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Abstract 

Two-dimensional (2D) materials are poised to revolutionize current solid-state 

technology with their extraordinary properties. Yet, the primary challenge 

remains their scalable production. While there have been significant advance- 

ments, much of the scientific progress has depended on the exfoliation of mate- 

rials, a method that poses severe challenges for large-scale applications. With 

the advent of artificial intelligence (AI) in materials science, innovative syn- 

thesis methodologies are now on the horizon. This study explores the fore- 

front of autonomous materials synthesis using an artificial neural network 

(ANN) trained by evolutionary methods, focusing on the efficient production 

of graphene. 

Our approach demonstrates that a neural network can iteratively and au- 

tonomously learn a time-dependent protocol for the efficient growth of graphene, 
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without requiring pre-training on what constitutes an effective recipe. Eval- 

uation criteria are based on the proximity of the Raman signature to that 

of monolayer graphene: higher scores are granted to outcomes whose spec- 

trum more closely resembles that of an ideal continuous monolayer structure. 

This feedback mechanism allows for iterative refinement of the ANN’s time- 

dependent synthesis protocols, progressively improving sample quality. 

Through the advancement and application of AI methodologies, this work 

makes a substantial contribution to the field of materials engineering, fostering 

a new era of innovation and efficiency in the synthesis process. 
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Introduction 

The emergence of two-dimensional (2D) materials has revolutionized material science, 

offering promising advancements across a wide range of technological applications[1,2,3,4,5]. 

However, achieving scalable production of high-quality single-crystal 2D materials remains 

a significant challenge. Although exfoliated forms of these crystals demonstrate excellent 

potential for addressing numerous technological challenges, non-scalable devices made 

from exfoliated materials often lack reproducibility and require cumbersome fabrication 

methods. Achieving scalability for these materials is highly desirable, not only to facilitate 

practical applications but also to validate the promising scientific discoveries made to date. 

Graphene with high crystallinity and charge mobility comparable to that of exfoliated 

graphene can be produced through chemical vapor deposition (CVD)[6,7,8]. This method 

was successfully demonstrated for large-scale growth, making it a promising approach 

for various industrial applications[9,10,11,12,13]. In contrast, the development of other 2D 

materials and their heterostructures still lacks a viable and scalable method. The main 

challenges stem from the difficulty in producing large-area crystals and, consequently, 

heterostructures, with controlled thickness, minimal defects, and uniformity on a large 

scale. As a result, the scalable synthesis of these materials has not yet matured in terms 

of reproducibility and defect management[14,15]. This limitation restricts the practical use 

and replication of promising materials across various fields such as quantum computing 

and sensing[16,17]. 
 
 

Artificial Intelligence (AI) can provide a compelling solution to this challenge. In recent 

years, AI has become an indispensable part of our society, proving to be extremely effective 

in solving complex problems across various fields, with applications ranging from precision 
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medicine to autonomous driving[18,19,20,21,22]. In the rapidly advancing field of graphene 

research AI was applied to tasks such as determining the potential energy surface[23], 

predicting bandgaps[24], or forecasting crack evolution in graphene sheets[25]. Recent 

advances in AI have also been used to explore density functional theory (DFT) calculations 

and study diffusion mechanisms based on molecular dynamics (MD)[26,27,28,29]. One of the 

most striking results was shown by Merchant and coworkers who were able to predict the 

stability of millions of new crystal structures, many of which had never been discovered 

through traditional methods[30]. In this context, the integration of AI into materials 

science opens a new era of innovative synthesis methodologies. Recently, there has been 

considerable interest in establishing autonomous laboratories that combine robotics with 

the exploitation of ab initio databases and active learning to optimize the synthesis of 

novel inorganic materials[31], a process that is generally time-consuming and expensive. 

In this study, we aim to address the following question: Can an Artificial Neural 

Network (ANN) learn a time-dependent protocol in order to grow a material with desired 

optical and crystalline properties, without prior knowledge of growth protocols? This is 

a radically different approach with respect to those mentioned so far. Here, we utilize 

an active learning method in which the ANN iteratively refines its synthesis protocols 

without relying on historical data. 

Unlike methodologies used in other works[31], which rely heavily on pre-trained mod- 

els and vast amounts of historical synthesis data to guide experiments, our approach 

distinguishes itself by requiring minimal input and by learning dynamically through di- 

rect experimental feedback. Additionally, previous methods focus on optimizing a limited 

state space of initial conditions and are unable to adapt to time-dependent protocols. In 

contrast, our ANN continuously refines its protocols over time, learning from real-time 

experimental outcomes and progressively improving the quality of the graphene produced. 
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As proof of principle, we focus on the relatively straightforward task of growing high- 

quality, homogeneous graphene through the thermal decomposition of silicon carbide 

(SiC). Here an ANN is tasked with proposing a protocol, a profile of temperature as 

a function of time, to achieve this goal. The growth of graphene from SiC is chosen as an 

ideal candidate for exploring the feasibility of applying ANN learning to crystal growth, 

owing to its simplicity and the manageable number of growth parameters that can be eas- 

ily controlled (i.e., min temperature, max temperature and ramp). This method enables 

the synthesis of graphene directly from SiC[32,33], thus eliminating the need for gaseous 

carbon precursors. 

In experimental settings, obtaining a loss function is challenging, and the gradient 

information required for the back-propagation algorithm is often not available. There- 

fore, training the neural network must rely on evolutionary methods[34,35,36]. Standard 

genetic algorithms are too costly for this purpose[36] since they require many runs of 

the experiment to train. We use instead an evolutionary algorithm that resembles the 

zero-temperature Metropolis Monte Carlo algorithm with an adaptive, momentum-like 

component, called adaptive Monte Carlo, or aMC[37]. We start with a neural network 

whose parameters specify a time-dependent protocol. We add random numbers from a 

normal distribution to all weights, evaluate the new protocol resulting from this change, 

and accept (or reject) the new protocol if the outcome is better (or worse) than the previ- 

ous protocol, as determined by a score function. This approach proceeds iteratively, with 

the algorithm remembering weight changes that led to accepted protocols and making 

such changes with higher probability. In this way, we can achieve meaningful learning 

within a few tens of experiments, making the approach readily accessible to laboratory 

studies. 

In our approach, score function evaluation relies on Raman spectroscopy measure- 
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ments, a highly effective method extensively used for the characterization of 2D materials 

owing to its versatility and precision[38,39,40,41]. One of the key advantages of Raman 

spectroscopy is its capability to perform detailed mapping of samples, effectively distin- 

guishing between different forms and qualities of graphene (e.g., buffer layer, monolayer 

graphene (MLG), and bilayer graphene (BLG)), thereby offering valuable insights into 

their distribution across the sample. Additionally, it is a rapid and non-invasive charac- 

terization technique that can cover an area of tens of micrometers in just a few minutes. 

For these reasons, it provides crucial feedback that aids in iteratively optimizing the syn- 

thesis protocols of artificial neural networks, thereby steadily improving the quality of 

graphene. 

To further assess and validate our Raman-based scoring system, the structural, chem- 

ical, and electronic quality of graphene are characterized using supplementary techniques 

such as Atomic Force Microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS), and 

Angle-Resolved Photoemission Spectroscopy (ARPES). These analyses offer comprehen- 

sive insight into the material quality, retrospectively validating the effectiveness of the 

AI-driven synthesis approach. 

This work showcases the feasibility and significant advantages of employing artificial 

intelligence to tailor and optimize the growth of 2D materials. By integrating an ANN 

that learns and adapts, we effectively embed a "brain" into the synthesis lab, paving the 

way for the autonomous synthesis of desired materials. More ambitiously, this approach 

holds the potential to discover methods for synthesizing high-quality materials that are 

currently beyond our capabilities, unlocking new frontiers in material science. 
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Methods 

We outline here the methodology developed to train an ANN with aMC to autonomously 

find the most efficient growth protocol for graphene from the thermal decomposition of 

SiC. Minimal input is provided by setting only the furnace working temperature range and 

a starting temperature. The entire ANN training procedure is schematized in Figure 1 and 

consists of four iterative steps: (i) Protocol Generation: a temperature profile is generated 

by an ANN and given as an input to a cold-wall reactor; (ii) Sample growth: graphene 

growth on SiC is performed in the reactor adopting as input the temperature profile 

generated in step (i); (iii) Sample Characterization: Raman spectroscopy is performed on 

the synthesized sample and the spectrum obtained is benchmarked with an ideal target 

to generate a score (iv). At the end of this process the ANN parameters are updated 

following the aMC method described below, and a new protocol is generated. 

Before describing the details of the aMC algorithm, we will discuss the main aspects of 

the growth of epitaxial graphene on SiC. It involves a high-temperature process in which 

the crystal is thermally decomposed[42]. The most important control parameters during 

growth are temperature, pressure and time. Originally this technique was implemented in 

ultra high vacuum (UHV) chambers[33]. It is now agreed that atmospheric-pressure growth 

conditions under inert gas in quartz reactors (either cold-wall or hot-wall, horizontal or 

vertical) provide the most favorable conditions to obtain graphene[43]. During the thermal 

decomposition process, silicon atoms sublimate from the surface, and leave behind a 

carbon-rich layer, a graphene-like honeycomb lattice with one third of the C atoms forming 

covalent bonds to the SiC substrate through sp3-hybridized horbitals[44]. This is known as 

buffer or zero-layer graphene (ZLG). This layer is not yet graphene and exhibits a gap[43,45]. 

The growth of graphene requires reaching an optimal (higher) temperature at which an 
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additional carbon-rich layer forms beneath the first one, effectively decoupling it from the 

substrate. This layer does display the typical linear dispersion of MLG[43]. If the process 

continues further, another buffer layer will form at the interface with SiC, turning the 

previous graphene and buffer layers into a BLG. Hence, determining a correct temperature 

profile is fundamental to obtain MLG with minimum ZLG and BLG inclusions. Given the 

fundamental importance of the temperature profile in achieving optimal MLG coverage, 

we sought to investigate a broad yet physically-meaningful temperature range. We set 

the temperature boundaries between Tmin = 1100◦C and Tmax = 1300◦C. The minimum 

temperature was chosen below the known temperatures for graphene synthesis to allow for 

a reasonably wide temperature range for the ANN to explore. The maximum temperature 

was set equal to the maximum operational capacity of our reactor, ensuring the respect 

of safety and equipment limitations. We set a starting temperature Tstart = 1200◦C 

as midpoint within this range. This starting temperature is not too low to hinder the 

initiation of the growth process, yet not too close to the optimal synthesis temperature, 

thereby encouraging the ANN to explore a variety of temperature profiles. In subsequent 

runs, as discussed below, we shall remove this starting temperature constraint to allow 

the ANN to explore the entire temperature range more freely. Detailed experimental 

information about the growth process implemented in this work are reported in Supporting 

Information (SI). 

aMC is an evolutionary algorithm designed to work with relatively few experiments: 

each learning step requires one experiment, and the algorithm learns from past successes, 

proposing similar moves with increased likelihood[37]. The algorithm proceeds as follows. 

Let x = {x1, x2, . . . , xN } be the vector of neural-network parameters, which defines a 

time-dependent protocol. Let U (x) be the loss function, which quantifies the success 

of the synthesis resulting from that time-dependent protocol. The algorithm proposes a 
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change of all neural-network parameters x → x′

 by small Gaussian random numbers, 

 
xi → x′

 = xi + ϵi, (1) 

 
where ϵi ∼ N(µ i, σ2). Here σ sets the scale of parameter updates, and the µ i are 

momentum-like parameters that we shall specify shortly. If the synthesis outcome re- 

sulting from the new protocol is better than (or as good as) the current outcome, i.e. if 

U (x′) ≤ U (x), then we accept the update (1), and the x′
 become the new parameters 

of the neural network. Otherwise we revert to the previous parameters. The update 

procedure is then repeated. 

The momentum-like parameters µ i are initially set to zero. Following each accepted 

move, they are updated as µ i → µ i+η(ϵi−µ i), where η is a hyperparameter of the method. 

This update ensures that subsequent parameter updates are more likely to be similar to 

past accepted updates. Following several consecutive rejected moves, momentum-like 

parameters are reset to zero, and the scale parameter σ is reduced in size[37]. 

For the current synthesis, the loss function U depends on the Raman spectrum. Each 

measured spectrum is assigned a score that reflects how closely it matches the desired 

characteristics. The loss function is inversely related to this score: a lower loss function 

corresponds to a higher score. The highest possible score is attributed to the ideal Raman 

spectrum, which serves as the benchmark for our evaluations. Consequently, the objective 

of the ANN training is to minimize the loss function by maximizing the similarity between 

the measured spectrum and the ideal Raman spectrum. 

Raman spectroscopy can differentiate between ZLG, MLG, and BLG[38], offering valu- 

able insights into their distribution across the sample. The ability to identify and map 

these variations in graphene layers aids in optimizing growth conditions and improving 

the overall quality of the 2D material. The spectrum obtained from graphene typically 
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Figure 1: Schematic representation of ANN training used in this work. After initializa- 
tion with the parameter guess, the protocol generation is conducted, followed by sample 
growth. The obtained sample is then characterized through Raman spectroscopy. The 
extracted data are used to evaluate the score. Finally, the protocol is updated with the 
new parameters. 

 
shows two prominent peaks: G, that is a primary in-plane vibrational mode, and 2D, 

the second-order peak of the in-plane vibrational mode D[46]. The intensity, position, 

and width of these peaks are highly sensitive to the quality and structure of graphene. 

High-quality graphene typically exhibits sharp and intense peaks in the Raman spectrum. 

For our analysis we consider the 2D peak, that can be fitted with a Lorentzian function. 

The score (f ) is then calculated with the equation (2): 
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χ 

 

 

f = I + σ + 
1 

(σ · I) (2) 
χ 

where I is related to the 2D peak intensity, while σ is related to the Lorentzian full 

width at half maximum (FWHM) through hyperbolic tangent, defined as follows: 

                                                                                                                                          (3) 

             

and 
 

 

χ is the interaction coefficient parameter, while a, b, a′, and b′
 are empirical parameters. 

The intensity parameter is crucial because it directly correlates with the quantity 

of graphene on top of the substrate, while the term correlated to the FWHM aids the 

protocol in distinguishing between MLG and BLG, as BLG typically exhibits a larger 

FWHM[47]. The choice of the hyperbolic function is dictated by the fact that beyond 

a threshold, the growth is complete; conversely, below a certain value, the growth is 

negligible. Moreover, the interference term  1 (σ · I) is necessary to prevent convergence in 

a region where only one of the two terms is optimized. Table S1 of SI reports the values 

of the empirical parameters used in (3) and (4). Figure S1 shows the 2D Raman peak 

(orange solid line) with the corresponding Lorentzian fit (blue solid line) for the Raman 

spectra corresponding to the protocols used in this work. A summary of the obtained 

values of I and σ are reported in Table S2. All the samples were analyzed using Raman 

spectroscopy under identical spectral sampling conditions. In particular, multiple samples 

were grown for each protocol to test the reproducibility of the process. We also checked 

the reproducibility of the single protocol, comparing the theoretical temperature profile 

with the measured one followed by the furnace (Figure S2). 
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Results and discussion 
 

 

Figure 2: (a) Protocol evolution. Protocols that enhance the score are highlighted by 
colored lines. (b) Score evolution with the generation: The solid black line represents 
the score calculated using Equation 2, while the dashed black line indicates the accepted 
score threshold. Additionally, the intensity (diamonds), σ (squares), and Interference 
parameters (circles) are depicted relative to the generation. (c) Raman spectra collected 
from samples used to train the ANN. Protocols that contribute to score improvement are 
identified by colored lines. The spectra are vertically spaced for clarity. (d) Zoomed-in 
Energy Range of the 2D-band Raman Peak. 
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The results obtained are summarized in Figure 2. The temperature profile for each 

generation is reported in Figure 2a. Each curve is a tentative temperature profile or pro- 

tocol, proposed by the ANN and implemented into the growth set up. In Figure 2b, the 

solid black line represents the score calculated using Eq. 2, while the dashed black line in- 

dicates the accepted score threshold. Additionally, the intensity (diamonds), σ (squares), 

and interference (circles) partial scores are shown in relation to the generation. The plots 

in Figure 2a-b are divided into two main regions. The first region (pale magenta) shows 

various attempts by the ANN to identify a protocol with a favorable score function. In 

contrast, the second region (pale cyan) demonstrates that the ANN has learned a suc- 

cessful trend, and suggests temperature profiles that are mostly monotonically increasing 

functions from 1200°C to the temperature upper limit (1300°C). This indicates that when 

the ANN encounters a protocol with a high score, it tends to keep moving in that direction. 

This score evolution can be visualized by analyzing the sequence of the Raman spectra 

reported in Figure 2c-d. At the beginning, the ANN proposes a completely random trend: 

for protocol (PTC) 0 (solid gray line), the temperature falls below 1200°C, which is the 

lower experimental limit necessary for graphene growth. This is evident from the absence 

of the 2D peak in the Raman spectra depicted in Figure 2c (solid gray line). In contrast, 

for protocols 1 and 2 (represented by the solid blue and orange lines, respectively, in Fig- 

ure 2), there is an improvement: the 2D peak emerges, albeit not as intensely or sharply 

as in high-quality graphene growth. Subsequently, through additional generations, the 

ANN further enhances the graphene quality, as evidenced by protocols 4 and 5 (indicated 

by the solid green and red lines, respectively, in Figure 2). In these instances, a distinct 

and sharp 2D peak is observed. Figure 2d displays a zoomed-in energy range of the 2D 

Raman Peak for the protocols that yield improved scores, normalized with respect to the 

SiC peak. It’s noteworthy that while the intensity value of the 2D peak for protocol 4 
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closely resembles that of protocol 5, the score for protocol 4 consistently falls below that 

of protocol 5 (Solid black line in Figure 2b). This discrepancy can likely be attributed to 

the broader FWHM of the 2D peak in protocol 4, indicating the presence of a BLG. Thus, 

this reaffirms the significance of the interference term within the score evaluation formula. 

ANN training is also conducted by removing the lower limit temperature constraint (see 

Figure S3). It is evident that, even lifting this constrain, the ANN successfully learns the 

desired patterns in a similar manner with a slightly higher number of protocols. Initially, 

the temperature profiles generated by the ANN start at T lower than 1200°C. However, 

over time, the ANN adapts and begins to suggest temperature profiles that correspond to 

effective graphene synthesis. This adaptation is noticeable, as in the previous run, in the 

pale red region of the plot, where the suggested temperature profiles align with known 

effective growth conditions. 

 
To visualize the learning process and validate our scoring mechanism, we conducted 

a series of cross-checked experiments using AFM, XPS and ARPES, providing a compre- 

hensive set of surface characterization tools. Starting with AFM, adhesion force maps 

are shown in Figure 3a-d. Adhesion AFM depends on the interactions between the probe 

tip and the sample surface, which can be influenced by factors such as surface roughness, 

chemical composition, and the presence of contaminants or adsorbates[48]. Hence, it can 

serve as a valuable method to quantify the amount and quality of graphene on the surface. 

The adhesion force is strictly correlated to the material Young’s modulus[49]. The 

darkest areas (i.e., low adhesion force) represent the SiC surface, while the lightest area 

(i.e., high adhesion force) represents the graphene surface. It is possible to note that with 

the score improvement there is an increase of the graphene area from 22.4% (protocol 1, 

Figure 3a) to 88.2% (protocol 5, Figure 3d). For protocol 4, the adhesion map shows a 
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Figure 3: (a-d) Adhesion force map on samples obtained from PTC1 (a), PTC2 (b), PTC4 
(c) and PTC5 (d). (e-h) C1s XPS spectra recorded on samples obtained from PTC1 (e), 
PTC2 (f), PTC4 (g) and PTC5 (h). 

 
high percentage coverage of graphene. However, the relative adhesion force values are less 

distinct. Generally, the Young’s modulus of MLG is higher than that of BLG[50], thus 

providing an explanation for the different adhesion contrast and confirming the presence 

of BLG on the sample obtained from protocol 4. The percentage of the graphene surface 

as a function of the protocol number is reported in Figure S4. 

The AFM analysis is cross-checked looking at the chemical properties of the samples 

measuring the core-level spectrum of each sample via XPS. The results are presented in 

Figure 3e-h. The spectral intensities are normalized to facilitate comparison among the 

different samples. We found that the sp2 position peak occurs at around 284.4 ± 0.1 eV. 

The SiC component is identified at 283.8 ± 0.1 eV, while for the components associated 

with the buffer layer, S1 and S2, the peaks are centered at 285.2 ± 0.1 eV and 286.0 ± 0.1 

eV, respectively, in good agreement with the literature[32,51]. The core-level fitting proce- 

dure used in this work is detailed in the SI, "XPS fitting procedure" section (see Figure 
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S5 and Table S3). The area subtended by the graphene curve is 18.94% for protocol 1 

(Figure 3e), 19.60% for protocol 2 (Figure 3f), 31.30% for protocol 4 (Figure 3g), and 

23.10% for protocol 5 (Figure 3h), also observing in this case an improvement in the qual- 

ity of the graphene with the increase in the score. It is important to note that the FWHM 

of the graphene curve for protocol 4 is slightly higher compared to the other protocols, 

due to the Van der Waals interactions between two graphene layers, further confirming 

the presence of BLG in the sample obtained through protocol 4 in great agreement with 

the AFM analysis. In Figure S6 we report the trend of the percentage of the graphene 

area obtained from the XPS fit as a function of the protocol number. The dashed black 

line indicates the threshold of the area for a fully covered sample. This means that for a 

percentage of area higher than approximately 26%, there is the presence of BLG on the 

substrate, as shown in the case of the sample obtained with PTC4. 

 
Finally, the band structure of the as-grown samples is investigated using ARPES 

(see Figure 4). This technique is ideally suited to probe the electronic band structure 

of a material and can provide a definitive assessment of graphene quality. The spectra 

are collected at the K-point of the graphene Brillouin zone, along the ΓK direction in 

reciprocal space. We use the sharpness of the graphene bands as a metric to quantify 

the quality of the relative protocol. We fit the momentum distribution curves (MDC), 

extracted 50 meV below the Fermi level (colored dashed lines in Figure 4a-d), reported 

in the bottom panels of Figure 4: the FWHM (2γ) of the Voigt function used to fit the 

peaks gradually decreases from 0.044 Å−1 (protocol 1, Figure 4a) to 0.020 Å−1 (protocol 

5, Figure 4d). As expected, the ARPES spectrum collected on the sample obtained 

from protocol 4, displayed in Figure 4c, shows the classic band dispersion of a BLG on 

SiC[52], overlapping to the MLG bands, with a splitting of the π band originated from the 
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Figure 4: (Top Panels) ARPES intensity maps collected on samples obtained from PTC1 
(a), PTC2 (b), PTC4 (c) and PTC5 (d). (Bottom Panels) The corresponding normalized 
MDC spectra, obtained by integrating the signal at the Fermi level energy (indicated with 
colored dashed lines in the ARPES maps). 

 
interlayer interaction between the two graphene layers. 

These supplementary chemical and structural analyses show a trend that align closely 

with the calculated score function, validating the use of Raman characterization for the 

score function in ANN training. 

Conclusions 

We have demonstrated the potential for autonomous synthesis by using an adaptive learn- 

ing algorithm to train an artificial neural network that encodes a time-dependent synthesis 

protocol. The neural network has iteratively and autonomously learned to synthesize high- 



18  

 
quality graphene, with minimal initial input, thus demonstrating its remarkable ability 

to learn and adapt. This capability resulted in progressively improved graphene quality, 

verified through comprehensive surface characterization techniques. The success of this 

approach highlights the ANN’s robust learning mechanisms and adaptability, underscor- 

ing its capacity to handle complex material synthesis tasks. By embedding intelligent 

decision-making into the synthesis process, our work paves the way for future applica- 

tions of AI in the growth of various 2D materials. This advancement not only promises 

significant efficiency and quality improvements in material production but also opens new 

frontiers in material science, where AI-driven methods can explore and optimize previously 

unattainable synthesis pathways. 

Conflicts of interest 

There are no conflicts to declare. 

 

Acknowledgements 

We acknowledge the project PNRR MUR Project PE000013 CUP J53C22003010006 ”Fu- 

ture Artificial Intelligence Research (FAIR) and PNRR MUR Project PE0000023 - Na- 

tional Institute of Quantum Science and Technology (NQSTI) funded by the European 

Union - NextGenerationEU. 



19  

References 

[1] P. Kumbhakar, J. S. Jayan, A. S. Madhavikutty, P. Sreeram, A. Saritha, T. Ito, 

and C. S. Tiwary, “Prospective applications of two-dimensional materials beyond 

laboratory frontiers: A review,” IScience, vol. 26, no. 5, 2023. 

[2] E. C. Ahn, “2d materials for spintronic devices,” npj 2D Materials and Applications, 

vol. 4, no. 1, p. 17, 2020. 

[3] G. H. Jeong, S. P. Sasikala, T. Yun, G. Y. Lee, W. J. Lee, and S. O. Kim, “Nanoscale 

assembly of 2d materials for energy and environmental applications,” Advanced Ma- 

terials, vol. 32, no. 35, p. 1907006, 2020. 

[4] Z. Zhang, S. Forti, W. Meng, S. Pezzini, Z. Hu, C. Coletti, X. Wang, and K. Liu, 

“Growth and applications of two-dimensional single crystals,” 2D Materials, 2023. 

[5] F. R. Fan, R. Wang, H. Zhang, and W. Wu, “Emerging beyond-graphene elemental 2d 

materials for energy and catalysis applications,” Chemical Society Reviews, vol. 50, 

no. 19, pp. 10983–11031, 2021. 

[6] L. Banszerus, M. Schmitz, S. Engels, J. Dauber, M. Oellers, F. Haupt, K. Watanabe, 

T. Taniguchi, B. Beschoten, and C. Stampfer, “Ultrahigh-mobility graphene devices 

from chemical vapor deposition on reusable copper,” Science advances, vol. 1, no. 6, 

p. e1500222, 2015. 

 
[7] S. Pezzini, V. Mišeikis, S. Pace, F. Rossella, K. Watanabe, T. Taniguchi, and C. Co- 

letti, “High-quality electrical transport using scalable cvd graphene,” 2D Materials, 

vol. 7, no. 4, p. 041003, 2020. 



20  

 
[8] Z. M. Gebeyehu, V. Mišeikis, S. Forti, A. Rossi, N. Mishra, A. Boschi, Y. P. Ivanov, 

L. Martini, M. W. Ochapski, G. Piccinini, et al., “Decoupled high-mobility graphene 

on cu (111)/sapphire via chemical vapor deposition,” Advanced Materials, p. 2404590, 

2024. 

[9] S. Bhaviripudi, X. Jia, M. S. Dresselhaus, and J. Kong, “Role of kinetic factors in 

chemical vapor deposition synthesis of uniform large area graphene using copper 

catalyst,” Nano letters, vol. 10, no. 10, pp. 4128–4133, 2010. 

[10] V. Miseikis, F. Bianco, J. David, M. Gemmi, V. Pellegrini, M. Romagnoli, and 

C. Coletti, “Deterministic patterned growth of high-mobility large-crystal graphene: 

a path towards wafer scale integration,” 2D Materials, vol. 4, no. 2, p. 021004, 2017. 

[11] M. A. Giambra, V. Miseikis, S. Pezzini, S. Marconi, A. Montanaro, F. Fabbri, V. So- 

rianello, A. C. Ferrari, C. Coletti, and M. Romagnoli, “Wafer-scale integration of 

graphene-based photonic devices,” ACS nano, vol. 15, no. 2, pp. 3171–3187, 2021. 

[12] B. Sun, J. Pang, Q. Cheng, S. Zhang, Y. Li, C. Zhang, D. Sun, B. Ibarlucea, Y. Li, 

D. Chen, et al., “Synthesis of wafer-scale graphene with chemical vapor deposition 

for electronic device applications,” Advanced Materials Technologies, vol. 6, no. 7, 

p. 2000744, 2021. 

 
[13] B. Jiang, S. Wang, J. Sun, and Z. Liu, “Controllable synthesis of wafer-scale graphene 

films: Challenges, status, and perspectives,” Small, vol. 17, no. 37, p. 2008017, 2021. 

[14] S. Alam, M. A. Chowdhury, A. Shahid, R. Alam, and A. Rahim, “Synthesis of emerg- 

ing two-dimensional (2d) materials–advances, challenges and prospects,” FlatChem, 

vol. 30, p. 100305, 2021. 



21  

 
[15] X. Xu, T. Guo, H. Kim, M. K. Hota, R. S. Alsaadi, M. Lanza, X. Zhang, and H. N. 

Alshareef, “Growth of 2d materials at the wafer scale,” Advanced Materials, vol. 34, 

no. 14, p. 2108258, 2022. 

[16] X. Liu and M. C. Hersam, “2d materials for quantum information science,” Nature 

Reviews Materials, vol. 4, no. 10, pp. 669–684, 2019. 

[17] M. Turunen, M. Brotons-Gisbert, Y. Dai, Y. Wang, E. Scerri, C. Bonato, K. D. Jöns, 

Z. Sun, and B. D. Gerardot, “Quantum photonics with layered 2d materials,” Nature 

Reviews Physics, vol. 4, no. 4, pp. 219–236, 2022. 

[18] Y. Kumar, S. Gupta, R. Singla, and Y.-C. Hu, “A systematic review of artificial 

intelligence techniques in cancer prediction and diagnosis,” Archives of Computational 

Methods in Engineering, vol. 29, no. 4, pp. 2043–2070, 2022. 

[19] J. Khan, J. S. Wei, M. Ringner, L. H. Saal, M. Ladanyi, F. Westermann, F. Berthold, 

M. Schwab, C. R. Antonescu, C. Peterson, et al., “Classification and diagnostic pre- 

diction of cancers using gene expression profiling and artificial neural networks,” 

Nature medicine, vol. 7, no. 6, pp. 673–679, 2001. 

[20] B. Bhinder, C. Gilvary, N. S. Madhukar, and O. Elemento, “Artificial intelligence in 

cancer research and precision medicine,” Cancer discovery, vol. 11, no. 4, pp. 900–915, 

2021. 

[21] H. Fujiyoshi, T. Hirakawa, and T. Yamashita, “Deep learning-based image recognition 

for autonomous driving,” IATSS research, vol. 43, no. 4, pp. 244–252, 2019. 

[22] S. Atakishiyev, M. Salameh, H. Yao, and R. Goebel, “Explainable artificial intelli- 

gence for autonomous driving: A comprehensive overview and field guide for future 



22  

research directions,” arXiv preprint arXiv:2112.11561, 2021. 

 
[23] A. Singh and Y. Li, “Reliable machine learning potentials based on artificial neural 

network for graphene,” Computational Materials Science, vol. 227, p. 112272, 2023. 

[24] Y. Dong, C. Wu, C. Zhang, Y. Liu, J. Cheng, and J. Lin, “Bandgap prediction 

by deep learning in configurationally hybridized graphene and boron nitride,” npj 

Computational Materials, vol. 5, no. 1, p. 26, 2019. 

[25] M. S. Elapolu, M. I. R. Shishir, and A. Tabarraei, “A novel approach for studying 

crack propagation in polycrystalline graphene using machine learning algorithms,” 

Computational Materials Science, vol. 201, p. 110878, 2022. 

[26] Y. Elbaz, D. Furman, and M. Caspary Toroker, “Modeling diffusion in functional ma- 

terials: from density functional theory to artificial intelligence,” Advanced Functional 

Materials, vol. 30, no. 18, p. 1900778, 2020. 

[27] J. Behler and M. Parrinello, “Generalized neural-network representation of high- 

dimensional potential-energy surfaces,” Physical review letters, vol. 98, no. 14, 

p. 146401, 2007. 
 

[28] H. Li, L. Shi, M. Zhang, Z. Su, X. Wang, L. Hu, and G. Chen, “Improving the 

accuracy of density-functional theory calculation: The genetic algorithm and neural 

network approach,” The Journal of chemical physics, vol. 126, no. 14, 2007. 

[29] G. R. Schleder, A. C. Padilha, C. M. Acosta, M. Costa, and A. Fazzio, “From dft 

to machine learning: recent approaches to materials science–a review,” Journal of 

Physics: Materials, vol. 2, no. 3, p. 032001, 2019. 

[30] A. Merchant, S. Batzner, S. S. Schoenholz, M. Aykol, G. Cheon, and E. D. Cubuk, 



23  

“Scaling deep learning for materials discovery,” Nature, vol. 624, no. 7990, pp. 80–85, 

2023. 

 
[31] N. J. Szymanski, B. Rendy, Y. Fei, R. E. Kumar, T. He, D. Milsted, M. J. McDermott, 

M. Gallant, E. D. Cubuk, A. Merchant, et al., “An autonomous laboratory for the 

accelerated synthesis of novel materials,” Nature, vol. 624, no. 7990, pp. 86–91, 2023. 

[32] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, 

T. Ohta, S. A. Reshanov, J. Röhrl, et al., “Towards wafer-size graphene layers by 

atmospheric pressure graphitization of silicon carbide,” Nature materials, vol. 8, no. 3, 

pp. 203–207, 2009. 

 
[33] C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, 

E. H. Conrad, P. N. First, et al., “Ultrathin epitaxial graphite: 2d electron gas prop- 

erties and a route toward graphene-based nanoelectronics,” The Journal of Physical 

Chemistry B, vol. 108, no. 52, pp. 19912–19916, 2004. 

[34] M. Mitchell, An introduction to genetic algorithms. MIT press, 1998. 

 
[35] J. H. Holland, “Genetic algorithms,” Scientific American, vol. 267, no. 1, pp. 66–73, 

1992. 

[36] S. Whitelam and I. Tamblyn, “Learning to grow: Control of material self-assembly 

using evolutionary reinforcement learning,” Physical Review E, vol. 101, no. 5, 

p. 052604, 2020. 

 
[37] S. Whitelam, V. Selin, I. Benlolo, C. Casert, and I. Tamblyn, “Training neural net- 

works using metropolis monte carlo and an adaptive variant,” Machine Learning: 

Science and Technology, vol. 3, no. 4, p. 045026, 2022. 



24  

[38] A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying 

the properties of graphene,” Nature nanotechnology, vol. 8, no. 4, pp. 235–246, 2013. 

 
[39] X. Zhang, Q.-H. Tan, J.-B. Wu, W. Shi, and P.-H. Tan, “Review on the raman spec- 

troscopy of different types of layered materials,” Nanoscale, vol. 8, no. 12, pp. 6435– 

6450, 2016. 

[40] M. Paillet, R. Parret, J.-L. Sauvajol, and P. Colomban, “Graphene and related 2d ma- 

terials: An overview of the raman studies,” Journal of Raman Spectroscopy, vol. 49, 

no. 1, pp. 8–12, 2018. 

[41] X. Cong, X.-L. Liu, M.-L. Lin, and P.-H. Tan, “Application of raman spectroscopy to 

probe fundamental properties of two-dimensional materials,” npj 2D Materials and 

Applications, vol. 4, no. 1, p. 13, 2020. 

[42] A. Van Bommel, J. Crombeen, and A. Van Tooren, “Leed and auger electron ob- 

servations of the sic (0001) surface,” Surface Science, vol. 48, no. 2, pp. 463–472, 

1975. 

[43] K. Emtsev, F. Speck, T. Seyller, L. Ley, and J. D. Riley, “Interaction, growth, and 

ordering of epitaxial graphene on sic {0001} surfaces: A comparative photoelectron 

spectroscopy study,” Physical review B, vol. 77, no. 15, p. 155303, 2008. 

[44] F. Varchon, R. Feng, J. Hass, X. Li, B. N. Nguyen, C. Naud, P. Mallet, J.-Y. Veuillen, 

C. Berger, . f. E. Conrad, et al., “Electronic structure of epitaxial graphene layers on 

sic: effect of the substrate,” Physical review letters, vol. 99, no. 12, p. 126805, 2007. 

[45] S. Goler, C. Coletti, V. Piazza, P. Pingue, F. Colangelo, V. Pellegrini, K. V. Emtsev, 

S. Forti, U. Starke, F. Beltram, et al., “Revealing the atomic structure of the buffer 



25  

layer between sic (0 0 0 1) and epitaxial graphene,” Carbon, vol. 51, pp. 249–254, 

2013. 
 

[46] R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, and M. Dresselhaus, “Raman spec- 

troscopy of graphene and carbon nanotubes,” Advances in Physics, vol. 60, no. 3, 

pp. 413–550, 2011. 

 
[47] J. Röhrl, M. Hundhausen, K. Emtsev, T. Seyller, R. Graupner, and L. Ley, “Raman 

spectra of epitaxial graphene on sic (0001),” Applied Physics Letters, vol. 92, no. 20, 

2008. 

[48] F. Lee, M. Tripathi, P. Lynch, and A. B. Dalton, “Configurational effects on strain 

and doping at graphene-silver nanowire interfaces,” Applied Sciences, vol. 10, no. 15, 

p. 5157, 2020. 

 
[49] K. L. Johnson, K. Kendall, and A. Roberts, “Surface energy and the contact of elastic 

solids,” Proceedings of the royal society of London. A. mathematical and physical 

sciences, vol. 324, no. 1558, pp. 301–313, 1971. 

[50] Q. Cao, X. Geng, H. Wang, P. Wang, A. Liu, Y. Lan, and Q. Peng, “A review of 

current development of graphene mechanics,” Crystals, vol. 8, no. 9, p. 357, 2018. 

[51] S. Forti, A. Rossi, H. Büch, T. Cavallucci, F. Bisio, A. Sala, T. O. Menteş, A. Lo- 

catelli, M. Magnozzi, M. Canepa, et al., “Electronic properties of single-layer tung- 

sten disulfide on epitaxial graphene on silicon carbide,” Nanoscale, vol. 9, no. 42, 

pp. 16412–16419, 2017. 

 
[52] S. Forti and U. Starke, “Epitaxial graphene on sic: from carrier density engineering to 

quasi-free standing graphene by atomic intercalation,” Journal of Physics D: Applied 



26  

Physics, vol. 47, no. 9, p. 094013, 2014. 



27  

 

 
Supporting Information: Adaptive AI-Driven Material 

Synthesis: Towards Autonomous 2D Materials 
Growth 

Leonardo Sabattini 1†, Annalisa Coriolano2,3†, Corneel Casert 4†, Stiven Forti 2, 

Edward S. Barnard 4, Fabio Beltram1, Massimiliano Pontil 3, Stephen Whitelam4, 

Camilla Coletti 2, Antonio Rossi 2 
1Scuola Normale Superiore, Laboratorio NEST, Pisa, Italy 
2Center for Nanotechnology Innovation, Laboratorio NEST, 

Istituto Italiano di Tecnologia, Pisa, Italy 
3Computational Statistics and Machine Learning, Istituto Italiano di Tecnologia, Genova, Italy 

4The Molecular Foundry, Lawrence Berkeley National Laboratory 
† These authors contributed equally to this work: L. Sabattini, A. Coriolano, C. Casert. * 

Corresponding author: antonio.rossi@iit.it, swhitelam@lbl.gov 

 

 

Experimental details 

Epitaxial graphene is grown by thermal decomposition starting from SiC substrate. Com- 

mercial SiC wafers, thoroughly cleaned with acetone and IPA in an ultrasonic bath, are 

subsequently treated with oxygen plasma, followed by Piranha solution and HF baths, to 

remove all organic contaminants from the surface. Subsequently, the SiC (0001) wafers are 

exposed to high-temperature hydrogen gas within a furnace to remove polishing scratches, 

a process known as hydrogen etching[1]. Finally, the graphene growth process starts. All 

growth procedures are conducted using an AIXTRON Black Magic cold-wall reactor in 

an Ar/H2-filled chamber 

Raman spectra are acquired using a Renishaw InVia Raman microscope with a con- 
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tinuous wave 532 nm laser using a 100x objective and 3.25 mW incidence power. For each 

sample, three 10x10 µm2 maps are collected with a step size of 1 µm and an exposure 

time of 5 seconds each. The AFM images are acquired with a Bruker Dimension Icon 

microscope operated in quantitative nanomechanical mapping (QNM) mode in ambient 

conditions. Photoemission data are aquired with a hemispherical analyzer (SPECS PHOI- 

BOS 150). X-ray photoelectron spectroscopy (XPS) spectra are obtained with a SPECS 

XR-50 Al Kα X-ray source. Angle resolved photoemission spectroscopy (ARPES) are col- 

lected using He Iα radiation (21.2 eV) excitation source (SPECS-µSirius) with a nominal 

spot size of 100 µm. 

Score Function Evaluation 

The empirical parameters a, b, a’ and b’ used in the equations (3) and (4) of the main 

text to calculate the score function, are obtained based on a previous work[2] and our 

previous tests. The values of the parameters are reported in Table S1. 
 

a b a’ b’ 
- 3 3 - 45 10 

Table S1: Score parameters. 

 
The fitting process is Figure S1 shows the 2D Raman peak (orange solid line) with 

the corresponding Lorentzian fit (blue solid line) for the Raman spectra corresponding to 

the protocols used in this work. 

Table S2 summarizes the values used to calculate the score evolution reported in Fig- 

ure 2b of the main text. 
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Figure S1: 2D Raman peak with the corresponding Lorentzian fit for the Raman spectra 
of the sample used in this work. 
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PTC # I σ 

1 (σ · I) 
χ 

0 0.00 0.00 0.00 
1 0.52 0.52 0.14 
2 0.46 0.70 0.18 
3 0.16 0.19 0.02 
4 1.66 1.15 0.96 
5 1.71 1.39 1.19 
6 1.68 1.23 1.04 
7 1.54 1.03 0.79 
8 1.02 0.98 0.5 
9 1.52 1.51 1.15 
10 0.52 0.58 0.15 
11 1.48 0.78 0.57 

Table S2: Summary of the values used to calculate the score function. 
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Graphene Growth 

Figure S2 shows the theoretical temperature profile as a function of time (red line) and 

the experimental temperature profiles followed by the furnace for three different samples 

obtained through the same protocol. 
 

Figure S2: Theoretical (red line) and experimental profiles of temperature in function of 
time for different samples obtained through the same protocol. 



32  

Temperature constrain 

In Figure S3 is shown the ANN training process obtained by removing the lower tempera- 

ture constrain. It is evident that, even in this scenario, the ANN has successfully learned 

the optimal growth protocol trend. Initially, the protocols generated start at tempera- 

tures lower than 1200°C. Over time, the ANN begins to suggest temperature profiles that 

align with effective graphene production, as seen in the pale red region of the plot. 
 

Figure S3: Evolution of the temperature profiles (upper panel) and of the score (lower 
panel) obtained by removing the lower temperature limit during ANN training. 
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AFM measurements 

Figure S4 shows the percentage of the graphene surface as a function of the protocol 

number, extracted from the relative adhesion maps reported in Figure 3a-d of the main 

text. 

 
Figure S4: Percentage of the graphene surface as a function of the protocol number. 
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XPS fitting procedure 

For each XPS spectrum presented in Figure 3e-h, a Shirley-type background is considered. 

Symmetric peaks are modeled using Voigt functions (SiC, S1 and S2, where S1 and S2 

represent the components associated with the buffer layer), while for the graphene peak, to 

address the asymmetry arising from conductive layers, a Gaussian-Doniach-Šunjić (GDS) 

line shape is employed[3,4]. In particular, two additional components (denoted S1I and 

S2I ) are considered for BL, to also account for the parts of BL that interact with graphene. 

Figure S5 shows the core-level fitting with the additional BL components, which have been 

removed from Figure 3 in the main text for clarity. 

 

 

 
Figure S5: Core-level fitting of XPS spectrum collected on sample obtained from PTC5 
showing also the additional BL components. 

 
Table S3 summarizes the values for the graphene curve extracted from the fitting 

procedure, where ωG denotes the FWHM for the Gaussian component, while ωL denotes 

the FWHM for the Lorentzian component. 



35  

 
PTC # Agraphene% Peak position (eV) ωG (eV) ωL (eV) 

1 18.94 284.45 1.15 1.38 
2 19.60 284.45 1.13 1.36 
4 31.30 284.40 1.34 1.38 
5 23.10 284.40 1.13 1.36 

Table S3: Summary of the values for the graphene curve extracted from the fitting pro- 
cedure. 

 

Figure S6: Percentage of the graphene area obtained from the XPS fit as a function of 
the protocol number. The dashed black line indicates the threshold of the area for a fully 
covered sample. 

 
In Figure S6 we report the trend of the percentage of the graphene area obtained from 

the XPS fit as a function of the protocol number. The dashed black line indicates the 

threshold of the area for a fully covered sample. 
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