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ABSTRACT

Glioblastoma (GBM) is a dynamic ecosystem with high plasticity where the complex interplay between
different cellular components contributes to disease progression. Although single-cell RNA (scRNA)-
seq has revealed remarkable cellular heterogeneity of GBM, the spatial organization of its diverse cell
types is currently lacking. Here we present a comprehensive dataset of 115,914 spatial transcriptomes
across 32 tissue sections of genotyped glioma samples. We present spatial maps of 56 fine-grained
cellular components, including previously unrecognized oligodendrocyte subtypes and their interactive
networks within each anatomical niche. Additionally, we utilized Xenium in situ technology to generate
subcellular resolution spatial transcriptomic data, enhancing our understanding of GBM at a granular
level. Our data provides novel insights into the cellular architecture of GBM. This valuable and openly
shared resource will help develop new and effective combinatorial therapies to target multiple niches

simultaneously to improve patient outcomes.



INTRODUCTION

Glioblastoma (GBM) is the most lethal form of primary brain tumor in adults. Despite surgical resection
and intense systemic treatment, tumors inevitably recur and are subsequently treatment resistant. A
major driver of this treatment resistance is the cellular and molecular heterogeneity of GBM in terms
of its microenvironment. Therefore, understanding the spatial dynamics by which the heterogeneous

tumor states emerge is critical to improving patient outcomes.

Multiple past classification efforts have attempted to capture the complexity of GBM. Early efforts in
comprehensive genomic profiling suggested three molecular subtypes of GBM: classical, mesenchymal,
and proneural'. Subsequent efforts classified GBM into states, including mesenchymal-like (MES-like),
neural progenitor cell-like (NPC-like), astrocyte-like (AC-like), and oligodendrocytic precursor cell-
like (OPC-like)’. GBM cells have also been classified based on the biological pathway enrichment,
yielding two axes of variation, neuronal-proliferative/progenitor (NEU-PRR) and

glycolytic/plurimetabolic—mitochondrial (GPM-MTC)’.

Subsequent scRNA-seq technology showed that each tumor harbors multiple malignant cell states with
varied inter- and intra-patient frequency””’. The mechanism by which tumor cell states are determined
remains elusive: whether they are stochastically and randomly dispersed across tumor tissue or confined
regionally due to varying microenvironmental pressures influenced by genotype, or perhaps a

combination of these factors, remains to be understood.

Transcriptional heterogeneity in tumor tissue is complex and shaped by cell-intrinsic as well as cell-
extrinsic factors. Although scRNA-seq has greatly improved our understanding of cell-intrinsic
molecular heterogeneity of tumor cells, the spatial information to discover cell-extrinsic factors, such
as cell-to-cell interactions and tumor tissue organization, is inevitably lost during the single-cell
dissociation process. Previously, we reported an anatomical feature (AF)-based transcriptional atlas,
the Ivy Glioblastoma Atlas (Ivy GAP) study®. This work uncovered molecular programs specific to AFs,
consistently observed across tumors. While this research elucidated the anatomical underpinnings of
GBM molecular heterogeneity, comprehensive insights into the cellular composition and patterns of

cell-cell interactions within these anatomical subdomains remain lacking.

Recent advances in spatial transcriptomic (ST) technologies allow us to understand the tumor
microenvironment (TME) at higher resolution’'*. We performed ST with matched scRNA-seq and
cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) to investigate the tissue

architecture of the GBM anatomical niches. To fully capture the cellular heterogeneity of GBM TME,



we comprehensively curated reference data by compiling our patient-matched single-cell data with

14-19

publicly available sc/snRNA-seq data

We discovered novel roles for key constituents within the GBM TME, including GBM-associated
oligodendrocytes and endothelial cells. Furthermore, we found that each anatomical niche harbored a
unique cell type, and every tumor cell state coexisted with a distinct set of stromal cells within these
niches. Our study underscores the extensive spatial and cellular heterogeneity of GBM and emphasizes
the intricate interplay among diverse cellular components, which necessitates consideration in devising
effective combination therapies for GBM. Further, we present our analytical results as a public resource
made easily accessible toall through an innovative and intuitive format, available at

https://github.com/nameetas/TSKGA.




RESULTS

Spatially resolved GBM atlas

Recent advances in spatial transcriptomic (ST) technology allow us to decipher tumor heterogeneity in
spatial context and to interrogate relationships between malignant and non-malignant cells’'*. We
investigated the cellular architecture of glioblastoma (GBM) by studying 28 patients, including 18 with
GBM, 5 with astrocytoma (IDH-mutant), 1 with oligodendroglioma (IDH-mutant, 1p19q co-deleted),
and 4 with miscellaneous CNS pathologies. We collected spatial transcriptomics (ST) data for 17 cases,
comprising 16 brain tumor patients (13 GBM, 3 Astrocytoma) and one healthy brain tissue control.
Using the 10x Genomics Visium ST platform, we generated a comprehensive dataset comprising
115,914 individual ST spots. Furthermore, complementary single-cell RNA sequencing (scRNA-seq)
and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) data were acquired from
25 patients, resulting in a collective analysis encompassing 223,113 cells (Figure 1A). There are 14
cases with matched ST and single-cell data. In addition, we cataloged the GBM single-cell reference
atlas by compiling the newly generated single-cell data with publicly available sc/sRNA-seq datasets'*
1. containing 10 major cell types, which were further classified into 58 transcriptional states (Figure

1B).

Additionally, we generated subcellular resolution ST data using recently developed Xenium in situ
technology (Figure 1C) for 2 GBM patients, including a custom panel of 348 genes. From this, we
annotated 351,823 cells within an area of 155 mm2. By integrating the reference single -cell atlas with
ST data, we identified recurrent molecular features associated with AF-based niches including cell-type
composition, cell-type co-occurrence as well as spatial LR interaction patterns (Figure 1D). Together,
we generated a GBM spatial atlas with patient-matched single-cell RNA-seq and CITE-seq data
(detailed patient and specimen information is provided in Table S1). To enhance user accessibility, we
offer the ST analysis outcomes and the whole datasets through an interactive website at

https://github.com/nameetas/TSKGA (Figure 1E).

GBM cellular complexity revealed through matched core and periphery single-cell analysis

In order to capture cellular states of major cell types in both the core and periphery (peri) of GBM, we
profiled six matched core and peri samples through same day library preparation of fresh samples (Table
S1). After quality filtering, 223,113 cells were pooled for single-cell transcriptomics, batch-corrected,
and clustered using Recursive Consensus Clustering (RCC). The level 1 clusters of RCC were then used
to assign major cell types by canonical marker gene expression (Figure 2A; Table S2). Notably, we
were able to detect a granulocyte population from the freshly processed samples, a cell type missing

from most human GBM scRNA-seq public datasets (Figure 2A). The major cell types were recursively



clustered up to three levels and the cluster name indicates the major cell type followed by the cluster
numbers separated by dashes for each level or an abbreviation based on previously described cellular

states (Figure 2B-J; Table S3).

We further subclustered the major cell types, identified markers for each cell subtype (Figures S1A-
S1F) and compared the cellular subtype proportions in core vs. peri samples. Core samples contained a

higher proportion of tumor cells compared to peri samples (Figure 2C-D).

Our analysis uncovered an interesting discovery regarding oligodendrocyte subtypes. Specifically, we
identified the Oligo_2 3 2 subtype exclusively within the core region across all six samples (see Figure
2E-F). Notably, this subtype was absent in both IDH-mutant gliomas and normal brain samples (see
Figure S7A). For myeloid/microglia cell types, dendritic cells (DC), Mac_5 1 2 (blood-derived
macrophages), Mac 5 1 3 (blood-derived hypoxic macrophages), and Mg prolif (proliferating
microglia) were more abundant in the core compared to Mg 1 2 and Mg 1 3 (resting microglia),
which are more prevalent in the peri (see Figure 2G-H). Lymphocyte subtypes were not significantly
different in core vs. peri except regulatory T-cells (Treg) which were mostly present in core (Figure 21-

D).

For 11 patients, we profiled 130 cell surface antigens on a total of 62,973 cells by CITE-seq (Table S1).
CITE-seq analysis revealed canonical immunophenotypic markers for immune cells and other major
cell types (Figures S2). We observed that tumor cells highly expressed immunomodulatory molecules,
including CD24, CD44, CD112 (PVRL2), CD155 (PVR), CD73 (NTSE), and CD274 (PD-L1) (Figure
S2C, highlighted in blue). This analysis provided a comprehensive list of cell surface markers for the

major cellular components of the TME in GBM.

Mapping the Anatomic Features (AFs) of GBM through spatial transcriptomics

We generated ST data comprising 32 tumors from 17 patients, including 13 patients diagnosed with
IDH-wildtype glioblastoma multiforme (GBM), 3 patients with IDH-mutant high-grade astrocytoma,
and a normal brain region serving as a comparative control. We analyzed patients across different age
groups with diverse genomic alterations (Figure 3A; Table S1). Moreover, we profiled at least two
tissue sections from different locations within the same tumor (Figure S3). The ST specimens were
chosen to encompass diverse AFs of GBM visible by H&E staining; leading edge (LE), cellular tumor
(CT), microvascular proliferation (MVP) and pseudopalisading cells around necrosis (PAN)®. The
median number of genes detected per section was 4,694 compared to 2,159 in a recent studyzo. Besides
a higher read depth for most genes, we detected an additional 482 genes. Importantly, our ST data was

generated from both frozen (n=5) and FFPE sections (n=27) (Figure S3). For better analysis of tissue



architecture, we scanned the H&E images with spatial transcriptome at 40x compared to the commonly

used 5x or 10x magnifications (Figure 3B).

To investigate the spatial organization of GBM anatomical features (AFs), we first defined AFs of each
ST spot. We utilized previously established marker gene sets for all AFs from Ivy GAP®*! (Figure 3C;
Table S4). We further divided the LE area into LE_ WM (white matter) and LE_ GM (gray matter). Next,
we defined potential GSC niches—vascular (PVN - perivascular niche) and hypoxic (PNZ - perinecrotic
zone)— by integrating histological traits and transcriptional profiles of laser-captured micro-dissected
regions expressing GSC markers®?'. Leveraging RNA-seq derived copy number analysis of ST data,
we identified zones harboring tumor cells (IT, CT, PAN1/2, PNZ1/2, PVN1/2) and those devoid of
tumor cells (LE_GM, LE_ WM, PAN, PNZ, BV) (Figure 3D). Notably, normal sample spots (SNU38)
were classified into LE GM and LE_ WM categories, while spots from patients with astrocytoma (Ast),
IDH mutant (IDHm) (SNU19, SNU22) were classified into LE GM, LE_ WM, IT, and CT. In stark
contrast, GBM patient spots exhibited classification across all AFs (Figure 3E-F; Figure S3).
Furthermore, cell counts per spot were determined by identifying nuclei on H&E images using the
DETR object detection algorithm (Figure 3G). As expected, spots without tumor cells have low counts

and spots with tumor cells have higher counts.

Spatial mapping of GBM cellular components reveals AF-dependent heterogeneity

To better understand tumorigenesis and the intricate GBM ecosystem, it is important to dissect the TME
into cellular components while maintaining spatial relationships. To construct a comprehensive GBM
spatial map, we first created a reference single-cell atlas by combining newly generated scRNA-seq
data with published single-cell transcriptomic data including human adult brain snRNA-seq data'®,
human brain vascular cell scRNA-seq data'>'*"°, glioma associated T cell scRNA-seq data'® and GBM
myeloid cell enriched scRNA-seq data'’ (Figure 4A; Table S5). In total, we annotated 58 cellular
subtypes across 10 major cell types; astrocytes, neurons, oligodendrocytes/OPC, neoplastic, microglia,
lymphoid, myeloid, endothelial, fibroblast, and pericytes (Figure 4A). Using this reference dataset, we
then identified highly specific markers for each cell subtype (Figure S2; Table S6). We excluded the

cell subtypes without specific markers for spatial distribution, leaving 56 cell types for further analysis.

For every ST spot, we calculated the likely presence or absence of each of the 56 cell subtypes. Using
the marker gene sets, we calculated an average expression score for each cell subtype. We also chose a
cutoff to assign binary value of presence/absence of that cell subtype per ST spot (Methods). In order
to assess spatial AF preference for a given cell subtype, we compared the distribution of normalized
expression values for that cell subtype in real data vs. AF randomized data. If the area under the curve
for actual data is higher than randomized data then the cell subtype is preferentially present in that AF
(Figure 4B). The distribution of the 56 cellular subtypes in 115,914 ST spots from 32 specimens, as



well as detailed specimen analysis, including matched single-cell UMAP, AF annotation, and spatial
CNV  analysis, are provided in Figure S4 and the interactive  website,

https://github.com/nameetas/TSKGA.

Spatial analysis of cellular subtypes revealed varying degrees of spatial and cellular heterogeneity
within the GBM TME (Figures 4C; S5). We categorized the cellular landscape into four distinct niches.
Firstly, the Proliferative Niche, which progresses from LE to IT and then CT, hosting neurons
predominantly in LE_GM, while oligodendrocytes and astrocytes reside in LE and IT. The CT exhibits
a notable abundance of non-mesenchymal tumor cells. Secondly, the Hypoxic Niche, encompassing
PAN, PANI1, and PAN2, and harbors TC mesh, TC NPC, Mac 5 1 3, and gbmEndo 9 4. Thirdly,
the Immune Niche, comprising PNZ, PNZ1, and PNZ2, predominantly houses immune cells and
gbmEndo 9 4, along with mesenchymal-like tumor cells TC mesh and TC mesnh. Lastly, the
Vascular Niche, encompassing BV, PVN1, and PVN2, predominantly comprises vascular and immune
cell subtypes, with TC mesnh tumor cell subtype exclusively observed in this niche (Figure S5A).
Notably, the newly identified Oligo 2 3 2 is found within the Vascular Niche (Figure S5B).

Distinct spatial localizations of mesenchymal vs. non-mesenchymal tumor cells were evident. Non-
mesenchymal subtypes, including TC_NPC, TC_OPC, TC oligo, and TC prolif, primarily occupy the
proliferative niche, contrasting with mesenchymal counterparts that predominantly reside within
hypoxic, immune, and vascular niches. TC_mesnh cells exhibit enrichment in immune and vascular
environments, while TC_mesh cells are predominantly situated within immune and hypoxic niches
(Figure S5A). This suggests that despite sharing mesenchymal gene signatures, these two tumor cell

states may have arisen under different environmental pressures.

Analysis of CITE-seq data revealed heightened expression of immunomodulatory molecules including
CD95, CD54, CD26, CD13, CD99, and CD274 on the surface of TC mesnh cells compared to other
tumor cell subtypes. TC_mesnh, resembling Mes1-like cells in Verhaak classification, demonstrate an
association with immune infiltration, whereas TC mesh (Mes2-like in Verhaak classification) are
linked with chronic hypoxia. Notably, TC mesnh do not express CD24, unlike other tumor cell
subtypes (Figure S1E). In summary, TC mesnh cells inhabit immunosuppressive environments and
exhibit high expression of inhibitory molecules such as CD73 and CD274 (Figure S1E). Conversely,
TC oligo, TC_OPC, and TC _NPC predominantly reside in immune-desert niches, potentially evading
immune surveillance through cell-autonomous mechanisms characterized by low expression of MHC
class I molecules and upregulation of "don't eat me" signal molecule, CD24 (Figure 4C; Figure S1F-E).

This implies the employment of diverse immune evasion mechanisms among tumor cell subtypes.

GBM landscape visualized at sub-cellular resolution



Through the integration of single-cell and spatial transcriptome data, we identified novel cellular states
(cell subtypes) within GBM niches. Given that Visium data offers a spatial resolution of 55 um, it has
limitations in pinpointing single-cells. To validate our findings at single-cell spatial resolution, we
leveraged the Xenium platform, which provides transcriptome data at sub-micron resolution. A custom
panel of 348 genes (Figure SA; Table S7; methods) was designed to validate novel endothelial, pericyte,
and oligodendrocyte cell subtypes and their spatial distribution. This panel was applied to data from
two GBM patients from the Visium cohort, SNU18 and SNU25, utilizing one Xenium slide. A total of
351,823 cells were annotated within an area of 155 mm?. There was an excellent correlation between
the gene expression profiles of spatial single-cell data and our reference single-cell dataset using the
348 panel genes (Figure 5B). The Xenium slide was annotated at two levels, AF and single-cell (Figure
5 D-E), employing a semi-automated annotation process. GBM-associated pericytes (gbmPeri) and
endothelial cells (gbmEndo*) expressing gene COL4A1 were identified, predominantly in the immune
and vascular niche, a finding supported by our Xenium data (Figure 5A; Figure S6A). Furthermore, we
sought to validate our findings for the Oligo 2 3 2 subtype, which was located in the tumor core in
single-cell data and exhibited preferential localization in the vascular niche in spatial transcriptomic

data. A similar trend was observed when comparing matched Visium and Xenium data (Figure S6B).

Understanding oligodendrocyte heterogeneity through our GBM atlas

Emerging evidence indicates the pivotal involvement of oligodendroglia in various neurodegenerative
conditions****. Nonetheless, the precise extent of oligodendrocyte diversity and their role in GBM
pathology remains elusive. We discovered four distinct oligodendrocyte cell states within GBM (Figure
2E-F) and delineated novel markers characterizing these states (Figure S1A). Notably, we observed a
higher prevalence of HLA-A"&" Oligo 2 3 2 within the tumor core compared to the periphery (Figure
2E-F). Moreover, Oligo 2 3 2 was uniquely detected in GBM, but not in IDH-mutant high-grade
astrocytoma (Figure S7A).

To explore the potential roles of oligodendrocytes in GBM, we scrutinized the differentially expressed
genes (DEGs) between oligodendrocytes from the tumor core and periphery (Figure 6A; Table S8). We
found a significant upregulation of various immune-related genes including HLA-A, HLA-E, CLU,
IFITM3, and MIF in Oligo 2 3 2 (Figure 6A; Table S8). Conversely, myelin-related genes such as
OPALIN and MOBP were downregulated, particularly in Oligo 2 3 2 from the tumor core (Figure
6A). Consistently, gene ontology (GO) analysis highlighted enrichment in immune response pathways
such as antigen processing and presentation, alongside negative regulation of natural killer cell cytokine
production (Figure S7B). This pattern of expression was also corroborated in Xenium data, where
Oligo 2 3 2 cells exhibited distinct transcript counts of CDH1, OPALIN, MBP, GSN, and NGFR,

notably with low OPALIN and high GSN counts compared to Oligo 2 1 (Figure S7C). Furthermore,
these Oligo 2 3 2 cells in Xenium data demonstrated high expression of SERPINA3, HLA-A,



TUBB2B, TIMP1, CLU, HLA-DRA, and S100A1 transcripts, consistent with the single-cell data
(Figure 6A-B). Pseudotime analysis unveiled a trajectory transitioning from OPALIN Oligo 2 2 to
HLA-Ahigh Oligo 2 3 2 (Figures 6C; Figure S8).

Additionally, our cell type co-occurrence analysis utilizing Visium ST data revealed a spatial
correlation between Oligo 2 3 2 and various infiltrating immune cells and endothelial cells (Figure
6D). Similarly, spatial co-localization using Xenium data illustrated the proximity of Oligo 2 3 2 to
TC _mesnh, Mg 1 1 (activated microglia), Mac 5 1 2 (Tumor associated macrophage), and gbmEndo
(GBM-associated endothelial cells), in contrast to Oligo 2 1, which was found in close proximity to
AstroPLCG1 (gray matter-associated astrocytes), Neurons Ex (excitatory neurons), and normal
endothelial cells (Figure 6E). The intermediate state represented by Oligo 2 3 1 exhibited preferential
co-occurrence with reactive astrocytes. Thus, Oligo 2 3 2 emerges as a novel oligodendrocyte subtype
likely shaped by environmental pressures of inflammation and tissue damage around leaky vessels,
potentially contributing to the pathology of GBM. Next we investigated cell-cell interactions between
Oligo_2 3 2 and its neighbors. We uncovered the most significant interactions between Oligo 2 3 2
and gbmEndoPeri, another newly identified cell type in this study. The analysis revealed two key
interactions between Oligo 2 3 2 and gbmEndoPeri, gbmEndoPeri 2 in particular: WNT -SFRP1 and
various subtypes of collagen-intergrins (Figure S9). Both WNT and integrin signaling play pivotal roles
in modulating oligodendrocyte proliferation, differentiation and myelination, potentially influencing

the GBM pathogenesis associated with oligodendrocyte dysfunctions.



DISCUSSION

Our study is one of the most comprehensive transcriptomic and spatially delineated analysis of GBM
to date. Drawing upon data from 16 GBM patients and one healthy brain specimen, our approach
combines cutting-edge technologies, including the 10x Genomics Visium Spatial Transcriptomics (ST)
platform, alongside supplementary single-cell RNA sequencing (scRNA-seq) and cellular indexing of
transcriptomes and epitopes by sequencing (CITE-seq) datasets from 26 patients. This meticulous
integration of molecular profiles has yielded an expansive dataset, comprising 115,914 individual ST
spots and 245,736 cells, providing novel insights into the cellular and molecular diversity within the
GBM tumor microenvironment (TME). Importantly, this study marks the pioneering use of Xenium in
situ technology in GBM analysis, achieving subcellular spatial resolution and enhancing our

understanding of GBM heterogeneity to previously unattainable depths.

Our analysis reveals a distinct oligodendrocyte state, Oligo 2 3 2, marked by the expression of HLA-
A and pronounced enrichment within the perivascular space**. Notably, Oligo 2 3 2 also displays high
levels of the non-classical MHC class I molecule, HLA-E, known to interact with the inhibitory receptor
CD94/NKG2A, modulating NK and CD8 T cell-mediated cytotoxicity?®. Additionally, Oligo 2 3 2
upregulates LGALSI1, a pleiotropic immunosuppressive molecule commonly found in immune-
privileged organs®. This suggests a potential mechanism by which Oligo 2 3 2 promotes immune
tolerance within the brain parenchyma, possibly exploited by GBM tumor cells to evade immune
surveillance. Moreover, Oligo 2 3 2 downregulates myelin-associated genes OPALIN and MOBP
while highly expressing FGFR2, implicating its involvement in inhibiting remyelination and
contributing to the pathogenesis of multiple sclerosis’’*. Intriguingly, the upregulated genes in
Oligo 2 3 2 overlap with the signature genes of neurodegenerative disease-associated
oligodendrocytes, suggesting a potential link between neuroinflammation and the transformation of
homeostatic oligodendrocytes into pathogenic states associated with impaired remyelination and
neurodegenerative processes *2. This underscores the complex relationship among neuroinflammation,
neurovascular dysfunction, and oligodendrocyte pathology within the realm of neurodegenerative
disease. Understanding the role of oligodendrocytes in GBM pathogenesis presents a promising avenue

for identifying therapeutic targets.

Our investigation also unveiled recurrent molecular signatures and elucidated spatial organization of
cell types within the GBM TME, underscoring their distinct contributions within AF-based niches *.
Notable among our findings is the discernment of partially coinciding spatial segregation patterns
among tumor cell states, delineating discrete AF-associated microenvironmental regions. Furthermore,

each tumor cell state exhibited a preferential co-occurrence with specific non-malignant cell types. For



instance, TC mesnh, a mesenchymal tumor cell state, demonstrated confinement within GBM-
associated vascular niches, while TC _mesh was predominantly localized in hypoxic regions. Our
consistent identification of macrophages within TC_mesnh suggests a potential macrophage-tumor cell
crosstalk within the GBM perivascular niche, potentially driving the transition of tumor cells into

mesenchymal states.

This spatial atlas provides a detailed molecular and cellular landscape of GBM and gives new insights
into the complex heterogeneity of disease. Our findings underscore the potential of spatially resolved
analysis in uncovering novel therapeutic targets and improving our understanding of GBM
tumorigenesis and progression. Furthermore, making these datasets available through an interactive
website, we aim to facilitate further research and discovery for a disease with minimally improved
outcomes over the last three decades. Importantly, unlike other large ST datasets, ours were generated
using FFPE specimens—the most widely used method of tissue preservation, and therefore the most
applicable. The FFPE method preserves morphological details and permits high-quality histological
images. Recently, several studies demonstrated that spatial gene expression of tissue sections could be
predicted by integrating ST data with histological images*™*'. We anticipate that our ST data with the
high-resolution images will facilitate the development of such algorithmic tools and potentially help to

find image-based molecular biomarkers that will serve as the foundation for novel targeted therapies.



METHODS

Patient samples

Tissue samples for this study were obtained from patients undergoing surgical resection with informed
consent for their usage for research purposes in accordance with the guidelines of the Institutional
Review Board of Seoul National University Hospital, which approved this study (IRB Nos. H-0507-
509-153 and H-2010-123-1166).

Spatial transcriptomics (ST)
ST experiments were performed using the 10X Visium Spatial Gene Expression kit, following

manufacturer’s instructions. Here, we briefly describe the methods.

Sample preparation (FFPE)

A total of 2 FFPE sections (Sum each) per sample were used to determine RNA integrity. Total RNA
was extracted using RNA Isolation Kit (Qiagen, 73504) according to the manufacturer’s protocol.
DV200 (the percentage of total RNA fragments >200) were determined using TapeStation (HS RNA
Screen Tape, Agilent, 5067-5579) according to the manufacturer’s protocol. Only samples with DV200

> 50% were qualified and used.

Deparaffinization, staining, imaging, and FFPE library construction

5 um thick sections were immediately placed on Visium array slide (Visium Spatial Gene Expression
slides, 10x Genomics). Slides were deparaffinized and stained with hematoxylin and eosin. Brightfield
imaging was carried out at 100x magnification with Nikon Eclipse Ti2, and post-processing was
performed using NIS software. After imaging, spatially barcoded, ligated probe products were
amplified using KAPA SYBR FAST qPCR Master Mix (Roche, KK4600). Fragments in the size of
interest were selected using SPRIselect reagent (Beckman Coulter, B23318). Library quality check was
performed using TapeStation (HS D1000 ScreenTape, Agilent, 5067-5584).

Sample preparation (Fresh frozen)

Fresh GBM tissue was collected immediately after resection and embedded in cryomolds using Tissue
Tek OCT (Sakura, 4583) using a bath of isopentane and liquid nitrogen. Following freezing in OCT,
blocks were stored at -80°C until processing. A total of 2 sections (10um each) per sample were used
to determine RNA integrity. Total RNA was extracted using RNA Isolation Kit (Qiagen, 74104)
according to the manufacturer’s protocol. RIN values were determined using TapeStation (HS RNA
Screen Tape, Agilent, 5067-5579) according to the manufacturer’s protocol. Only samples with an RNA

integrity value > 7 were qualified and used.



Fixation, staining, imaging, and construction of fresh frozen cDNA libraries

10 um thick sections were immediately placed on Visium array slide (Visium Spatial Gene Expression
slides, 10x Genomics). Slides were fixed in 100% methanol, stained with hematoxylin and eosin.
Brightfield imaging was carried out at 100x magnification with Nikon Eclipse Ti2, and post-processing
was performed using NIS software. After imaging, sections were permeabilized to release and capture
mRNA to oligonucleotides on the capture areas. Following permeabilization, the on-slide reverse
transcription (RT) reaction and second strand synthesis was performed. Spatially barcoded cDNA was
amplified using KAPA SYBR FAST qPCR Master Mix (Roche, KK4600). Fragments in the size of
interest were selected using SPRIselect reagent (Beckman Coulter, B23318). Library quality check was
performed using TapeStation (HS D1000 ScreenTape, Agilent, 5067-5584). To optimize cDNA
fragments for Illumina NextSeq, fragmentation and double-sided size selection was performed using

SPRIselect reagent.

ST Sequencing

The average length of the final libraries was quantified using TapeStation (HS D1000 ScreenTape,
Agilent, 5067-5584). The paired-end sequencing was performed on the [llumina NextSeq 550 using the
following read protocol; 28 cycles for read 1; 10 cycles for i7 index read: 10 cycles for i5 index read;

90 cycles for read 2.

Single-cell RNA-sequencing

Tissue Dissociation

Tissue specimens were collected and immersed in RPMI media at room temperature immediately after
surgical resection. The MACS brain tumor dissociation kit (Miltenyi Biotec, Auburn, CA, USA) and
gentleMACSTM Dissociator (Miltenyi Biotec) were used to dissociate the tissue samples within 2 hours
after collection, and debris was removed using MACS Debris Removal Solution (Miltenyi Biotec)
according to the manufacturer’s protocol. Only the samples with cell viability > 80% after dissociation

were used in this study. Isolated single cells were cryopreserved until further use.

Construction of cDNA libraries and sequencing

The library preparation was performed using Chromium Next Gem Single-cell 5° kit v2 (10x Genomics,
USA, 1000263) with a cell recovery target of 10,000, following the manufacturer’s instruction. The
libraries were processed according to manufacturer’s recommendation (10x Genomics, USA). The
libraries were sequenced on a HiSeq 2500 system using 100-bp paired-end sequencing, and the raw
sequencing data was processed using Cell Ranger v5.0.1 with default setting. The reads were aligned

to the human reference genome (hg38).



CITE-seq

Approximately 1 million cells were incubated with Fc receptor blocking solution (Human Trustain
FcX™, BioLegend, 422301) at 4’C for 10 min and were stained with TotalSeq™-C Universal Cocktail,
V1.0 (BioLegend, 399905) at 4°C for 30 min. After a centrifuge (600g, 4’C, 5 min), cells were
resuspended with 3 ml of Cell Staining Buffer (BioLegend, 420201). Cells were washed twice more
and resuspended in 500 ul of Cell Staining Buffer. Antibody-stained cells were processed by Chromium
controller (10x Genomics, USA) with a cell recovery target of 5,000 for the generation of gene
expression libraries and Feature Barcode libraries. Gene expression libraries and Feature Barcode
libraries were prepared using Chromium Next Gem Single-cell 5° kit v2 (10x Genomics, USA, 1000263)
and 5° Feature Barcode kit (10x Genomics, USA, 1000256) following the manufacturer’s instruction.
The libraries were sequenced on HiSeq 2500 system using 100-bp paired-end sequencing yielding 25K
reads per cell for gene expression libraries and 5K reads per cell Feature Barcode libraries, respectively.
The raw sequencing data was processed using Cell Ranger v5.0.1 with default setting. The reads were

aligned to the human reference genome (hg38).

Quantification and statistical analysis
Preprocessing of 10x files

The 10x Visium data was aligned using Space Ranger and cell-seq/cite-seq data was aligned using Cell
Ranger software. Following are the commands used,
Cell Ranger command for CITE-seq:
cellranger count --id=[sampleid]citeseq --libraries=library.csv --transcriptome=refdata-gex-
GRCh38-2020-A
--feature-ref=TotalSeqC_universal GBM_feature ref.csv
Cellranger command for cellseq:
cellranger count --id=[sampleid] --fastqs=[fastq file location] --sample=[sample name] --
transcriptome=refdata-gex-GRCh38-2020-A
Spaceranger command for visium:
spaceranger count --id=[sampleid] --transcriptome=refdata-gex-GRCh38-2020-A/ --probe-
set=Visium Human Transcriptome Probe Set v1.0 GRCh38-2020-A.csv  --
fastqs=[fastq file location] --sample=[sample name] --image=image.tif --

slide=[slide name] --area=A1 --localcores=32 --localmem=64

Raw_feature bc matrix files were used for further analysis. The counts data was then log2 (cpm + 1)
normalized (cpm is counts per million). For single-cell data, the cells were filtered out if nCount RNA
<1000 AND Mean of IFITM2, S100A12 and S100A8 > 2 (this was done to retain granulocytes). For
10x Visium data, the spots with nCount RNA <2000 were filtered out.



CITE-seq analysis

The mRNA data was normalized using the same process as cell seq data. For protein data, further
normalization was done for comparison of protein expression across samples. Protein expression counts
vary significantly across samples compared to mRNA expression. So, for each sample, the log2cpm
data was z-scored using the mean and standard deviation of only oligodendrocyte cells. We chose
oligodendrocyte cells as control cells for sample-wise normalization because they showed the lowest
level of cell surface marker protein expression.

Xenium panel development

Gene selection for glioma xenium panel was done using the single-cell reference dataset. Significantly
enriched genes in major and minor cell types were calculated using findMarkers function from scran
package. 2689 genes that were enriched in individual cell types were selected for further analysis.
Recursive feature elimination (rfe) from the caret [Kuhn, Max (2008). “Building Predictive Models in
R Using the caret Package.” Journal of Statistical Software, 28(5), 1-26. doi:10.18637/jss.v028.i05,
https://www .jstatsoft.org/index.php/jss/article/view/v028i05.] package in R was used for filtering
functionally redundant genes. Post rfe, 383 genes came up as significant markers. Using these 383 genes
cell type assignment was again independently performed to check the accuracy of the gene profiles.
Based on the assignment results and inter-gene correlations, 348 genes were finalized for the custom

glioma xenium panel.

Xenium data analysis
Data normalization
The cell feature matrix.h5 files provided by 10x Xenium were used for further analysis. The data was

normalized using the stlearn module’s square root transformation method*?.

Cell type assignment

Major cell type

Based on the single-cell reference dataset and previously calculated markers, genes with exclusive
enrichment in major cell types were selected (STable 6). From the transcripts file provided by 10x
Xenium, only the cell_ids where nucleus_overlap is one are considered for further analysis. The sum
of all the markers (geneset) per major cell type was calculated for each cell. Then a major cell type was
assigned based on the max of the geneset sum. A xenium reference gene x major cell type matrix was
generated where rows were 348 genes and columns were the average value of respective genes in the
individual major cell types. All the cells that were left unassigned in the first run, were then correlated
with the xenium reference major cell type matrix and assigned the cell type with maximum correlation

value.


https://doi.org/10.18637/jss.v028.i05
https://www.jstatsoft.org/index.php/jss/article/view/v028i05

Minor cell type

Major cell types were further assessed for minor cell type assignment. Each major cell type was
subsetted and clustered using Seurat using the following parameters:

PCA, ncps: 100
clustering algorithm: 2 (multi step louvain clustering) and

resolution: 0.2 - 1 (Based on the major cell type). All the minor cell types were assigned based on the

markers calculated using the single-cell public reference dataset (Table S6).

Clustering of single-cell and spatial data

We used a modified version of Recursive Consensus Clustering (RCC) for clustering and marker
calculations®. In brief, RCC first identifies major clusters at level 1. It then continues to take each
cluster and then recursively clusters it to identify further sub-clusters at multiple levels. The major
change involves using Seurat v4.2.0** as the underlying algorithm instead of ConsensusClusterPlus®
used in the original publication. For integrating multiple samples, we used batch correction package
Harmony v0.1.0 prior to clustering®®. It also transforms the initial UMAP co-ordinates based on

recursive clustering such that it allows better visualization of cluster hierarchy.

CNYV calculation

CNV analysis for ST data was performed using the SPATA2 package in R*. For single-cell data
inferCNV [inferCNV of the Trinity CTAT Project. https://github.com/broadinstitute/inferCNV] was
used for analysis. The single-cell data was split by major cell types for CNV analysis. Cells that were
assigned as ‘Oligo 2 1','Mg 1 2','"Mg 1 3’,and ‘Mg 1 1’ from the normal brain samples were used

as a control for CNV analysis.

Reference single-cell dataset

The following datasets (Table S3) were used to build the reference single-cell dataset:

1. Allen institute: single-nucleus transcriptomes from 76,533 total nuclei derived from 2
post-mortem human brain specimens to survey cell type diversity in the primary motor
cortex (M1C or M1)". We used the original publication cell type annotation for the
dataset.

2. Xie et al.: single-cell data generated from tumor core and paired surrounding peripheral
tissue in 4 glioblastoma patients'®. Specifically, for endothelial cells. RCC was performed

to find clusters and cell types were identified using sScMAGIC?’.



3. Winkler et al: single-cell data generated using dissociated vascular cells isolated from the
adult human brain and arteriovenous malformations'>. We used the original publication
cell type annotation for the dataset.

4.  Abdelfattah et al.: single-cell data generated from 44 GBM (new diagnosed + recurrent)
and LGG samples'’. RCC was performed to find clusters and cell types were identified
using scMAGIC.

5. TAM-citeseq: CITE-seq data of myeloid cells from newly diagnosed and recurrent GBM
samples'’. We used the original publication celltype-annotation for the dataset.

6.  Matthewson et al.: single-cell data of glioma-infiltrating T cells isolated from fresh tumor
samples in 31 adult patients with either IDH-wildtype glioblastoma (GBM) or IDH-
mutant glioma (IDH-G)'’. We used the original publication cell type annotation for the

dataset.

Marker calculation

We used scran for marker calculation®®. To identify highly specific markers, we used FDR < 0.01 and
minLog2FC > 0. Differential expression as log2 fold change (Log2FC) was calculated for each gene
for the cluster (AF/cell type) for which markers are being calculated against all the clusters. minLog2FC
is defined as the minimum log2 fold change value among all the comparisons. This identifies markers

that have the highest average expression in that cluster.

Anatomic feature (AF) assignment for ST data

Log2cpm data from all the samples was merged. ssGSEA*’ was performed on the log2cpm data using
gene sets for each AF (Table S4)*'. The ssGSEA data was z-scored feature-wise. Z-scoring was done
separately for FFPE and frozen samples. Each spot was assigned an AF based on max z-score for that
spot. We also used the output from clustering of these spots to further refine the AF assignment. One
of the clusters was found to be typically bordering the gray and white matter showing expression of

both oligodendrocyte and neuron markers, which we annotated as LE WGM.

Cell state assignment for single-cell data

We used four different ways to assign cell states.

1. Original publication - Annotations from the original publication were used. These include Artl,
Art2, Art3, AstroAQP1, AstroPLCGI, AstroSERPINI2, DC, DC _mig, FBMC, Fibroblast,
Monocyte Nc, Neurons Ex, Neurons In, OPC, Pericyte, SMC, Tcell prolif, Venous, and
Venule.

2. Recursive clustering analysis (RCC) + well-established markers - Markers were calculated for

the clusters at different levels. Review of these markers allowed us to then assign the cellular



subtypes. These include Bceell, Beell plasma, CD4, CDS, CD8_TRM, Endo_cap, gbmPeri,
Granulocyte, Mac_prolif, Mg_prolif, Monocyte, NKT, RBC, TC prolif, Treg.

3. Clustering analysis + literature-based marker analysis - We used this approach to assign
cellular state to tumor cells from SNUH single-cell data. These include tumor cell (TC)
subtypes TC_AC, TC mesh, TC_mesnh, TC MTC, TC_NPC, TC oligo, and TC_OPC based
on studies by Neftel et al., and Garofano et al**. We did not include glycolytic/plurimetabolic
(GPM), neuronal (NEU), and proliferative/progenitor (PRR) in further analysis as they highly
overlap with Neftel classification. The gene marker set used for this is given in Table S4. For
all neoplastic cells we assigned cellular state using:

* Mmax = max (TC_* [2cpmavg). [* is TC_AC, TC_NPC, TC oligo, TC_OPC, TC_MTC]
* If Mmax <0 then label = ‘misc’ else label = TC_* with Mmax

4. Recursive clustering analysis (RCC) - Using RCC we were able to identify robust sub-clusters
for GBM stromal cells, microglia, macrophages, and oligodendrocytes. We labeled them based
on their cluster numbers as further studies would be required to establish their functional
relevance. These include gbmEndo 9 1, gbmEndo 9 la, gbmEndo 9 3, gbmEndo 9 4,
gbmEndoPeri_1, gbmEndoPeri 2, gbmFib 4, gbmFib 5, gbmFib 6, Mac 5 1 2,
Mac 5 1 3,Mg 1 1,Mg 1 3,0ligo 2 1,0ligo 2 2,0ligo 2 3 1,0ligo 2 3 2.

Integration of single-cell and ST data

Based on the marker set (Table S6), we calculated cell state scores for each spot. The score for cell state
C is the average of log2cpm values of all the makers for cell state C. For binary assignment, we
visualized the histogram for score of each cell type which typically had multimodal distribution and
manually chose a score cut-off value. Supplementary Data file 1 has the histogram and cutoffs used for

cell state scores, spatial plots for cell state score, and binary cell state assignment.

Co-occurrence score calculation

IOU calculation

Binary assignment of cell states to spots was used for calculating IOU (intersection over union) between
two cell states. For a set of spots labeled as a specific anatomic feature (AF), we calculated the spots
that have both cell states present and divided it by the total number of spots that have either of the cell

states present.

IOmin calculation
Binary assignment of cell states to spots was used for calculating IOmin (intersection over minimum)
between two cell states. For a set of spots labeled as a specific anatomic feature (AF), we calculated the

spots that have both cell states present and divided it by the total number of spots for the less frequent



cell state. This score is useful for understanding co-occurrence for rarer cell states. Chord diagrams
were used to visualize the IOmin between receptor-ligand pairs enriched across multiple cell types/AF.

The chord diagrams were generated using the circlize package in R*.

Differential gene expression calculation for single-cell data

Differential gene expression identification was done using t.test (R package) and log2FC was calculated
by subtracting the average expression of control cells from the average expression of test cells. In order
to avoid statistical artifacts due to an unbalanced number of cells in control and test groups, we made
both groups have the same number of cells by randomly choosing cells from the group with higher
number of cells. The volcano plots were drawn using the EnhancedVolcano package in R (Blighe, K,
S Rana, and M Lewis. 2018. “EnhancedVolcano: Publication-ready volcano plots with enhanced
coloring and labeling.” https://github.com/kevinblighe/EnhancedVolcano.)

Survival analysis
The survival analysis was done using the survival package [Therneau T (2022). 4 Package for Survival

Analysis in R. R package version 3.4-0, https://CRAN.R-project.org/package=survival] in R. Ecotype

and MGMT fields were used as differentiators for survival analysis. The Kaplan-Meier plots were

generated using the survmineR package in R.

DETR model for nuclei detection

We used DINO-DETR [arXiv:2203.03605] which is a flavor of the DETR [arXiv:2005.12872] model.
The training data consists of 27 ROIs from 12 WSIs from the Visium dataset. For these ROIs the nuclei
were marked, and it includes regions with a high level of noise. Small patches of 256 x 256 were
generated from these ROIs for the purpose of training the DINO-DETR model. In total the number of

training images was 352 and the number of validation images were 8§9.

Ligand receptor interactions
The ligand receptor interactions were analyzed using cellphoneDB v4*'. The single-cell public

reference dataset was used for analyzing the ligand-receptor interactions with default parameters.


https://github.com/kevinblighe/EnhancedVolcano.
https://github.com/kevinblighe/EnhancedVolcano
https://github.com/kevinblighe/EnhancedVolcano.
https://cran.r-project.org/package=survival
https://cran.r-project.org/package=survival

DATA AND CODE AVAILABILITY

Raw data reported in this paper will be publicly available upon publication. The processed data and
Interactive browsers for this study are available at https://github.com/nameetas/TSKGA. All code has
been deposited at GitHub (https:/github.com/nameetas/TSKGA) and will be publicly available as of

the date of publication. Further information or resources will be available from the corresponding

authors upon request.
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FIGURE LEGENDS

Figure 1 Spatial multi-omic glioma atlas schematic. (A) Sample preparation. (B) Glioma single-cell
reference dataset construction. (C) Spatial transcriptomic data generated with Visium at 55 um
resolution, validated with Xenium, and the targeted spatial profiling method at subcellular resolution.
(D) Integrated analysis of single-cell and spatial data for mapping of cellular states to anatomic features.

(E) User-friendly website for data visualization and exploration.

Figure 2 Spatial segregation of glioblastoma cellular heterogeneity between tumor core and
periphery in SNUH dataset. (A) UMAP representation of major cell types. (B) UMAP representation
using recursive layout L2 of cellular states. (C-J) UMAP and bar plots showing sample wise matched
core and periphery proportions of (C-D) Neoplastic cells, highlighted TC _mesnh and TC prolif cells
are limited to the core (E-F) Oligodendrocytes, highlighted Oligo 2 3 2 cells are found in the core (G-
H) Myeloid/Microglia, DC, Mac 5 1 2, Mac 5 1 3, Mg prolif are in higher proportions in core
compared to Mg 1 3 cells present in higher proportion in the periphery (I-J) Lymphocytes, Tregs are

found in the core. *Significance is calculated using paired t-test, p-value < 0.05. See also Figure S1

Figure 3 Spatial transcriptomic data and anatomic feature (AF) annotation. (A) Patient
information with genotype profile. (B) Representative high-resolution H&E images of the specimen
from patient SNU51. (C) Dot plot of anatomical feature marker genes and the distribution of inferCNV
scores across the anatomical features. Brown vertical lines indicate the threshold for LE, IT and CT
segments segregation. All the spots with inferCNV core < 100 were assigned LE, between 100-150
were assigned IT and > 150 were assigned as CT. (D) Final anatomic feature assignment based on
IvyGAP segments and CNV scores. (E) Spatial plot for AF annotation. (E) Relative proportions of AFs
in tissue sections from each patient. (F) Nuclei were identified on H&E images using DINO-DETR

object detection algorithm. The box plot shows nuclei count for each AF. See also Figure S3, S4

Figure 4 Spatial mapping of cell types over glioblastoma AFs. (A) UMAP representation of
reference glioma single-cell atlas colored by major cell types and 58 cell subtypes. (B) Density plot for
z-scored average cell subtype marker gene expression per AF. Solid lines show the results for actual
data and dotted lines are for shuffled AF data. The ratio > 1 of Actual vs. Randomized AUC gives the
strength of preferential presence of a given cell subtype in a given AF and ratio < I indicated preferential
absence. Neurons_Ex are shown to be preferentially present in LE_ GM. (C) Preferential presence of
cell subtypes across AFs. The presence of connection shows ratio > 2 and the thickness indicates the
strength. Leading edge to cellular tumor AFs (LE GM, LE WM, IT, CT) have neurons,
oligodendrocytes, astrocytes, and non-mesenchymal neoplastic cells. Hypoxic AFs (PAN, PANI,



PAN2) have astrocytes, neoplastic cells, macrophages, and glioblastoma associated endothelial cells.
Immune AFs (PNZ, PNZ1, PNZ2) have mesenchymal neoplastic cells, microglia, macrophages,
lymphoid cells, some fibroblasts, and glioblastoma associated endothelial cells. Vascular AFs (BV,
PVNI1, PVN2) have oligodendrocytes, astrocytes, mesenchymal neoplastic cells, all types of immune

cells, fibroblasts, pericytes, and endothelial cells. See also Figure SS5.

Figure 5 Xenium data for two glioblastoma patients SNU25 and SNU18 (A) Custom gene marker
panel used for Xenium analysis. Genes used for major cell type assignment are highlighted. (B)
Correlation between gene expression profiles of major cell types in single-cell and xenium data. Xenium

slide (C) H&E (D) AF assignment for 110 um grid (E) minor cell types. See also Figure S6.

Figure 6 GBM-associated oligodendrocytes exhibit immunomodulatory features. (A) The single-
cell trajectory reconstructed by Monocle 2 for GBM-associated oligodendrocytes, cells colored by
oligodendrocyte cell subtypes. (B) DEGs between Oligo 2 3 2 vs Oligo 2 1, highlighted as red dots.
(C) Common DEGs in single-cell vs. Xenium dataset. (D) Co-occurrence matrix for oligodendrocyte
subtypes showing increased co-localization of Oligo 2 3 2 cells with immune and stromal cells
relative to the other oligodendrocyte subtypes. (E) Spatial co-localization analysis in Xenium data
showing Oligo 2 1 are found in close proximity to AstroPLCG1, Neurons_Ex, and normal Endothelial
cells compared to Oligo 2 3 2 which are in close proximity to TC_mesnh, Mg 1 1,Mac 5 1 2, and
glioblastoma associated endothelial cells. AstroAQP1 are closest to Oligo 2 3 1. See also Figure S6,
S7, S8, and S9.



SUPPLEMENTAL FIGURE LEGENDS

Figure S1 (A-F) Cell subtype marker genes for astrocytes, neurons and oligodendrocytes (A), microglia

(B), lymphoid (C), myeloid (D), neoplastic (E) and endothelial/stromal cells (F).

Figure S2 (A) UMAP representation single-cells profiled using CITE-seq. (B) Canonical marker genes
(left) and cell surface protein markers (right) for major cell types. (C) Normalized cell surface protein

expression across cellular states.

Figure S3 AF annotation on each tissue section. H&E images and AF annotation of 32 spatial

transcriptomic data

Figure S4 Single-cell and spatial transcriptomic data analysis of SNU51. (A) Spatial plot of SNU51
with AFs overlaid. Barplot of distribution of cell types across AFs in SNUS51 spatial data. (B) UMAP
of single-cell RNA-Seq data split by tissue type. Barplot of cell types across tissue in SNU51 single-
cell data. (C) CNV analysis of SNUS51 bulk tissue RNA-seq data. (D) Mutational profile of SNU51. (E)
CNV analysis of SNUS51 using spatial data across AFs. (F) CNV analysis of SNU51 using single-cell
RNA-seq data across major cell types.

Figure S5 Cellular and spatial heterogeneity of GMB anatomical niches. (A-F) River plot depicting
neoplastic (A), brain specific (B) microglia/myeloid (C), lymphoid (D), endothelial (E) and stromal (F)

cell subtype contribution across AFs.

Figure S6 Validation of cell subtypes in Xenium data. (A) Blue dots representing endothelial, and
pericyte subtypes. The top panel shows the normal endothelial (Endo_cap) and pericytes and the bottom
one shows the GBM associated endothelial cells and pericytes (gbmPeri, gbmEndo*). The blood vessel
in LE_GM shows the relative absence of COL4A1 (green dots) compared to the one in PVN area. The
blue boxes highlight all the endothelial cells and pericytes. (B) The left side shows the oligodendrocyte
subtypes map on the Xenium slide and the right side shows the corresponding Visium slides as blue
dots. The solid yellow boxes highlight the LE_GM area of patient SNU25 enriched for Oligo 2 1, the
dashed green boxes highlight the IT/PVN area of patient SNU25 enriched for Oligo 2 3 1, and the
dotted red boxes highlight the PNZ/PVN area enriched for Oligo 2 3 2 of SNU18. The boxes are color

coded to show the serial sections for both Xenium and Visium.

Figure S7 Oligodendrocyte heterogeneity across brain tumor pathologies. (A) Bar plots illustrating the

correlation between oligodendrocyte subtypes and brain tumor types. The relative proportions of



oligodendrocyte cell subtypes across histologies reveal an increased presence of Oligo 2 3 2 subtype
cells in tissue from the GBM core compared to periphery, control, and IDH mutant tissue samples
(depicted in purple). (B) Gene Ontology enrichment analysis of Differentially Expressed Genes (DEGs)
between Oligo 2 3 2 and Oligo 2 1 subtype. (C) Xenium data displaying the co-localization pattern
of cell types for Oligo 2 1 and Oligo 2 3 2.

Figure S8 Genes related to oligodendrocyte trajectory.

Figure S9 Spatial cell-cell communication. Overview of ligand-receptor interactions between

Oligo 2 3 2 and neighboring cell types using CellPhoneDB.

SUPPLEMENTAL TABLES

Supplementary Table 1: Patient characteristics and sequencing information with genomic alterations
Supplementary Table 2: Major cell-type markers based on RCC Level 1 cluster

Supplementary Table 3: Cell type annotations

Supplementary Table 4: Ivy GAP anatomic feature gene sets for spatial annotations

Supplementary Table 5: Public domain data summary

Supplementary Table 6: Cell type markers

Supplementary Table 7: Xenium 10x custom glioma gene panel

Supplementary Table 8: Oligodendrocyte DGE analysis between core and peri

Supplementary Table 9: CellPhoneDB ligand-receptor interactions
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Endothelial/Pericyte subtypes

» 4

green dots show the marker COL4A1,
expressed in GBM associated endothelial
and pericyte cells

Oligodendrocyte subtypes
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