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ABSTRACT 

 

Glioblastoma (GBM) is a dynamic ecosystem with high plasticity where the complex interplay between 

different cellular components contributes to disease progression. Although single-cell RNA (scRNA)-

seq has revealed remarkable cellular heterogeneity of GBM, the spatial organization of its diverse cell 

types is currently lacking. Here we present a comprehensive dataset of 115,914 spatial transcriptomes 

across 32 tissue sections of genotyped glioma samples. We present spatial maps of 56 fine-grained 

cellular components, including previously unrecognized oligodendrocyte subtypes and their interactive 

networks within each anatomical niche. Additionally, we utilized Xenium in situ technology to generate 

subcellular resolution spatial transcriptomic data, enhancing our understanding of GBM at a granular 

level. Our data provides novel insights into the cellular architecture of GBM. This valuable and openly 

shared resource will help develop new and effective combinatorial therapies to target multiple niches 

simultaneously to improve patient outcomes. 

  



INTRODUCTION 

 

Glioblastoma (GBM) is the most lethal form of primary brain tumor in adults. Despite surgical resection 

and intense systemic treatment, tumors inevitably recur and are subsequently treatment resistant. A 

major driver of this treatment resistance is the cellular and molecular heterogeneity of GBM in terms 

of its microenvironment. Therefore, understanding the spatial dynamics by which the heterogeneous 

tumor states emerge is critical to improving patient outcomes.  

 

Multiple past classification efforts have attempted to capture the complexity of GBM. Early efforts in 

comprehensive genomic profiling suggested three molecular subtypes of GBM: classical, mesenchymal, 

and proneural1. Subsequent efforts classified GBM into states, including mesenchymal-like (MES-like), 

neural progenitor cell-like (NPC-like), astrocyte-like (AC-like), and oligodendrocytic precursor cell-

like (OPC-like)2. GBM cells have also been classified based on the biological pathway enrichment, 

yielding two axes of variation, neuronal–proliferative/progenitor (NEU-PRR) and 

glycolytic/plurimetabolic–mitochondrial (GPM–MTC)3.  

 

Subsequent scRNA-seq technology showed that each tumor harbors multiple malignant cell states with 

varied inter- and intra-patient frequency2-7. The mechanism by which tumor cell states are determined 

remains elusive: whether they are stochastically and randomly dispersed across tumor tissue or confined 

regionally due to varying microenvironmental pressures influenced by genotype, or perhaps a 

combination of these factors, remains to be understood. 

 

Transcriptional heterogeneity in tumor tissue is complex and shaped by cell-intrinsic as well as cell-

extrinsic factors. Although scRNA-seq has greatly improved our understanding of cell-intrinsic 

molecular heterogeneity of tumor cells, the spatial information to discover cell-extrinsic factors, such 

as cell-to-cell interactions and tumor tissue organization, is inevitably lost during the single-cell 

dissociation process. Previously, we reported an anatomical feature (AF)-based transcriptional atlas, 

the Ivy Glioblastoma Atlas (Ivy GAP) study8. This work uncovered molecular programs specific to AFs, 

consistently observed across tumors. While this research elucidated the anatomical underpinnings of 

GBM molecular heterogeneity, comprehensive insights into the cellular composition and patterns of 

cell-cell interactions within these anatomical subdomains remain lacking. 

 

Recent advances in spatial transcriptomic (ST) technologies allow us to understand the tumor 

microenvironment (TME) at higher resolution9-13. We performed ST with matched scRNA-seq and 

cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) to investigate the tissue 

architecture of the GBM anatomical niches. To fully capture the cellular heterogeneity of GBM TME, 



we comprehensively curated reference data by compiling our patient-matched single-cell data with 

publicly available sc/snRNA-seq data14-19.  

 

We discovered novel roles for key constituents within the GBM TME, including GBM-associated 

oligodendrocytes and endothelial cells. Furthermore, we found that each anatomical niche harbored a 

unique cell type, and every tumor cell state coexisted with a distinct set of stromal cells within these 

niches. Our study underscores the extensive spatial and cellular heterogeneity of GBM and emphasizes 

the intricate interplay among diverse cellular components, which necessitates consideration in devising 

effective combination therapies for GBM. Further, we present our analytical results as a public resource 

made easily accessible to all through an innovative and intuitive format, available at 

https://github.com/nameetas/TSKGA. 

  



RESULTS 

 

Spatially resolved GBM atlas 

Recent advances in spatial transcriptomic (ST) technology allow us to decipher tumor heterogeneity in 

spatial context and to interrogate relationships between malignant and non-malignant cells9-13. We 

investigated the cellular architecture of glioblastoma (GBM) by studying 28 patients, including 18 with 

GBM, 5 with astrocytoma (IDH-mutant), 1 with oligodendroglioma (IDH-mutant, 1p19q co-deleted), 

and 4 with miscellaneous CNS pathologies. We collected spatial transcriptomics (ST) data for 17 cases, 

comprising 16 brain tumor patients (13 GBM, 3 Astrocytoma) and one healthy brain tissue control. 

Using the 10x Genomics Visium ST platform, we generated a comprehensive dataset comprising 

115,914 individual ST spots. Furthermore, complementary single-cell RNA sequencing (scRNA-seq) 

and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) data were acquired from 

25 patients, resulting in a collective analysis encompassing 223,113 cells (Figure 1A). There are 14 

cases with matched ST and single-cell data. In addition, we cataloged the GBM single-cell reference 

atlas by compiling the newly generated single-cell data with publicly available sc/sRNA-seq datasets14-

19, containing 10 major cell types, which were further classified into 58 transcriptional states (Figure 

1B).  

 

Additionally, we generated subcellular resolution ST data using recently developed Xenium in situ 

technology (Figure 1C) for 2 GBM patients, including a custom panel of 348 genes. From this, we 

annotated 351,823 cells within an area of 155 mm2. By integrating the reference single -cell atlas with 

ST data, we identified recurrent molecular features associated with AF-based niches including cell-type 

composition, cell-type co-occurrence as well as spatial LR interaction patterns (Figure 1D). Together, 

we generated a GBM spatial atlas with patient-matched single-cell RNA-seq and CITE-seq data 

(detailed patient and specimen information is provided in Table S1). To enhance user accessibility, we 

offer the ST analysis outcomes and the whole datasets through an interactive website at 

https://github.com/nameetas/TSKGA (Figure 1E). 

 

GBM cellular complexity revealed through matched core and periphery single-cell analysis 

In order to capture cellular states of major cell types in both the core and periphery (peri) of GBM, we 

profiled six matched core and peri samples through same day library preparation of fresh samples (Table 

S1). After quality filtering, 223,113 cells were pooled for single-cell transcriptomics, batch-corrected, 

and clustered using Recursive Consensus Clustering (RCC). The level 1 clusters of RCC were then used 

to assign major cell types by canonical marker gene expression (Figure 2A; Table S2). Notably, we 

were able to detect a granulocyte population from the freshly processed samples, a cell type missing 

from most human GBM scRNA-seq public datasets (Figure 2A). The major cell types were recursively 



clustered up to three levels and the cluster name indicates the major cell type followed by the cluster 

numbers separated by dashes for each level or an abbreviation based on previously described cellular 

states (Figure 2B-J; Table S3).  

 

We further subclustered the major cell types, identified markers for each cell subtype (Figures S1A-

S1F) and compared the cellular subtype proportions in core vs. peri samples. Core samples contained a 

higher proportion of tumor cells compared to peri samples (Figure 2C-D).  

 

Our analysis uncovered an interesting discovery regarding oligodendrocyte subtypes. Specifically, we 

identified the Oligo_2_3_2 subtype exclusively within the core region across all six samples (see Figure 

2E-F). Notably, this subtype was absent in both IDH-mutant gliomas and normal brain samples (see 

Figure S7A). For myeloid/microglia cell types, dendritic cells (DC), Mac_5_1_2 (blood-derived 

macrophages), Mac_5_1_3 (blood-derived hypoxic macrophages), and Mg_prolif (proliferating 

microglia) were more abundant in the core compared to Mg_1_2 and Mg_1_3 (resting microglia), 

which are more prevalent in the peri (see Figure 2G-H). Lymphocyte subtypes were not significantly 

different in core vs. peri except regulatory T-cells (Treg) which were mostly present in core (Figure 2I-

J).  

 

For 11 patients, we profiled 130 cell surface antigens on a total of 62,973 cells by CITE-seq (Table S1). 

CITE-seq analysis revealed canonical immunophenotypic markers for immune cells and other major 

cell types (Figures S2). We observed that tumor cells highly expressed immunomodulatory molecules, 

including CD24, CD44, CD112 (PVRL2), CD155 (PVR), CD73 (NT5E), and CD274 (PD-L1) (Figure 

S2C, highlighted in blue). This analysis provided a comprehensive list of cell surface markers for the 

major cellular components of the TME in GBM.  

 

Mapping the Anatomic Features (AFs) of GBM through spatial transcriptomics 

We generated ST data comprising 32 tumors from 17 patients, including 13 patients diagnosed with 

IDH-wildtype glioblastoma multiforme (GBM), 3 patients with IDH-mutant high-grade astrocytoma, 

and a normal brain region serving as a comparative control. We analyzed patients across different age 

groups with diverse genomic alterations (Figure 3A; Table S1). Moreover, we profiled at least two 

tissue sections from different locations within the same tumor (Figure S3). The ST specimens were 

chosen to encompass diverse AFs of GBM visible by H&E staining; leading edge (LE), cellular tumor 

(CT), microvascular proliferation (MVP) and pseudopalisading cells around necrosis (PAN)8. The 

median number of genes detected per section was 4,694 compared to 2,159 in a recent study20. Besides 

a higher read depth for most genes, we detected an additional 482 genes. Importantly, our ST data was 

generated from both frozen (n=5) and FFPE sections (n=27) (Figure S3). For better analysis of tissue 



architecture, we scanned the H&E images with spatial transcriptome at 40x compared to the commonly 

used 5x or 10x magnifications (Figure 3B).  

 

To investigate the spatial organization of GBM anatomical features (AFs), we first defined AFs of each 

ST spot. We utilized previously established marker gene sets for all AFs from Ivy GAP8,21 (Figure 3C; 

Table S4). We further divided the LE area into LE_WM (white matter) and LE_GM (gray matter). Next, 

we defined potential GSC niches—vascular (PVN - perivascular niche) and hypoxic (PNZ - perinecrotic 

zone)— by integrating histological traits and transcriptional profiles of laser-captured micro-dissected 

regions expressing GSC markers8,21. Leveraging RNA-seq derived copy number analysis of ST data, 

we identified zones harboring tumor cells (IT, CT, PAN1/2, PNZ1/2, PVN1/2) and those devoid of 

tumor cells (LE_GM, LE_WM, PAN, PNZ, BV) (Figure 3D). Notably, normal sample spots (SNU38) 

were classified into LE_GM and LE_WM categories, while spots from patients with astrocytoma (Ast), 

IDH mutant (IDHm) (SNU19, SNU22) were classified into LE_GM, LE_WM, IT, and CT. In stark 

contrast, GBM patient spots exhibited classification across all AFs (Figure 3E-F; Figure S3). 

Furthermore, cell counts per spot were determined by identifying nuclei on H&E images using the 

DETR object detection algorithm (Figure 3G). As expected, spots without tumor cells have low counts 

and spots with tumor cells have higher counts. 

 

Spatial mapping of GBM cellular components reveals AF-dependent heterogeneity 

To better understand tumorigenesis and the intricate GBM ecosystem, it is important to dissect the TME 

into cellular components while maintaining spatial relationships. To construct a comprehensive GBM 

spatial map, we first created a reference single-cell atlas by combining newly generated scRNA-seq 

data with published single-cell transcriptomic data including human adult brain snRNA-seq data14, 

human brain vascular cell scRNA-seq data15,18,19, glioma associated T cell scRNA-seq data16  and GBM 

myeloid cell enriched scRNA-seq data17  (Figure 4A; Table S5). In total, we annotated 58 cellular 

subtypes across 10 major cell types; astrocytes, neurons, oligodendrocytes/OPC, neoplastic, microglia, 

lymphoid, myeloid, endothelial, fibroblast, and pericytes (Figure 4A). Using this reference dataset, we 

then identified highly specific markers for each cell subtype (Figure S2; Table S6). We excluded the 

cell subtypes without specific markers for spatial distribution, leaving 56 cell types for further analysis.  

 

For every ST spot, we calculated the likely presence or absence of each of the 56 cell subtypes. Using 

the marker gene sets, we calculated an average expression score for each cell subtype. We also chose a 

cutoff to assign binary value of presence/absence of that cell subtype per ST spot (Methods). In order 

to assess spatial AF preference for a given cell subtype, we compared the distribution of normalized 

expression values for that cell subtype in real data vs. AF randomized data. If the area under the curve 

for actual data is higher than randomized data then the cell subtype is preferentially present in that AF 

(Figure 4B). The distribution of the 56 cellular subtypes in 115,914 ST spots from 32 specimens, as 



well as detailed specimen analysis, including matched single-cell UMAP, AF annotation, and spatial 

CNV analysis, are provided in Figure S4 and the interactive website, 

https://github.com/nameetas/TSKGA. 

 

Spatial analysis of cellular subtypes revealed varying degrees of spatial and cellular heterogeneity 

within the GBM TME (Figures 4C; S5). We categorized the cellular landscape into four distinct niches. 

Firstly, the Proliferative Niche, which progresses from LE to IT and then CT, hosting neurons 

predominantly in LE_GM, while oligodendrocytes and astrocytes reside in LE and IT. The CT exhibits 

a notable abundance of non-mesenchymal tumor cells. Secondly, the Hypoxic Niche, encompassing 

PAN, PAN1, and PAN2, and harbors TC_mesh, TC_NPC, Mac_5_1_3, and gbmEndo_9_4. Thirdly, 

the Immune Niche, comprising PNZ, PNZ1, and PNZ2, predominantly houses immune cells and 

gbmEndo_9_4, along with mesenchymal-like tumor cells TC_mesh and TC_mesnh. Lastly, the 

Vascular Niche, encompassing BV, PVN1, and PVN2, predominantly comprises vascular and immune 

cell subtypes, with TC_mesnh tumor cell subtype exclusively observed in this niche (Figure S5A). 

Notably, the newly identified Oligo_2_3_2 is found within the Vascular Niche (Figure S5B). 

 

Distinct spatial localizations of mesenchymal vs. non-mesenchymal tumor cells were evident. Non-

mesenchymal subtypes, including TC_NPC, TC_OPC, TC_oligo, and TC_prolif, primarily occupy the 

proliferative niche, contrasting with mesenchymal counterparts that predominantly reside within 

hypoxic, immune, and vascular niches. TC_mesnh cells exhibit enrichment in immune and vascular 

environments, while TC_mesh cells are predominantly situated within immune and hypoxic niches 

(Figure S5A). This suggests that despite sharing mesenchymal gene signatures, these two tumor cell 

states may have arisen under different environmental pressures. 

 

Analysis of CITE-seq data revealed heightened expression of immunomodulatory molecules including 

CD95, CD54, CD26, CD13, CD99, and CD274 on the surface of TC_mesnh cells compared to other 

tumor cell subtypes. TC_mesnh, resembling Mes1-like cells in Verhaak classification, demonstrate an 

association with immune infiltration, whereas TC_mesh (Mes2-like in Verhaak classification) are 

linked with chronic hypoxia. Notably, TC_mesnh do not express CD24, unlike other tumor cell 

subtypes (Figure S1E). In summary, TC_mesnh cells inhabit immunosuppressive environments and 

exhibit high expression of inhibitory molecules such as CD73 and CD274 (Figure S1E). Conversely, 

TC_oligo, TC_OPC, and TC_NPC predominantly reside in immune-desert niches, potentially evading 

immune surveillance through cell-autonomous mechanisms characterized by low expression of MHC 

class I molecules and upregulation of "don't eat me" signal molecule, CD24 (Figure 4C; Figure S1F-E). 

This implies the employment of diverse immune evasion mechanisms among tumor cell subtypes. 

 

GBM landscape visualized at sub-cellular resolution 



Through the integration of single-cell and spatial transcriptome data, we identified novel cellular states 

(cell subtypes) within GBM niches. Given that Visium data offers a spatial resolution of 55 µm, it has 

limitations in pinpointing single-cells. To validate our findings at single-cell spatial resolution, we 

leveraged the Xenium platform, which provides transcriptome data at sub-micron resolution. A custom 

panel of 348 genes (Figure 5A; Table S7; methods) was designed to validate novel endothelial, pericyte, 

and oligodendrocyte cell subtypes and their spatial distribution. This panel was applied to data from 

two GBM patients from the Visium cohort, SNU18 and SNU25, utilizing one Xenium slide. A total of 

351,823 cells were annotated within an area of 155 mm2. There was an excellent correlation between 

the gene expression profiles of spatial single-cell data and our reference single-cell dataset using the 

348 panel genes (Figure 5B). The Xenium slide was annotated at two levels, AF and single-cell (Figure 

5 D-E), employing a semi-automated annotation process. GBM-associated pericytes (gbmPeri) and 

endothelial cells (gbmEndo*) expressing gene COL4A1 were identified, predominantly in the immune 

and vascular niche, a finding supported by our Xenium data (Figure 5A; Figure S6A). Furthermore, we 

sought to validate our findings for the Oligo_2_3_2 subtype, which was located in the tumor core in 

single-cell data and exhibited preferential localization in the vascular niche in spatial transcriptomic 

data. A similar trend was observed when comparing matched Visium and Xenium data (Figure S6B). 

 

Understanding oligodendrocyte heterogeneity through our GBM atlas 

Emerging evidence indicates the pivotal involvement of oligodendroglia in various neurodegenerative 

conditions22,23. Nonetheless, the precise extent of oligodendrocyte diversity and their role in GBM 

pathology remains elusive. We discovered four distinct oligodendrocyte cell states within GBM (Figure 

2E-F) and delineated novel markers characterizing these states (Figure S1A). Notably, we observed a 

higher prevalence of HLA-Ahigh Oligo_2_3_2 within the tumor core compared to the periphery (Figure 

2E-F). Moreover, Oligo_2_3_2 was uniquely detected in GBM, but not in IDH-mutant high-grade 

astrocytoma (Figure S7A). 

 

To explore the potential roles of oligodendrocytes in GBM, we scrutinized the differentially expressed 

genes (DEGs) between oligodendrocytes from the tumor core and periphery (Figure 6A; Table S8). We 

found a significant upregulation of various immune-related genes including HLA-A, HLA-E, CLU, 

IFITM3, and MIF in Oligo_2_3_2 (Figure 6A; Table S8). Conversely, myelin-related genes such as 

OPALIN and MOBP were downregulated, particularly in Oligo_2_3_2 from the tumor core (Figure 

6A). Consistently, gene ontology (GO) analysis highlighted enrichment in immune response pathways 

such as antigen processing and presentation, alongside negative regulation of natural killer cell cytokine 

production (Figure S7B). This pattern of expression was also corroborated in Xenium data, where 

Oligo_2_3_2 cells exhibited distinct transcript counts of CDH1, OPALIN, MBP, GSN, and NGFR, 

notably with low OPALIN and high GSN counts compared to Oligo_2_1 (Figure S7C). Furthermore, 

these Oligo_2_3_2 cells in Xenium data demonstrated high expression of SERPINA3, HLA-A, 



TUBB2B, TIMP1, CLU, HLA-DRA, and S100A1 transcripts, consistent with the single-cell data 

(Figure 6A-B). Pseudotime analysis unveiled a trajectory transitioning from OPALIN Oligo_2_2 to 

HLA-Ahigh Oligo_2_3_2 (Figures 6C; Figure S8). 

 

Additionally, our cell type co-occurrence analysis utilizing Visium ST data revealed a spatial 

correlation between Oligo_2_3_2 and various infiltrating immune cells and endothelial cells (Figure 

6D). Similarly, spatial co-localization using Xenium data illustrated the proximity of Oligo_2_3_2 to 

TC_mesnh, Mg_1_1 (activated microglia), Mac_5_1_2 (Tumor associated macrophage), and gbmEndo 

(GBM-associated endothelial cells), in contrast to Oligo_2_1, which was found in close proximity to 

AstroPLCG1 (gray matter-associated astrocytes), Neurons_Ex (excitatory neurons), and normal 

endothelial cells (Figure 6E). The intermediate state represented by Oligo_2_3_1 exhibited preferential 

co-occurrence with reactive astrocytes. Thus, Oligo_2_3_2 emerges as a novel oligodendrocyte subtype 

likely shaped by environmental pressures of inflammation and tissue damage around leaky vessels, 

potentially contributing to the pathology of GBM. Next we investigated cell-cell interactions between 

Oligo_2_3_2 and its neighbors. We uncovered the most significant interactions between Oligo_2_3_2 

and gbmEndoPeri, another newly identified cell type in this study. The analysis revealed two key 

interactions between Oligo_2_3_2 and gbmEndoPeri, gbmEndoPeri_2 in particular: WNT -SFRP1 and 

various subtypes of collagen-intergrins (Figure S9). Both WNT and integrin signaling play pivotal roles 

in modulating oligodendrocyte proliferation, differentiation and myelination, potentially influencing 

the GBM pathogenesis associated with oligodendrocyte dysfunctions. 

  



DISCUSSION 

 

Our study is one of the most comprehensive transcriptomic and spatially delineated analysis of GBM 

to date. Drawing upon data from 16 GBM patients and one healthy brain specimen, our approach 

combines cutting-edge technologies, including the 10x Genomics Visium Spatial Transcriptomics (ST) 

platform, alongside supplementary single-cell RNA sequencing (scRNA-seq) and cellular indexing of 

transcriptomes and epitopes by sequencing (CITE-seq) datasets from 26 patients. This meticulous 

integration of molecular profiles has yielded an expansive dataset, comprising 115,914 individual ST 

spots and 245,736 cells, providing novel insights into the cellular and molecular diversity within the 

GBM tumor microenvironment (TME). Importantly, this study marks the pioneering use of Xenium in 

situ technology in GBM analysis, achieving subcellular spatial resolution and enhancing our 

understanding of GBM heterogeneity to previously unattainable depths. 

 

Our analysis reveals a distinct oligodendrocyte state, Oligo_2_3_2, marked by the expression of HLA-

A and pronounced enrichment within the perivascular space24. Notably, Oligo_2_3_2 also displays high 

levels of the non-classical MHC class I molecule, HLA-E, known to interact with the inhibitory receptor 

CD94/NKG2A, modulating NK and CD8 T cell-mediated cytotoxicity25,26. Additionally, Oligo_2_3_2 

upregulates LGALS1, a pleiotropic immunosuppressive molecule commonly found in immune-

privileged organs24. This suggests a potential mechanism by which Oligo_2_3_2 promotes immune 

tolerance within the brain parenchyma, possibly exploited by GBM tumor cells to evade immune 

surveillance. Moreover, Oligo_2_3_2 downregulates myelin-associated genes OPALIN and MOBP 

while highly expressing FGFR2, implicating its involvement in inhibiting remyelination and 

contributing to the pathogenesis of multiple sclerosis27,28. Intriguingly, the upregulated genes in 

Oligo_2_3_2 overlap with the signature genes of neurodegenerative disease-associated 

oligodendrocytes, suggesting a potential link between neuroinflammation and the transformation of 

homeostatic oligodendrocytes into pathogenic states associated with impaired remyelination and 

neurodegenerative processes 22. This underscores the complex relationship among neuroinflammation, 

neurovascular dysfunction, and oligodendrocyte pathology within the realm of neurodegenerative 

disease. Understanding the role of oligodendrocytes in GBM pathogenesis presents a promising avenue 

for identifying therapeutic targets. 

 

Our investigation also unveiled recurrent molecular signatures and elucidated spatial organization of 

cell types within the GBM TME, underscoring their distinct contributions within AF-based niches 29. 

Notable among our findings is the discernment of partially coinciding spatial segregation patterns 

among tumor cell states, delineating discrete AF-associated microenvironmental regions. Furthermore, 

each tumor cell state exhibited a preferential co-occurrence with specific non-malignant cell types. For 



instance, TC_mesnh, a mesenchymal tumor cell state, demonstrated confinement within GBM-

associated vascular niches, while TC_mesh was predominantly localized in hypoxic regions. Our 

consistent identification of macrophages within TC_mesnh suggests a potential macrophage-tumor cell 

crosstalk within the GBM perivascular niche, potentially driving the transition of tumor cells into 

mesenchymal states. 

 

This spatial atlas provides a detailed molecular and cellular landscape of GBM and gives new insights 

into the complex heterogeneity of disease. Our findings underscore the potential of spatially resolved 

analysis in uncovering novel therapeutic targets and improving our understanding of GBM 

tumorigenesis and progression. Furthermore, making these datasets available through an interactive 

website, we aim to facilitate further research and discovery for a disease with minimally improved 

outcomes over the last three decades. Importantly, unlike other large ST datasets, ours were generated 

using FFPE specimens—the most widely used method of tissue preservation, and therefore the most 

applicable. The FFPE method preserves morphological details and permits high-quality histological 

images. Recently, several studies demonstrated that spatial gene expression of tissue sections could be 

predicted by integrating ST data with histological images30,31. We anticipate that our ST data with the 

high-resolution images will facilitate the development of such algorithmic tools and potentially help to 

find image-based molecular biomarkers that will serve as the foundation for novel targeted therapies.  

 

  



METHODS 

 

Patient samples 

Tissue samples for this study were obtained from patients undergoing surgical resection with informed 

consent for their usage for research purposes in accordance with the guidelines of the Institutional 

Review Board of Seoul National University Hospital, which approved this study (IRB Nos. H-0507-

509-153 and H-2010-123-1166).  

 

Spatial transcriptomics (ST) 

ST experiments were performed using the 10X Visium Spatial Gene Expression kit, following 

manufacturer’s instructions. Here, we briefly describe the methods. 

 

Sample preparation (FFPE)  

A total of 2 FFPE sections (5um each) per sample were used to determine RNA integrity. Total RNA 

was extracted using RNA Isolation Kit (Qiagen, 73504) according to the manufacturer’s protocol. 

DV200 (the percentage of total RNA fragments >200) were determined using TapeStation (HS RNA 

Screen Tape, Agilent, 5067-5579) according to the manufacturer’s protocol. Only samples with DV200 

≥ 50% were qualified and used. 

 

Deparaffinization, staining, imaging, and FFPE library construction 

5 µm thick sections were immediately placed on Visium array slide (Visium Spatial Gene Expression 

slides, 10× Genomics). Slides were deparaffinized and stained with hematoxylin and eosin. Brightfield 

imaging was carried out at 100x magnification with Nikon Eclipse Ti2, and post-processing was 

performed using NIS software. After imaging, spatially barcoded, ligated probe products were 

amplified using KAPA SYBR FAST qPCR Master Mix (Roche, KK4600). Fragments in the size of 

interest were selected using SPRIselect reagent (Beckman Coulter, B23318). Library quality check was 

performed using TapeStation (HS D1000 ScreenTape, Agilent, 5067-5584).   

 

Sample preparation (Fresh frozen) 

Fresh GBM tissue was collected immediately after resection and embedded in cryomolds using Tissue 

Tek OCT (Sakura, 4583) using a bath of isopentane and liquid nitrogen. Following freezing in OCT, 

blocks were stored at -80ºC until processing. A total of 2 sections (10um each) per sample were used 

to determine RNA integrity. Total RNA was extracted using RNA Isolation Kit (Qiagen, 74104) 

according to the manufacturer’s protocol. RIN values were determined using TapeStation (HS RNA 

Screen Tape, Agilent, 5067-5579) according to the manufacturer’s protocol. Only samples with an RNA 

integrity value > 7 were qualified and used.  



 

Fixation, staining, imaging, and construction of fresh frozen cDNA libraries 

10 µm thick sections were immediately placed on Visium array slide (Visium Spatial Gene Expression 

slides, 10× Genomics). Slides were fixed in 100% methanol, stained with hematoxylin and eosin. 

Brightfield imaging was carried out at 100x magnification with Nikon Eclipse Ti2, and post-processing 

was performed using NIS software. After imaging, sections were permeabilized to release and capture 

mRNA to oligonucleotides on the capture areas. Following permeabilization, the on-slide reverse 

transcription (RT) reaction and second strand synthesis was performed. Spatially barcoded cDNA was 

amplified using KAPA SYBR FAST qPCR Master Mix (Roche, KK4600). Fragments in the size of 

interest were selected using SPRIselect reagent (Beckman Coulter, B23318). Library quality check was 

performed using TapeStation (HS D1000 ScreenTape, Agilent, 5067-5584).  To optimize cDNA 

fragments for Illumina NextSeq, fragmentation and double-sided size selection was performed using 

SPRIselect reagent. 

 

ST Sequencing  

The average length of the final libraries was quantified using TapeStation (HS D1000 ScreenTape, 

Agilent, 5067-5584). The paired-end sequencing was performed on the Illumina NextSeq 550 using the 

following read protocol; 28 cycles for read 1; 10 cycles for i7 index read: 10 cycles for i5 index read; 

90 cycles for read 2. 

 

Single-cell RNA-sequencing 

Tissue Dissociation  

Tissue specimens were collected and immersed in RPMI media at room temperature immediately after 

surgical resection. The MACS brain tumor dissociation kit (Miltenyi Biotec, Auburn, CA, USA) and 

gentleMACSTM Dissociator (Miltenyi Biotec) were used to dissociate the tissue samples within 2 hours 

after collection, and debris was removed using MACS Debris Removal Solution (Miltenyi Biotec) 

according to the manufacturer’s protocol. Only the samples with cell viability > 80% after dissociation 

were used in this study. Isolated single cells were cryopreserved until further use. 

 

Construction of cDNA libraries and sequencing 

The library preparation was performed using Chromium Next Gem Single-cell 5’ kit v2 (10x Genomics, 

USA, 1000263) with a cell recovery target of 10,000, following the manufacturer’s instruction. The 

libraries were processed according to manufacturer’s recommendation (10x Genomics, USA). The 

libraries were sequenced on a HiSeq 2500 system using 100-bp paired-end sequencing, and the raw 

sequencing data was processed using Cell Ranger v5.0.1 with default setting. The reads were aligned 

to the human reference genome (hg38). 

 



CITE-seq 

Approximately 1 million cells were incubated with Fc receptor blocking solution (Human Trustain 

FcX™, BioLegend, 422301) at 4’C for 10 min and were stained with TotalSeq™-C Universal Cocktail, 

V1.0 (BioLegend, 399905) at 4’C for 30 min. After a centrifuge (600g, 4’C, 5 min), cells were 

resuspended with 3 ml of Cell Staining Buffer (BioLegend, 420201). Cells were washed twice more 

and resuspended in 500 ul of Cell Staining Buffer. Antibody-stained cells were processed by Chromium 

controller (10x Genomics, USA) with a cell recovery target of 5,000 for the generation of gene 

expression libraries and Feature Barcode libraries. Gene expression libraries and Feature Barcode 

libraries were prepared using Chromium Next Gem Single-cell 5’ kit v2 (10x Genomics, USA, 1000263) 

and 5’ Feature Barcode kit (10x Genomics, USA, 1000256) following the manufacturer’s instruction. 

The libraries were sequenced on HiSeq 2500 system using 100-bp paired-end sequencing yielding 25K 

reads per cell for gene expression libraries and 5K reads per cell Feature Barcode libraries, respectively. 

The raw sequencing data was processed using Cell Ranger v5.0.1 with default setting. The reads were 

aligned to the human reference genome (hg38).  

 

Quantification and statistical analysis 

Preprocessing of 10x files 

The 10x Visium data was aligned using Space Ranger and cell-seq/cite-seq data was aligned using Cell 

Ranger software. Following are the commands used, 

Cell Ranger command for CITE-seq: 

cellranger count --id=[sampleid]citeseq --libraries=library.csv --transcriptome=refdata-gex-

GRCh38-2020-A 

--feature-ref=TotalSeqC_universal_GBM_feature_ref.csv 

Cellranger command for cellseq: 

cellranger count --id=[sampleid] --fastqs=[fastq file location] --sample=[sample name] --

transcriptome=refdata-gex-GRCh38-2020-A 

Spaceranger command for visium: 

spaceranger count --id=[sampleid] --transcriptome=refdata-gex-GRCh38-2020-A/ --probe-

set=Visium_Human_Transcriptome_Probe_Set_v1.0_GRCh38-2020-A.csv --

fastqs=[fastq file location] --sample=[sample name] --image=image.tif --

slide=[slide name] --area=A1 --localcores=32 --localmem=64 

  

Raw_feature_bc_matrix files were used for further analysis. The counts data was then log2 (cpm + 1) 

normalized (cpm is counts per million). For single-cell data, the cells were filtered out if nCount_RNA 

< 1000 AND Mean of IFITM2, S100A12 and S100A8 > 2 (this was done to retain granulocytes). For 

10x Visium data, the spots with nCount_RNA < 2000 were filtered out. 



  

CITE-seq analysis 

The mRNA data was normalized using the same process as cell seq data. For protein data, further 

normalization was done for comparison of protein expression across samples. Protein expression counts 

vary significantly across samples compared to mRNA expression. So, for each sample, the log2cpm 

data was z-scored using the mean and standard deviation of only oligodendrocyte cells. We chose 

oligodendrocyte cells as control cells for sample-wise normalization because they showed the lowest 

level of cell surface marker protein expression. 

Xenium panel development 

Gene selection for glioma xenium panel was done using the single-cell reference dataset. Significantly 

enriched genes in major and minor cell types were calculated using findMarkers function from scran 

package.  2689 genes that were enriched in individual cell types were selected for further analysis.  

Recursive feature elimination (rfe) from the caret [Kuhn, Max (2008). “Building Predictive Models in 

R Using the caret Package.” Journal of Statistical Software, 28(5), 1–26. doi:10.18637/jss.v028.i05, 

https://www.jstatsoft.org/index.php/jss/article/view/v028i05.] package in R was used for filtering 

functionally redundant genes. Post rfe, 383 genes came up as significant markers. Using these 383 genes 

cell type assignment was again independently performed to check the accuracy of the gene profiles. 

Based on the assignment results and inter-gene correlations, 348 genes were finalized for the custom 

glioma xenium panel.  

 

Xenium data analysis 

Data normalization 

 The cell_feature_matrix.h5 files provided by 10x Xenium were used for further analysis. The data was 

normalized using the stlearn module’s square root transformation method32.   

 

Cell type assignment 

Major cell type 

Based on the single-cell reference dataset and previously calculated markers, genes with exclusive 

enrichment in major cell types were selected (STable 6). From the transcripts file provided by 10x 

Xenium, only the cell_ids where nucleus_overlap is one are considered for further analysis. The sum 

of all the markers (geneset) per major cell type was calculated for each cell. Then a major cell type was 

assigned based on the max of the geneset sum. A xenium reference gene x major cell type matrix was 

generated where rows were 348 genes and columns were the average value of respective genes in the 

individual major cell types. All the cells that were left unassigned in the first run, were then correlated 

with the xenium reference major cell type matrix and assigned the cell type with maximum correlation 

value.  

https://doi.org/10.18637/jss.v028.i05
https://www.jstatsoft.org/index.php/jss/article/view/v028i05


 

Minor cell type 

Major cell types were further assessed for minor cell type assignment. Each major cell type was 

subsetted and clustered using Seurat using the following parameters: 

PCA, ncps: 100 

clustering algorithm: 2 (multi step louvain clustering) and 

resolution: 0.2 - 1 (Based on the major cell type). All the minor cell types were assigned based on the 

markers calculated using the single-cell public reference dataset (Table S6). 

 

Clustering of single-cell and spatial data 

We used a modified version of Recursive Consensus Clustering (RCC) for clustering and marker 

calculations33. In brief, RCC first identifies major clusters at level 1. It then continues to take each 

cluster and then recursively clusters it to identify further sub-clusters at multiple levels. The major 

change involves using Seurat v4.2.034 as the underlying algorithm instead of ConsensusClusterPlus35 

used in the original publication. For integrating multiple samples, we used batch correction package 

Harmony v0.1.0 prior to clustering36. It also transforms the initial UMAP co-ordinates based on 

recursive clustering such that it allows better visualization of cluster hierarchy. 

  

CNV calculation 

CNV analysis for ST data was performed using the SPATA2 package in R20. For single-cell data 

inferCNV [inferCNV of the Trinity CTAT Project.  https://github.com/broadinstitute/inferCNV] was 

used for analysis. The single-cell data was split by major cell types for CNV analysis. Cells that were 

assigned as ‘Oligo_2_1', 'Mg_1_2', 'Mg_1_3’, and ‘Mg_1_1’ from the normal brain samples were used 

as a control for CNV analysis. 

  

Reference single-cell dataset 

The following datasets (Table S3) were used to build the reference single-cell dataset: 

1.     Allen institute: single-nucleus transcriptomes from 76,533 total nuclei derived from 2 

post-mortem human brain specimens to survey cell type diversity in the primary motor 

cortex (M1C or M1)14. We used the original publication cell type annotation for the 

dataset.  

2.     Xie et al.: single-cell data generated from tumor core and paired surrounding peripheral 

tissue in 4 glioblastoma patients18.  Specifically, for endothelial cells. RCC was performed 

to find clusters and cell types were identified using scMAGIC37.  



3.     Winkler et al: single-cell data generated using dissociated vascular cells isolated from the 

adult human brain and arteriovenous malformations15. We used the original publication 

cell type annotation for the dataset.  

4.     Abdelfattah et al.: single-cell data generated from 44 GBM (new diagnosed + recurrent) 

and LGG samples19. RCC was performed to find clusters and cell types were identified 

using scMAGIC. 

5.     TAM-citeseq:  CITE-seq data of myeloid cells from newly diagnosed and recurrent GBM 

samples17. We used the original publication celltype-annotation for the dataset. 

6.     Matthewson et al.: single-cell data of glioma-infiltrating T cells isolated from fresh tumor 

samples in 31 adult patients with either IDH-wildtype glioblastoma (GBM) or IDH-

mutant glioma (IDH-G)16. We used the original publication cell type annotation for the 

dataset.  

  

 Marker calculation 

We used scran for marker calculation38. To identify highly specific markers, we used FDR < 0.01 and 

minLog2FC > 0. Differential expression as log2 fold change (Log2FC) was calculated for each gene 

for the cluster (AF/cell type) for which markers are being calculated against all the clusters. minLog2FC 

is defined as the minimum log2 fold change value among all the comparisons. This identifies markers 

that have the highest average expression in that cluster. 

   

Anatomic feature (AF) assignment for ST data 

Log2cpm data from all the samples was merged. ssGSEA39 was performed on the log2cpm data using 

gene sets for each AF (Table S4)21. The ssGSEA data was z-scored feature-wise. Z-scoring was done 

separately for FFPE and frozen samples. Each spot was assigned an AF based on max z-score for that 

spot. We also used the output from clustering of these spots to further refine the AF assignment. One 

of the clusters was found to be typically bordering the gray and white matter showing expression of 

both oligodendrocyte and neuron markers, which we annotated as LE_WGM. 

  

Cell state assignment for single-cell data 

We used four different ways to assign cell states. 

1.  Original publication - Annotations from the original publication were used. These include Art1, 

Art2, Art3, AstroAQP1, AstroPLCG1, AstroSERPINI2, DC, DC_mig, FBMC, Fibroblast, 

Monocyte_Nc, Neurons_Ex, Neurons_In, OPC, Pericyte, SMC, Tcell_prolif, Venous, and 

Venule. 

2.  Recursive clustering analysis (RCC) + well-established markers - Markers were calculated for 

the clusters at different levels. Review of these markers allowed us to then assign the cellular 



subtypes. These include Bcell, Bcell_plasma, CD4, CD8, CD8_TRM, Endo_cap, gbmPeri, 

Granulocyte, Mac_prolif, Mg_prolif, Monocyte, NKT, RBC, TC_prolif, Treg. 

3.  Clustering analysis + literature-based marker analysis - We used this approach to assign 

cellular state to tumor cells from SNUH single-cell data. These include tumor cell (TC) 

subtypes TC_AC, TC_mesh, TC_mesnh, TC_MTC, TC_NPC, TC_oligo, and TC_OPC based 

on studies by Neftel et al., and Garofano et al2,3. We did not include glycolytic/plurimetabolic 

(GPM), neuronal (NEU), and proliferative/progenitor (PRR) in further analysis as they highly 

overlap with Neftel classification. The gene marker set used for this is given in Table S4. For 

all neoplastic cells we assigned cellular state using: 

•   Mmax = max (TC_* l2cpmavg). [* is TC_AC, TC_NPC, TC_oligo, TC_OPC, TC_MTC] 

•   If Mmax < 0 then label = ‘misc’ else label = TC_* with Mmax 

4.  Recursive clustering analysis (RCC) - Using RCC we were able to identify robust sub-clusters 

for GBM stromal cells, microglia, macrophages, and oligodendrocytes. We labeled them based 

on their cluster numbers as further studies would be required to establish their functional 

relevance. These include gbmEndo_9_1, gbmEndo_9_1a, gbmEndo_9_3, gbmEndo_9_4, 

gbmEndoPeri_1, gbmEndoPeri_2, gbmFib_4, gbmFib_5, gbmFib_6, Mac_5_1_2, 

Mac_5_1_3, Mg_1_1, Mg_1_3, Oligo_2_1, Oligo_2_2, Oligo_2_3_1, Oligo_2_3_2. 

  

Integration of single-cell and ST data 

Based on the marker set (Table S6), we calculated cell state scores for each spot. The score for cell state 

C is the average of log2cpm values of all the makers for cell state C. For binary assignment, we 

visualized the histogram for score of each cell type which typically had multimodal distribution and 

manually chose a score cut-off value. Supplementary Data file 1 has the histogram and cutoffs used for 

cell state scores, spatial plots for cell state score, and binary cell state assignment. 

  

Co-occurrence score calculation 

IOU calculation 

Binary assignment of cell states to spots was used for calculating IOU (intersection over union) between 

two cell states. For a set of spots labeled as a specific anatomic feature (AF), we calculated the spots 

that have both cell states present and divided it by the total number of spots that have either of the cell 

states present. 

 

IOmin calculation 

Binary assignment of cell states to spots was used for calculating IOmin (intersection over minimum) 

between two cell states. For a set of spots labeled as a specific anatomic feature (AF), we calculated the 

spots that have both cell states present and divided it by the total number of spots for the less frequent 



cell state. This score is useful for understanding co-occurrence for rarer cell states. Chord diagrams 

were used to visualize the IOmin between receptor-ligand pairs enriched across multiple cell types/AF. 

The chord diagrams were generated using the circlize package in R40. 

 

Differential gene expression calculation for single-cell data 

Differential gene expression identification was done using t.test (R package) and log2FC was calculated 

by subtracting the average expression of control cells from the average expression of test cells. In order 

to avoid statistical artifacts due to an unbalanced number of cells in control and test groups, we made 

both groups have the same number of cells by randomly choosing cells from the group with higher 

number of cells. The volcano plots were drawn using the EnhancedVolcano package in R (Blighe, K, 

S Rana, and M Lewis. 2018. “EnhancedVolcano: Publication-ready volcano plots with enhanced 

coloring and labeling.” https://github.com/kevinblighe/EnhancedVolcano.) 

 

Survival analysis 

The survival analysis was done using the survival package [Therneau T (2022). A Package for Survival 

Analysis in R. R package version 3.4-0, https://CRAN.R-project.org/package=survival] in R. Ecotype 

and MGMT fields were used as differentiators for survival analysis. The Kaplan-Meier plots were 

generated using the survmineR package in R. 

 

DETR model for nuclei detection 

We used DINO-DETR [arXiv:2203.03605] which is a flavor of the DETR [arXiv:2005.12872] model. 

The training data consists of 27 ROIs from 12 WSIs from the Visium dataset. For these ROIs the nuclei 

were marked, and it includes regions with a high level of noise. Small patches of 256 x 256 were 

generated from these ROIs for the purpose of training the DINO-DETR model. In total the number of 

training images was 352 and the number of validation images were 89. 

 

Ligand receptor interactions 

The ligand receptor interactions were analyzed using cellphoneDB v441. The single-cell public 

reference dataset was used for analyzing the ligand-receptor interactions with default parameters.  

  

https://github.com/kevinblighe/EnhancedVolcano.
https://github.com/kevinblighe/EnhancedVolcano
https://github.com/kevinblighe/EnhancedVolcano.
https://cran.r-project.org/package=survival
https://cran.r-project.org/package=survival


DATA AND CODE AVAILABILITY 

Raw data reported in this paper will be publicly available upon publication. The processed data and 

Interactive browsers for this study are available at https://github.com/nameetas/TSKGA. All code has 

been deposited at GitHub (https://github.com/nameetas/TSKGA) and will be publicly available as of 

the date of publication. Further information or resources will be available from the corresponding 

authors upon request. 
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FIGURE LEGENDS 

 

Figure 1 Spatial multi-omic glioma atlas schematic. (A) Sample preparation. (B) Glioma single-cell 

reference dataset construction. (C) Spatial transcriptomic data generated with Visium at 55 um 

resolution, validated with Xenium, and the targeted spatial profiling method at subcellular resolution. 

(D) Integrated analysis of single-cell and spatial data for mapping of cellular states to anatomic features. 

(E) User-friendly website for data visualization and exploration. 

 

Figure 2 Spatial segregation of glioblastoma cellular heterogeneity between tumor core and 

periphery in SNUH dataset. (A) UMAP representation of major cell types. (B) UMAP representation 

using recursive layout L2 of cellular states. (C-J) UMAP and bar plots showing sample wise matched 

core and periphery proportions of (C-D) Neoplastic cells, highlighted TC_mesnh and TC_prolif cells 

are limited to the core (E-F) Oligodendrocytes, highlighted Oligo_2_3_2 cells are found in the core (G-

H) Myeloid/Microglia, DC, Mac_5_1_2, Mac_5_1_3, Mg_prolif are in higher proportions in core 

compared to Mg_1_3 cells present in higher proportion in the periphery  (I-J) Lymphocytes, Tregs are 

found in the core. *Significance is calculated using paired t-test, p-value < 0.05. See also Figure S1 

 

Figure 3 Spatial transcriptomic data and anatomic feature (AF) annotation. (A) Patient 

information with genotype profile. (B) Representative high-resolution H&E images of the specimen 

from patient SNU51. (C) Dot plot of anatomical feature marker genes and the distribution of inferCNV 

scores across the anatomical features. Brown vertical lines indicate the threshold for LE, IT and CT 

segments segregation. All the spots with inferCNV core < 100 were assigned LE, between 100-150 

were assigned IT and > 150 were assigned as CT. (D) Final anatomic feature assignment based on 

IvyGAP segments and CNV scores. (E) Spatial plot for AF annotation. (E) Relative proportions of AFs 

in tissue sections from each patient. (F) Nuclei were identified on H&E images using DINO-DETR 

object detection algorithm. The box plot shows nuclei count for each AF.   See also Figure S3, S4 

 

Figure 4 Spatial mapping of cell types over glioblastoma AFs. (A) UMAP representation of 

reference glioma single-cell atlas colored by major cell types and 58 cell subtypes. (B) Density plot for 

z-scored average cell subtype marker gene expression per AF. Solid lines show the results for actual 

data and dotted lines are for shuffled AF data. The ratio > 1 of Actual vs. Randomized AUC gives the 

strength of preferential presence of a given cell subtype in a given AF and ratio < 1 indicated preferential 

absence. Neurons_Ex are shown to be preferentially present in LE_GM. (C) Preferential presence of 

cell subtypes across AFs. The presence of connection shows ratio > 2 and the thickness indicates the 

strength. Leading edge to cellular tumor AFs (LE_GM, LE_WM, IT, CT) have neurons, 

oligodendrocytes, astrocytes, and non-mesenchymal neoplastic cells. Hypoxic AFs (PAN, PAN1, 



PAN2) have astrocytes, neoplastic cells, macrophages, and glioblastoma associated endothelial cells. 

Immune AFs (PNZ, PNZ1, PNZ2) have mesenchymal neoplastic cells, microglia, macrophages, 

lymphoid cells, some fibroblasts, and glioblastoma associated endothelial cells. Vascular AFs (BV, 

PVN1, PVN2) have oligodendrocytes, astrocytes, mesenchymal neoplastic cells, all types of immune 

cells, fibroblasts, pericytes, and endothelial cells. See also Figure S5. 

 

Figure 5 Xenium data for two glioblastoma patients SNU25 and SNU18 (A) Custom gene marker 

panel used for Xenium analysis. Genes used for major cell type assignment are highlighted. (B) 

Correlation between gene expression profiles of major cell types in single-cell and xenium data. Xenium 

slide (C) H&E (D) AF assignment for 110 um grid (E) minor cell types. See also Figure S6.   

 

Figure 6 GBM-associated oligodendrocytes exhibit immunomodulatory features. (A) The single-

cell trajectory reconstructed by Monocle 2 for GBM-associated oligodendrocytes, cells colored by 

oligodendrocyte cell subtypes.  (B) DEGs between Oligo_2_3_2 vs Oligo_2_1, highlighted as red dots. 

(C) Common DEGs in single-cell vs. Xenium dataset. (D) Co-occurrence matrix for oligodendrocyte 

subtypes showing increased co-localization of Oligo_2_3_2 cells with immune and stromal cells 

relative to the other oligodendrocyte subtypes. (E) Spatial co-localization analysis in Xenium data 

showing Oligo_2_1 are found in close proximity to AstroPLCG1, Neurons_Ex, and normal Endothelial 

cells compared to Oligo_2_3_2 which are in close proximity to TC_mesnh, Mg_1_1, Mac_5_1_2, and 

glioblastoma associated endothelial cells. AstroAQP1 are closest to Oligo_2_3_1. See also Figure S6, 

S7, S8, and S9. 

 

 

 

  



SUPPLEMENTAL FIGURE LEGENDS 

 

Figure S1 (A-F) Cell subtype marker genes for astrocytes, neurons and oligodendrocytes (A), microglia 

(B), lymphoid (C), myeloid (D), neoplastic (E) and endothelial/stromal cells (F).  

 

Figure S2 (A) UMAP representation single-cells profiled using CITE-seq. (B) Canonical marker genes 

(left) and cell surface protein markers (right) for major cell types. (C) Normalized cell surface protein 

expression across cellular states.  

 

Figure S3 AF annotation on each tissue section. H&E images and AF annotation of 32 spatial 

transcriptomic data 

 

Figure S4 Single-cell and spatial transcriptomic data analysis of SNU51. (A) Spatial plot of SNU51 

with AFs overlaid. Barplot of distribution of cell types across AFs in SNU51 spatial data. (B) UMAP 

of single-cell RNA-Seq data split by tissue type. Barplot of cell types across tissue in SNU51 single-

cell data. (C) CNV analysis of SNU51 bulk tissue RNA-seq data. (D) Mutational profile of SNU51. (E) 

CNV analysis of SNU51 using spatial data across AFs. (F) CNV analysis of SNU51 using single-cell 

RNA-seq data across major cell types. 

 

Figure S5 Cellular and spatial heterogeneity of GMB anatomical niches. (A-F) River plot depicting 

neoplastic (A), brain specific (B) microglia/myeloid (C), lymphoid (D), endothelial (E) and stromal (F) 

cell subtype contribution across AFs. 

 

Figure S6 Validation of cell subtypes in Xenium data. (A) Blue dots representing endothelial, and 

pericyte subtypes. The top panel shows the normal endothelial (Endo_cap) and pericytes and the bottom 

one shows the GBM associated endothelial cells and pericytes (gbmPeri, gbmEndo*). The blood vessel 

in LE_GM shows the relative absence of COL4A1 (green dots) compared to the one in PVN area. The 

blue boxes highlight all the endothelial cells and pericytes.  (B) The left side shows the oligodendrocyte 

subtypes map on the Xenium slide and the right side shows the corresponding Visium slides as blue 

dots. The solid yellow boxes highlight the LE_GM area of patient SNU25 enriched for Oligo_2_1, the 

dashed green boxes highlight the IT/PVN area of patient SNU25 enriched for Oligo_2_3_1, and the 

dotted red boxes highlight the PNZ/PVN area enriched for Oligo_2_3_2 of SNU18. The boxes are color 

coded to show the serial sections for both Xenium and Visium. 

 

Figure S7 Oligodendrocyte heterogeneity across brain tumor pathologies. (A) Bar plots illustrating the 

correlation between oligodendrocyte subtypes and brain tumor types. The relative proportions of 



oligodendrocyte cell subtypes across histologies reveal an increased presence of Oligo_2_3_2 subtype 

cells in tissue from the GBM core compared to periphery, control, and IDH mutant tissue samples 

(depicted in purple). (B) Gene Ontology enrichment analysis of Differentially Expressed Genes (DEGs) 

between Oligo_2_3_2 and Oligo_2_1 subtype. (C) Xenium data displaying the co-localization pattern 

of cell types for Oligo_2_1 and Oligo_2_3_2. 

 

Figure S8 Genes related to oligodendrocyte trajectory.  

 

Figure S9 Spatial cell-cell communication. Overview of ligand-receptor interactions between 

Oligo_2_3_2 and neighboring cell types using CellPhoneDB. 
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