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Abstract

Two-dimensional (2D) materials are poised to revolutionize current solid-state
technology with their extraordinary properties. Yet, the primary challenge
remains their scalable production. While there have been significant advance-
ments, much of the scientific progress has depended on the exfoliation of mate-
rials, a method that poses severe challenges for large-scale applications. With
the advent of artificial intelligence (Al) in materials science, innovative syn-
thesis methodologies are now on the horizon. This study explores the fore-
front of autonomous materials synthesis using an artificial neural network
(ANN) trained by evolutionary methods, focusing on the efficient production

of graphene.

Our approach demonstrates that a neural network can iteratively and au-

tonomously learn a time-dependent protocol for the efficient growth of graphene,
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without requiring pre-training on what constitutes an effective recipe. Eval-

uation criteria are based on the proximity of the Raman signature to that
of monolayer graphene: higher scores are granted to outcomes whose spec-
trum more closely resembles that of an ideal continuous monolayer structure.
This feedback mechanism allows for iterative refinement of the ANN’s time-

dependent synthesis protocols, progressively improving sample quality.

Through the advancement and application of AI methodologies, this work
makes a substantial contribution to the field of materials engineering, fostering

a new era of innovation and efficiency in the synthesis process.



Introduction

The emergence of two-dimensional (2D) materials has revolutionized material science,
offering promising advancements across a wide range of technological applications!">¥#°!.
However, achieving scalable production of high-quality single-crystal 2D materials remains
a significant challenge. Although exfoliated forms of these crystals demonstrate excellent
potential for addressing numerous technological challenges, non-scalable devices made
from exfoliated materials often lack reproducibility and require cumbersome fabrication
methods. Achieving scalability for these materials is highly desirable, not only to facilitate
practical applications but also to validate the promising scientific discoveries made to date.
Graphene with high crystallinity and charge mobility comparable to that of exfoliated
graphene can be produced through chemical vapor deposition (CVD)!®”#]. This method
was successfully demonstrated for large-scale growth, making it a promising approach
for various industrial applications!®!%111213] n contrast, the development of other 2D
materials and their heterostructures still lacks a viable and scalable method. The main
challenges stem from the difficulty in producing large-area crystals and, consequently,
heterostructures, with controlled thickness, minimal defects, and uniformity on a large
scale. As a result, the scalable synthesis of these materials has not yet matured in terms
of reproducibility and defect management!**]. This limitation restricts the practical use
and replication of promising materials across various fields such as quantum computing

and sensing!'®17].

Artificial Intelligence (AI) can provide a compelling solution to this challenge. In recent
years, Al has become an indispensable part of our society, proving to be extremely effective

in solving complex problems across various fields, with applications ranging from precision



medicine to autonomous driving!!#19202122] Tn the rapidly advancing field of graphene
research Al was applied to tasks such as determining the potential energy surfacel®,
predicting bandgaps!®*, or forecasting crack evolution in graphene sheets!®!. Recent
advances in Al have also been used to explore density functional theory (DFT) calculations
and study diffusion mechanisms based on molecular dynamics (MD)?6%22], One of the
most striking results was shown by Merchant and coworkers who were able to predict the
stability of millions of new crystal structures, many of which had never been discovered
through traditional methods®’. In this context, the integration of Al into materials
science opens a new era of innovative synthesis methodologies. Recently, there has been
considerable interest in establishing autonomous laboratories that combine robotics with
the exploitation of ab initio databases and active learning to optimize the synthesis of
novel inorganic materials®, a process that is generally time-consuming and expensive.

In this study, we aim to address the following question: Can an Artificial Neural
Network (ANN) learn a time-dependent protocol in order to grow a material with desired
optical and crystalline properties, without prior knowledge of growth protocols? This is
a radically different approach with respect to those mentioned so far. Here, we utilize
an active learning method in which the ANN iteratively refines its synthesis protocols
without relying on historical data.

Unlike methodologies used in other works®, which rely heavily on pre-trained mod-
els and vast amounts of historical synthesis data to guide experiments, our approach
distinguishes itself by requiring minimal input and by learning dynamically through di-
rect experimental feedback. Additionally, previous methods focus on optimizing a limited
state space of initial conditions and are unable to adapt to time-dependent protocols. In
contrast, our ANN continuously refines its protocols over time, learning from real-time

experimental outcomes and progressively improving the quality of the graphene produced.
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As proof of principle, we focus on the relatively straightforward task of growing high-
quality, homogeneous graphene through the thermal decomposition of silicon carbide
(SiC). Here an ANN is tasked with proposing a protocol, a profile of temperature as
a function of time, to achieve this goal. The growth of graphene from SiC is chosen as an
ideal candidate for exploring the feasibility of applying ANN learning to crystal growth,
owing to its simplicity and the manageable number of growth parameters that can be eas-
ily controlled (i.e., min temperature, max temperature and ramp). This method enables
the synthesis of graphene directly from SiC*>%], thus eliminating the need for gaseous
carbon precursors.

In experimental settings, obtaining a loss function is challenging, and the gradient
information required for the back-propagation algorithm is often not available. There-
fore, training the neural network must rely on evolutionary methods*#*?¢!, Standard
genetic algorithms are too costly for this purpose!®! since they require many runs of
the experiment to train. We use instead an evolutionary algorithm that resembles the
zero-temperature Metropolis Monte Carlo algorithm with an adaptive, momentum-like
component, called adaptive Monte Carlo, or aMCP’l. We start with a neural network
whose parameters specify a time-dependent protocol. We add random numbers from a
normal distribution to all weights, evaluate the new protocol resulting from this change,
and accept (or reject) the new protocol if the outcome is better (or worse) than the previ-
ous protocol, as determined by a score function. This approach proceeds iteratively, with
the algorithm remembering weight changes that led to accepted protocols and making
such changes with higher probability. In this way, we can achieve meaningful learning
within a few tens of experiments, making the approach readily accessible to laboratory
studies.

In our approach, score function evaluation relies on Raman spectroscopy measure-



ments, a highly effective method extensively used for the characterization of 2D materials
owing to its versatility and precision®®*3*4041" One of the key advantages of Raman
spectroscopy is its capability to perform detailed mapping of samples, effectively distin-
guishing between different forms and qualities of graphene (e.g., buffer layer, monolayer
graphene (MLG), and bilayer graphene (BLG)), thereby offering valuable insights into
their distribution across the sample. Additionally, it is a rapid and non-invasive charac-
terization technique that can cover an area of tens of micrometers in just a few minutes.
For these reasons, it provides crucial feedback that aids in iteratively optimizing the syn-
thesis protocols of artificial neural networks, thereby steadily improving the quality of
graphene.

To further assess and validate our Raman-based scoring system, the structural, chem-
ical, and electronic quality of graphene are characterized using supplementary techniques
such as Atomic Force Microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS), and
Angle-Resolved Photoemission Spectroscopy (ARPES). These analyses offer comprehen-
sive insight into the material quality, retrospectively validating the effectiveness of the
Al-driven synthesis approach.

This work showcases the feasibility and significant advantages of employing artificial
intelligence to tailor and optimize the growth of 2D materials. By integrating an ANN
that learns and adapts, we effectively embed a "brain" into the synthesis lab, paving the
way for the autonomous synthesis of desired materials. More ambitiously, this approach
holds the potential to discover methods for synthesizing high-quality materials that are

currently beyond our capabilities, unlocking new frontiers in material science.



Methods

We outline here the methodology developed to train an ANN with aMC to autonomously
find the most efficient growth protocol for graphene from the thermal decomposition of
SiC. Minimal input is provided by setting only the furnace working temperature range and
a starting temperature. The entire ANN training procedure is schematized in Figure 1 and
consists of four iterative steps: (i) Protocol Generation: a temperature profile is generated
by an ANN and given as an input to a cold-wall reactor; (ii) Sample growth: graphene
growth on SiC is performed in the reactor adopting as input the temperature profile
generated in step (i); (iii) Sample Characterization: Raman spectroscopy is performed on
the synthesized sample and the spectrum obtained is benchmarked with an ideal target
to generate a score (iv). At the end of this process the ANN parameters are updated
following the aMC method described below, and a new protocol is generated.

Before describing the details of the aMC algorithm, we will discuss the main aspects of
the growth of epitaxial graphene on SiC. It involves a high-temperature process in which
the crystal is thermally decomposed!*?l. The most important control parameters during
growth are temperature, pressure and time. Originally this technique was implemented in
ultra high vacuum (UHV) chambers®!. It is now agreed that atmospheric-pressure growth
conditions under inert gas in quartz reactors (either cold-wall or hot-wall, horizontal or
vertical) provide the most favorable conditions to obtain graphenel*’!. During the thermal
decomposition process, silicon atoms sublimate from the surface, and leave behind a
carbon-rich layer, a graphene-like honeycomb lattice with one third of the C atoms forming
covalent bonds to the SiC substrate through sp>-hybridized horbitals®*¥. This is known as
buffer or zero-layer graphene (ZLG). This layer is not yet graphene and exhibits a gap!*+!.

The growth of graphene requires reaching an optimal (higher) temperature at which an



additional carbon-rich layer forms beneath the first one, effectively decoupling it from the
substrate. This layer does display the typical linear dispersion of MLG!*!. If the process
continues further, another buffer layer will form at the interface with SiC, turning the
previous graphene and buffer layers into a BLG. Hence, determining a correct temperature
profile is fundamental to obtain MLG with minimum ZLG and BLG inclusions. Given the
fundamental importance of the temperature profile in achieving optimal MLG coverage,
we sought to investigate a broad yet physically-meaningful temperature range. We set
the temperature boundaries between Tmin = 1100°C and Tmax = 1300°C. The minimum
temperature was chosen below the known temperatures for graphene synthesis to allow for
a reasonably wide temperature range for the ANN to explore. The maximum temperature
was set equal to the maximum operational capacity of our reactor, ensuring the respect
of safety and equipment limitations. We set a starting temperature Tstart = 1200°C
as midpoint within this range. This starting temperature is not too low to hinder the
initiation of the growth process, yet not too close to the optimal synthesis temperature,
thereby encouraging the ANN to explore a variety of temperature profiles. In subsequent
runs, as discussed below, we shall remove this starting temperature constraint to allow
the ANN to explore the entire temperature range more freely. Detailed experimental
information about the growth process implemented in this work are reported in Supporting
Information (SI).

aMC is an evolutionary algorithm designed to work with relatively few experiments:
each learning step requires one experiment, and the algorithm learns from past successes,
proposing similar moves with increased likelihood™. The algorithm proceeds as follows.
Let X = {x1, x2, ..., xn } be the vector of neural-network parameters, which defines a
time-dependent protocol. Let U (X) be the loss function, which quantifies the success

of the synthesis resulting from that time-dependent protocol. The algorithm proposes a



change of all neural-network parameters X — X' by small Gaussian random numbers,
xXi—=x;=xi+¢€ 1)

where ¢ ~ N(u; 0%). Here o sets the scale of parameter updates, and the u; are
momentum-like parameters that we shall specify shortly. If the synthesis outcome re-
sulting from the new protocol is better than (or as good as) the current outcome, i.e. if
U (X) < U (x), then we accept the update (1), and the X' become the new parameters
of the neural network. Otherwise we revert to the previous parameters. The update
procedure is then repeated.

The momentum-like parameters u; are initially set to zero. Following each accepted
move, they are updated as u; — yi+n(ei-ui), where 7 is a hyperparameter of the method.
This update ensures that subsequent parameter updates are more likely to be similar to

past accepted updates. Following several consecutive rejected moves, momentum-like

parameters are reset to zero, and the scale parameter ¢ is reduced in size®”!.

For the current synthesis, the loss function U depends on the Raman spectrum. Each
measured spectrum is assigned a score that reflects how closely it matches the desired
characteristics. The loss function is inversely related to this score: a lower loss function
corresponds to a higher score. The highest possible score is attributed to the ideal Raman
spectrum, which serves as the benchmark for our evaluations. Consequently, the objective
of the ANN training is to minimize the loss function by maximizing the similarity between
the measured spectrum and the ideal Raman spectrum.

Raman spectroscopy can differentiate between ZLG, MLG, and BLGP?, offering valu-
able insights into their distribution across the sample. The ability to identify and map
these variations in graphene layers aids in optimizing growth conditions and improving

the overall quality of the 2D material. The spectrum obtained from graphene typically
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Figure 1: Schematic representation of ANN training used in this work. After initializa-
tion with the parameter guess, the protocol generation is conducted, followed by sample
growth. The obtained sample is then characterized through Raman spectroscopy. The
extracted data are used to evaluate the score. Finally, the protocol is updated with the
new parameters.

shows two prominent peaks: G, that is a primary in-plane vibrational mode, and 2D,
the second-order peak of the in-plane vibrational mode D%l. The intensity, position,
and width of these peaks are highly sensitive to the quality and structure of graphene.
High-quality graphene typically exhibits sharp and intense peaks in the Raman spectrum.

For our analysis we consider the 2D peak, that can be fitted with a Lorentzian function.

The score (f) is then calculated with the equation (2):
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where [ is related to the 2D peak intensity, while ¢ is related to the Lorentzian full

width at half maximum (FWHM) through hyperbolic tangent, defined as follows:

I = Tanh (%) +1 3)

and o = Tanh (w) +1

br

)

 1s the interaction coefficient parameter, while a4, b, a, and b’ are empirical parameters.

The intensity parameter is crucial because it directly correlates with the quantity
of graphene on top of the substrate, while the term correlated to the FWHM aids the
protocol in distinguishing between MLG and BLG, as BLG typically exhibits a larger
FWHMM™. The choice of the hyperbolic function is dictated by the fact that beyond
a threshold, the growth is complete; conversely, below a certain value, the growth is
negligible. Moreover, the interference term - (¢ - [) is necessary to prevent convergence in
aregion where only one of the two terms is optimized. Table S1 of SI reports the values
of the empirical parameters used in (3) and (4). Figure S1 shows the 2D Raman peak
(orange solid line) with the corresponding Lorentzian fit (blue solid line) for the Raman
spectra corresponding to the protocols used in this work. A summary of the obtained
values of I and o are reported in Table S2. All the samples were analyzed using Raman
spectroscopy under identical spectral sampling conditions. In particular, multiple samples
were grown for each protocol to test the reproducibility of the process. We also checked
the reproducibility of the single protocol, comparing the theoretical temperature profile

with the measured one followed by the furnace (Figure S2).
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Results and discussion
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Figure 2: (a) Protocol evolution. Protocols that enhance the score are highlighted by
colored lines. (b) Score evolution with the generation: The solid black line represents
the score calculated using Equation 2, while the dashed black line indicates the accepted
score threshold. Additionally, the intensity (diamonds), ¢ (squares), and Interference
parameters (circles) are depicted relative to the generation. (c) Raman spectra collected
from samples used to train the ANN. Protocols that contribute to score improvement are
identified by colored lines. The spectra are vertically spaced for clarity. (d) Zoomed-in
Energy Range of the 2D-band Raman Peak.
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The results obtained are summarized in Figure 2. The temperature profile for each
generation is reported in Figure 2a. Each curve is a tentative temperature profile or pro-
tocol, proposed by the ANN and implemented into the growth set up. In Figure 2b, the
solid black line represents the score calculated using Eq. 2, while the dashed black line in-
dicates the accepted score threshold. Additionally, the intensity (diamonds), ¢ (squares),
and interference (circles) partial scores are shown in relation to the generation. The plots
in Figure 2a-b are divided into two main regions. The first region (pale magenta) shows
various attempts by the ANN to identify a protocol with a favorable score function. In
contrast, the second region (pale cyan) demonstrates that the ANN has learned a suc-
cessful trend, and suggests temperature profiles that are mostly monotonically increasing
functions from 1200°C to the temperature upper limit (1300°C). This indicates that when
the ANN encounters a protocol with a high score, it tends to keep moving in that direction.
This score evolution can be visualized by analyzing the sequence of the Raman spectra
reported in Figure 2c-d. At the beginning, the ANN proposes a completely random trend:
for protocol (PTC) 0 (solid gray line), the temperature falls below 1200°C, which is the
lower experimental limit necessary for graphene growth. This is evident from the absence
of the 2D peak in the Raman spectra depicted in Figure 2c (solid gray line). In contrast,
for protocols 1 and 2 (represented by the solid blue and orange lines, respectively, in Fig-
ure 2), there is an improvement: the 2D peak emerges, albeit not as intensely or sharply
as in high-quality graphene growth. Subsequently, through additional generations, the
ANN further enhances the graphene quality, as evidenced by protocols 4 and 5 (indicated
by the solid green and red lines, respectively, in Figure 2). In these instances, a distinct
and sharp 2D peak is observed. Figure 2d displays a zoomed-in energy range of the 2D
Raman Peak for the protocols that yield improved scores, normalized with respect to the

SiC peak. It's noteworthy that while the intensity value of the 2D peak for protocol 4

13



closely resembles that of protocol 5, the score for protocol 4 consistently falls below that
of protocol 5 (Solid black line in Figure 2b). This discrepancy can likely be attributed to
the broader FWHM of the 2D peak in protocol 4, indicating the presence of a BLG. Thus,
this reaffirms the significance of the interference term within the score evaluation formula.
ANN training is also conducted by removing the lower limit temperature constraint (see
Figure S3). It is evident that, even lifting this constrain, the ANN successfully learns the
desired patterns in a similar manner with a slightly higher number of protocols. Initially,
the temperature profiles generated by the ANN start at T lower than 1200°C. However,
over time, the ANN adapts and begins to suggest temperature profiles that correspond to
effective graphene synthesis. This adaptation is noticeable, as in the previous run, in the
pale red region of the plot, where the suggested temperature profiles align with known

effective growth conditions.

To visualize the learning process and validate our scoring mechanism, we conducted
a series of cross-checked experiments using AFM, XPS and ARPES, providing a compre-
hensive set of surface characterization tools. Starting with AFM, adhesion force maps
are shown in Figure 3a-d. Adhesion AFM depends on the interactions between the probe
tip and the sample surface, which can be influenced by factors such as surface roughness,

48] Hence, it can

chemical composition, and the presence of contaminants or adsorbates
serve as a valuable method to quantify the amount and quality of graphene on the surface.

The adhesion force is strictly correlated to the material Young’s modulus!®!. The
darkest areas (i.e., low adhesion force) represent the SiC surface, while the lightest area
(i-e., high adhesion force) represents the graphene surface. It is possible to note that with

the score improvement there is an increase of the graphene area from 22.4% (protocol 1,

Figure 3a) to 88.2% (protocol 5, Figure 3d). For protocol 4, the adhesion map shows a
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Figure 3: (a-d) Adhesion force map on samples obtained from PTC1 (a), PTC2 (b), PTC4
(c) and PTC5 (d). (e-h) C1s XPS spectra recorded on samples obtained from PTC1 (e),
PTC2 (f), PTC4 (g) and PTC5 (h).

high percentage coverage of graphene. However, the relative adhesion force values are less
distinct. Generally, the Young’s modulus of MLG is higher than that of BLGP, thus
providing an explanation for the different adhesion contrast and confirming the presence
of BLG on the sample obtained from protocol 4. The percentage of the graphene surface
as a function of the protocol number is reported in Figure S4.

The AFM analysis is cross-checked looking at the chemical properties of the samples
measuring the core-level spectrum of each sample via XPS. The results are presented in
Figure 3e-h. The spectral intensities are normalized to facilitate comparison among the
different samples. We found that the sp? position peak occurs at around 284.4 + 0.1 eV.
The SiC component is identified at 283.8 £ 0.1 eV, while for the components associated
with the buffer layer, S1 and S2, the peaks are centered at 285.2 + 0.1 eV and 286.0 + 0.1
eV, respectively, in good agreement with the literaturel®*”!l. The core-level fitting proce-

dure used in this work is detailed in the SI, "XPS fitting procedure" section (see Figure
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S5 and Table S3). The area subtended by the graphene curve is 18.94% for protocol 1
(Figure 3e), 19.60% for protocol 2 (Figure 3f), 31.30% for protocol 4 (Figure 3g), and
23.10% for protocol 5 (Figure 3h), also observing in this case an improvement in the qual-
ity of the graphene with the increase in the score. It is important to note that the FWHM
of the graphene curve for protocol 4 is slightly higher compared to the other protocols,
due to the Van der Waals interactions between two graphene layers, further confirming
the presence of BLG in the sample obtained through protocol 4 in great agreement with
the AFM analysis. In Figure S6 we report the trend of the percentage of the graphene
area obtained from the XPS fit as a function of the protocol number. The dashed black
line indicates the threshold of the area for a fully covered sample. This means that for a
percentage of area higher than approximately 26 %, there is the presence of BLG on the

substrate, as shown in the case of the sample obtained with PTC4.

Finally, the band structure of the as-grown samples is investigated using ARPES
(see Figure 4). This technique is ideally suited to probe the electronic band structure
of a material and can provide a definitive assessment of graphene quality. The spectra
are collected at the K-point of the graphene Brillouin zone, along the TK direction in
reciprocal space. We use the sharpness of the graphene bands as a metric to quantify
the quality of the relative protocol. We fit the momentum distribution curves (MDC),
extracted 50 meV below the Fermi level (colored dashed lines in Figure 4a-d), reported
in the bottom panels of Figure 4: the FWHM (2y) of the Voigt function used to fit the
peaks gradually decreases from 0.044 A~" (protocol 1, Figure 4a) to 0.020 A" (protocol
5, Figure 4d). As expected, the ARPES spectrum collected on the sample obtained
from protocol 4, displayed in Figure 4c, shows the classic band dispersion of a BLG on

SiCP?, overlapping to the MLG bands, with a splitting of the 7 band originated from the
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Figure 4: (Top Panels) ARPES intensity maps collected on samples obtained from PTC1
(a), PTC2 (b), PTC4 (c) and PTC5 (d). (Bottom Panels) The corresponding normalized
MDC spectra, obtained by integrating the signal at the Fermi level energy (indicated with
colored dashed lines in the ARPES maps).
interlayer interaction between the two graphene layers.

These supplementary chemical and structural analyses show a trend that align closely

with the calculated score function, validating the use of Raman characterization for the

score function in ANN training.

Conclusions

We have demonstrated the potential for autonomous synthesis by using an adaptive learn-
ing algorithm to train an artificial neural network that encodes a time-dependent synthesis

protocol. The neural network has iteratively and autonomously learned to synthesize high-
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quality graphene, with minimal initial input, thus demonstrating its remarkable ability
to learn and adapt. This capability resulted in progressively improved graphene quality,
verified through comprehensive surface characterization techniques. The success of this
approach highlights the ANN’s robust learning mechanisms and adaptability, underscor-
ing its capacity to handle complex material synthesis tasks. By embedding intelligent
decision-making into the synthesis process, our work paves the way for future applica-
tions of Al in the growth of various 2D materials. This advancement not only promises
significant efficiency and quality improvements in material production but also opens new
frontiers in material science, where Al-driven methods can explore and optimize previously

unattainable synthesis pathways.
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Experimental details

Epitaxial graphene is grown by thermal decomposition starting from SiC substrate. Com-
mercial SiC wafers, thoroughly cleaned with acetone and IPA in an ultrasonic bath, are
subsequently treated with oxygen plasma, followed by Piranha solution and HF baths, to
remove all organic contaminants from the surface. Subsequently, the SiC (0001) wafers are
exposed to high-temperature hydrogen gas within a furnace to remove polishing scratches,
a process known as hydrogen etching!!l. Finally, the graphene growth process starts. All
growth procedures are conducted using an AIXTRON Black Magic cold-wall reactor in
an Ar/Ha-filled chamber

Raman spectra are acquired using a Renishaw InVia Raman microscope with a con-
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tinuous wave 532 nm laser using a 100x objective and 3.25 mW incidence power. For each
sample, three 10x10 #m? maps are collected with a step size of 1 um and an exposure
time of 5 seconds each. The AFM images are acquired with a Bruker Dimension Icon
microscope operated in quantitative nanomechanical mapping (QNM) mode in ambient
conditions. Photoemission data are aquired with a hemispherical analyzer (SPECS PHOI-
BOS 150). X-ray photoelectron spectroscopy (XPS) spectra are obtained with a SPECS
XR-50 Al Ka X-ray source. Angle resolved photoemission spectroscopy (ARPES) are col-
lected using He la radiation (21.2 eV) excitation source (SPECS-uSirius) with a nominal

spot size of 100 um.

Score Function Evaluation

The empirical parameters a, b, 2" and b’ used in the equations (3) and (4) of the main

text to calculate the score function, are obtained based on a previous work!?! and our

previous tests. The values of the parameters are reported in Table S1.

a|bl|l a |b
-313]-45|10

Table S1: Score parameters.

The fitting process is Figure S1 shows the 2D Raman peak (orange solid line) with
the corresponding Lorentzian fit (blue solid line) for the Raman spectra corresponding to
the protocols used in this work.

Table S2 summarizes the values used to calculate the score evolution reported in Fig-

ure 2b of the main text.
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Figure S1: 2D Raman peak with the corresponding Lorentzian fit for the Raman spectra
of the sample used in this work.
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PTIC#| 1 | o | (6]
0 |000[000] 000
1 [o052[052] 014
2 046070 018
3 [016[019] 0.02
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7 [154]103] 079
8 |102]098] 05
9 [152[151] 115
10 [052[058] 0.15
11 [ 148]078] 057

Table S2: Summary of the values used to calculate the score function.
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Graphene Growth

Figure S2 shows the theoretical temperature profile as a function of time (red line) and

the experimental temperature profiles followed by the furnace for three different samples

obtained through the same protocol.
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Figure S2: Theoretical (red line) and experimental profiles of temperature in function of
time for different samples obtained through the same protocol.
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Temperature constrain

In Figure S3 is shown the ANN training process obtained by removing the lower tempera-
ture constrain. It is evident that, even in this scenario, the ANN has successfully learned
the optimal growth protocol trend. Initially, the protocols generated start at tempera-
tures lower than 1200°C. Over time, the ANN begins to suggest temperature profiles that

align with effective graphene production, as seen in the pale red region of the plot.
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Figure S3: Evolution of the temperature profiles (upper panel) and of the score (lower
panel) obtained by removing the lower temperature limit during ANN training.
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AFM measurements

Figure S4 shows the percentage of the graphene surface as a function of the protocol

number, extracted from the relative adhesion maps reported in Figure 3a-d of the main

text.
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Figure S4: Percentage of the graphene surface as a function of the protocol number.
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XPS fitting procedure

For each XPS spectrum presented in Figure 3e-h, a Shirley-type background is considered.
Symmetric peaks are modeled using Voigt functions (SiC, S1 and S2, where S1 and S2
represent the components associated with the buffer layer), while for the graphene peak, to
address the asymmetry arising from conductive layers, a Gaussian-Doniach-Sunji¢ (GDS)
line shape is employed®*l. In particular, two additional components (denoted S17and
S2') are considered for BL, to also account for the parts of BL that interact with graphene.
Figure S5 shows the core-level fitting with the additional BL components, which have been

removed from Figure 3 in the main text for clarity.
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Figure S5: Core-level fitting of XPS spectrum collected on sample obtained from PTC5
showing also the additional BL components.

Table S3 summarizes the values for the graphene curve extracted from the fitting
procedure, where wg denotes the FWHM for the Gaussian component, while w1 denotes

the FWHM for the Lorentzian component.
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PTC # | Agraphene’o | Peak position (eV) | wg (eV) | wL (eV)
1 18.94 284.45 1.15 1.38
2 19.60 284.45 1.13 1.36
4 31.30 284.40 1.34 1.38
5 23.10 284.40 1.13 1.36

Table S3: Summary of the values for the graphene curve extracted from the fitting pro-
cedure.
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Figure S6: Percentage of the graphene area obtained from the XPS fit as a function of
the protocol number. The dashed black line indicates the threshold of the area for a fully
covered sample.

In Figure S6 we report the trend of the percentage of the graphene area obtained from
the XPS fit as a function of the protocol number. The dashed black line indicates the

threshold of the area for a fully covered sample.
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