073 0.7 2.67 [2.38-2.98] Colombia 031 066 0.03 014 081 005 2.85 [1.97-4.13]
Belgium 031 0.64 0.05 013 079 0.08 3.50[2.92-4.20] Brazil 028 0.68 0.03 012 081 007 3.73 [2.44-5.69]
Germany 033 063 0.05 012 079 0.09 3.67 [3.28-4.11] Argentina 027 070 0.03 011 0.84 0.05 2.40[1.73-3.33]
Austria/Switzerland 0.19 0.74 0.07 0.10 0.82 0.08 2.11[1.43-3.10] Chile 029 070 0.01 0.10 0.86 0.04 3.64 [2.26-5.86]
Czech Republic 032 066 0.02 011 0.82 0.07 4.94[2.22-10.99] China 021 072 0.07 0.08 0.83 0.09 3.26 [2.49-4.26]
Bulgaria/Greece 023 074 0.03 0.09 0.85 0.06 2.17 [1.63-2.89] Japan 031 067 0.02 0.09 087 0.05 4,83 [4.24-5.49]
France 030 0.66 0.04 010 0.82 0.7 3.65 [3.37-3.94] South Korea 026 070 0.04 0.08 0.86 0.06 3.64 [3.02-4.38]
Italy 025 073 0.03 0.09 0.86 0.05 3.69 [3.13-4.36] India 017 079 0.04 0.1 0.84 0.05 1.61 [1.08-2.39]
Spain 027 070 0.03 010 0.85 0.06 3.73[3.21-4.33] Australia 040 057 0.03 014 077 0.09 4.16 [3.43-5.04]
Portugal 030 0.66 0.04 018 077 0.05 2.20[1.19-4.05]
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