

Loss of chromogranin A and catestatin affect pancreatic islet homeostasis, endocrine function, and neurotransmitters

(max. 8 words)

1 Elke M. Muntjewerff¹, Dali Epremidze¹, Mariya Nezhyva², Marleen Bootsma¹, Atef
2 Manna³, Hiromi Ikebuchi¹, Anna Nilsson^{2,4}, Per E. Andrén^{2,4}, Erik Jansson², Sushil K.
3 Mahata^{5,6}, & Gustaf Christoffersson^{1,7*}

4 ¹ Department of Medical Cell Biology, Uppsala University, Sweden

5 ² Department of Pharmaceutical Biosciences, Uppsala University, Sweden

6 ³INSERM U1192, Laboratoire Protéomique, Réponse Inflammatoire & Spectrométrie de
7 Masse (PRISM), Université de Lille, France.

8 ⁴ Spatial Mass Spectrometry Infrastructure Unit, Science for Life Laboratory, Uppsala
9 University, Sweden

10 ⁵ VA San Diego Healthcare System, San Diego, CA, USA

11 ⁶ Department of Medicine, University of California San Diego, La Jolla, California, USA

12 ⁷ Science for Life Laboratory, Uppsala University, Sweden

13

14 *** Correspondence:**

15 Gustaf Christoffersson

16 ORCID: 0000-0002-9640-9702

17

18 Uppsala University

19 Department of Medical cell Biology

20 Husargatan 3, 75123 Uppsala

21 Email: gustaf.christoffersson@scilifelab.uu.se

22 Tel: +4618-4714325

23 Fax: +18-471 4325

24

25

26 **Journal:** Nature communications

27 **Article type:** Research paper

28 **Word count:** 4101 (including method section)

29 **Figures:** 6

30

31 **Running title:** Lack of CgA and CST affects pancreatic islet

32

33 **Keywords:** Neurotransmitters¹; Pancreatic islets²; Chromogranin A³; Catestatin⁴;

34 Metabolites⁵

35

36 **Abstract (max. 200)**

37 The pro-hormone chromogranin A (CgA) and its cleavage product, the neuropeptide catestatin
38 (CST) are linked to various cardiovascular and autoimmune diseases (T1D, IBD, RA) as
39 biomarkers for disease severity. In these diseases, CgA and CST seem to affect inflammation,
40 nerve communication, insulin resistance and hypertension. Since we found various CgA

41 cleavage products leading towards CST in the pancreatic islet, we investigated how CgA and
42 CST may modulate the pancreatic islet microenvironment and function. We show that CgA-
43 KO and CST-KO mice have fewer insulin producing cells per islet and altered physiological
44 islet function. To map the neurotransmitter microenvironment in the pancreatic islet and
45 exocrine tissue we used spatial mass spectrometry that allowed us to identify neurotransmitter
46 levels in and outside of the islets. Using this method, we show that endocrine cell homeostasis
47 and insulin regulating pathways are disturbed in the pancreatic islets upon CgA or CST
48 deletion. Thus, absence of CgA or CST in mice affects the endocrine composition and
49 microenvironment of the pancreatic islet. Our findings contribute to understanding the role of
50 CgA and CST in the pancreas with possible implications for the pathology of both type 1 and
51 type 2 diabetes.

52

53 1. Introduction

54 Chromogranin A (CgA), a 49 kDa pro-hormone, has been extensively studied in the initiation
55 and regulation of dense-core secretory granule biogenesis as well as in the context of various
56 metabolic and inflammatory diseases. Increased circulating CgA levels are linked to various
57 diseases including neuroendocrine tumors [1], hypertension [2,3] *congestive heart failure* [4],
58 *renal failure* [5], *inflammatory bowel disease* [6], *rheumatoid arthritis* [7], *sepsis* [8], and
59 *Alzheimer's disease* [9]. CgA is secreted by endocrine cells such as chromaffin cells in the
60 adrenal medulla, enterochromaffin cells in the gut, beta cells in pancreatic islets, and neurons
61 and immune cells such as neutrophils, monocytes and macrophages [10]. Proteolytic cleavage
62 of the pro-hormone CgA, gives rise to neuropeptides such as catestatin (CST) that exert a wide
63 variety of immune- and neuro-regulatory functions [10]. The 21 amino acid long CST acts as
64 an anti-inflammatory [11–13], anti-diabetic [12] and cardioprotective peptide [14]. Elevated
65 CST blood levels are seen in type 2 diabetes [15], inflammatory bowel disease [6], rheumatoid
66 arthritis [16], COVID-19 infection [17] and various cardiovascular diseases such as acute heart
67 failure, arrhythmia and hypertension [18–24]. Recent studies implicate that higher plasma CST,
68 in combination with low plasma catecholamines, is associated with a worse disease prognosis
69 for heart failure (5-times more death for high plasma CST compared to normal CST) [18–22].
70 At the same time low plasma CST and high catecholamine levels are associated with type 2
71 diabetes [15] and other cardiovascular diseases including hypertension [23,24]. In line with
72 this, the supplementation of CST in rodents with hypertension normalized blood pressure
73 [13,25–27], reduces chronic gut inflammation in murine colitis models [28,29] and improved
74 inflammation and insulin sensitivity in mice with diet-induced obesity [12].

75 Based on the link of CgA and CST to various endocrine diseases and its presence in the
76 pancreatic islets, we aimed to investigate how CgA and its cleavage product CST may influence
77 the pancreatic islet microenvironment and function via studying the effect of CgA and CST
78 deficiency in knock-out mice with respect to 1) pancreatic islet density and shape, 2) endocrine
79 islet composition by staining for alpha (α), beta (β) and delta (δ) cells, and 3) mapping
80 neurotransmitters and metabolites in the pancreatic islet and exocrine tissue using spatial mass
81 spectrometry (MS). For this purpose, we used the pancreas of CgA full knockout mice [25] and
82 mice with selective deletion of the CST-coding region of the *Chga* gene [13]. CgA-KO mice
83 are characterized with hypertension, elevated sympathoneuronal activity and affected
84 endocrine cells in the adrenal gland and pancreas [25,30]. The CST-KO mice are hypertensive,
85 obese and exhibit insulin resistance. Additionally, they display low grade organ inflammation,
86 elevated amounts of norepinephrine and epinephrine in the plasma, lower bacterial gut
87 diversity, and impaired epithelial barrier function [6,12,13].

88

89 To our knowledge, this is the first study to comprehensively assess the pancreatic
90 microenvironment, including endocrine cell density and composition, innervation, and spatial
91 MS for identifying neurotransmitter and metabolite levels. We show that islets lacking CgA and
92 CST display aberrant quotas of alpha- and beta cells, with accompanying differences in blood
93 glucose homeostasis. Various neurotransmitters involved in crucial processes such as hormone
94 regulation were also affected by CgA or CST deletion. Our findings contribute to
95 understanding the role of CgA and CST in the pancreas with possible implications for the
96 pathology of both type 1 and type 2 diabetes.
97

98 2 Results

99

100 2.1 CgA and CST in the pancreatic islet

101 To investigate the presence of CST in the pancreatic islets, we stained frozen pancreatic
102 sections of WT, CgA-KO and CST-KO mice. The CST staining appeared in the pancreatic
103 islets in WT mice, whereas CgA or CST knockout pancreata had no CST staining in the
104 pancreatic islets (Fig. 1A). We also observed CST staining outside the pancreatic islets in
105 WT tissue, which could be attributed to immune cells or nerves. At the moment, the exact
106 CgA cleavage products present in the pancreas, including the ones leading to CST are
107 unknown (Fig. 1B). To further confirm the presence of CgA and CST, we compared levels
108 in the adrenal gland medulla, pancreatic islets, and macrophages in WT mice using
109 immunoblotting (Fig. 1C, D). Full-length CgA (75 kDa) was detected in the adrenal gland
110 medulla, but not in the pancreatic islets, which instead exhibited various CgA cleavage
111 products, indicating rapid processing towards for example CST (Fig. 1B). For both
112 macrophages and pancreatic islets, it seems that a product of the size of CST is present
113 since bands appeared similarly to the loaded synthetic CST peptide (Fig. 1C, D).
114 Nevertheless, the presence of multiple CgA cleavage products and CST in the islets implies
115 an active role in maintaining islet homeostasis.
116

117 2.2 Islet morphology and endocrine islet composition is altered upon CST or CgA 118 deletion

119 To get an overview of the pancreas of WT, CgA-KO and CST-KO sections, we made full-
120 section scans of hematoxylin and eosin-stained slides (Fig. 2A). These pictures seemed to
121 show changes in islet morphology, which can indicate aberrations in islet function [31,32].
122 To investigate pancreatic islet morphology and endocrine cell composition in CgA or CST
123 KO mice in more detail, we stained frozen pancreatic sections of KO mice for insulin,
124 glucagon and somatostatin (Fig. 2B). First, we quantified the islet density and islet area.
125 Although the individual islet areas were unchanged, the islet density was significantly
126 decreased in the CgA-KO pancreas when compared to WT and CST-KO pancreas (Fig.
127 2C-D), which is in line with previous findings for the CgA-KO mouse islets [30]. Next, the
128 islet shape was assessed, showing decreased islet circularity in CST-KO compared to WT
129 islets (Fig. 2E).

130 To assess the endocrine islet composition, we identified the alpha, beta and delta cell ratios
131 per islet for WT, CgA-KO and CST-KO mice (Fig. 2F). In line with previous findings [30],
132 the quantification shows that CgA-KO mice display a significant increase in alpha cells and
133 a decrease in beta cells per islet when compared to WT islets. The CST-KO mice only show
134 a decrease in beta cells when compared to the WT islets. In line with these findings, the
135 number of hormone-negative cells in the CST and CgA-KO islets was significantly
136 increased. This means that CgA-KO and CST-KO mice have fewer endocrine cells per
137 islet, which in combination with the decreased islet density in CgA-KO mice may be part
138 of the explanation to altered endocrine function. To investigate how this affects the

139 physiological function of the islets, we performed an *in vivo* glucose tolerance test (GTT).
140 Here, the deletion of CgA resulted in lower blood glucose levels when compared to the WT
141 glucose levels (Fig. 2G, H). This is surprising, as these mice had a reduction in numbers of
142 beta cells, but could thus mean that they are highly functional and release more than
143 sufficient amounts of insulin or that peripheral tissues are more insulin sensitive as
144 documented previously [33]. A previous study also found that CgA-KO beta cells to
145 contain more insulin granules and to be more responsive to a glucose challenge [30]. In
146 contrast, the lack of CST resulted in increased blood glucose levels when compared to
147 WT. This may instead indicate beta cell dysfunction or insulin resistance as documented
148 previously [12]. Thus, absence of CgA or CST in mice affects the endocrine cell
149 composition and likely also the function of the pancreatic islet in opposite ways.
150

151 **2.3 Pancreatic sympathetic innervation in mice lacking CgA and CST**

152 There is increasing evidence that the pancreatic islet innervation is disordered in type 1 and
153 type 2 diabetes, which may lead to changes in regulation of islet hormone release and
154 metabolic regulation [34]. To investigate whether the observed changes in endocrine
155 composition and/or function in the CgA-KO and CST-KO mice may be related to the islet
156 innervation, we stained the pancreatic sections for the norepinephrine transporter (NET) to
157 visualize sympathetic neurons (Fig. 3A). Although the nerve network looks more
158 disorganized in the CgA-KO and CST-KO pancreas, the quantification did not reveal major
159 quantitative differences regarding islet innervation between WT, CgA-KO and CST-KO
160 pancreata (Fig. 3B). Comparing innervation in and around the pancreatic islet, the nerve
161 ratio for WT islets was significantly lower when compared to the exocrine nerve network
162 (Fig. 3C). However, this difference between in- and outside the islet was lost for the CgA-
163 KO and CST-KO mice. This might indicate changes in the overall nerve network
164 organization upon CgA or CST deletion. CST acts as a neuropeptide and has been shown
165 to be produced by and have effect on nerves and macrophages, which seems to result in
166 suppression of neuronal and neuroendocrine activity in an inflammation-dependent manner
167 [10]. To investigate its role in the pancreas, we quantified the nerve-macrophage
168 interactions in the pancreatic islets of the CgA and CST-KO mice (Fig. 3D). Although no
169 difference was found in the number of macrophages per islet, we observed a trend for less
170 macrophage-nerve interactions in the islet upon CgA or CST deletion when compared to
171 WT (Fig. 3E, F).
172

173 **2.4 Neurotransmitter and metabolite levels are changed in CgA-KO and CST-KO 174 pancreas**

175 By spatial MS, we detected 12 pancreatic neurotransmitters and metabolites that met
176 validation criteria (Sup Table 1). Values were extracted for WT, CgA-KO and CST-KO
177 endocrine and exocrine pancreas and the differential expression was visualized in a bar
178 chart (Fig. 4A) These data showed that hypoxanthine, tyrosine, spermidine, histidine,
179 cysteine, spermine levels differ between CST-KO and WT. For most neurotransmitters, the
180 expression seemed to be lowest in the CgA-KO pancreas when compared to WT and CST-
181 KO. Afterwards, we visualized the expression of these analytes in the exocrine and islet
182 part of the pancreas (Fig. 4B). Altogether this, resulted in a comprehensive view of the
183 neurotransmitters in the WT, CgA-KO and CST-KO pancreas.
184

185 **2.5 Metabolic and neurotransmitter pathways are affected in CgA-KO and CST-KO 186 pancreatic islets.**

187 In addition to the combined analysis, we took a closer look at the individual hits in
188 pancreatic islets and exocrine pancreas to identify which parts of the pathways were
189 affected in the islets and exocrine tissue of CgA-KO and CST-KO pancreas.

190
191 To be able to distinguish the neurotransmitter levels between the pancreatic islets and
192 exocrine tissue, we identified the islets on a consecutive section stained with HE. After
193 scanning the pancreatic slice in a microscope, we matched the exported islet regions to the
194 intensity distribution of the serotonin signal and selected the exocrine tissue (serotonin
195 negative) (Fig. 5A). For all three genotypes, serotonin and taurine levels were significantly
196 higher in the pancreatic islets when compared to the exocrine tissue (Fig. 5A-B).
197 Additionally, GABA and histamine levels are higher in the islets when compared to
198 exocrine tissue for WT and CST-KO (Fig. 5D-E). We also noted that CgA-KO showed
199 lower GABA values in islets, and for both GABA and histamine no changes between islet
200 and exocrine tissue where detected. For the CgA-KO islets and exocrine tissue we also
201 observed a decrease in cysteine, compared to WT (Fig. 5F). Cysteine is a highly conserved
202 amino acid involved in regulating catalysis, protein structure, redox sensitivity and metal-
203 ion transport [35]. Decreased cysteine levels might indicate problems within the
204 homocysteine pathway.

205
206 Polyamines (spermidine, spermine and thermospine) play an important role in cell growth,
207 proliferation and differentiation. In the pancreas, polyamines seem to modulate beta cell
208 function by affecting proinsulin biosynthesis and insulin secretion [36]. Spermidine is
209 synthesized from putrescine by spermidine synthase. This process takes place in all mice
210 since similar spermidine values were found for WT, CST-KO and CgA-KO pancreas (Fig.
211 5G). Afterwards, spermidine is normally converted into spermine by spermine synthase.
212 However, this process seems disturbed in the knockout mice since spermine levels are
213 drastically decreased for the CgA-KO and CST-KO islets and exocrine tissue when
214 compared to WT pancreas (Fig. 5G). This suggests that the conversion by spermine
215 synthase is less efficient in the absence of CgA or CST.

216
217 Norepinephrine (NE) and dopamine are both catecholamines that can regulate insulin
218 secretion by the pancreatic beta cells [36,37]. Thereby the synthesis and degradation of NE
219 and dopamine are essential for normal function of the pancreas. In the past, increased
220 adrenal and plasma catecholamine levels have been detected in the plasma and adrenal
221 gland of CgA-KO and CST-KO mice [13]. In contrast, our data shows that NE levels in the
222 pancreas seem normal for the CgA-KO and CST-KO mice since we observed high islet NE
223 levels and lower NE exocrine levels for all three genotypes (Fig. 6A). These data suggest
224 that the catecholamine levels in the pancreas are normal, however the catecholamine
225 degradation might still be disturbed.

226
227 The creatine pathway seems unaffected since creatine levels appear normal for all three
228 mice (Fig. 6B). Hypoxanthine levels are only significantly increased in the CST-KO mice
229 (Fig. 6C). Here both exocrine tissue and islets show high levels of hypoxanthine, which
230 could indicate pancreatic necrosis[38].

232 3 Conclusion and discussion

233 Our study demonstrates that chromogranin A (CgA) and its cleavage product, cathestatin
234 (CST), are essential for normal pancreatic islet structure and function. The obtained results
235 show that the absence of CgA or CST leads to altered islet morphology, reduced beta cell

236 numbers, increased alpha cell numbers, and disrupted neurotransmitter levels, affecting
237 glucose regulation and endocrine homeostasis.

238
239 Although the blood circulating levels of CgA and CST are high in autoimmune disease, we
240 found various CgA cleavage products in the pancreas. This indicates that the local balance
241 in the organ does not always resemble the systemic levels. More research on the local
242 pancreatic CgA cleavage products could reveal their balance and their function in this
243 complex neuro-immune interplay in health and disease.

244
245 Studies on mouse and human islets showed that the islet size and ratios of alpha to beta
246 cells were related to chronic hyperglycaemia [38]. Similarly to our CgA-KO and CST-KO
247 data, diabetic mice with chronic hyperglycaemia showed a decrease in insulin positive cells
248 and an increase in glucagon positive cells [31]. This indicates that CgA or CST knockout
249 affects pancreatic homeostasis via the endocrine cells. Moreover, previous research showed
250 that CgA-KO islets beta cells have a higher insulin granule content and *in vivo* glucose
251 stimulation resulted in faster insulin release than in WT mice. However, the basal insulin
252 plasma levels in the CgA-KO mouse were lower than for WT [39].

253 Since the amount of beta cells is decreased in the CgA-KO and CST-KO islets when
254 compared to WT, it might be that the reduction in beta cells is compensated by the
255 production of more insulin granules per cell.

256 Beta cells contain highest concentrations of polyamines (putrescine, spermidine,
257 and spermine) [40,41], where they regulate proinsulin biosynthesis and secretion of insulin
258 [42]. The depletion of polyamines in isolated mouse islets has been associated with
259 impaired glucose-stimulated insulin secretion, insulin content, insulin transcription, and
260 DNA replication [43,44]. Polyamine levels were reported to be diminished in aging and
261 obese mice [45], which are resistant to insulin. Therefore, markedly decreased spermine
262 levels in CST-KO pancreas possibly explains insulin resistance in CST-KO mice [12].

263 Also the observed lower spermine levels in the CgA-KO and CST-KO mice can
264 result in disturbed insulin secretion [36] and less uptake of Ca^{2+} by the beta cells [46]. In
265 obese mice the spermine to spermidine ratio is even similarly disturbed in the pancreatic
266 islets as in our knockout mice [45]. Altogether, more research is necessary to identify the
267 disorganized pathway(s) resulting in the affected islet composition in the CgA-KO and
268 CST-KO mice. With our unique methodology, we were able to spatially investigate the
269 pancreatic microenvironment - a crucial step towards identifying and understanding the
270 disorganized pathways affecting islet composition in knockout mice. However, since our
271 current methodology is insufficient to detect enzyme expression and activity, future
272 research should focus on studying the enzymes regulating catecholamine degradation and
273 spermine pathways to clarify the underlying mechanisms of the pancreatic
274 microenvironment further.

275
276 Recent studies have highlighted the crucial connection between the local immune system
277 in the pancreas and the peripheral nervous system in the development of autoimmune
278 diseases [47–49]. Interfering with pancreatic nerve signals through surgery, chemical
279 blockage, or electric stimulation has been shown to preserve sympathetic nerves and
280 prevent the onset of type 1 diabetes (T1D) in mice [47–49]. Additionally, depleting
281 macrophages during the onset of autoimmune diabetes in mice can halt T1D onset [48].
282 These findings indicate that the connection between the local immune system in the
283 pancreas and the peripheral nervous system plays an important role in the development of
284 autoimmune disease. This connection may involve norepinephrine (NE) signaling, where
285 NE is produced by neurons but locally regulated by nerve-associated macrophages,

286 potentially through $\beta 2$ adrenergic signaling, as observed in hypertension [50]. This
287 mechanism may explain how CgA and CST influence autoimmune disease development
288 since 1) NE levels are high in CgA-KO and CST-KO mice, 2) both KO mice are
289 characterized with hypertension and, 3) CgA and CST levels are elevated in autoimmune
290 diseases. Clarification of this link between CgA/CST and autoimmune disease
291 development through catecholamine signaling among nerves, immune cells, and endocrine
292 cells could provide novel insights into therapeutic strategies for autoimmune diseases in
293 the future.

294
295 Altogether our findings contribute to better understanding of CgA and CST on the complex
296 neuro-immune-endocrine pancreatic environment. This knowledge is important to develop
297 new treatments to both detect and possibly prevent diseases with a complex neuro-immune-
298 endocrine interplay. In the future, this will hopefully result in the development of better
299 treatment of patients with autoimmune diseases.

300 4 Material and Methods

303 4.1 Mice

304 Male wild type (WT), CgA- knockout (KO) mice and CST-KO mice (3 months old) on
305 C57BL/6 background were kept in a 12 hours dark/light cycle on normal chow diet (NCD:
306 13.5% calorie from fat; LabDiet 5001, Lab Supply, Fort Worth, TX). These mouse studies
307 were approved by the UCSD and Veteran Affairs San Diego Institutional Animal Care and
308 Use Committees and conform to relevant National Institutes of Health guidelines. Organs
309 were harvested after deeply anesthetizing the mice with isoflurane followed by cervical
310 dislocation. For the immunoblotting experiments organs (adrenal gland, pancreas, bone
311 marrow) were harvested from Male C57BL/6J mice (Taconic, Denmark). These studies
312 were approved by the Regional Animal Ethics committee in Uppsala, Sweden (ethic permit
313 No: 5.8.18-01462/2023)

315 4.2 Tissue preparation for immunohistochemistry

316 Pancreata where harvested from WT, CST -KO, and CgA-KO mice. Pancreata were cut in
317 two parts and snap frozen. For immunostainings, the pancreata were imbedded in O.C.T,
318 sectioned in 10 μ m sections at -20°C and captured on microscope glass slides (Epredia;
319 J1830AMNZ). For mass spectrometry imaging, the frozen pancreas tissues were sectioned
320 at a thickness of 12 μ m using a Leica CM3050S cryostat set at -20°C, and subsequently
321 stored at -80°C until further analysis.

323 4.3 Fluorescent staining of the pancreatic islets.

324 Pancreatic sections were fixed for 10 min in 4% paraformaldehyde (PFA) followed by
325 washes in phosphate-buffered saline with 0.1% Tween (PBST) (Medicago; 274713;
326 SIGMA-ALDRICH; SZBA3190V). Afterwards slides where treated for 10 min with 0.2%
327 Triton X100, followed by 30 min in blocking solution (PBS supplemented with FBS 2%,
328 saponin 0.2%, NaAz 0.1%, 1:1000 FC blocker (BD Bioscience; 553142)). To prevent
329 antibody cross-reactivity, the insulin staining was performed first. To do so, slides were
330 incubated o.n. (overnight) at 4°C with guinea pig insulin primary antibody in blocking
331 buffer (1:1000, Fitzgerald; 20-IP35). The next day, slides were washed three times with
332 PBST for 5 min followed by staining for 30 min at r.t. with the secondary antibody anti-
333 guinea pig-488 (1:500, Invitrogen; A-11073). After washing three times, slides were
334 incubated for 1 hour at r.t. with either mouse anti-glucagon 1:200 (1:200, Proteintech;
335 67286-1-Ig) and rabbit anti-somatostatin (1:500, Abcam; ab111912) or rabbit anti-

336 norephrine transporter (1:200, Abcam; ab254361) and rat anti-IBA1 (1:1000, Synaptic
337 Systems; 234017) or rabbit anti-Tyrosine Hydroxylase (Abcam; ab137869). Slides were
338 washed three times with PBST for 5 min followed by staining for 30 min at r.t. with anti-
339 mouse 555 (1:1000, Invitrogen; A21127) and anti-rabbit-647 (1:2000, Invitrogen; A31573)
340 or anti-rabbit 555 (1:1000, Invitrogen; A31572) and anti-rat-647 (1:1000, Invitrogen;
341 A48272). After washing three times with PBST, the slides were stained for 10 min with
342 Hoechst (1:10.000, ThermoFisher; 33342) to visualize the nuclei. Afterwards, slides were
343 washed three times with PBS. After the final wash the cover glass (24x50 mm, VWR; 631-
344 0147) was applied using ProLong™ Gold Antifade Mountant (ThermoFisher; P36934). For
345 imaging, the slide scanner Zeiss Axio Scan Z1 with a 20x objective was used.
346

347 **4.4 Analysis of insulin, glucagon and somatostatin cells in the pancreatic islet.**

348 Slide scanner pictures were analysed using Qupath [51]. Islets were annotated based on
349 staining in all channels visualizing the complete islet. The machine-learning software was
350 trained on WT pancreas images to detect cell number per islet using the Hoechst nuclei
351 staining channel and the following nucleus parameters: background radius: 15 px; median
352 filter radius: 0 px; sigma: 3 px; minimum area: 10 px²; maximum area: 1,000 px²;
353 intensity parameters: threshold 100; cell parameters: cell expansion 5 px. The obtained cell
354 classifier was used to determine islet shape features (area, length, circularity, solidity,
355 maximum diameter, minimum diameter, and nucleus/cell area ratio) and to calculate the
356 islet density (islet density= islet area/pancreatic section area). This was followed by
357 obtaining the numbers of insulin, somatostatin, and glucagon-producing cells per islet.
358 Afterwards, insulin, somatostatin and glucagon cell ratios were calculated: Positive cells
359 % per islet = (100/total cell number) *target cell number).

360 **4.5 Immunoblotting**

361 Macrophages grown from mouse bone marrow [52] or tissue (medulla, isolated pancreatic
362 islets[53]) were lysed in lysis buffer (1% SDS, 10 mM TrisHCl, pH 6.8). Protein
363 concentration was determined according to manufacturer's instructions (Bio-Rad; 500-
364 0114). Afterwards, for each condition 60 μ g of protein was loaded and run on 10 % mini-
365 protein TGX gels (Bio-Rad; 4561033) in Tris/Tricine/SDS buffer (Bio-Rad; 1610744)
366 followed by transfer for 60min. at 100V at 4°C in Tris/Glycine buffer (Bio-Rad; 1610771)
367 with methanol (Supelco; 1263283323) using a PVDF membrane. The membranes were
368 taken out the cassette and washed with distilled water, followed by blocking in 3% BSA
369 buffer for one hour at r.t.. Membranes were stained o/n at 4°C with primary antibody rabbit
370 chromogranin A (1:1000, Invitrogen; PA5-35071) or rabbit catestatin (1:1000, Proteintech;
371 289-MM-0288). Next day, the membranes were washed three times quickly and three times
372 for 10 min with TBS-t 0.02%. Followed by staining with secondary goat-a-rabbit antibody
373 1:5000 dilution (IRDye800; P/N 925-32211) for one hour at r.t.. Afterwards, the membrane
374 was again washed 3 times with TBS-t 0.02%. Both membranes were scanned on a Bio-rad
375 ChemiDoc MP imager to visualize the fluorescent staining.
376

377 **4.6 Spatial Mass Spectrometry**

378 Two consecutive 12 μ m pancreatic sections were taken containing tissue of 3 WT, 3 CgA-
379 KO and 3 CST-KO mice. One section was stained with hematoxylin-eosin (HE) to identify
380 the pancreatic islets using Qupath. The other slide was used for neurotransmitter analysis
381 of serotonin (5HT), gamma-Aminobutyric acid (GABA), histamine, L-cysteine, taurine,
382 creatine, spermidine, histidine, norepinephrine (NE), L-tyrosine, spermine and
383 hypoxanthine. Derivatization matrix FMP-10 synthesized in house [54] (Sup Table 1) was
384 applied with TM-Sprayer, HTX-Technologies. The spraying method was set up to include
385

386 30 passes, with a flow rate of 80 μ l/min at a temperature of 80°C. The nozzle velocity was
387 adjusted to 1100 mm/min, while the track spacing was set at 2.0 mm, and N2 was set 6 psi.
388 Full tissue MSI experiments were performed using a timsTOF fleX MS imaging instrument
389 in positive ion mode (Bruker Daltonics GmbH, Bremen, Germany). Online calibration was
390 performed using m/z 555.2231, an abundant ion cluster signal of FMP-10. Data was
391 initially processed with visualization software in flexImaging (v. 5.0., Bruker Daltonics).
392 Islets were mapped on the tissue with 5-HT signal and overlay with stained HE staining.
393 For each islet a corresponding ROI of exocrine tissue was drawn.
394

395 4.7 Analysing neurotransmitters in the islets and exocrine pancreas

396 Islet selections in Qupath were exported using the SciLStm lab extension (Bruker Daltonics)
397 and imported into the flexImaging (Bruker Daltonics, Bremen, v.5.0) software. To match
398 and optimize the pancreatic islet location from the HE staining, the serotonin signal was
399 used. After identifying the pancreatic islets, annotations were made for the matching
400 exocrine tissue (serotonin negative area). Expression data of neurotransmitters in the
401 pancreatic islet and exocrine tissue was extracted and visualized in graphs.
402

403 4.8 Statistical analysis

404 Data are expressed as mean \pm SEM. One-way ANOVA with Bonferroni post-hoc tests or
405 non-parametric Mann-Whitney test were applied for multiple comparisons. A p value of p
406 < 0.05 was considered statistically significant.
407

408 5 Figure descriptions

409 Fig. 1 CgA and CST in the pancreatic islet

410 **A)** Immunofluorescent staining for catestatin in WT, CgA-KO and CST-KO pancreas **B)**
411 CgA cleavages products towards CST. **C)** Westernblot showing chromogranin A staining
412 in the Medulla, pancreatic islets and macrophages (mac). Arrows indicate full CgA and
413 possible cleavage products of CgA. **D)** Similar membrane stained for catestatin in synthetic
414 catestatin peptide (CST), Medulla, Pancreatic islets and macrophages (mac).
415

416 Fig. 2 Composition of pancreatic islets in WT, CgA-KO and CST-KO

417 **A)** HE staining of WT, CgA-KO and CST-KO pancreatic slices including annotations for
418 islets (white dotted lines) and blood vessels (B). **B)** Representative pictures of
419 immunofluorescent staining of glucagon (cyan), insulin (green), somatostatin (magenta)
420 and Hoechst (blue) on WT, CgA-KO and CST-KO pancreatic slices. **C)** Islet area **D)** Islet
421 density **E)** Islet circularity **F)** Quantification of alpha/beta/delta/negative cells per islet.
422 Quantification is based on the staining of panel B. N=3 mice per group **G)** Graph displaying
423 glucose tolerance test (GTT) results for WT (black), CgA-KO (pink) and CST-KO (green)
424 over time (min) N=8 per group **H)** Graph displaying area under the curve (mg/dL*min)
425 calculated from the GTT graph of panel G.
426

427 Fig. 3 Innervation of pancreatic islets in WT, CgA-KO and CST-KO

428 **A)** Representative images of nerve staining (norepinephrine transporter (NET, magenta),
429 islets (insulin, green) and nuclei (Hoechst) in WT, CgA-KO and CST-KO pancreatic slices
430 **B)** Quantification of the nerve ratio in and outside pancreatic islet for WT, CgA-KO and
431 CST-KO based on the staining of panel A. **C)** Quantification of nerve volume in the islet
432 and the exocrine pancreas for WT, CgA-KO and CST-KO. **D)** Representative images of
433 nerve staining (norepinephrine transporter (NET, cyan), macrophages (IBA1, magenta),

434 islets (insulin, green) and nuclei (gray) in WT, CgA-KO and CST-KO pancreatic slices. **E)**
435 Macrophage count per islet (every dot in the graph represents one islet). **F)** Number of
436 macrophages interacting with nerves per islet for WT, CgA-KO and CST-KO. N=3 mice
437 per group

438

439 *Fig. 4 Pancreatic neurotransmitter regulation upon CgA or CST knockout.*

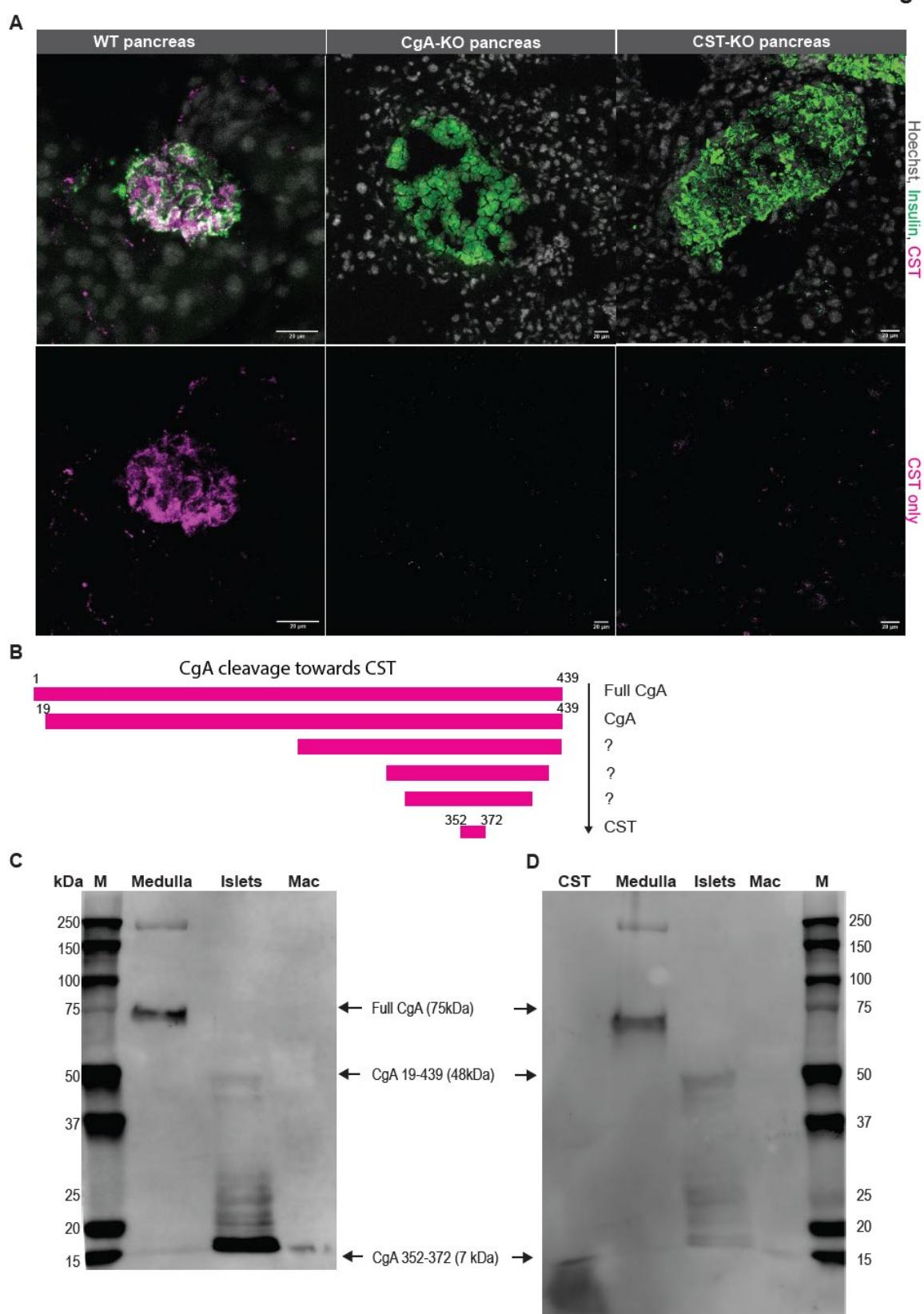
440 **A)** Comparative analysis of analyte regulation in pancreatic tissue models. This figure
441 highlights the log2 fold expression of the analytes in pancreatic tissue of WT (gray), CgA-
442 KO (pink) and CST-KO (blue). **B)** Comparative analysis of analyte Regulation in
443 pancreatic tissue models. This figure highlights the differential expression of
444 neurotransmitters between pancreatic islets (blue) and adjacent exocrine tissue (red), based
445 on the average intensity of RMS normalized regions.

446

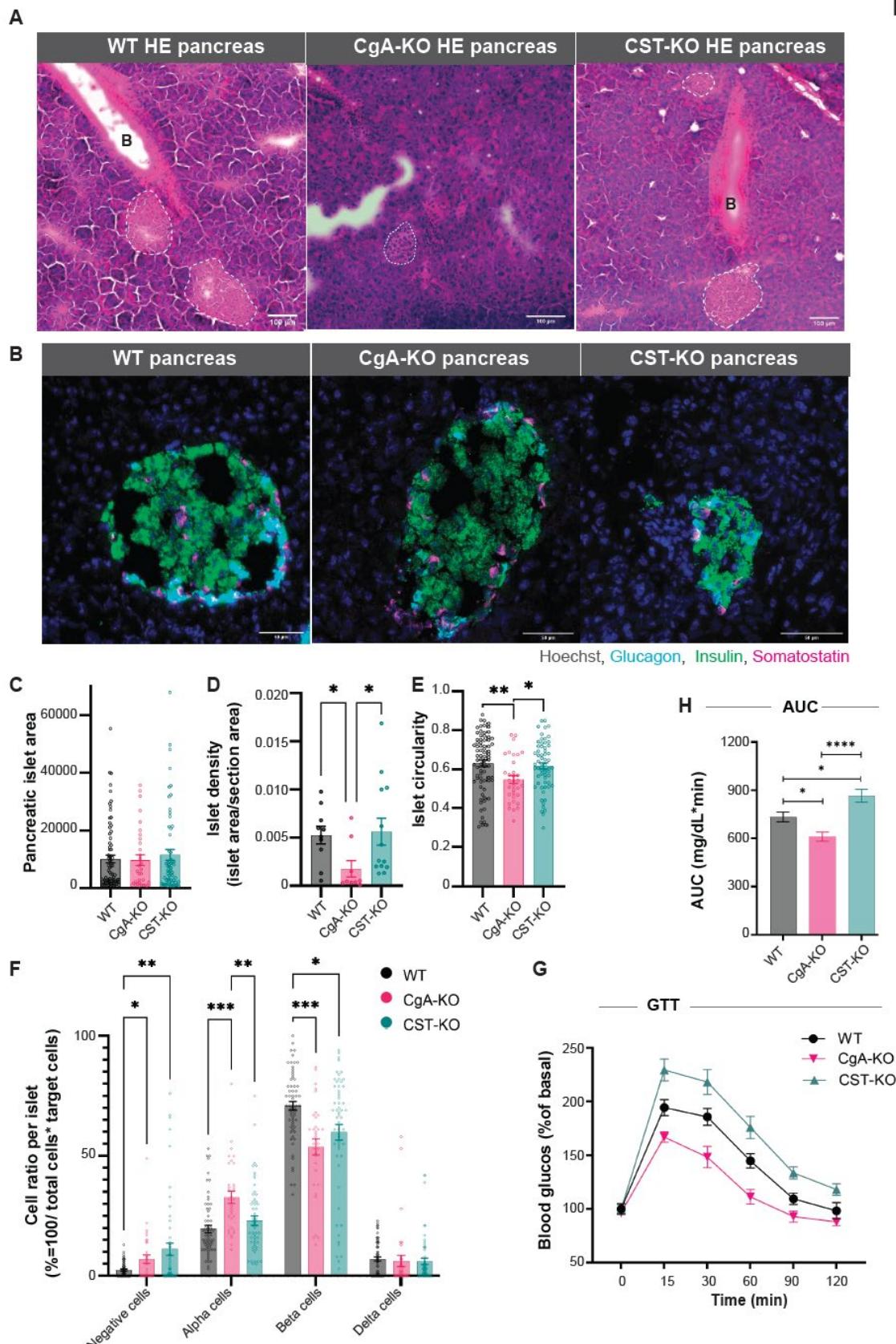
447 *Fig. 5 Islet and exocrine pancreatic neurotransmitter regulation upon CgA or CST
448 knockout.*

449 **A)** Serotonin heatmap showing examples of WT (green), CgA-KO (red) and CST-KO
450 (yellow) pancreatic slices including annotations for islets (colored) or exocrine tissue
451 (white). **B)** Peak area for islets and exocrine tissue of WT, CgA-KO and CST-KO
452 pancreas of serotonin, **C)** Taurine **D)** GABA **E)** Histamine **F)** Cysteine **G)** Spermidine
453 and spermine. Spermidine can be converted into spermine as illustrated in the schematic
454 drawing. N= 3 mice per group

455


456 *Fig. 6 Islet and exocrine pancreatic neurotransmitter regulation upon CgA or CST
457 knockout.*

458 **A)** Peak area of norepinephrine for islets and exocrine tissue of WT, CgA-KO and CST-
459 KO pancreas **B)** Creatine **C)** Hypoxantine. N= 3 mice per group P<0.05 = *


460

461 **6 Figures**

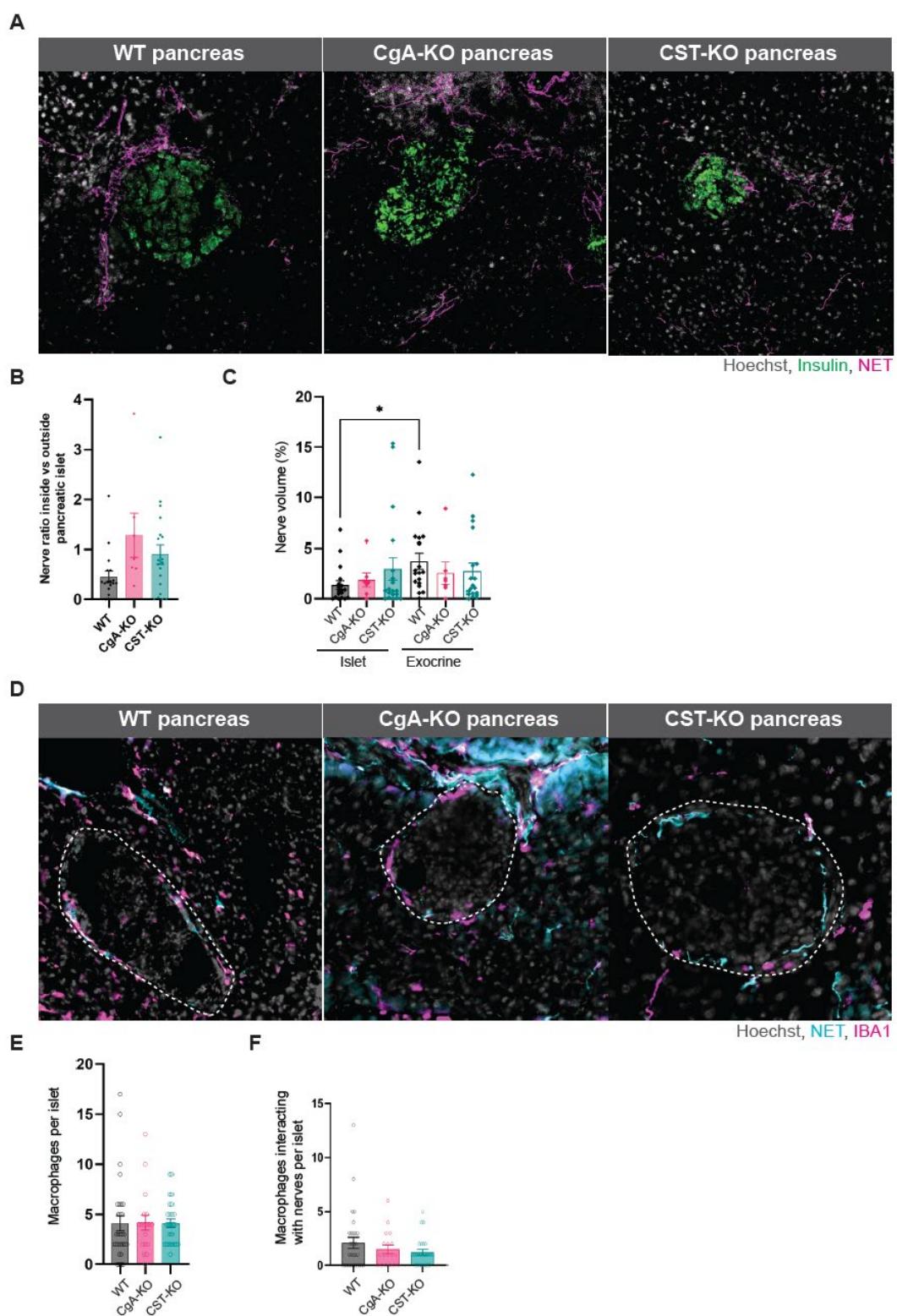

Fig. 1

Fig. 2

Fig. 3

Fig. 4

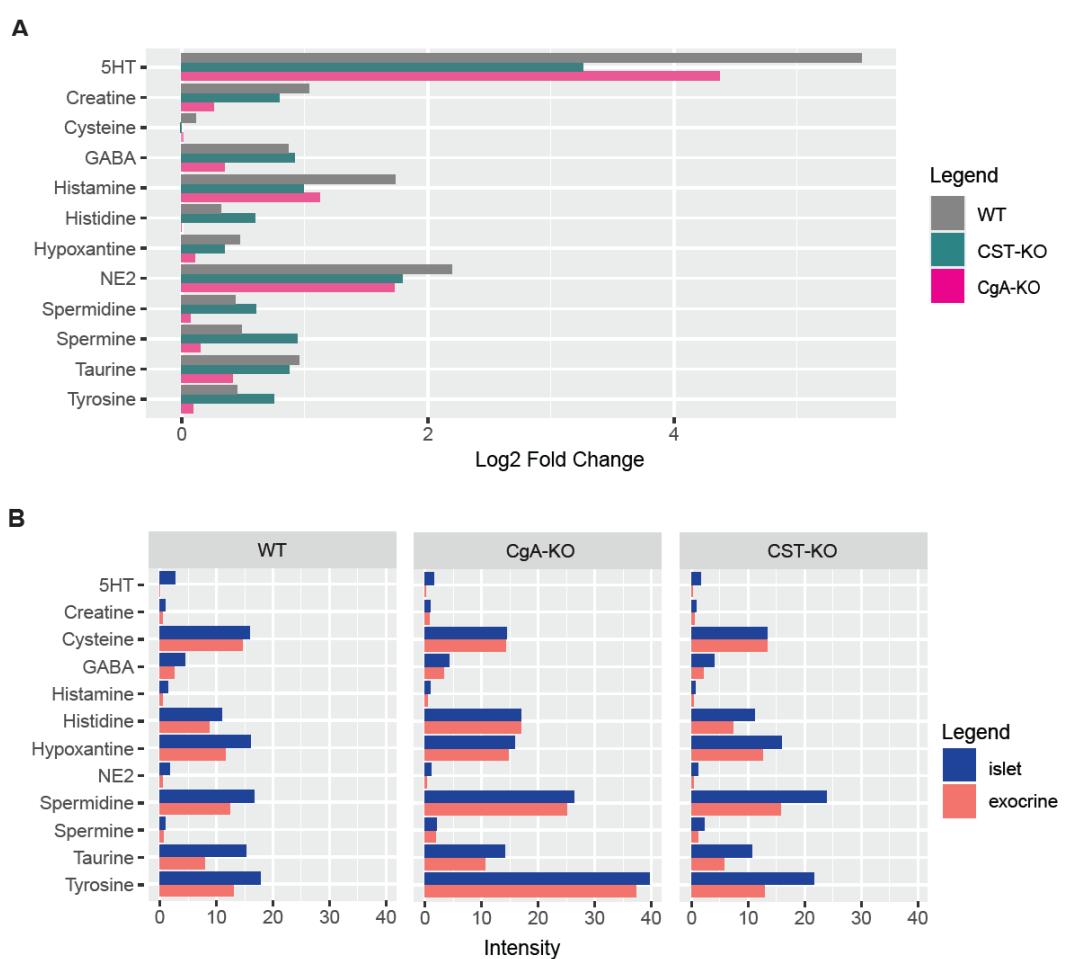


Fig. 5

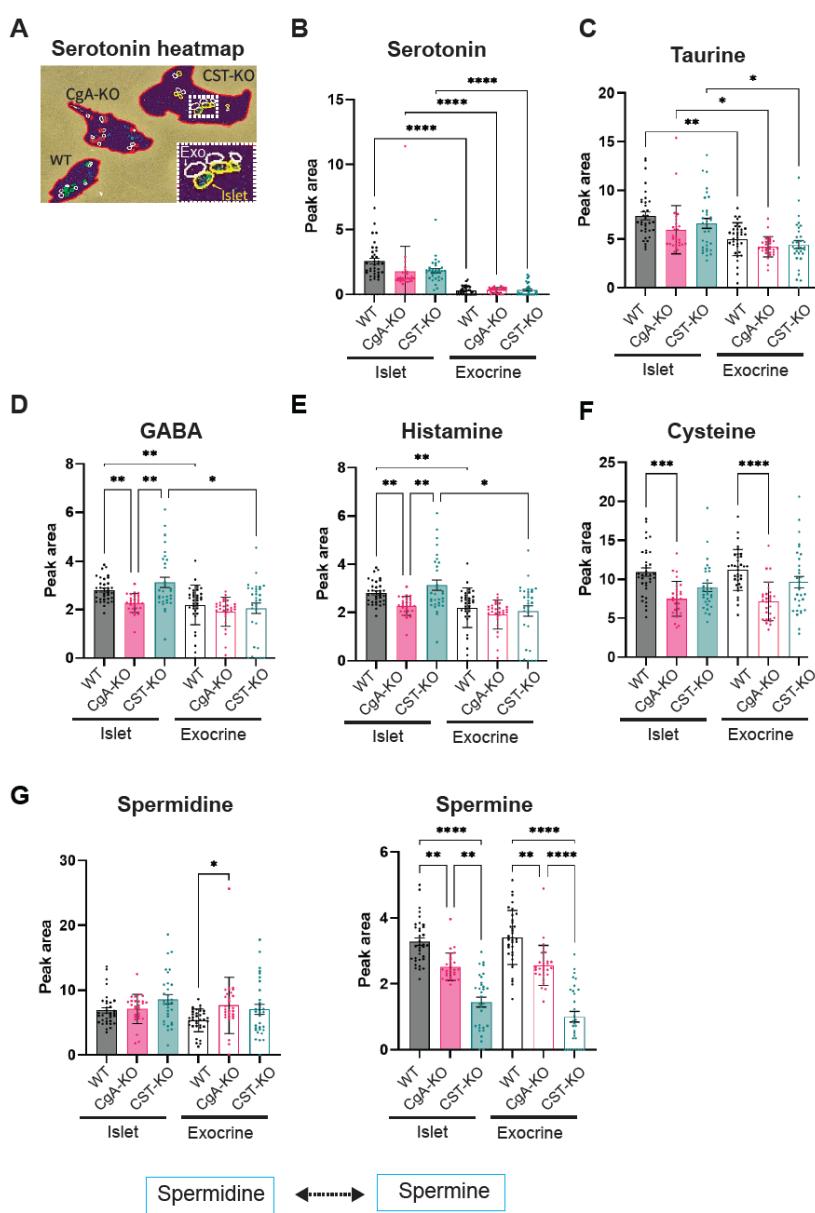
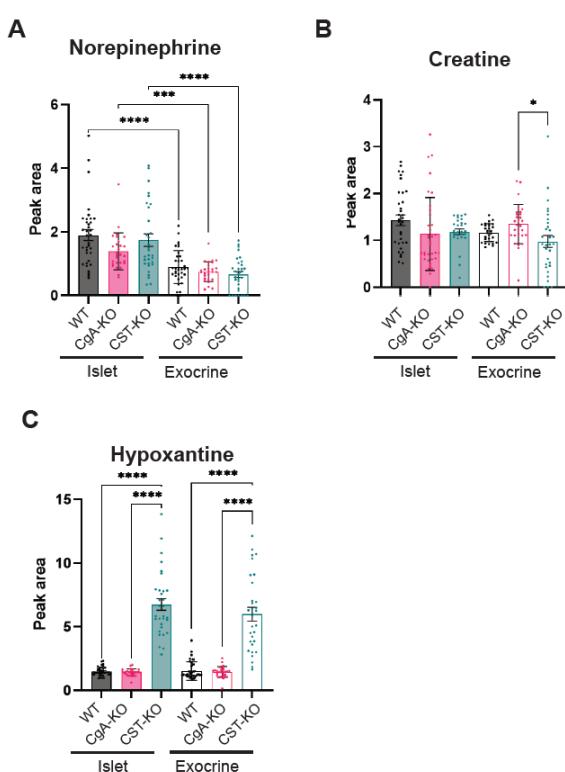



Fig. 6

468
469

470 7 Conflict of Interest

471 SKM is the founder of CgA Therapeutics, Inc. and co-founder of Siraj Therapeutics, Inc. The
472 authors declare that the research was conducted in the absence of any commercial or financial
473 relationships that could be construed as a potential conflict of interest.

474

475 8 Author Contributions

476 S.K.M. has taken care of the mice and harvested the pancreata. E.M.M, D.E and M.B. have
477 performed the HE stainings, fluorescent staining's and islet quantifications. D.E. has performed
478 the immunoblotting. M.N. and A.N. sectioned, prepared and run the pancreatic slices in the
479 Maldi-MS. M.N., A.F. and E.J. performed data analysis. E.M.M. assisted with data
480 interpretation and compiled the manuscript. G.C., S.M.K and E.J. provided expertise. All
481 authors contributed in writing and editing the manuscript.

482

483 9 Funding

484 E.M. is funded by a Rubicon grant from the Netherlands Organization for Scientific Research
485 (NWO) and the Swedish Research Council. G.C. is supported by grants from the Swedish
486 Research Council, the Swedish Society for Medical Research and the Göran Gustafsson
487 foundation. SKM is supported by grants from the National Institutes of Health (1 R21
488 AG072487-01, 1 R21 AG080246-01, 1 R21 AG078635-01A1). This study was supported by
489 Science for Life Laboratory (SciLifeLab) and Uppsala University Research Infrastructure
490 funding.

491

492

493
494

495 10 References

1. Rorstad, O. (2005) Prognostic indicators for carcinoid neuroendocrine tumors of the gastrointestinal tract. *J. Surg. Oncol.* 89, 151–160
2. O'Connor, D.T. (1985) Plasma chromogranin A. Initial studies in human hypertension. *Hypertension* 7, I76–9
3. Zuetenhorst, J.M. *et al.* (2004) Role of natriuretic peptides in the diagnosis and treatment of patients with carcinoid heart disease. *Br. J. Cancer* 90, 2073–2079
4. Ceconi, C. (2002) Chromogranin A in heart failure. A novel neurohumoral factor and a predictor for mortality. *Eur. Heart J.* 23, 967–974
5. O'Connor, D.T. *et al.* (1989) Rapid radioimmunoassay of circulating chromogranin A: In vitro stability, exploration of the neuroendocrine character of neoplasia, and assessment of the effects of organ failure. *Clin. Chem.* 35, 1631–1637
6. Muntjewerff, E.M. *et al.* (2021) Chromogranin A regulates gut permeability via the antagonistic actions of its proteolytic peptides. *Acta Physiol.* 232
7. Di Comite, G. *et al.* (2009) Circulating chromogranin A reveals extra-articular involvement in patients with rheumatoid arthritis and curbs TNF- α -elicited endothelial activation. *J. Leukoc. Biol.* 85, 81–87
8. Hsu, C.-H. *et al.* (2015) Chromogranin A levels and mortality in patients with severe sepsis. *Biomarkers* 20, 171–176
9. Bousiges, O. *et al.* (2024) Diagnostic value of CSF chromogranin A to discriminate between Alzheimer's disease and dementia with Lewy bodies. *Neuropathol. Appl. Neurobiol.* 50, 1–157
10. Muntjewerff, E.M. *et al.* (2022) Putative regulation of macrophage-mediated inflammation by catestatin. *Trends Immunol.* 43, 41–50
11. Kojima, M. *et al.* (2018) Catestatin Prevents Macrophage-Driven Atherosclerosis but Not Arterial Injury-Induced Neointimal Hyperplasia. *Thromb. Haemost.* 118, 182–194
12. Ying, W. *et al.* (2018) Catestatin Inhibits Obesity-Induced Macrophage Infiltration and Inflammation in the Liver and Suppresses Hepatic Glucose Production, Leading to Improved Insulin Sensitivity. *Diabetes* 67, 841–848
13. Ying, W. *et al.* (2021) Immunosuppression of Macrophages Underlies the Cardioprotective Effects of CST (Catestatin). *Hypertension* 77, 1670–1682
14. Mahata, S.K. *et al.* (2018) Catestatin: A Master Regulator of Cardiovascular Functions. *Curr. Med. Chem.* 25, 1352–1374
15. Ying, W. *et al.* (2018) Catestatin Inhibits Obesity-Induced Macrophage Infiltration and Inflammation in the Liver and Suppresses Hepatic Glucose Production, Leading to Improved Insulin Sensitivity. *Diabetes* 67, 841–848
16. Simac, P. *et al.* (2022) Serum catestatin levels in patients with rheumatoid arthritis. *Sci. Rep.* 12, 3812–3812
17. Schneider, F. *et al.* (2022) Assessment of plasma Catestatin in COVID-19 reveals a hitherto unknown inflammatory activity with impact on morbidity-mortality. *Front. Immunol.* 13, 985472–985472
18. Borovac, J.A. *et al.* (2019) Catestatin in Acutely Decompensated Heart Failure Patients: Insights from the CATSTAT-HF Study. *J. Clin. Med.* 8, 1132
19. Xu, W. *et al.* (2016) Plasma Catestatin: A Useful Biomarker for Coronary Collateral Development with Chronic Myocardial Ischemia. *PLoS One* 11, e0149062
20. Meng, L. *et al.* (2011) Plasma catecholamine release-inhibitory peptide catestatin in patients with essential hypertension. *J. Cardiovasc. Med.* 12, 643–647
21. Liu, L. *et al.* (2013) Plasma levels and potential roles of catestatin in patients with

- coronary heart disease. *Scand. Cardiovasc. J.* 47, 217–224

Zhu, D. *et al.* (2015) Correlation of Plasma Catestatin Level and the Prognosis of Patients with Acute Myocardial Infarction. *PLoS One* 10, e0122993

O’Connor, D.T. *et al.* (2008) Heritability and Genome-Wide Linkage in US and Australian Twins Identify Novel Genomic Regions Controlling Chromogranin A Implications for Secretion and Blood Pressure. DOI: 10.1161/CIRCULATIONAHA.107.709105

Fung, M.M. *et al.* (2010) Direct Vasoactive Effects of the Chromogranin A (CHGA) Peptide Catestatin in Humans In Vivo. *Clin. Exp. Hypertens.* 32, 278–287

Mahapatra, N.R. *et al.* (2005) Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. *J. Clin. Invest.* 115, 1942–1952

Gayen, J.R. *et al.* (2010) Role of Reactive Oxygen Species in Hyperadrenergic Hypertension. *Circ. Cardiovasc. Genet.* 3, 414–425

Avolio, E. *et al.* (2014) Antihypertensive and neuroprotective effects of catestatin in spontaneously hypertensive rats: interaction with GABAergic transmission in amygdala and brainstem. *Neuroscience* 270, 48–57

Rabbi, M.F. *et al.* (2017) Reactivation of Intestinal Inflammation Is Suppressed by Catestatin in a Murine Model of Colitis via M1 Macrophages and Not the Gut Microbiota. *Front. Immunol.* 8

Rabbi, M.F. *et al.* (2014) Catestatin decreases macrophage function in two mouse models of experimental colitis. *Biochem. Pharmacol.* 89, 386–398

Portela-Gomes, G.M. *et al.* (2008) The importance of chromogranin A in the development and function of endocrine pancreas. *Regul. Pept.* 151, 19–25

Brereton, M.F. *et al.* (2014) Reversible changes in pancreatic islet structure and function produced by elevated blood glucose. *Nat. Commun.* 2014 51 5, 1–11

Nakagawa, R. *et al.* (2023) Circularity of islets is a distinct marker for the pathological diagnosis of adult non-neoplastic hyperinsulinemic hypoglycemia using surgical specimens. *Diagn. Pathol.* 18

Gayen, J.R. *et al.* (2009) A Novel Pathway of Insulin Sensitivity in Chromogranin A Null Mice. *J. Biol. Chem.* 284, 28498–28509

Hampton, R.F. *et al.* (2022) Unravelling innervation of pancreatic islets. *Diabetologia* 65, 1069

Bak, D.W. *et al.* (2019) Cysteine Reactivity Across the Sub-Cellular Universe. *Curr. Opin. Chem. Biol.* 48, 96

Marselli, L. *et al.* (2021) Arginase 2 and polyamines in human pancreatic beta cells: Possible role in the pathogenesis of type 2 diabetes. *Int. J. Mol. Sci.* 22, 12099

Sharp, G.W.G. and Straub, S.G. (2012) Evolving insights regarding mechanisms for the inhibition of insulin release by norepinephrine and heterotrimeric G proteins. *Am. J. Physiol. - Cell Physiol.* 302, 1687–1698

Abramov, G. *et al.* (2022) Intermediate products of purine metabolism in an experimental model of pancreatic necrosis. *Acta Bio Medica Atenei Parm.* 93, 2022298

Wollam, J. *et al.* (2017) Chromogranin A regulates vesicle storage and mitochondrial dynamics to influence insulin secretion. *Cell Tissue Res.* 368, 487–501

Hougaard, D.M. and Larsson, L.I. (1986) Localization and possible function of polyamines in protein and peptide secreting cells. *Med. Biol.* 64, 89–94

Hougaard, D.M. *et al.* (1986) Localization and biosynthesis of polyamines in insulin-producing cells. *Biochem. J.* 238, 43–47

Sjöholm, A. (1993) Role of polyamines in the regulation of proliferation and hormone production by insulin-secreting cells. *Am. J. Physiol.* 264, C501–18

- 593 43. Welsh, N. and Sjöholm, A. (1988) Polyamines and insulin production in isolated
594 mouse pancreatic islets. *Biochem. J.* 252, 701—707
595 44. Welsh, N. (1990) A role for polyamines in glucose-stimulated insulin-gene expression.
596 *Biochem. J.* 271, 393–397
597 45. Sjöholm, Å. *et al.* (2001) Polyamines in pancreatic islets of obese-hyperglycemic
598 (ob/ob) mice of different ages. *Am. J. Physiol. - Cell Physiol.* 280
599 46. Lenzen, S. and Rustenbeck, I. (1991) Effects of IP3, Spermine, and Mg2+ on
600 Regulation of Ca2+ Transport by Endoplasmic Reticulum and Mitochondria in
601 Permeabilized Pancreatic Islets. *Diabetes* 40, 323–326
602 47. Guyot, M. *et al.* (2019) Pancreatic nerve electrostimulation inhibits recent-onset
603 autoimmune diabetes. *Nat. Biotechnol.* 37, 1446–1451
604 48. Christoffersson, G. *et al.* (2020) Interference with pancreatic sympathetic signaling
605 halts the onset of diabetes in mice. *Sci. Adv.* 6
606 49. Taborsky, G.J. *et al.* (2014) The p75 neurotrophin receptor is required for the major
607 loss of sympathetic nerves from islets under autoimmune attack. *Diabetes* 63, 2369–
608 2379
609 50. Grisanti, L.A. *et al.* (2016) Leukocyte-Expressed β2-Adrenergic Receptors Are
610 Essential for Survival after Acute Myocardial Injury. *Circulation* 134, 153–167
611 51. Bankhead, P. *et al.* (2017) QuPath: Open source software for digital pathology image
612 analysis. *Sci. Reports* 2017 71 7, 1–7
613 52. Haag, S.M. and Murthy, A. (2021) Murine monocyte and macrophage culture. *Bio-
614 protocol* 11
615 53. Bohman, S. *et al.* (2006) No differences in efficacy between noncultured and cultured
616 islets in reducing hyperglycemia in a nonvascularized islet graft model. *Diabetes
617 Technol. Ther.* 8, 536–545
618 54. Shariatgorji, M. *et al.* (2019) Comprehensive mapping of neurotransmitter networks by
619 MALDI-MS imaging. *Nat. Methods* 2019 1610 16, 1021–1028
620