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Abstract 

Motivation: Recent advances in human genomics have revealed that missense mutations in a single protein can lead to 

distinctly different phenotypes. In particular, some mutations in oncoproteins like Ras, MEK, PI3K, PTEN, and SHP2 are 

linked various cancers and Neurodevelopmental Disorders (NDDs). While numerous tools exist for predicting the patho-

genicity of missense mutations, linking these variants to certain phenotypes remains a major challenge, particularly in the 
context of personalized medicine. 

Results: To fill this gap, we developed protPheMut (Protein Phenotypic Mutations Analyzer), leveraging multiple inter-

pretable machine learning methods and integrate diverse biophysics and network dynamics-based signatures, for the 

prediction of mutations of the same protein can promote cancer, or NDDs. We illustrate the utility of protPheMut in phe-

notypes (cancer/NDDs) prediction by the mutation analysis of two protein cases, that are PI3Kα and PTEN. Compared 

to seven other predictive tools, protPheMut demonstrated exceptional accuracy in forecasting phenotypic effects, achiev-
ing an AUROC of 0.8501 for PI3Kα mutations related to cancer and Cowden syndrome. For multi-phenotypes prediction 

of PTEN mutations related to cancer, PHTS, and HCPS, protPheMut achieved an AUC of 0.9349 through micro-averag-

ing. Using SHAP model explanations, we gained insights into the mechanisms driving phenotype formation. A user-

friendly website deployment is also provided. 

Availability: Source code and data are available at https://github.com/Spencer-JRWang/protPheMut. We also provide a 

user-friendly website at http://netprotlab.com/protPheMut. 
Supplementary information: Supplementary data are available at Bioinformatics online. 
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1 Introduction  

Neurodevelopmental disorders (NDDs) encompass a range of develop-

mental abnormalities, such as RASopathies, Cowden syndrome, autism 

spectrum disorder (ASD), and PTEN Hamartoma Tumor Syndrome 

(PHTS). Numerous studies have demonstrated a strong correlation be-

tween NDD and cancer development, showing that individuals with NDD 

are at a higher risk of developing cancer (Li, et al., 2020; Nussinov, et al., 

2022; Nussinov, et al., 2024). NDDs and cancer share key proteins, path-

ways, and mutations, and variations in pathway signaling strengths have 

been identified as critical factors of different phenotypes (Nussinov, et al., 

2023; Yavuz, et al., 2023). Mutations in oncogenic proteins such as Ras, 

MEK, PI3K, phosphatase and tensin homolog (PTEN), and SHP2 are 

linked to both cancer and NDDs (Liu, et al., 2023). Recent research has 

explored the connections between these conditions, covering topics such 

as RASopathies (e.g., neurofibromatosis type 1, Noonan syndrome, Cos-

tello syndrome) (Gross, et al., 2020), PIK3CA-related overgrowth spec-

trum (Venot, et al., 2018), Cowden syndrome (Orloff, et al., 2013), ASD 

(Yehia, et al., 2020), as well as genetically engineered mouse models. 

There is growing evidence linking developmental signaling pathways to 

aggressive central nervous system tumors (Nussinov, et al., 2022). Despite 

this progress, a key question remains: why do mutations in the same pro-

tein can lead to vastly different phenotypic and clinical outcomes, partic-

ularly in cancer and NDDs. 

Predicting the effects of missense mutations has  become a key focus 

in computational medicine (Cheng, et al., 2020). Traditional methods, 

such as molecular dynamics (MD) simulations, have shown success in as-

sessing the impact of individual mutations but require significant compu-

tational resources and time (Elia Venanzi, et al., 2024), limiting their fea-

sibility for large-scale studies. The information derived from protein mis-

sense mutations is inherently multi-perspective, and accurate prediction of 

their effects requires the integration of various dimensions of data. Recent 

tools based on sequence conservation and co-evolution of amino acid res-

idues, such as PolyPhen2 (Adzhubei, et al., 2013) and EVMutation (Hopf, 

et al., 2017), have been widely applied to predict the pathogenicity of hu-

man variants. Similarly, MutPred2 successfully integrates multi-perspec-

tive data using ensemble neural networks to predict detailed mutation ef-

fects (Pejaver, et al., 2020). Moreover, a recent study added local environ-

ment and interaction features and successfully classify PTEN related 

multi-phenotypes (Portelli, et al., 2021). With the advent of AI , tools like 

AlphaMissense, based on AlphaFold2 (Jumper, et al., 2021), are achieving 

high-precision predictions for a broad range of human protein missense 

mutations (Cheng, et al., 2023). However, current methods primarily ad-

dress the pathogenicity or functional alterations caused by mutations, leav-

ing a pressing challenge in predicting distinct phenotypic outcomes, such 

as cancer versus NDDs. 

Proteins exist as dynamic conformational ensembles, which can act 

as  phenotypic determinants of mutations (Nussinov, et al., 2023). Incor-

porating dynamics features has proven beneficial for evaluating the path-

ogenicity of single amino acid variants (Barozi, et al., 2024; Pacini and 

Lesieur, 2022). For instance, Rhapsody (Ponzoni and Bahar, 2018; Pon-

zoni, et al., 2020) leverages the Elastic Network Model (ENM) to analyze 

intra-molecular dynamics based on the topology of residue contact net-

works, coupled with machine learning for mutation effect predictions. In 

our previous works (Liang, et al., 2020; Verkhivker, et al., 2020; Zhu, et 

al., 2023; Zhu, et al., 2022), we demonstrated the unique utility of intrinsic 

dynamical features in predictive ML and AI models . In particular, by 

building a multi-faceted platform including features from sequence-struc-

ture-dynamics, we have characterized the allosteric effects 

of ALPL mutations and role of allostery in the pathogenesis of HPPs 

(Xiao, et al., 2022). 

In this work, we introduce protPheMut, an interpretable ML-based 

tool that combines Gradient Boost Machine (GBM) algorithms with a 

stacking model to integrate diverse biophysics and network dynamics-

based features. This framework enables accurate classification of mis-

sense mutations associated with cancer and NDDs while maintaining 

model interpretability to uncover phenotype-specific mutation character-

istics. protPheMut is available as a user-friendly web tool, supporting au-

tomated retrieval of AlphaFold2-predicted structures, experimental data, 

or homology-modeled protein structures, along with phenotype-labeled 

missense mutations. By automating feature extraction, model training, and 

evaluation, protPheMut streamlines mutation analysis, as demonstrated in 

its application to PI3Kα and PTEN proteins. 

2 Materials and methods 

2.1 Data collection of protein structure and mutations 

Protein structures were derived from AlphaFold2 prediction, accessed via 

the AlphaFold2 database (Varadi, et al., 2024). Pathogenic missense mu-

tations proteins are collected from COSMIC Database (Sondka, et al., 

2024), Clinvar Database (Landrum, et al., 2014), The Genome Aggrega-

tion Database (Chen, et al., 2024), UniProt database (UniProt, 2023), The 

Human Gene Mutation Database (Stenson, et al., 2020), and DisGeNET 

platform (Pinero, et al., 2020).  

For PI3Kα, a total of 782 mutations were gathered: 154 mutations 

related to NDD-associated Cowden syndrome and 628 mutations related 

to cancer. Similarly, for PTEN, we collected totally 653 mutations related 

to three phenotypes: 70 mutations related to NDD-associated Hereditary 

Cancer-Predisposing Syndrome (HCPS), 150 mutations related to PTEN 

Hamartoma Tumor Syndrome (PHTS), and 453 mutations related to can-

cer. All missense mutations with their phenotype labels are listed in Sup-

plementary Table 1.  

 To ensure consistency and relevance in our analysis, the collected 

mutations adhered to the following criteria. Firstly, the mutations must be 

pathogenic missense mutations and single nucleotide variants (SNVs), 

emphasizing those with clear molecular mechanisms and clinical signifi-

cance. Secondly, mutations associated with multiple phenotypes were ex-

cluded to avoid potential confounding factors, ensuring a more straight-

forward interpretation of phenotype formation. 

2.2 protPheMut framework 

Figure 1 illustrates the overall flowchart of protPheMut framework, which 

contains mainly two parts: the feature generation module and machine 

learning module. The feature generation module automatically calculates 

a diverse set of features that capture multi-perspective information, includ-

ing sequence conservation, energy and structural properties, physico-

chemical characteristics, network topology, and intermolecular dynamics. 

To be more concrete, the features generated include entropy, coevolution, 

conservation score, hydrophobicity, RASA (Relative Accessible Surface 

Area), ΔΔG (protein folding energy change), ΔBC (node betweenness 

centrality change), ΔC (node closeness centrality change), !EC (node ei-

genvector centrality change), ΔCC (node clustering coefficient centrality 

change), effectiveness, sensitivity, stiffness, MSF (Mean Square Fraction), 

and DFI (Dynamic Flexibility Index). The ML model performs automatic 

feature selection and employs multi-stacking models based on GBM and 

Logistic Regression. Cross-validation prediction is employed to predict a 
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phenotypic probability (PhenoScore) for each mutation. Additionally, 

SHAP-based model enhances both global and local explanation. For mul-

tiple phenotypes classification, we apply One-vs-One strategy towards 

stacking model. A more detailed framework description can be found in 

Supplementary Text 1.  

2.3 Model evaluation and comparison 

Since no existing tool specifically addresses the phenotypic effects of pro-

tein mutations, we evaluated the performance of protPheMut by compar-

ing it with eight widely used tools for pathogenicity prediction, including 

AlphaMissense  (Cheng, et al., 2023), EVMutation  (Hopf, et al., 2017), 

PolyPhen-2 (Adzhubei, et al., 2013), Rhapsody (Ponzoni, et al., 2020), 

MutPred2 (Pejaver, et al., 2020), FATHMM (Shihab, et al., 2013), and 

SIFT (Sim, et al., 2012). We used various metrics to assess the predictive 

performance of the models, including accuracy, precision, recall, specific-

ity, sensitivity, F1 score, AUROC (Area Under the Receiver Operating 

Characteristic Curve) and AUPRC (Area Under the Precision-Recall 

Curve).  

2.4 Webpage deployment 

To optimize the application of our methodological framework, we devel-

oped a web-based platform based on HTML5, JavaScript, jQuery, and 

PHP. This platform allows users to input protein structures along with mu-

tations that are annotated with phenotype labels. Upon submission, the 

protPheMut framework is automatically executed to analyze the input data 

and generate results, streamlining the study of genotype-phenotype rela-

tionships. 

3 Results 

Oncoproteins related to NDDs are involved in several major pathways. To 

demonstrate the utility of our method for the classification of cancer and 

NDDs, we focus on two oncoproteins, PI3Kα and PTEN, involved in the 

PI3K/AKT/mTOR pathway. 

3.1 Application to PI3Kα mutations in classifying Cowden 

syndrome and cancer 

Figure 2a illustrates the distribution of PI3Kα mutations along the protein 

sequence. PI3Kα consists of five main domains: PI3K_p85B, PI3K_rbd, 

PI3K_C2, PI3Ka, and PI3_PI4_kinase. Of the collected mutations, 154 

(19.7%) were linked to Cowden syndrome, and 629 (80.3%) were associ-

ated with cancer, as shown in Figure 2b. These mutations were distributed 

across the structural domains of PI3Kα. while Figures 2c, d provide struc-

tural mapping of PI3Kα mutations associated with cancer and Cowden 

syndrome (Orloff, et al., 2013).  

The protPheMut tool was employed to automatically calculate total 

15 features of these mutations. Principal Component Analysis (PCA) of 

these features (Figure 2e) revealed distinct yet overlapping distributions 

of cancer and Cowden syndrome samples. The first two principal compo-

nents (PC1 and PC2) accounted for 28.30% and 14.95% of the variance, 

respectively, with arrows indicating the contribution of each feature. 

Using LightGBM-based recursive feature elimination (RFE), we iden-

tified 11 key features that effectively differentiated PI3Kα mutations 

linked to Cowden syndrome and cancer. These features included se-

quence-level metrics (conservation score and coevolution), energy change 

(ΔΔG), structure-level properties (RASA), network centrality metrics 

(ΔBC, ΔC, and ΔEC), biophysical changes (hydrophobicity), and dynamic 

properties (sensitivity, stiffness, and DFI). We tested all combinations of 

4 gradient boosting models (Gradient Boost, XGBoost, LightGBM, and 

CatBoost), and integrated the predictive scores using logistic regression. 

The stacking model built with 2 of the models (Gradient Boost and Cat-

Boost) achieved the best performance in distinguishing Cowden syndrome 

from cancer, with a PhenoScore AUC of 0.8501 and an AUPRC of 0.9521 

using 10-fold straight cross-validation (Figure 2f, g). Current tools primar-

ily predict mutation pathogenicity but are not optimized for phenotypic 

classification. Compared to protPheMut, these tools, including AlphaM-

issense, EVMutation, PolyPhen-2, Rhapsody, MutPred2, SIFT, and 

FATHMM, had limited success in distinguishing between Cowden syn-

drome and cancer. Among them, AlphaMissense showed the best perfor-

mance, with an AUC of 0.7232 and an AUPRC of 0.9039. These results 

highlight that pathogenicity scores alone are insufficient for phenotypic 

classification, whereas protPheMut outperformed all benchmarks. 

Figure 2h illustrates the model interpretation, with the most important 

features listed at the top. Based on model interpretation, it highlights the 

interplay of bio-graph, dynamic, energy and evolutionary information in 

distinguishing between cancer and Cowden syndrome, with the magnitude 

and direction of each feature’s contribution shaping the final prediction. 

To be more concrete, compared to Cowden syndrome mutations, cancer 

 
Fig. 1. The computational workflow overview of protPheMut. protPheMut uses AlphaFold prediction structure by default, users can also upload their own pdb file, and then 

sequence-based features, contact energy network related features, Structure and energy related features and elastic network model-related features are integrated by machine learning 

model to generate PhenoScore, indicators, model interpretation and automatic visualization. 
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mutations show decrease in ΔCC, conservation score, sensitivity and show 

increase in ΔBC and ΔΔG. More detailed analysis of PI3Kα can be found 

at Supplementary Text S2. 

3.2 Application to PTEN mutations in classifying PHTS, 

HCPS, and cancer 

Figure 3a shows the distribution of PTEN mutations along the protein se-

quence. PTEN consists of two main domains: the Tc-R-P domain and the 

C2 domain. Figure 3b shows the properties of PTEN mutations, we col-

lected a total of 70 mutations related to HCPS (10.4%), 150 mutations 

related to PHTS (80.4%), and 454 mutations related to cancer (67.4%), 

distributed across the structural domains of PTEN. Figures 3c-e provide 

structural mappings of PTEN mutations associated with PTHS, HCPS, 

and cancer (Portelli, et al., 2021; Yehia, et al., 2020).  

As shown in Figures 3f and 3g, to distinguish PTEN phenotypes, 

protPheMut performed pairwise comparisons of HCPS, PHTS, and cancer. 

In the classification tasks for distinguishing between HCPS and PHTS, six 

key features were used: ΔC, sensitivity, DFI, ΔEC, ΔΔG, and ΔBC. The 

optimal combination of Gradient Boosting, LightGBM, and CatBoost 

achieved an AUC of 0.8723 and an AUPRC of 0.9204. For the HCPS vs. 

cancer classification, also six key features were utilized: ΔC, ΔBC, effec-

tiveness, ΔEC, ΔΔG, and conservation score, resulting in an AUC of 

0.9636 and an AUPRC of 0.9930. In the PHTS vs. cancer classification, 

nine key features were employed: ΔC, ΔBC, MSF, hydrophobicity, ΔEC, 

conservation score, RASA, sensitivity, and ΔΔG, yielding an AUC of 

0.9666 and an AUPRC of 0.9804. The final base models for HCPS vs. 

cancer and PHTS vs. cancer classification were all Gradient Boosting, 

XGBoost, and CatBoost. The micro-averaged AUC and AUPRC across 

all tasks were 0.9349 and 0.9644, respectively.  

Performance was higher for distinguishing HCPS or PHTS from can-

cer but lower for HCPS vs. PHTS, likely due to phenotypic similarities, as 

both HCPS and PHTS are considered as NDDs. Network topology feature 

ΔCC consistently emerged as the most critical feature across all classifi-

cations. Additional features, such as ΔBC, effectiveness/MSF, and con-

servation score, were vital for distinguishing HCPS or PHTS from cancer, 

while sensitivity, ΔEC, and ΔΔG were more significant for HCPS vs. 

PHTS (Figures 3i-k). 

Based on these observations, we constructed a multi-class classifica-

tion model using a stacking approach with LightGBM and CatBoost as 

base models and logistic regression as the meta model, employing the 

 
Fig. 2.  protPheMut classify mutations’ binary phenotypic effects. a) The lollipop plot shows the distribution of missense mutations on PI3Kα protein and mutation’s phenotypes. 

b) The pie chart shows the Cowden syndrome and cancer variants in dataset. c) The distribution of mutations related to Cowden syndrome in PI3Kα structure. d) The distribution of 

mutations related to cancer in PI3Kα structure. e) The PCA plot of Cowden and cancer mutations with features’ direction. f) The comparison of PhenoScore generated from 10-fold 

straight cross-validation with 8 other predicted tools in the whole dataset. g) Precision-recall curve of PhenoScore and 8 other predicted tools in the whole dataset. h) Beeswarm plot 

shows the global and local interpretation of the model using SHAP. Features higher up on the plot indicate greater importance. Red and blue represent the magnitude of the feature 

values, and their distribution along the X-axis reflects the positive or negative contribution of each feature on predicting single mutation. 
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One-vs-One (OVO) strategy. The confusion matrix indicated strong per-

formance in classifying cancer and PHTS mutations. However, HCPS mu-

tations were occasionally misclassified as PHTS due to phenotypic over-

lap (out of 70 HCPS mutations, 47 were correctly classified as HCPS, 

while 15 were misclassified as PHTS). More detailed analysis of PI3Kα 

can be found at Supplementary Text S3. 

3.3 protPheMut web server 

Figure 4 illustrates the key components of the protPheMut web platform 

(http://netprotlab.com/protPheMut), designed to streamline data analysis 

for users. The platform automates tasks such as feature computation, sta-

tistical analysis, machine learning model training, and result interpretation, 

generating PhenoScores efficiently. Users can visualize results directly on 

the webpage for quick insights. A detailed user guide is available on the 

platform. 

4 Discussion 

In this study, we developed an interpretable ML framework to assess the 

phenotypic impacts of human protein missense mutations, with specific 

applications to PI3Kα and PTEN. Unlike traditional tools that focus on 

 
Fig. 3. protPheMut classify mutations’ multiple phenotypic effects. a) The lollipop plot shows the distribution of missense mutations on PTEN protein and mutation’s phenotypes. 

b) The pie chart shows the HCPS, PTHS and cancer variants in dataset. c) The distribution of mutations related to HCPS in PTEN structure. d) The distribution of mutations related 

to PHTS in PTEN structure. e) The distribution of mutations related to cancer in PTEN structure. f) ROC plot shows the performance of PhenoScore in pairwise comparisons of 

multiple phenotypes. g) Precision-recall plot of PhenoScore in pairwise comparisons of multiple phenotypes. h) Confusion matrix from 10-fold straight cross-validation using three-

class classifier with One-vs-One strategy on stacking model of XGBoost and LightGBM. i-k) Beeswarm plots show the global and local interpretation of pairwise comparison model 

using SHAP. 
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pathogenicity prediction, our work emphasizes phenotype-specific analy-

sis, offering a nuanced perspective on how pathogenic mutations drive 

distinct disease phenotypes. By introducing the PhenoScore, we provide a 

novel metric to quantify the phenotypic tendencies of mutations, bridging 

the gap between prediction and biological interpretation. This approach 

allows for a deeper understanding of the multi-phenotype effects of path-

ogenic mutations, particularly in cases of comorbidities between cancer 

and NDDs, addressing a critical need for unified and biologically in-

formed predictive methods. 

protPheMut extends the utility of protein dynamics, which have been 

shown to improve prediction accuracy in tools like Rhapsody. While 

Rhapsody (Ponzoni, et al., 2020) leverages ENM, protPheMut incorpo-

rates a broader spectrum of features associated with protein missense mu-

tations. These features include alterations in physico-chemical properties, 

network topology parameters, and protein folding energy. By integrating 

these additional dimensions of information and leveraging advanced ML 

techniques, protPheMut provides a more comprehensive and robust 

framework for analyzing the phenotypic effects of mutations, making it 

particularly well-suited for complex biological applications. Additionally, 

protPheMut demonstrates the capability to classify multi-phenotypes, a 

critical advancement in understanding the complex biological conse-

quences of mutations. By integrating dynamics features, sensitivity or ef-

fectiveness, in PTEN mutations, protPheMut captures the nuanced effects 

of mutations that may drive multiple disease phenotypes. This functional-

ity is particularly valuable for analyzing mutations associated with comor-

bid conditions, such as NDDs and cancer with more dispersed phenotypes, 

providing insights into shared and distinct dynamical mechanisms under-

lying these phenotypes. 

Moreover, protPheMut is interpretable. The SHAP-based model ex-

planation provides both global and local interpretations. The global inter-

pretation reveals the importance of all features, while the local interpreta-

tion shows the contribution of each feature to the prediction for each spe-

cific mutation. Through model explanations, we observe both commonal-

ities and differences in the behavior of various parameters across missense 

mutations in different proteins. A common finding is that changes in net-

work topology and dynamic parameters play a significant role in 

differentiating phenotypes. Previous studies have shown that changes in 

network topology can reflect the allosteric effects of proteins (Kapetis, et 

al., 2017; Zhao, et al., 2024).  Our findings suggest that mutations within 

the same protein leading to diverse phenotypes are often linked to allo-

steric mechanisms. Additionally, differences in parameter importance be-

tween PI3Kα and PTEN mutations underscore protein-specific mecha-

nisms underlying phenotypic variations. This level of granularity provides 

actionable insights that could inform targeted therapeutic strategies. For 

instance, understanding the role of network topology in phenotypic pre-

diction could inspire interventions to modulate these properties, offering 

opportunities for mutation-specific treatments. 

Despite its strengths, the protPheMut framework has certain limita-

tions. The tool’s sensitivity to data volume and unbalanced datasets can 

affect classification performance, especially when phenotypes are highly 

correlated. This was evident in the disparity in AUC values observed be-

tween PI3Kα and PTEN classification tasks. Additionally, our current 

study was constrained by the limited scope of analyzed proteins, restrict-

ing the generalizability of our findings. Future research aims to expand 

protPheMut's application to a broader range of protein mutations. The in-

herently complex relationship between protein mutations and phenotypes 

poses challenges for binary classification, particularly for mutations lack-

ing prior information. To address this, we plan to incorporate additional 

data modalities. For example, integrating epigenomic and genomic fea-

tures, as demonstrated in recent studies (Liu, et al., 2024), could enhance 

prediction accuracy. Another promising direction is the inclusion of pro-

tein-protein interaction data. Pathway-related interactions could provide a 

more holistic understanding of mutation effects across multi-protein sys-

tems (Xiong, et al., 2024), enabling phenotypic predictions at a network 

level. 
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