bioRxiv preprint doi: https://doi.org/10.1101/2025.01.06.631365; this version posted January 7, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

protPheMut: An Interpretable Machine Learning Tool for Classification
of Cancer and Neurodevelopmental Disorders in Human Missense Vari-
ants

Jingran Wang', Miao Yang'!, Chang Zong'!, Gennady Verkhivker23, Xiao Feil" & Guang Hu?4.56.
TMOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-
Infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical
College of Soochow University, Suzhou 215213, China

2Department of Computational and Data Sciences, Chapman University, One University Drive, Orange, California, United
States of America

SDepartment of Biomedical and Pharmaceutical Sciences, Chapman University Pharmacy School 9401 Jeronimo Rd,
Irvine, California, United States of America

4Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow
University, Suzhou 215123, China

5Key Laboratory of Alkene-carbon Fibres-based Technology & Application for Detection of Major Infectious Diseases,
Soochow University, Suzhou 215123, China

6Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China

*Corresponding Author: huguang@suda.edu.cn or xiaofei@suda.edu.cn

Abstract

Motivation: Recent advances in human genomics have revealed that missense mutations in a single protein can lead to
distinctly different phenotypes. In particular, some mutations in oncoproteins like Ras, MEK, PI3K, PTEN, and SHP2 are
linked various cancers and Neurodevelopmental Disorders (NDDs). While numerous tools exist for predicting the patho-
genicity of missense mutations, linking these variants to certain phenotypes remains a major challenge, particularly in the
context of personalized medicine.

Results: To fill this gap, we developed protPheMut (Protein Phenotypic Mutations Analyzer), leveraging multiple inter-
pretable machine learning methods and integrate diverse biophysics and network dynamics-based signatures, for the
prediction of mutations of the same protein can promote cancer, or NDDs. We illustrate the utility of protPheMut in phe-
notypes (cancer/NDDs) prediction by the mutation analysis of two protein cases, that are PI3Ka and PTEN. Compared
to seven other predictive tools, protPheMut demonstrated exceptional accuracy in forecasting phenotypic effects, achiev-
ing an AUROC of 0.8501 for PI3Ka mutations related to cancer and Cowden syndrome. For multi-phenotypes prediction
of PTEN mutations related to cancer, PHTS, and HCPS, protPheMut achieved an AUC of 0.9349 through micro-averag-
ing. Using SHAP model explanations, we gained insights into the mechanisms driving phenotype formation. A user-
friendly website deployment is also provided.

Availability: Source code and data are available at https://github.com/Spencer-JRWang/protPheMut. We also provide a
user-friendly website at http://netprotlab.com/protPheMut.

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Neurodevelopmental disorders (NDDs) encompass a range of develop-
mental abnormalities, such as RASopathies, Cowden syndrome, autism
spectrum disorder (ASD), and PTEN Hamartoma Tumor Syndrome
(PHTS). Numerous studies have demonstrated a strong correlation be-
tween NDD and cancer development, showing that individuals with NDD
are at a higher risk of developing cancer (Li, et al., 2020; Nussinov, et al.,
2022; Nussinov, et al., 2024). NDDs and cancer share key proteins, path-
ways, and mutations, and variations in pathway signaling strengths have
been identified as critical factors of different phenotypes (Nussinov, et al.,
2023; Yavuz, et al., 2023). Mutations in oncogenic proteins such as Ras,
MEK, PI3K, phosphatase and tensin homolog (PTEN), and SHP2 are
linked to both cancer and NDDs (Liu, et al., 2023). Recent research has
explored the connections between these conditions, covering topics such
as RASopathies (e.g., neurofibromatosis type 1, Noonan syndrome, Cos-
tello syndrome) (Gross, et al., 2020), PIK3CA-related overgrowth spec-
trum (Venot, et al., 2018), Cowden syndrome (Orloff, et al., 2013), ASD
(Yehia, et al., 2020), as well as genetically engineered mouse models.
There is growing evidence linking developmental signaling pathways to
aggressive central nervous system tumors (Nussinov, et al., 2022). Despite
this progress, a key question remains: why do mutations in the same pro-
tein can lead to vastly different phenotypic and clinical outcomes, partic-
ularly in cancer and NDDs.

Predicting the effects of missense mutations has become a key focus
in computational medicine (Cheng, et al., 2020). Traditional methods,
such as molecular dynamics (MD) simulations, have shown success in as-
sessing the impact of individual mutations but require significant compu-
tational resources and time (Elia Venanzi, et al., 2024), limiting their fea-
sibility for large-scale studies. The information derived from protein mis-
sense mutations is inherently multi-perspective, and accurate prediction of
their effects requires the integration of various dimensions of data. Recent
tools based on sequence conservation and co-evolution of amino acid res-
idues, such as PolyPhen2 (Adzhubei, et al., 2013) and EVMutation (Hopf,
et al., 2017), have been widely applied to predict the pathogenicity of hu-
man variants. Similarly, MutPred2 successfully integrates multi-perspec-
tive data using ensemble neural networks to predict detailed mutation ef-
fects (Pejaver, et al., 2020). Moreover, a recent study added local environ-
ment and interaction features and successfully classify PTEN related
multi-phenotypes (Portelli, et al., 2021). With the advent of Al , tools like
AlphaMissense, based on AlphaFold2 (Jumper, et al., 2021), are achieving
high-precision predictions for a broad range of human protein missense
mutations (Cheng, et al., 2023). However, current methods primarily ad-
dress the pathogenicity or functional alterations caused by mutations, leav-
ing a pressing challenge in predicting distinct phenotypic outcomes, such
as cancer versus NDDs.

Proteins exist as dynamic conformational ensembles, which can act
as phenotypic determinants of mutations (Nussinov, et al., 2023). Incor-
porating dynamics features has proven beneficial for evaluating the path-
ogenicity of single amino acid variants (Barozi, et al., 2024; Pacini and
Lesieur, 2022). For instance, Rhapsody (Ponzoni and Bahar, 2018; Pon-
zoni, et al., 2020) leverages the Elastic Network Model (ENM) to analyze
intra-molecular dynamics based on the topology of residue contact net-
works, coupled with machine learning for mutation effect predictions. In
our previous works (Liang, et al., 2020; Verkhivker, et al., 2020; Zhu, et
al., 2023; Zhu, et al., 2022), we demonstrated the unique utility of intrinsic
dynamical features in predictive ML and AI models . In particular, by
building a multi-faceted platform including features from sequence-struc-
allosteric  effects

ture-dynamics, we have characterized the

of ALPL mutations and role of allostery in the pathogenesis of HPPs
(Xiao, et al., 2022).

In this work, we introduce protPheMut, an interpretable ML-based
tool that combines Gradient Boost Machine (GBM) algorithms with a
stacking model to integrate diverse biophysics and network dynamics-
based features. This framework enables accurate classification of mis-
sense mutations associated with cancer and NDDs while maintaining
model interpretability to uncover phenotype-specific mutation character-
istics. protPheMut is available as a user-friendly web tool, supporting au-
tomated retrieval of AlphaFold2-predicted structures, experimental data,
or homology-modeled protein structures, along with phenotype-labeled
missense mutations. By automating feature extraction, model training, and
evaluation, protPheMut streamlines mutation analysis, as demonstrated in
its application to PI3Ko and PTEN proteins.

2 Materials and methods

2.1 Data collection of protein structure and mutations

Protein structures were derived from AlphaFold2 prediction, accessed via
the AlphaFold2 database (Varadi, et al., 2024). Pathogenic missense mu-
tations proteins are collected from COSMIC Database (Sondka, et al.,
2024), Clinvar Database (Landrum, et al., 2014), The Genome Aggrega-
tion Database (Chen, et al., 2024), UniProt database (UniProt, 2023), The
Human Gene Mutation Database (Stenson, et al., 2020), and DisGeNET
platform (Pinero, et al., 2020).

For PI3Ka, a total of 782 mutations were gathered: 154 mutations
related to NDD-associated Cowden syndrome and 628 mutations related
to cancer. Similarly, for PTEN, we collected totally 653 mutations related
to three phenotypes: 70 mutations related to NDD-associated Hereditary
Cancer-Predisposing Syndrome (HCPS), 150 mutations related to PTEN
Hamartoma Tumor Syndrome (PHTS), and 453 mutations related to can-
cer. All missense mutations with their phenotype labels are listed in Sup-
plementary Table 1.

To ensure consistency and relevance in our analysis, the collected
mutations adhered to the following criteria. Firstly, the mutations must be
pathogenic missense mutations and single nucleotide variants (SNVs),
emphasizing those with clear molecular mechanisms and clinical signifi-
cance. Secondly, mutations associated with multiple phenotypes were ex-
cluded to avoid potential confounding factors, ensuring a more straight-
forward interpretation of phenotype formation.

2.2 protPheMut framework

Figure | illustrates the overall flowchart of protPheMut framework, which
contains mainly two parts: the feature generation module and machine
learning module. The feature generation module automatically calculates
a diverse set of features that capture multi-perspective information, includ-
ing sequence conservation, energy and structural properties, physico-
chemical characteristics, network topology, and intermolecular dynamics.
To be more concrete, the features generated include entropy, coevolution,
conservation score, hydrophobicity, RASA (Relative Accessible Surface
Area), AAG (protein folding energy change), ABC (node betweenness
centrality change), AC (node closeness centrality change), AEC (node ei-
genvector centrality change), ACC (node clustering coefficient centrality
change), effectiveness, sensitivity, stiffness, MSF (Mean Square Fraction),
and DFI (Dynamic Flexibility Index). The ML model performs automatic
feature selection and employs multi-stacking models based on GBM and
Logistic Regression. Cross-validation prediction is employed to predict a
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Fig. 1. The computational workflow overview of protPheMut. protPheMut uses AlphaFold prediction structure by default, users can also upload their own pdb file, and then
sequence-based features, contact energy network related features, Structure and energy related features and elastic network model-related features are integrated by machine learning

model to generate PhenoScore, indicators, model interpretation and automatic visualization.

phenotypic probability (PhenoScore) for each mutation. Additionally,
SHAP-based model enhances both global and local explanation. For mul-
tiple phenotypes classification, we apply One-vs-One strategy towards
stacking model. A more detailed framework description can be found in
Supplementary Text 1.

2.3 Model evaluation and comparison

Since no existing tool specifically addresses the phenotypic effects of pro-
tein mutations, we evaluated the performance of protPheMut by compar-
ing it with eight widely used tools for pathogenicity prediction, including
AlphaMissense (Cheng, et al., 2023), EVMutation (Hopf, et al., 2017),
PolyPhen-2 (Adzhubei, et al., 2013), Rhapsody (Ponzoni, et al., 2020),
MutPred2 (Pejaver, et al., 2020), FATHMM (Shihab, et al., 2013), and
SIFT (Sim, et al., 2012). We used various metrics to assess the predictive
performance of the models, including accuracy, precision, recall, specific-
ity, sensitivity, F1 score, AUROC (Area Under the Receiver Operating
Characteristic Curve) and AUPRC (Area Under the Precision-Recall
Curve).

2.4 Webpage deployment

To optimize the application of our methodological framework, we devel-
oped a web-based platform based on HTMLS5, JavaScript, jQuery, and
PHP. This platform allows users to input protein structures along with mu-
tations that are annotated with phenotype labels. Upon submission, the
protPheMut framework is automatically executed to analyze the input data
and generate results, streamlining the study of genotype-phenotype rela-
tionships.

3 Results

Oncoproteins related to NDDs are involved in several major pathways. To
demonstrate the utility of our method for the classification of cancer and
NDDs, we focus on two oncoproteins, PI3Ka and PTEN, involved in the
PI3K/AKT/mTOR pathway.

3.1 Application to PI3Ko mutations in classifying Cowden
syndrome and cancer

Figure 2a illustrates the distribution of PI3Ko mutations along the protein
sequence. PI3Ka consists of five main domains: PI3K_p85B, PI3K rbd,
PI3K C2, PI3Ka, and PI3_PI4 kinase. Of the collected mutations, 154
(19.7%) were linked to Cowden syndrome, and 629 (80.3%) were associ-
ated with cancer, as shown in Figure 2b. These mutations were distributed
across the structural domains of PI3Ka. while Figures 2c, d provide struc-
tural mapping of PI3Ko mutations associated with cancer and Cowden
syndrome (Orloff, et al., 2013).

The protPheMut tool was employed to automatically calculate total
15 features of these mutations. Principal Component Analysis (PCA) of
these features (Figure 2e) revealed distinct yet overlapping distributions
of cancer and Cowden syndrome samples. The first two principal compo-
nents (PC1 and PC2) accounted for 28.30% and 14.95% of the variance,
respectively, with arrows indicating the contribution of each feature.

Using LightGBM-based recursive feature elimination (RFE), we iden-
tified 11 key features that effectively differentiated PI3Ko mutations
linked to Cowden syndrome and cancer. These features included se-
quence-level metrics (conservation score and coevolution), energy change
(AAG), structure-level properties (RASA), network centrality metrics
(ABC, AC, and AEC), biophysical changes (hydrophobicity), and dynamic
properties (sensitivity, stiffness, and DFI). We tested all combinations of
4 gradient boosting models (Gradient Boost, XGBoost, LightGBM, and
CatBoost), and integrated the predictive scores using logistic regression.
The stacking model built with 2 of the models (Gradient Boost and Cat-
Boost) achieved the best performance in distinguishing Cowden syndrome
from cancer, with a PhenoScore AUC of 0.8501 and an AUPRC 0f 0.9521
using 10-fold straight cross-validation (Figure 2f, g). Current tools primar-
ily predict mutation pathogenicity but are not optimized for phenotypic
classification. Compared to protPheMut, these tools, including AlphaM-
issense, EVMutation, PolyPhen-2, Rhapsody, MutPred2, SIFT, and
FATHMM, had limited success in distinguishing between Cowden syn-
drome and cancer. Among them, AlphaMissense showed the best perfor-
mance, with an AUC of 0.7232 and an AUPRC of 0.9039. These results
highlight that pathogenicity scores alone are insufficient for phenotypic
classification, whereas protPheMut outperformed all benchmarks.

Figure 2h illustrates the model interpretation, with the most important
features listed at the top. Based on model interpretation, it highlights the
interplay of bio-graph, dynamic, energy and evolutionary information in
distinguishing between cancer and Cowden syndrome, with the magnitude
and direction of each feature’s contribution shaping the final prediction.
To be more concrete, compared to Cowden syndrome mutations, cancer
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Fig. 2. protPheMut classify mutations’ binary phenotypic effects. a) The lollipop plot shows the distribution of missense mutations on PI3Ka protein and mutation’s phenotypes.
b) The pie chart shows the Cowden syndrome and cancer variants in dataset. ¢) The distribution of mutations related to Cowden syndrome in PI3Ka structure. d) The distribution of
mutations related to cancer in PI3Ka structure. e) The PCA plot of Cowden and cancer mutations with features’ direction. f) The comparison of PhenoScore generated from 10-fold
straight cross-validation with 8 other predicted tools in the whole dataset. g) Precision-recall curve of PhenoScore and 8 other predicted tools in the whole dataset. h) Beeswarm plot
shows the global and local interpretation of the model using SHAP. Features higher up on the plot indicate greater importance. Red and blue represent the magnitude of the feature
values, and their distribution along the X-axis reflects the positive or negative contribution of each feature on predicting single mutation.

mutations show decrease in ACC, conservation score, sensitivity and show
increase in ABC and AAG. More detailed analysis of PI3Ka can be found
at Supplementary Text S2.

3.2 Application to PTEN mutations in classifying PHTS,
HCPS, and cancer

Figure 3a shows the distribution of PTEN mutations along the protein se-
quence. PTEN consists of two main domains: the Tc-R-P domain and the
C2 domain. Figure 3b shows the properties of PTEN mutations, we col-
lected a total of 70 mutations related to HCPS (10.4%), 150 mutations
related to PHTS (80.4%), and 454 mutations related to cancer (67.4%),
distributed across the structural domains of PTEN. Figures 3c-e provide
structural mappings of PTEN mutations associated with PTHS, HCPS,
and cancer (Portelli, et al., 2021; Yehia, et al., 2020).

As shown in Figures 3f and 3g, to distinguish PTEN phenotypes,
protPheMut performed pairwise comparisons of HCPS, PHTS, and cancer.
In the classification tasks for distinguishing between HCPS and PHTS, six
key features were used: AC, sensitivity, DFI, AEC, AAG, and ABC. The
optimal combination of Gradient Boosting, LightGBM, and CatBoost

achieved an AUC of 0.8723 and an AUPRC of 0.9204. For the HCPS vs.
cancer classification, also six key features were utilized: AC, ABC, effec-
tiveness, AEC, AAG, and conservation score, resulting in an AUC of
0.9636 and an AUPRC of 0.9930. In the PHTS vs. cancer classification,
nine key features were employed: AC, ABC, MSF, hydrophobicity, AEC,
conservation score, RASA, sensitivity, and AAG, yielding an AUC of
0.9666 and an AUPRC of 0.9804. The final base models for HCPS vs.
cancer and PHTS vs. cancer classification were all Gradient Boosting,
XGBoost, and CatBoost. The micro-averaged AUC and AUPRC across
all tasks were 0.9349 and 0.9644, respectively.

Performance was higher for distinguishing HCPS or PHTS from can-
cer but lower for HCPS vs. PHTS, likely due to phenotypic similarities, as
both HCPS and PHTS are considered as NDDs. Network topology feature
ACC consistently emerged as the most critical feature across all classifi-
cations. Additional features, such as ABC, effectiveness/MSF, and con-
servation score, were vital for distinguishing HCPS or PHTS from cancer,
while sensitivity, AEC, and AAG were more significant for HCPS vs.
PHTS (Figures 3i-k).

Based on these observations, we constructed a multi-class classifica-
tion model using a stacking approach with LightGBM and CatBoost as
base models and logistic regression as the meta model, employing the
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Fig. 3. protPheMut classify mutations’ multiple phenotypic effects. a) The lollipop plot shows the distribution of missense mutations on PTEN protein and mutation’s phenotypes.
b) The pie chart shows the HCPS, PTHS and cancer variants in dataset. ¢) The distribution of mutations related to HCPS in PTEN structure. d) The distribution of mutations related
to PHTS in PTEN structure. e) The distribution of mutations related to cancer in PTEN structure. f) ROC plot shows the performance of PhenoScore in pairwise comparisons of
multiple phenotypes. g) Precision-recall plot of PhenoScore in pairwise comparisons of multiple phenotypes. h) Confusion matrix from 10-fold straight cross-validation using three-
class classifier with One-vs-One strategy on stacking model of XGBoost and LightGBM. i-k) Beeswarm plots show the global and local interpretation of pairwise comparison model
using SHAP.

One-vs-One (OVO) strategy. The confusion matrix indicated strong per-
formance in classifying cancer and PHTS mutations. However, HCPS mu-
tations were occasionally misclassified as PHTS due to phenotypic over-
lap (out of 70 HCPS mutations, 47 were correctly classified as HCPS,
while 15 were misclassified as PHTS). More detailed analysis of PI3Ka
can be found at Supplementary Text S3.

3.3 protPheMut web server

Figure 4 illustrates the key components of the protPheMut web platform
(http://netprotlab.com/protPheMut), designed to streamline data analysis

for users. The platform automates tasks such as feature computation, sta-
tistical analysis, machine learning model training, and result interpretation,
generating PhenoScores efficiently. Users can visualize results directly on
the webpage for quick insights. A detailed user guide is available on the
platform.

4 Discussion
In this study, we developed an interpretable ML framework to assess the

phenotypic impacts of human protein missense mutations, with specific
applications to PI3Ko and PTEN. Unlike traditional tools that focus on
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pathogenicity prediction, our work emphasizes phenotype-specific analy-
sis, offering a nuanced perspective on how pathogenic mutations drive
distinct disease phenotypes. By introducing the PhenoScore, we provide a
novel metric to quantify the phenotypic tendencies of mutations, bridging
the gap between prediction and biological interpretation. This approach
allows for a deeper understanding of the multi-phenotype effects of path-
ogenic mutations, particularly in cases of comorbidities between cancer
and NDDs, addressing a critical need for unified and biologically in-
formed predictive methods.

protPheMut extends the utility of protein dynamics, which have been
shown to improve prediction accuracy in tools like Rhapsody. While
Rhapsody (Ponzoni, et al., 2020) leverages ENM, protPheMut incorpo-
rates a broader spectrum of features associated with protein missense mu-
tations. These features include alterations in physico-chemical properties,
network topology parameters, and protein folding energy. By integrating
these additional dimensions of information and leveraging advanced ML
techniques, protPheMut provides a more comprehensive and robust
framework for analyzing the phenotypic effects of mutations, making it
particularly well-suited for complex biological applications. Additionally,
protPheMut demonstrates the capability to classify multi-phenotypes, a
critical advancement in understanding the complex biological conse-
quences of mutations. By integrating dynamics features, sensitivity or ef-
fectiveness, in PTEN mutations, protPheMut captures the nuanced effects
of mutations that may drive multiple disease phenotypes. This functional-
ity is particularly valuable for analyzing mutations associated with comor-
bid conditions, such as NDDs and cancer with more dispersed phenotypes,
providing insights into shared and distinct dynamical mechanisms under-
lying these phenotypes.

Moreover, protPheMut is interpretable. The SHAP-based model ex-
planation provides both global and local interpretations. The global inter-
pretation reveals the importance of all features, while the local interpreta-
tion shows the contribution of each feature to the prediction for each spe-
cific mutation. Through model explanations, we observe both commonal-
ities and differences in the behavior of various parameters across missense
mutations in different proteins. A common finding is that changes in net-
work topology and dynamic parameters play a significant role in

differentiating phenotypes. Previous studies have shown that changes in
network topology can reflect the allosteric effects of proteins (Kapetis, et
al., 2017; Zhao, et al., 2024). Our findings suggest that mutations within
the same protein leading to diverse phenotypes are often linked to allo-
steric mechanisms. Additionally, differences in parameter importance be-
tween PI3Ko and PTEN mutations underscore protein-specific mecha-
nisms underlying phenotypic variations. This level of granularity provides
actionable insights that could inform targeted therapeutic strategies. For
instance, understanding the role of network topology in phenotypic pre-
diction could inspire interventions to modulate these properties, offering
opportunities for mutation-specific treatments.

Despite its strengths, the protPheMut framework has certain limita-
tions. The tool’s sensitivity to data volume and unbalanced datasets can
affect classification performance, especially when phenotypes are highly
correlated. This was evident in the disparity in AUC values observed be-
tween PI3Ka and PTEN classification tasks. Additionally, our current
study was constrained by the limited scope of analyzed proteins, restrict-
ing the generalizability of our findings. Future research aims to expand
protPheMut's application to a broader range of protein mutations. The in-
herently complex relationship between protein mutations and phenotypes
poses challenges for binary classification, particularly for mutations lack-
ing prior information. To address this, we plan to incorporate additional
data modalities. For example, integrating epigenomic and genomic fea-
tures, as demonstrated in recent studies (Liu, et al., 2024), could enhance
prediction accuracy. Another promising direction is the inclusion of pro-
tein-protein interaction data. Pathway-related interactions could provide a
more holistic understanding of mutation effects across multi-protein sys-
tems (Xiong, et al., 2024), enabling phenotypic predictions at a network
level.
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