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Native RNA nanopore sequencing reveals
antibiotic-induced loss of rRNA
modifications in the A- and P-sites

Anna Delgado-Tejedor 1,2, Rebeca Medina1, Oguzhan Begik 1, Luca Cozzuto1,

Judith López 3,4, Sandra Blanco 3,4, Julia Ponomarenko1 &

Eva Maria Novoa 1,2

The biological relevance and dynamics of mRNA modifications have been
extensively studied; however, whether rRNA modifications are dynamically
regulated, and under which conditions, remains unclear. Here, we system-
atically characterize bacterial rRNA modifications upon exposure to diverse
antibiotics using native RNA nanopore sequencing. To identify significant
rRNA modification changes, we develop NanoConsensus, a novel pipeline that
is robust across RNA modification types, stoichiometries and coverage, with
very low false positive rates, outperforming all individual algorithms tested.
We then apply NanoConsensus to characterize the rRNA modification land-
scape upon antibiotic exposure, finding that rRNA modification profiles are
altered in the vicinity of A and P-sites of the ribosome, in an antibiotic-specific
manner, possibly contributing to antibiotic resistance.Ourwork demonstrates
that rRNA modification profiles can be rapidly altered in response to envir-
onmental exposures, and provides a robust workflow to study rRNA mod-
ification dynamics in any species, in a scalable and reproducible manner.

Increasing antibiotic resistance among pathogenic bacteria threatens
healthcare and the efficacy of the majority of currently known
antibiotics1. Most clinically used antibiotics inhibit bacterial growth by
targeting protein synthesis2–4, often through direct binding to the
bacterial ribosome, interfering with mRNA translation or blocking the
formation of peptide bonds at the peptidyl transferase center. For
example, aminoglycoside antibiotics such as kanamycin, streptomycin
and neomycin, are potent andbroad-spectrumantibacterials thatwere
introduced in the clinic more than five decades ago, which interact
with the 16S rRNA at the A site of the ribosome5. Unfortunately, their
clinical efficacy is seriously threatened by multiple resistance
mechanisms6. Currently, the most widely disseminated aminoglyco-
side resistance determinants are drug modification enzymes7, but 16S
rRNA methyltransferases that modify the drug-binding site have

recently emerged as a significant threat that can confer class-wide
resistance to these drugs8,9. Thus, detailed studies of these emerging
resistance mechanisms are urgently needed.

Bacterial rRNAs contain a large number of methylations that are
placed by genomically encoded methyltransferases10. While these
typically improve ribosome function under most conditions, when
challenged with antibiotics the loss of specific modifications can
confer low to moderate levels of antibiotic resistance11–16 (Supple-
mentary Data S1). For example, bacterial strains lacking rsmA

(rsmA_KO), responsible for dimethylation of adenine at position 1519
of the 16S rRNA (16S:m6,6A1519), show resistance to kasugamycin17,18,
whereas bacterial strains lacking the rsmG methyltransferase
(rsmG_KO), responsible for placing 7-methylguanosine in the 16S rRNA
(16S:m7G527), show increased resistance to streptomycin19. To better
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comprehend the role that rRNA methylation dynamics plays in anti-
biotic resistance, and to decipher whether additional rRNA modifica-
tionsmight be contributing to increased antibiotic resistance, accurate
methods to monitor and quantify rRNA modifications are sorely
needed20–22.

Transcriptome-wide detection of RNA modifications has been
typically achieved by coupling either antibody immunoprecipitation
or chemical probing with next generation sequencing (NGS)
technologies23–35. However, limited availability of selective antibodies
and/or chemicals only allows for detection of ~5% of currently known
RNA modifications21,36,37. Moreover, even when these reagents are
available, these methodologies have high false positive rates38, are
often not quantitative39 and are inconsistent when using different
antibodies40, and can only detect one RNAmodification type at a time.
A promising alternative to NGS-based methods is the direct RNA
nanopore sequencing (DRS) platform developed by Oxford Nanopore
Technologies (ONT), which can detect diverse types of modified
nucleotides in individual native RNA molecules41–43. In this platform,
RNA molecules are translocated through the nanopores that are
embedded in synthetic membranes coupled to an ammeter,
causing changes in the ionic current, which are in turn used to
identify the underlying nucleotide sequence using machine learning
algorithms44–46, a process referred to as ‘base-calling’. RNA modifica-
tions can then be identified using twomain approaches: (i) in the form
of systematic base-calling ‘errors’47–51, or (ii) in the formof alterations in
the current signal (i.e., altered current intensities, dwell times and/or
trace)43,52–57. In recent years, a plethora of algorithms to detect RNA
modifications in DRS datasets have been developed47,53,56–59; however,
the overlap between predicted RNA modified sites by different algo-
rithms is poor49,57, limiting our ability to extract meaningful biological
conclusions from these datasets. Moreover, it is currently unclear how
the performance of each algorithm varies depending on the RNA
modification type, modification stoichiometry and sequencing depth,
thus limiting the applicability of DRS for the detection of dynamically
regulated RNA modifications in biological contexts45.

Here, we systematically benchmark diverse RNA modification
detection softwares in DRS datasets, across diverse RNA modification
types, stoichiometries and sequencing depths. We then propose
a novel approach, NanoConsensus which uses as input the predictions
of diverse RNA modification prediction softwares (EpiNano47,
Nanopolish60, Tombo56 and Nanocompore57), re-scores them and
weights them internally, and finally extracts a robust list of repro-
ducible RNA modification sites that are differentially modified
between two conditions (e.g., wild type versus knockout; antibiotic-
treated versus untreated). Our results demonstrate that Nano-

Consensus is a robust strategy to detect multiple rRNA modification
types simultaneously, outperforming all individual RNA modification
softwares tested in this work, detecting RNA modification changes
across diverse RNA modification types, with improved sensitivity and
specificity across a wide range of modification stoichiometries and
sequencing depths.

We then apply NanoConsensus to study rRNA modification
dynamics on E. coli cultures from diverse genetic backgrounds
(including strains lacking specific rRNA modification enzymes), which
were subjected to either streptomycin (str) or (ii) kasugamycin (ksg)
exposure, which bind to the A- and P-site of the ribosome, respectively
(Fig. 1A). We find that upon antibiotic treatment, rRNA modification
levels of a subset of sites are significantly decreased, in an antibiotic-
dependent manner, and that this loss of rRNA modifications depends
on the specific antibiotic employed. Notably, dysregulated rRNA
modified sites are spatially located in the vicinity of the A site and the
P-site of the ribosome. We show that this loss is not caused by the
appearance of mutations in rRNA molecules, nor expression of alter-
native rRNA operons. Rather, we demonstrate that the loss of rRNA
modifications is caused by the de novo appearance of a subpopulation

of under-modified rRNAmolecules that were not present in untreated
E. coli cultures.

Overall, our work reveals that rRNA modifications can be dyna-
mically regulated upon antibiotic exposure, with altered rRNA mod-
ification patterns that are antibiotic-specific. Moreover, we
demonstrate that NanoConsensus is a robust toolkit to study rRNA
modification dynamics across varying stoichiometries and RNA mod-
ification types, with low false positive rates. To facilitate the use and
applicability of NanoConsensus by future users, we integrate this
pipeline into the MasterOfPores NextFlow workflow61, making the
detection of differential RNA modifications DRS datasets simple,
traceable and reproducible.

Results
Direct RNA nanopore sequencing can identify bacterial rRNA
modifications implicated in antibiotic resistance mechanisms
Previousworks have shown that bacteria have evolved an effective and
elegant way of preventing drug binding to the ribosome by either
adding or removing specific rRNA modifications at appropriate
sites62,63. Yet, a systematic analysis of how antibiotic exposures affect
the stoichiometry and dynamics of rRNA modifications is currently
missing. The direct RNA nanopore sequencing (DRS) platform is well-
suited to capture the dynamic changes in rRNA modified sites caused
by environmental cues, such as antibiotics43,64. However, whether this
is the case, and whether nanopore sequencing is sensitive enough to
capture potential rRNA modification changes caused by the presence
of antibiotics, remains unknown.

To address this question, we first examinedwhether E. colimutant
strains lacking specific rRNAmethyltransferaseswould show increased
antibiotic resistance phenotypes, as reported in the literature. To this
end, we cultured E. coli strains lacking rsmG (responsible for placing
16S:m7G527) or rsmA (responsible for placing 16S:m6,6A1518,A1519)
(Supplementary Data S1), and exposed them antibiotics at increasing
concentrations (streptomycin or kasugamycin, for which their resis-
tance had been reported, see Fig. 1A), and monitored their growth
during 16 h. Results confirmed that rsmG and rsmA knockout strains
showed increased resistance to streptomycin and kasugamycin,
respectively (Fig. 1B, C), compared to wild type strains, in agreement
with previous literature17,19.

Previous works using nanopore sequencing to identify RNA
modifications havemainly focused their efforts on the detection of N6-
methyladenosine (m6A)47,51,53,55,57,58,65 and pseudouridine (Ψ)43,66–68, and
to a lesser extent inosine (I)69 and 2′O-methylation (Nm)43,70. However,
whether DRS can detect other less frequent RNA modification types,
such as those that have been previously implicated in antibiotic
resistance mechanisms remains unclear. To this end, we sequenced
total RNA from E. coli rsmG, rsmA and rsmF knockout strains
(responsible for 16S:m7G527, 16S:m6,6A1518,A1519 and 16S:m5C1407,
respectively), as well as from the parental E. coliwild type strain, using
DRS (Fig. 1D, see also Fig. S1). EpiNano-Error47 was used to identify
differentially modified rRNA sites by comparing the base-calling
‘errors’ of each knockout strain to those observed in the parental
wild type strain, revealing that all 3 modifications examined (m7G,
m6,6A and m5C), could be identified in the form of base-calling
‘errors’48,49 (Fig. 1D, E, see also Figure S1A). Indeed, we found that base-
calling ‘errors’ decreased in the rsmG, rsmA and rsmF knockout strains
(Fig. 1D, see also Fig. S1B), supporting that DRS can be used to identify
rRNA modification types that are involved in antibiotic resistance
mechanisms.

Poor reproducibility across RNA modification detection algo-
rithms limits our ability to identify antibiotic-induced rRNA
modification dynamics
Considering that m7G and m6,6A-deficient strains (rsmG and rsmA

knockouts) displayed increased resistance to streptomycin and
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kasugamycin, respectively (Fig. 1B,C), we then wondered whether the
wild type E. coli strain would dynamically modulate its rRNA mod-
ification levels of 16S:m7G527 and 16S:m6,6A1518,1519 upon antibiotic
exposure. Toaddress this question,we treatedwild type E. coli cultures
with either streptomycin (str) or kasugamycin (ksg) for either 1 h or
16 h, and sequenced treated and untreated samples using DRS (Sup-
plementary Data S2). Differences in rRNA modification profiles were
determined using EpiNano-Error, as well as with 3 additional softwares
(Nanocompore57, Tombo56 and Nanopolish71) that employ pairwise
comparison approaches to identify differential RNA modifications
between two samples, and therefore, are not limited to detecting a
single RNA modification type. We should note that Nanopolish does
not identify RNA modifications per se; however, it can be used to
‘resquiggle’ the reads to then predict differences in current intensity at
each position45. To ensure that unequal coverage along the transcript

would not cause biases in the detection of differentially modified sites
along the transcript and across algorithms, only full-length reads were
kept for downstream analyses (see Methods and Supplementary Data
S2). For every algorithm, we used its own scoring system to identify
differentially modified sites (see Methods), which we refer to as ‘raw
scores’.

Our results showed that each algorithm predicted many dynamic
sites between the two conditions (antibiotic-treated versus untreated).
However, the sites were poorly reproducible across biological
replicates. Notably, we observed a poor overlap when comparing
the predictions made by each algorithm (Fig. S2). In the case of
Tombo, most of rRNA sites were in fact predicted as differentially
modified, in agreement with previous works reporting that Tombo

performance was poor due to very large proportions of false
positives53,57.

Fig. 1 | Nanopore direct RNA sequencing can be used to study bacterial rRNA

modifications involved in antibiotic resistance mechanisms. A 3D structure of
the ribosome (gray) depicting the tRNA in the P-site (orange) and A-site (green).
The residues surrounding the kasugamycin binding site are shown in blue, and are
located near the anticodon region of the tRNA that is located at the P-site, whereas
residues surrounding the streptomycin binding site are shown in pink, and are
located near the anticodon region of the A-site tRNA. Surrounding residues were
defined as those that have at least one of its atoms at less than 10Å from the
antibiotic. In the zoomed regions, modified nucleotides involved in antibiotic
resistance are represented as brown surfaces, whereas the antibiotics are shown in
black. PDB structure corresponds to 7K00.B Growth curves of E. coliWT (left) and
E.coli rsmGKO (right) upon increasing concentrations of streptomycin. Data shown
represents the average OD600 values of 2 independent biological replicates. Each
biological replicate was calculated as themedian of 3 technical replicates. Data was
collected every 9minutes, during a time course of 16 h. Source data are provided as

a Source Data file. C Growth curves of E. coliWT (left) and E.coli rsmA KO (right)
upon increasing kasugamycin concentrations. Data shown represents the average
OD600 values of 2 independent biological replicates, and each biological replicate
was calculated as the median of 3 technical replicates. Data was collected every
9minutes, during a time course of 16 h. Source data are provided as a Source Data
file. D IGV snapshots of E.coli WT and knockout strains illustrating loss of base-
calling errors upon enzyme knockout (rsmG and rsmA). Positions with mismatch
frequencies greater than 0.1 are colored, whereas positions with mismatch fre-
quencies lower than 0.1 are shown in gray. E Scatterplots of the summed base-
calling error frequencies (sum of insertion, deletion and mismatch frequencies) at
each nucleotide position in the knockout strain, relative toWT. The rRNAmodified
sites that are lost upon knockout of the gene are shown in red (position 0); the
neighboring positions (±4 nt) to the rRNAmodification site (position 0) are shown
in blue. Remaining positions are shown in gray.
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Systematic benchmarking reveals that performance of
nanopore-based RNA modification detection algorithms
depends on modification type, sequencing coverage and
stoichiometry
To investigate the reasons behind the poor reproducibility of RNA
modification detection across softwares, we systematically analyzed
how different features (sequencing coverage, RNA modification type
and modification stoichiometry) might impact the performance of
each algorithm. To this end, we analyzed DRS datasets from E. coli and
S. cerevisiae wild type and mutant strains lacking distinct RNA mod-
ification types at known rRNA positions (see Supplementary Data S3).

Firstly, we examined whether different RNA modification types
(Am, m5C, m7G, m6,6A, Um, Ψ) would be detected by each different
software.We should note that RNAmodifications appear in the formof
altered base-calling ‘errors’ and/or current intensities in positions that
are neighboring the modified site (i.e., positions −2,−1, +1 and/or +2

relative to the modified site)43,47,57. For this reason, we quantified the
scores in the 5 nucleotides surrounding the differential modified site
(5-mer), and then examined how each modification type was detected
by each software, finding that the position within the 5-mer identified
as ‘altered’ varied both with the RNA modification type and algorithm
of choice (Fig. 2A). For example, EpiNano typically identified altera-
tions in the base-calling signatures at the position 0 of the 5-mer,
whereas current intensity-based methods, such as Tombo, Nanopolish
or Nanocompore, frequently identified the alterations at the neigh-
boring positions.Moreover, alterations in the signal were often seen at
different positions of the 5-mer, even when comparing the same RNA
modification type across different algorithms. For example, 2′-O-
methyladenosine (Am) could be detected by all 4 softwares, but the
altered signal was detected at distinct positions of the 5-mer
depending on the algorithm. Altogether, these results suggest that in
order to compare the predictions from individual softwares, raw

Fig. 2 | Algorithm performance varies depending on RNA modification type,

modification stoichiometry and sequencing coverage. A Dotplots of raw dif-
ferential RNA modification scores along the modified 5-mer obtained by each
software when detecting different RNAmodification types. In the x-axis, 0 denotes
the modified position. Position within the 5-mer of the ‘altered feature’ varies
depending on the RNAmodification type, but also depending on the software used
to identify themodification changes. Data from three technical replicates from four
different coverage levels is included. Box, first to last quartiles; whiskers, 1.5×
interquartile range; center line, median. Source data are provided as a Source Data
file. B Raw RNA modification scores along the E. coli 16S rRNA transcript for each
individual software tested, obtained when comparing E. coli wild type and rsmF

knockout strains. Analyses have been performed using either 100 (upper panel) or
500 randomly selected reads (lower panel). Themodified site that is reported to be

lost in the rsmF knockout strain (16S:m5C1407) is indicated with an asterisk (*). See
also Figs. S3–S6.CBarplots ofmedian differentialmodification raw scores obtained
by each software in the modified 5-mer for each modification type present in the
benchmarking. Raw scores are obtained by comparing the wild type and knockout
strains, for each given site. Two randomly chosen rRNAmodified sites that are not
expected to change across any of the datasets have been included in the analyses as
controls (16S:730 and 25S:2549). Error bars indicate median ± s.d. of three repli-
cates. Source data are provided as a Source Data file. D Barplots of median raw
scores in each modified 5-mer analyzed. Samples were analyzed using 1000 reads
per sample, and with a diverse range of stoichiometry levels (see Methods). Error
bars indicatemedian ± s.d. of three replicates. Source data are provided as a Source
Data file.
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scores from all positions of the 5-mer should be taken into con-
sideration for downstream analyses, rather than comparing the
nucleotide positions predicted by each software, as each software
associated the modification signal to distinct nucleotide position(s).

Next, we examined how sequencing coverage affected the per-
formance of each software. To this end, each DRS dataset (Supple-
mentaryData S3) was downsampled into three independent subsets of
50, 100, 500 and 1500 reads (seeMethods). Each wild type subset was
then compared to a knockout subset of reads, and differential peaks
were identified by each algorithm (Fig. 2B, see also Fig. S3–S6). Our
results revealed that the identification of differentially modified sites
was stronglydependent on sequencing coverage. Notably, theminimal
coverage required to detect a differentially modified site varied both
depending on the algorithm as well as on the modification type. For
example, loss of m6,6A could be detected by Tombo when having a
minimum coverage of 500 reads whereas Epinanowas able to detect it
with a coverage of 50 reads (Fig. 2C). Overall, our results demonstrate
that coverage significantly affects the performance of all algorithms,
that not all softwares efficiently detect all RNA modification types
given a specific sequencing coverage, and that using 50 reads per
position (which is the recommended threshold by several of the soft-
wares) is often insufficient to detect RNAmodifications, evenwhen the
site modified at high stoichiometry.

Finally, we assessed the impact of RNA modification levels (i.e.,
stoichiometry) in the performance of each algorithm. To this end, we
artificially generated samples with decreasing modification stoichio-
metries (100, 75, 50, 40, 30, 20 and 10%) by mixing reads from wild
type and knockout samples at different proportions, with the
assumption that wild type samples are 100% modified at the site of
interest, and knockout samples are 0% modified (see Methods). Sub-
samplingswereperformed in triplicate for eachRNAmodification type
and stoichiometry level. We should note that all artificial mixes
representing distinct RNA modification stoichiometries contained the
same number of reads (n = 1000), to ensure that coverage would not
be a confounder in the analysis. Our results revealed that stoichio-
metry had a major effect in the detection of RNA modifications
(Fig. 2D), in agreement with previous works57,59. Notably, we observed
that the effect of stoichiometry was strongly dependent on the RNA
modification type. For example, Amwas detected bymost of softwares
across all stoichiometries tested; by contrast, the majority of algo-
rithms struggled to detect m5C, even at high stoichiometries (Fig. 2D).

NanoConsensus outperforms individual softwares at predicting
RNA modifications
Our results showed that RNA modification type, stoichiometry levels
and coverage impact the detection of differentially modified sites in
DRS datasets (Fig. 2). Notably, our results also revealed that all soft-
wares examined predicted a significant number of false positives
(Fig. S2). Indeed, each software identified several ‘differentially mod-
ified’ sites when comparing wild type and knockout strains, even
though only one RNA modified site is absent in the knockout strain,
relative to the wild type (Fig. 2B, see also Figs. S3–S6).

We reasoned that the detection and replicability could be
improved if predictions took into account 5-mer data instead of single
nucleotide one. In addition, we reasoned that Z-score normalization
would decrease the proportion of false positives identified by each
software (see Methods). Indeed, we observed that Z-score rescaling
significantly decreased the number of false positives, and decreased
the minimum number of reads that were required to identify a site as
differentially modified (Figs. S7–S11).

We then examined whether results using Z-score rescaled scores
would improve the detection of differentially modified sites in E. coli

cultures upon streptomycin (str) or kasugamycin (ksg) exposure
(Figs. S12–S13). We found that all 4 softwares showed good overlap of
predicted differential sites across biological replicates, within each

software (38–69% replicability, depending on the software) (Fig. S14A).
However, we still observed a poor overlap of predicted differentially
modified sites across softwares (15–25%) (Fig. S14B) suggesting that a
robust pipeline to detect differentially modified RNA sites from DRS
datasets is greatly needed.

We reasoned that the detection could be further improved if the
predictions from different algorithms would be combined in a con-
sensual manner, as this should decrease the number of false positives
while retaining the true differentially modified sites. To this end, we
developedNanoConsensus (Fig. 3A), an algorithm that reports putative
modified regions at per-transcript level, which takes as input the
results generated by different RNA modification detection algorithms
(EpiNano, Nanopolish, Tombo and Nanocompore), and generates as
output a list of differentially modified sites that are robustly predicted
across softwares and replicates. Briefly, NanoConsensus converts the
outputs of each software into Z-scores, identifies putative modified
sites by each software, and assigns a finalNanoConsensus score to each
position of the transcript. Because the alteration of the signal caused
by a modification does not necessarily overlap across softwares
(Fig. 2A, see also S7A),NanoConsensus expands each putativemodified
site predicted by each software into a 5-mer window, and predicts the
overlap of 5-mer regions predicted by each software. Finally, all
regions supported by at least two softwares and with aNanoConsensus
score higher than a threshold (which is dependent on the background
‘noise’, see Methods) are reported as ‘differentially modified’
sites (Fig. 3A).

Using this approach, weobserved thatNanoConsensuswas able to
robustly identify all modification types examined (Fig. 3B), in all
independent biological replicates (n = 3) (Fig. S15). We then assessed
Nanoconsensus’ performance in the detection of RNA modifications
across diverse stoichiometry levels, coverage and modification types
(Fig. 3C,D), using as input the same datasets used to assess the per-
formance of each individual software (Fig. 2, see also Fig. S7 and
Methods). To compare the performance of NanoConsensus to that of
each individual software, Receiver Operating Characteristic (ROC)
curves were built for each algorithm, modification type, coverage and
stoichiometry, and the comparative performance was assessed by
comparing the Area Under the Curve (AUC) values for eachROC curve.
Our results showed thatNanoConsensuswasmore robust in predicting
RNA modifications across diverse modification types, stoichiometries
and coverage (Figs. S16 and S17). Indeed, NanoConsensus globally
outperformed all individual softwares in terms of AUC values (AUC =
0.959) when using as input all the subsets (RNA modification types,
stoichiometries, and coverage) included in the benchmarking
(Fig. S18).

Although NanoConsensus can robustly detect all RNA modifica-
tion types examined in this work (Fig. 3B, see also S15), we should note
that m5C modifications were among the worst performing of all
modifications examined, as these could not be accurately identified at
low stoichiometry levels (Fig. 3D, F). Despite these limitations, we
found thatNanoConsensus could robustly detectm5Cmodifications in
datasets with ≥30% modification stoichiometry (Fig. S19). To further
confirm the ability of NanoConsensus to detectm5Cmodifications, we
examined its performance in independent mouse rRNA DRS datasets,
by comparing wild type and NSUN5 KO mice, which are expected to
lack 28S:m5C3438. The lack of modification in NSUN5 KO mice was
confirmedbybothRT-qPCRandbisulfite sequencing (Fig. S20, see also
Methods). Our results confirm that NanoConsensus could accurately
identify m5C in mouse rRNA molecules (Fig. S21), further supporting
our observation that NanoConsensus is able to robustly identify m5C
modifications in diverse sequence contexts, as long as the modifica-
tion stoichiometry of the modified site is ≥30%.

Finally, we examined the number of false positives reported by
each individual software, compared to NanoConsensus. To this end,
we computed the positive predictive values (PPV) across diverse
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stoichiometries and RNA modification types, for each algorithm.
The PPV reflects the proportion of true positives (TP) among the set
of predicted ‘positive’ (P) differentially modified sites. Our results
showed that the PPV was affected both by modification stoichio-
metry and coverage, and that it was also dependent on the RNA
modification type (Fig. 3E, see also Figs. S22–S23). Notably, the PPV
of each software was significantly improved after Z-score

normalization, due to the decrease in false positives (Fig. S24).
Globally, we found that Nanopolish showed the worst performance
in terms of PPV, followed by EpiNano and Nanocompore. On the
other hand, NanoConsensus showed the best performance in terms
of PPV across all stoichiometries and modification types, implying
that it reports fewer false positives, compared to individual soft-
wares tested (Fig. 3F).
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Aminoglycoside exposure leads to changes in the modification
pattern of the 16S in the bacterial ribosome
We then used NanoConsensus to re-examine the question of how
antibiotic exposures, such as kasugamycin or streptomycin, may
impact the rRNAmodification patterns of the bacterial ribosome. To
this end, E. coli cultures were grown in LB until log phase, and were
then exposed to streptomycin (str), kasugamycin (ksg) or left
untreated (Fig. 4A). Cultures were collected 1 h or 16 h post-treat-
ment, and the experiment was performed in independent biological
replicates, on different days. DRS libraries from total RNA were built
as previously described43 (see Methods), and the data was analyzed
in a pairwise manner using NanoConsensus. This analysis revealed
multiple regions (5 in 16 s rRNA, 1 in 23 s rRNA) that were ‘differen-
tially modified’ in both replicates (Fig. 4B, labeled in red). Notably,
all the identified regions located in the 16S rRNA overlapped with
known rRNA-modified sites (Supplementary Data S5). In terms of
directionality of the RNA modification change, all sites identified as
differentially modified decreased in their modification stoichio-
metry upon antibiotic exposure (Fig. S25). We should note that
increased duration of antibiotic treatment (1 h or 16 h) (Fig. 4B); did
not significantly change the set of differentially modified sites
identified in the case of kasugamycin, whereas in the case of strep-
tomycin, some differentially rRNA modified sites were lost with
extended exposures.

Finally, we examined the 3D location of ‘differentially modified’
regions upon antibiotic treatment within the ribosome structure, and
found that these regions were very close in the 3D space despite being
far in the linear rRNA molecule (Fig. 4B). More specifically, these
regions were all located within the A- and P-sites of the ribosome
(Fig. 4C see also Supplementary Data S5), thus matching the binding
site areas of streptomycin and kasugamycin, respectively (Fig. 4C).
Thus, our results suggest that the alteration of a subset of rRNA
modification might constitute an adaptive response of bacterial cells
to diminish the binding affinity of kasugamycin and streptomycin in
the P-site and A-site, respectively. Altogether, our results demonstrate
that rRNA modification levels can be dynamically regulated upon
environmental exposures, and that rRNA modification dysregulation
might constitute a common molecular mechanism employed by bac-
terial species to increase their tolerance towards antibiotics binding
the ribosome.

Mutations or differential rRNA usage do not explain the
observed differences in DRS profiles
We and others have shown that differential RNA modifications in DRS
datasets cause alterations in the current intensities and/or base-calling
‘error’ patterns45,72. However, changes in the nucleotide sequence (e.g.,
SNPs, alternative rRNA usage) can also lead to such alterations, and
thus could constitute a confounder in the analysis, misguiding the
detection of differential rRNA modifications.

To exclude such possibility, we examined whether the use of
alternative E. coli rRNAgenes could explain our results. E. colihas seven
rRNA operons encoded in its genome, with small sequence differences
among them73,74. Notably, previous works have shown that stress can
lead to change in its operon usage75,76. To examine whether differential
rRNA operon usage could explain our observations, we performed a
multiple sequence alignment of the 7 annotated E. coli 16S rRNA
sequences, finding that all 7 rRNA sequences were identical across
operons within regions identified as ‘differentially modified’, (Fig. 5A)
demonstrating that differential rRNA operon usage could not explain
the observed changes in the DRS data.

Another possible confounder in the rRNA modification analysis
could be the presence of mutations that might arise at the genomic
level upon bacterial divisions, which might be selected for if they
confer a selective advantage upon antibiotic exposure77. To examine
whether rRNA mutations could explain our observations, we
sequenced antibiotic-treated and untreated samples using Nano3P-
seq78, a cDNA-based nanopore sequencing method that efficiently
captures both the coding and non-coding transcriptome, regardless of
their tail composition (see Methods and Supplementary Data S4).
Analysis of rRNAmolecules sequencing using Nano3P-seq revealed no
mutations at the rRNA regions identified as “differentiallymodified”by
Nanoconsensus (Fig. 5B). Altogether, our analyses support that the
changes seen in the DRS data are caused by alterations in the rRNA
modification patterns, and not by changes occuring at the rRNA
nucleotide sequence or caused by alternative use of rRNA operons.

De novo rRNA transcription occurs upon streptomycin
exposure
Our results show that alterations in bacterial rRNA modification pat-
terns can already be seen 1 h after antibiotic exposure (Fig. 5A, B),
demonstrating that rRNAmodifications can be rapidly regulated upon
environmental exposures. This, in turn, opens new questions regard-
ing how these differentially modified rRNA molecules are produced.

To decipher themechanism(s) used by bacterial cells to alter their
rRNA modification profiles, we first examined whether specific path-
ways might be altered upon antibiotic exposure. To this end, we
sequenced ribodepletedRNA samples fromuntreated, ksg-treated and
str-treated cultures (1 h post-antibiotic exposure) using Nano3P-seq, in
biological duplicates. We performed differential expression analysis
(Fig. 5C and Supplementary Data S6, see also Methods) and GO term
enrichment analysis on the set of genes that had at least 4-fold changes
in their expression levels (Fig. 5D), which revealed that both upon
kasugamycin and streptomycin treatment, transmembrane transport-
associated genes are downregulated, possibly to reduce the antibiotic
uptake. In addition, we also found that de-novo ribosome synthesis
genes were significantly upregulated upon streptomycin treatment,
suggesting that the origin of lowlymodified 16S rRNAmoleculesmight
arise fromnewly synthesized 16S rRNAmolecules. However,we cannot

Fig. 3 | NanoConsensus outperforms individual softwares in the prediction of

RNA modifications. A Schematic overview of the NanoConsensus pipeline. B Per-
position NanoConsensus scores along the 16 s and 18 s rRNA transcripts, for the
battery of RNA modification types benchmarked in this work (m66A, Y, m5C, Am,
Um and m7G), where the WT strain has been compared to a different knockout
strain that lacks a specific rRNAmodification (see Supplementary Data S1 for list of
knockout strains used for eachmodification type). The knownmodified site that is
lost is highlighted with an asterisk (*). Only one replicate is shown for each mod-
ification type, results obtained for additional replicates are shown in Fig. S15.
C Barplot of NanoConsensus scores of the 5-mer regions centered in each modified
site analyzed. Samples included in the analysis consist of 100% modified samples
(WT), with varying read coverage levels, and are the same that were used to gen-
erate Fig. 2C. Error bars indicate median ± s.d. of three replicates. Source data are
provided as a Source Data file. D Barplot of median NanoConsensus scores of the
5-mer regions centered in eachmodified site analyzed. Samples were analyzedwith

a range of stoichiometry levels (and fixed coverage of 1000 reads), which are the
same samples that were used to generate Fig. 2D. Error bars indicate median ± s.d.
of three replicates. Source data are provided as a Source Data file. E Radar plots of
positive predictive values (PPV) for each software, RNA modification type and
stoichiometry using either raw scores (upper track) or Z-scores (lower track). PPVs
for raw scores were computed using the following threshold: for EpiNano, all sites
reported as modified; for Nanopolish, sites whose Δmedian current intensity
/median(Δmedian current intensity)>=5; for Tombo, sites whose p-value is lower
than 0.01 after Benjamini–Hochberg correction; for Nanocompore, sites whose p-
value is lower than 0.01 andwith a GMM log odds ratio>0.5. PPVs for Z-scores were
computed with a Z-Score threshold > 5. Source data are provided as a Source Data
file. F Radar plots of positive predictive values (PPV) for NanoConsensus. PPV were
computed using a Z-Score threshold > 5 and NanoConsensus score threshold >
5*(median across transcript). Source data are provided as a Source Data file.
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exclude other possibilities, such as the existence of eraser enzymes,
that can be responsible for the appearance of lowlymodified 16S rRNA
molecules.

To test this hypothesis, we examined the cumulative distribution
of per-read ‘errors’ (which can be used as a proxy for the relative
number of RNA modifications per molecule) from str-treated, ksg-
treated and untreated full-length DRS reads (see Methods). Our ana-
lysis revealed that a population of lowly modified reads (i.e., summed
errors <4) was present in both str- and ksg-treated samples, but was
largely absent in untreated samples, suggesting that lowly-modified
rRNA reads appear in response to antibiotic treatments (Fig. 5E).

Similar results were obtained using PCA analysis of per-read rRNA
modification profiles, which also showed that most of the lowly-
modified rRNA reads weremainly appearing upon antibiotic exposure
(Fig. S26).

Excluding rsmA and rsmG, the lack of individual methyl-
transferases does not lead to an increased resistance to strep-
tomycin nor kasugamycin
Previous works have reported that the lack of rsmA (responsible of
placing m6,6A in 16S:1518-1519), and rsmG (responsible of m7G in
16S:527) leads to increased resistance to kasugamycin and

Fig. 4 | Direct RNA sequencing results of E. coli samples exposed to strepto-

mycin and kasugamycin. A Experimental design of the exposure of non-resistant
E. coli to both streptomycin and kasugamycin. (Created in BioRender. Novoa, E.
(2024) BioRender.com/b62y778). B NanoConsensus scores along the 16S rRNA
(upper panel) and 23S rRNA (lower panel) of E. coli samples collected after 1 h or
16 h exposure to streptomycin (left panel) or kasugamycin (right panel). In gray,
non-significant positions; in blue, regions identified by NanoConsensus in only one
replicate; in red, regions identified in both replicates. Known modified sites found

in replicable differentially modified regions identified by Nanoconsensus are also
shown. Source data are provided as a Source Data file. C 3D structure of the bac-
terial ribosome (PDB: 7K00), highlighting the differentiallymodified rRNA residues
upon streptomycin (upper panel) or kasugamycin (lower panel) exposure identi-
fied in this work. Differential rRNAmodified residues are shown in red; in black, the
antibiotic; in light green andorange, the tRNAmolecule located in theA andP-sites,
respectively.
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streptomycin, respectively. In our work, we find that modification
levels of both 16S:m6,6A1518-1519 and 16S:m7G527 are significantly
decreased upon antibiotic exposure, suggesting an adaptive response
of bacteria in their rRNA modification profiles to increase their resis-
tance to antibiotics. Notably, we also found that additional rRNA
modified sites, apart from these two, were significantly decreased in
theirmodification levels upon antibiotic exposure (Fig. 4B). Therefore,

we wondered whether the lack of methyltransferases responsible for
placing rRNA modifications that we find dysregulated upon antibiotic
treatment, in addition to rsmA and rsmG, might lead to increased
antibiotic resistance.

To this end, we cultured seven E. coli knock-out strains (listed in
Supplementary Data S1), including rsmA and rsmG, that we identified
as responsible for placing rRNA modifications that are differentially
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methylated upon streptomycin and/or kasugamycin exposure
(Fig. 4B). Each strain was cultured under a broad range of antibiotic
(kasugamycin or streptomycin) concentrations, and their growth was
monitored for 16 h (Figs. 6A and S27). To assess whether the lack of a
givenmethyltransferase enzyme led to increased antibiotic resistance,
we compared the growth of each knockout to that of the wild type
strain by subtracting the AUC values of the growth curves of each
strain and antibiotic concentration relative to the same conditions in
thewild type strain. Our results showed that the lack of rsmA and rsmG

led to increased antibiotic resistance (Fig. 6B), as expected. However,
the lack of other methyltransferases examined did not lead to
increased antibiotic resistance, despite being responsible for placing
rRNA modifications at sites that we find differentially modified upon
antibiotic exposure. The possible synergistic effect of removing sev-
eral of these enzymes simultaneously remains unknown.

Discussion
Aplethora of computationalmethods for detecting RNAmodifications
in nanopore direct RNA sequencing (DRS) datasets have been devel-
oped in recent years43,48–50,52–58. These methods typically predict RNA
modifications either through the analysis of the raw signal features
(e.g., current intensity and/or dwell time)43,52–58 or in the form of dif-
ferential base-calling ‘errors’47–51. Previous works have compared the
performance of some softwares in detectingm6Amodifications in DRS
datasets, finding a relatively poor overlap between the predictions
across softwares53,57,58,79,80. However, their comparative performance in
detecting other RNA modification types (e.g., Ψ, Nm, ac4C) has so far
not been assessed. Thus, it is unclear which software(s) should be used
to study rRNA modification dynamics.

To tackle this question, here we benchmarked four softwares that
can inprinciple detect diverse RNAmodification types inDRSdatasets,
and assessed their ability in detecting diverse RNA modification types
(i.e., Ψ, Am, Um, m6,6A, m7G and m5C) across diverse stoichiometries
and sequencing coverage ranges. Our results showed that softwares
relying on signal intensity features were better than those using
basecalling errors at detecting some RNA modification types (e.g.,
m5C), but the oppositewas seen for other RNAmodification types (e.g.,
m6,6A) (Fig. 2C). Notably, we also found that in cases where RNA
modifications showed a ‘spread of signal’ along several nucleotides,
algorithms often identified different positions as the ‘differentially
modified site’, partly explaining the poor overlap of RNA modification
predictions across softwares (Fig. S2). In addition, our analyses showed
that both coverage and stoichiometry levels had a strong impact in the
performance of the algorithms (Fig. 2), lowering both their sensitivity
and specificity (Figs. S3–S6 and S16). To overcome these limitations,
we designed and implemented NanoConsensus, a workflow that iden-
tifies differentially modified RNA sites between two samples using as
input the predictions from 4 different softwares, allowing for sliding-
windowoverlaps to identify commonpredictions across softwares.We
found that NanoConsensus outperformed all 4 individual softwares,
and was robust across a range of RNA modification types,

stoichiometry and coverage levels (Fig. 3E-F). To facilitate the use of
this tool, wehavemadeNanoconsensus available as Nextflowmodule81,
and have integrated it within the MasterOfPores61 Nextflow workflow,
to ensure reproducibility, scalability and traceability of the analyses
performed. We should note that similar ‘consensus’ approaches have
also been successfully employed to improve the detection of DNA
modifications in nanopore sequencing data82.

Once the performance of Nanoconsensus was benchmarked and
optimized, we applied it to investigate whether bacterial rRNA mod-
ificationprofileswere altered uponantibiotic exposure, anddetermine
whether variation in rRNA modification levels might constitute a nat-
ural mechanism that bacteria use to increase their resistance upon
antibiotic exposure. To this end, we sequenced total RNA from
streptomycin-treated, kasugamycin-treated and untreated E. coli cul-
tures using nanopore DRS, and compared the rRNA modification
profiles of treated and untreated cultures. We found that antibiotic
exposure significantly altered the 16S rRNAmodificationprofiles of the
bacterial ribosome (Fig. 4B). Notably, differentially modified rRNA
siteswere largely locatedwithin the vicinity of theA andP-sites (Fig. 4C
and Supplementary Data S5), which correspond to the binding regions
of the streptomycin and kasugamycin, respectively. We should note
that one sitewas identified in 23S rRNA,whichdid not overlapwith any
annotated rRNA modified site, and was located 91 Å and 105.4Å away
from streptomycin and kasugamycin binding sites, respectively, and
thus, was considered as a false positive for the remaining downstream
analyses.

The fact that rRNA modifications are altered precisely in the
vicinity of the antibiotic binding site suggests that this phenomenon is
a specialized response from bacteria to the specific antibiotic in
question, possibly as a means to decrease the binding affinity of the
antibiotic to the bacterial ribosome. In the case of streptomycin, it has
been previously reported that the antibiotic interacts with positions
16S:530 in the loop19,83, and more specifically with 16S:m7G527.
Therefore, the lack of this modification, possibly also enhanced by the
loss of other neighboringmodifications, likely causes a decrease in the
binding affinity of the antibiotic. In the case of kasugamycin, it is
known that both m6,6A residues (16S:m6,6A1518 and 16S:m6,6A1519) are
not in direct contact with the antibiotic, which might explain why the
absence of these modifications confers only low-level resistance84.

Previous works using DRS have reported differential RNA mod-
ification patterns upon heat and oxidative stress in snRNAs, snoRNAs
and mRNAs, but not in rRNAs43,64. Contrary to previous observations,
our results point to rRNA modifications being dynamically regulated
upon environmental conditions, at least in the case of antibiotic
exposure(s). An alternative explanation for the loss of the 16S rRNA
modifications observed upon antibiotic exposure would be that anti-
biotics themselves interferewith theRNAmodificationmachineryand/
or alter the recognition of the sites during rRNA maturation.

Indeed, the selective loss of certain bacterial rRNA modifications
upon antibiotic exposures, in an antibiotic-specificmanner, opens new
questions regarding whatmight be themechanism(s) that bacteria use

Fig. 5 | Streptomycin exposure leads to increased de novo synthesis of rRNA

molecules, some of which lack a subset of rRNA modifications. A Multiple
sequence alignment (MSA) of the seven rRNA operons sequences in all regions
identified by NanoConsensus upon antibiotic exposure. B IGV tracks of nanopore
cDNA reads aligning to the ribosome sequence in all regions identified by Nano-

Consensus upon antibiotic exposure. Positions with mismatch frequencies greater
than 0.1 are colored, whereas positions with mismatch frequencies lower than 0.1
are shown in gray. C Differential expression analysis results between treated and
untreated samples. In gray, non-significant genes; in green, genes with
abs(log2FC) > 2 and; in red, geneswith abs(log2FC) > 2 andpadjustedvalue >=0.05.
P-values were calculated using the two-sided Walsh test and corrected with
Benjamini–Hochberg approach. Source data are provided as a Source Data file.

D GO term enrichment analysis using molecular process terms using as input all
genes with abs(log2FC) > 2, which corresponded to n = 195 (upregulated) and
n = 214 (downregulated) genes upon streptomycin treatment, and n = 197 (upre-
gulated) and n = 203 (downregulated) genes upon kasugamycin treatment. In
orange, terms related to downregulated genes upon antibiotic exposure and; in
green, related to upregulated genes. P-values were obtained with the Fisher’s Exact
Test, followed by calculating the False Discovery Rate (FDR). Only terms with a
FDR <0.05 were included in the final results. Source data are provided as a Source
Data file. E Cumulative distribution of summed basecalling errors at per read level
fromboth untreated (n = 10,953 reads), str-treated (n = 3689 reads) and ksg-treated
(n = 14,376 reads) samples. In the upper-left corner, p-values between distributions
calculated with the two-sided KS test are shown.
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Fig. 6 | Depletion of rsmA and rsmG, but not othermethyltransferases, leads to

increased resistance to kasugamycin and streptomycin. A Median growth
curves from four biological replicates of different E. coli strains (wild type, rsmA

knockout, rsmG knockout and rsmE knockout) across a range of antibiotic (strep-
tomycin, upper panels; kasugamycin, lower panels) concentrations. Data for each
biological replicate was computed as the median of three technical replicates.
Growth curve data was fitted to a logistic curve. See also Figure S27 for growth

curves in additional E. coli strains tested (rsmB, rsmD, rsmH and rsmJ knockout
strains). B Barplots depicting Median Area Under the Curve (AUC) difference in
growth curvesbetweenwild typeandknockout strains (KO-WT), for everyKOstrain
and across all antibiotic concentrations tested. In bold, the strains that are reported
to have an increased resistance to each specific antibiotic. Error bars indicate
standard deviation of four biological replicates. Source data are provided as a
Source Data file.
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to achieve the outcome of differential rRNA modification. To answer
this question, we performed single molecule analysis of rRNA mod-
ification patterns (Figs. 5E and S26) as well as differential expression
analysis of treated and untreated cultures using Nano3P-seq (Fig. 5C
and Supplementary Data S4). These efforts revealed that antibiotic-
exposed bacteria have increased de novo expression of under-
modified rRNA molecules, which ultimately leads to significantly
altered rRNA modification profiles. It remains unclear, however, how
antibiotics lead to altered rRNA maturation processes and to the
production of under-modified rRNA molecules.

Future work is needed to confirm whether the observed changes
in rRNA modification patterns are caused by de novo generation of
under-modified rRNAmolecules that appear upon antibiotic exposure,
or other possible models, such as that the presence of antibiotics
causes defects in ribosome assembly, which leads to the generation of
an under-modified rRNA population. In this regard, it has been pre-
viously shown that kasugamycin exposure leads to the formation of
61S ribosomes85, although these ribosomes showed unaltered
16S:m66A1518 and 16S:m66A1519 modification levels in previous stu-
dies, which differs from our findings.

In addition to the mechanism that leads to the appearance of
under-modified rRNA populations, an exciting open question that is
prompted by this work is whether differentially modified rRNA sub-
populations that are naturally generated will be incorporated into
translating ribosomes and used for protein synthesis, for example by
performing sucrose gradient fractionation coupled to nanopore total
RNA sequencing (to capture rRNA modifications) and mRNA sequen-
cing (to capture selective translation of subsets of transcripts). Estab-
lishingwhether these unmodified ribosomes are part of the translating
pool of ribosomes, and whether theymight be involved in preferential
translation of selected subsets of mRNAs as a means to achieve anti-
biotic resistance, are still open questions that need to be addressed in
the future.

Various resistance mechanisms, including enzymatic detox-
ification, target alteration (rRNAs and ribosomal proteins) and
reduced accumulation (impermeability and efflux) have been shown
to be involved in bacterial resistance to protein synthesis
inhibitors86. Notably, rRNA alteration has recently gained increased
interest due to several recent studies showing that some
chloramphenicol-florfenicol resistant (Cfr) bacteria carried a gene
encoding for a mutant version of an rRNA methyltransferase87,88.
Here we systematically examined whether the loss of individual
methyltransferases, responsible for placing rRNAmodifications that
we identified as differentially modified upon antibiotic exposure
(Supplementary Data S5), might alter the resistance of bacteria
towards the antibiotic in question. We found that only the loss of
rsmG and rsmA, but not othermethyltransferase enzymes examined,
led to a resistance phenotype (Fig. 6A, B, see also Fig. S27). It is
possible that the lack of these additional enzymes is not per se
enough to lead to increased resistance, but may have a synergistic
effect when lost simultaneously with rsmG and/or rsmA. In this
regard, recent studies have reported that some Mycobacterium

tuberculosis antibiotic-resistant strains carry multiple mutations in
several methyltransferase genes89 that are ortholog to the genes
identified by Nanoconsensus, suggesting that the lack of these
additional methyltransferases might constitute a selective advan-
tage towards antibiotic resistance.

While our work establishes a robust framework to identify dif-
ferential rRNA modification patterns across conditions using DRS
(Fig. 2), we should note that Nanoconsensus has some limitations, as
well as room for future improvement. Firstly, it does not provide
information regarding the directionality (i.e., increase or decrease) of
the rRNAmodification changes between two conditions, although this
limitation can be partly alleviated by using the Epinano results that are
generated as part of the Nanoconsensus pipeline (see Fig. S25).

Secondly, NanoConsensus results are qualitative or at best semi-
quantitative, and therefore, to obtain quantitative information on the
differentially modified identified, other softwares such as nanoRMS43

should be used downstream in the analysis. Thirdly, Nanoconsensus
lacks single nucleotide resolution; consequently, if several RNA mod-
ifications are located within the differentially modified regions iden-
tified, it is not possible to determine which specific rRNAmodification
is changing. Fourthly, NanoConsensus requires a minimum modifica-
tion stoichiometry of 10–30% (depending on the RNAmodification) to
detect a differentially modified site, limiting its applicability to RNA
molecules with high modification stoichiometries, such as rRNAs or
tRNAs. Despite these limitations, we demonstrate that Nanoconsensus
can be used to reveal antibiotic-dependent rRNA modification chan-
ges, contributing to the understanding of how bacteria tune their
ribosomes as a response to environmental conditions. Notably, this
knowledge may be applied in the future to improve the design of
antibiotic chemical structures such that they have improved binding
efficiencies towards both the fully-modified and under-modified
ribosomal A and P-site regions.

Methods
Bacterial strains and culturing
E. coli strains used in this study (rsmA:JW0050, rsmG:JW3718 and
rsmF:JW5301, see Supplementary Data S1 for additional details) were
obtained from the Keio Knockout Collection90, including the reference
wild type strain (BW25113). Knockout strains have a kanamycin cas-
sette replacing the depleted gene. Strainswereplated in LB-agar plates
(E. coli BW25113) or in LB-agar plates supplemented with 25μg/mL
kanamycin (in the case of E. coli knockout strains).

Growth curves of antibiotic-resistant E. coli strains
For each strain, E. coli starter cultures were grownO/N in 4mL tubes at
37 °C and 180 rpm. Aliquots from the overnight cultures were added
into a final volume of 200μl in 96-well plates with an initial OD600 of
0.01. Different antibiotic concentrations (streptomycin: 8,16, 32, 64
and 128μl/mL; kasugamycin: 62, 125, 250, 500 and 1000μl/mL) were
tested in both non-resistant and resistant strains. E.coli rsmF KO strain
was not tested for kanamycin resistance as its KO was generated
through the insertion of a kanamycin resistance cassette90. Bacteria
was grown at 37 °C and OD600 was measured every 10min with a
TECAN M200 Plate Reader. We should note that the rsmF knockout
strainwasnot included in the growth curve experiments as thismutant
is expected to show increased resistance to kanamycin, and all Keio
collection mutants contain a kanamycin resistance cassette replacing
the gene that has been removed90. All experiments were performed in
biological replicates (n = 4) for each strain and condition, and each
strain and condition was measured at least in two independent plates
and in two different days.

Bacterial exposure to antibiotics
E. coli BW25113 starter cultures were grown O/N in 4mL of LB at 37 °C
and 180 rpm. Three 500mL LB cultures were then inoculated with the
starter culture, to an initial OD600 ≈0.01. OD600 was monitored every
hour with a spectrophotometer until all cultures reached OD600 ≈0.4
(early log phase). Then, the first 500mL culture was supplemented
with streptomycin 10mg/mL (final concentration = 16μl/mL) (Sigma-
Aldrich, #S6501-5G), the second 500mL culture was supplemented
with kasugamycin 40mg/mL (final concentration = 250μl/mL) (Merck,
#32354-100MG) and the third culture was supplemented with the
equivalent volume of water (no antibiotic). OD600 was measured at
time points 0 h, 1 h and 16 h after antibiotic addition (or no antibiotic).
50mL from each erlenmeyer were taken at each of the three time
points, and were immediately centrifuged in a pre-chilled benchtop
centrifuge at 16,000g 4 °C for 10min. Supernatant was discarded, and
pellets were stored at −80 °C until further use. This experiment was
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repeated with three independent biological replicates, which were
cultured in different days.

E. coli total RNA extraction
Frozen pellets were thawed on ice, followed by the addition of 400uL
of Trizol (Life Technologies, #15596018). After fiveminutes incubation
at room temperature, 90uL of chloroform (Vidra Foc, #C2432) was
added and mixed thoroughly by inversion. Samples were centrifuged
for 15min at 16,000g at 4 °C. Supernatant was kept and an equal
volume of 70% ethanol was added in a new eppendorf tube. After-
wards, small RNAs were removed with the Qiagen RNeasy Mini Kit
following manufacturer’s recommendations (Qiagen, #74104). Sam-
ples were DNAse-treated using Turbo DNAse (Life Technologies,
#AM2239) for 10min at 37 °C followed by a final clean-up with Qiagen
RNeasy MinElute Kit (Qiagen, #74204) using default manufacturer’s
protocol (which keeps RNAs > 200nt) to remove excess of small RNAs
that are typically present in E. coli total RNA extracts. RNA integritywas
assessed using TapeStation (Fig. S28) and quantified using Nanodrop.

Direct RNA nanopore library preparation and sequencing
DNAse-treated E.coli total RNA (600 ng per sample) was in vitro poly-
adenylated using E. coli Poly(A) polymerase (New England Biolabs,
#M0276L) using manufacturer’s recommendations with minor chan-
ges (the polyA tailing reaction was carried out for 10minutes at 37 °C,
instead of 30). Poly(A)-tailed total RNA was then prepared for
sequencing using the direct RNA sequencing kit (SQK-RNA002), fol-
lowing the protocol guidelines (version: DRCE_9079_v2_rev-

M_14Aug2019), with minor changes: RNA was linearized using
SuperScript IV (Thermo Fisher Scientific, #18090010) and incubated
for 15min at 55 °C followed by a heat inactivation step (80 °C for
10min), or linearized using Maxima enzyme (Life Technologies,
#EP0751) and incubated for 30minutes at 60 °C followed by a heat
inactivation step of 5min at 85 °C (see Supplementary Data S2 and S3).

Base-calling, demultiplexing andmapping of yeast and bacterial
direct RNA sequencing runs
Raw fast5 reads from yeast and bacterial samples (SupplementaryData
S2 and S3) were analyzed using the MasterOfPores (MoP) version 2
Nextflow workflow61. Briefly, the mop_preprocess module was used to
demultiplex the FAST5 reads using DeePlexiCon with default
parameters91. Demuxed FAST5 were then base-called using Guppy 3.1.5
(OxfordNanopore Technologies) with themodel rna_r9.4.1_70bps_hac,
and aligned using graphmap v 0.5.2 with -v 1 -K fastq parameters to the
the E. coli rRNA reference transcriptome, which comprised the 5S
rRNA, the 16S rRNA and the 23S rRNA sequences (available in Github:
NanoConsensus/ref/Escherichia_coli.rRNA.fa).

Detection of RNA modifications using diverse algorithms and
implementation into the MasterOfPores Nextflow workflow
To detect differential RNA modifications across strains, each control
condition (e.g., E. coli wild type BW25113) was compared in a pairwise
manner to each of the knockout strains (e.g., to the E. coli knockout
strains JW5301, JW0050 and JW3718, respectively) (Supplementary
Data S1). For each pairwise comparison, four RNA modification
detection algorithms were run in parallel: (i) EpiNano49, (ii)
Nanopolish71, (iii) Tombo56 and (iv) Nanocompore57. EpiNano (version
1.1.1) was run with default parameters to extract per-site and per-kmer
base-calling errors from every sample. Nanopolish (version 0.11.1) was
used to resquiggle the basecalled fast5 using nanopolish eventalign

(--samples --print-read-names --scale-events). Then, current intensity
per position of the resquiggled reads and the coverage was extracted
with a in-house python script, available in GitHub (https://github.com/
biocorecrg/MOP2/blob/main/mop_mod/bin/mean_per_pos_v3.py)61.
Tombo (v1.5) was first used to resquiggle the reads using tombo

resquiggle (-rna option). The function tombo detect_modifications

level_sample_compare with --store-p-value was then used to perform
RNAmodification detection. Finally, p-values at position level together
with coverage data were retrievedwith tombo text_output browser_files.
Nanocompore (version 1.0.0) was run through the command nano-

compore sampcomp (--sequence_context 2 --downsample_high_coverage

10000 --pvalue_thr 1 --logit --comparison_methods GMM,KS,MW,TT)

(Fig. S29).

Improving the speed and reducing computational and time
requirements of module mop_mod from MasterOfPores Next-
flow workflow
Nanopolish eventalign output results are stored in csv files, which we
found were very slow to parse, increasing the computational time
required to perform all the downstream analyses, thus limiting its
applicability transcriptome-wide. To increase the speed of the analysis,
two in-house scripts based on the Apache Parquet format92 were
implemented in Python3 (available in GitHub: https://github.com/
biocorecrg/MoP3/mop_mod/bin/mean_per_pos.py and https://github.
com/biocorecrg/MoP3/mop_mod/bin/Merging_processed_nanopolish_
data.py). On the other hand, Tombo output files are given in the form of
wig and bedgraph files. Therefore, to increase the efficiency of file
parsing, we converted Tombo output files into bigWig files and pro-
cessed them at per-transcript level using the pyBigWig package93. These
scripts have been implemented in the MasterOfPores version 2.0 Next-
Flow workflow81, which is available in GitHub (https://github.com/
biocorecrg/MoP2).

Prediction of RNA modifications using NanoConsensus
NanoConsensus reports putative modified regions at per-transcript
level using as input the outputs obtained from each of the 4 different
RNA modification detection algorithms previously described (Epi-
Nano, Nanopolish, Tombo and Nanocompore).

In a first step, NanoConsensus converts per-position reported
values by each software into normalized Z-Scores across each tran-
script. These scores are then used to select candidate RNA modified
positions for each independent software, which must be higher than
theprovideduser-defined threshold (default value = 5) (Fig. S30).Then,
candidate positions for each individual software previously identified
are extended into 5-mers. Flexible overlapping is then performed to
identify overlapping k-mers across softwares. The regions supported
by two or more softwares are saved as putative modified sites. In a
second step, NanoConsensus re-scales Z-score values between 0 and 1
across each software’s set of values, to make the score comparable
across transcripts (otherwise Z-scores are affected by the coverage of
each transcript). Rescaled Z-scores are then converted to a Nano-

Consensus score, which is equal to the median of the rescaled Z-scores
across all softwares (NanoConsensus score =median (Z-Score Epinano,
Z-score Nanopolish, Z-Score Tombo, Z-Score Nanocompore). Thus,
every position across the transcript has an assigned NanoConsensus
score. Finally, NanoConsensus identifies the differentially modified
sites as those having a Nanoconsensus score greater than 5 (default
settings) times the median per-transcript NanoConsensus score. Thus,
the threshold varies depending on the background signal of the tran-
script, i.e., if the data is “noisier” (often the case when coverage is low)
the Nanoconsensus score threshold to identify a site as “differentially
modified” within that given transcript will be higher. We should note
that this threshold can be modified by the user. All benchmarking
results included in this work used threshold=5 (default) throughout all
datasets and RNAmodification types. To capture modest variations in
stoichiometry, the usermight prefer to decrease the threshold to 3.5-4.

NanoConsensuswill produce the followingfiles as outputs: (i) aflat
file with all raw results obtained by all softwares, (ii) a flat file with the
putative modified sites according to NanoConsensus; (iii) BED tracks
that can be loaded into IGV to visualize the results in a user-friendly
manner; and (iv) a PDF file showing both the performance of each
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algorithm, represented in the form of Z-scores, and NanoConsensus

scores along the analyzed transcripts. All codehas been integrated into
themop_consensusmodule (RNA modification detection module) that
is part of the MasterOfPores version 2 (MoP2) Nextflow workflow
(https://github.com/biocorecrg/MoP2)81.

Benchmarking RNA modification predictions across datasets
with known stoichiometry and coverage
For eachmodification type included in the benchmarking (Am. Um, Y,
m7G, m5C andm66A), reads fromwild type E. coliwere assumed to be
100% modified, and the respective knockout rRNA reads were
assumed to be 0%modified for that position (SupplementaryData S3),
respectively. For each dataset analyzed, subsampled datasets were
generatedusingoneof the twoapproaches: (i) subsamples contained a
fixed amount of reads or; (ii) samples contained a fixed number of
modified reads (both scripts available at GitHub: https://github.com/
novoalab/NanoConsensus/scripts/Downsampling). All benchmarking
datasets only included full-length reads, defined as reads whose initial
mapping position was 50 or lower and their final position was equal or
larger than 1525 and 1779, for 16S and 18S transcripts respectively
(available at GitHub: https://github.com/novoalab/NanoConsensus/
scripts/Full_Length/Extract_FullLength_IDs.sh).

To compare datasets with different modification stoichiometry
levels, we performed two complementary analyses using the two
above-mentioned subsampling approaches. In the first subsampling
approach, each subsampled dataset comprised the same number of
reads (n = 1000). Then, to achieve different stoichiometry levels (100,
75, 50, 40, 30, 20 and 10%), a specific proportion of randomly selected
modified and unmodified full-length reads were mixed. Triplicates per
modification type and stoichiometry were built. In the second sub-
sampling approach, the subsampled dataset were composed of tri-
plicates that have a fixed number of modified reads. Then, for each
stoichiometry level, an increasing amount of unmodified reads were
added sequentially. As a result, the population of modified reads was
kept constant whereas the total number of reads varied across the
samples from the same replicate. Additionally, four full datasets with a
different number of modified reads in the 100% modified sample (50,
100, 500 and 1500 reads) were generated. All samples were compared
against 1000 full-length reads from their respective knock-out strain
using mop_mod with default parameters (see previous section).

The ability ofNanoConsensus to identify othermodification types,
such as m2G andm3U, was examined by comparing wild-type data and
knock-out strains lacking these specific modifications, in a similar
fashion to other RNAmodification types included in the benchmarking
(m66A, Y, m5C, Am, Um and m7G) (Figs. S15, S31, see also Supple-
mentary Data S1). We should note that m4Cm was not included in this
analysis as it is not amodification placed by a single enzyme, but rather
by two sequential enzymes, and the double knockout strain thatwould
be required was not commercially available. Thus, we did not
demonstratewhether Nanoconsensus candetectm4Cmmodifications.

Generation of NSUN5 KO mice
Experimental procedures with mice were conducted following proto-
cols that were evaluated and approved by the Biosafety and Bioethics
Committee at the University of Salamanca (Protocol #269) and the
Competent Authority of Castilla y León. All mice were housed at the
Animal Research Core Facility at the University of Salamanca, in ven-
tilated filter cages under Specific Pathogen Free (SPF) conditions, with
food and water available ad libitum. Mice were kept at a constant
temperature (set up at 21 °C) and humidity with a 12-hour light/
dark cycle.

B6N(Cg)-Nsun5tm2b(EUCOMM)Wtsi/J mice were purchased from
The Jackson Laboratory (Fig. S20A). TogetNsun5−/−mice and theirwild
type littermates, mice were crossed in heterozygosity. A PCR-based
strategy was developed to distinguish the wild-type and Nsun5mutant

alleles. The primers are as follows: 5′-TGCAGCTCAGCAATAAGCA-3′, 5′-
GCAGTTCCTAGCACCGTGT-3′, 5′-ACACGGGGTTTGCAGATG-3′ and 5′-
CGGTCGCTACCATTACCAGT-3′.Nsun5 +/+mice yielded a single bandof
240 bp, whileNsun5−/−mice yielded a single band of 428 bp (Fig. S20B).
Nsun5 loss in Nsun5−/− mice was validated by RT-qPCR using TaqMan
Probe Mm00520549_m1 (Thermo Fisher Scientific). Expression of the
housekeeping geneGapdh used to normalize was detected byTaqMan
Probe Mm99999915_g1 was used to normalize Nsun5 expression
(Fig. S20C).

RNA extraction from NSUN5 KO mice
RNAwas extracted from limbsof post-natal day 2wild type andNsun5−/−

mice using QIAzol lysis reagent (Qiagen) according to the manu-
facturer’s instructions. After isopropanol precipitation, TURBODNAse I
(Invitrogen) treatment was performed to remove any remaining DNA
contamination. RNA integrity was analyzed using 2100 Bioanalyzer and
RNA 6000 Nano chip (Agilent).

Detection of m5C in RNA from NSUN5 KO mice using PCR-
bisulfite
DNAse-treated RNA was treated with sodium bisulfite using Methy-
lamp RNA Bisulfite Conversion Kit (Epigentek) following manu-
facturer’s instructions. After the sodium bisulfite treatment for
5minutes at 70 °Cand90minutes at60 °C, treatedRNAwas in-column
desalted and deaminated. Converted RNA was used as template for
cDNA analysis using Maxima H-minus cDNA synthesis MasterMix
(Thermo Fisher Scientific) following manufacturer’s recommenda-
tions. cDNAwas then used as template for PCR amplification using the
following primers: 5′- AATGAAGTGTGGGTAAATGG-3′ and 5′- AAAT
AAAAACAATAAAAATCTCAT-3′. PCR product was ligated into the pCR
2.1 TOPO vector (Invitrogen), transformed into chemically-competent
DH5a E. coli and sequenced by Sanger sequencing using the following
primer: 5′- GTAAAACGACGGCCAG-3′. Sequences were aligned using
MEGA11 software and compared to mouse reference 28S rRNA
(NR_003279.1) (Fig. S20D).

Direct RNA nanopore library preparation and sequencing of
total RNA from WT and Nsun5

-/-
M. musculus samples

DNAse-treatedM.musculus total RNA (600 ng per sample) was in vitro
polyadenylated using E. coli Poly(A) polymerase (New England Biolabs,
#M0276L) using manufacturer’s recommendations with minor chan-
ges (polyA tailing reaction was carried out for 10minutes at 37 °C,
instead of 30min). Poly(A)-tailed total RNA was then prepared for
sequencing using the direct RNA sequencing kit (SQK-RNA002), fol-
lowing the protocol guidelines (version: DRCE_9079_v2_rev-

M_14Aug2019), with minor changes: RNA was linearized using Maxima
enzyme (Life Technologies, #EP0751) and incubated for 30minutes at
60 °C followed by a heat inactivation step of 5min at 85 °C (see Sup-
plementary Data S3).

Detection of RNAmodifications frombacterial samples exposed
to antibiotics
Bacterial DRS sequencing runs (Supplementary Data S2) were filtered
to keep only full-length reads using in-house scripts (all available at
GitHub: https://github.com/novoalab/NanoConsensus/scripts/Full_
Length), which were defined as reads that covered the full transcript,
leaving up to amaximumof 50 nt uncovered in the 5′ and/or 3′ ends. In
other words, 16S rRNA reads that were kept covered at least from
position 50 to 1525, and reads that aligned to the 23S rRNA covered at
least fromposition 50 to 2894. Replicates per condition and timepoint
were included in the analysis (Fig. S32). Pairwise comparisons of
antibiotic-treated and untreated samples were analysed using the
MasterOfPores (MoP2) module mop_mod, with default parameters,
followed by NanoConsensus (also integrated in MoP2), with the fol-
lowing parameters across all transcripts: --MZS_thr 3.75 --NC_thr 4.
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The directionality of the changes in stoichiometry at the identified
‘differentiallymodified’ rRNA siteswas assessed by comparing the sum
of basecalling errors of treated and untreated samples using EpiNano
(version 1.1.1). We should note that Nanoconsensus can be run com-
paring treated samples to untreated (t = 0 h) (Fig. S33A), but the signal-
to-noise ratio improves if matched untreated time points are used
(t = 1 h or t = 16 h, respectively) (Fig. S33B). Running time of these
algorithms from two of the comparisons included in this study can be
found in Supplementary Data S7.

Clustering of full length reads based on basecalling errors
To identify differentiallymodified populations of RNAmolecules upon
antibiotic exposure, per-read basecalling errors (mismatch, insertion
and deletion frequency) were retrieved using EpiNano (v 1.0)49, which
reports per-read base-calling errors. For each read, basecalling errors
of the 5-mer region centered in each ‘differentially modified’ site
identified by NanoConsensus were extracted, and used for down-
stream analyses. For each read, the total summed error per-read was
calculated. The per-read sum of ‘errors’ provides an approximate
measure of the modification levels of a given read in those selected
regions, relative to the rest of reads. Reads were binned based on their
total summed score, and the fraction of reads belonging to each bin,
for each treated sample (str-treated, ksg-treated, untreated) was
calculated.

Growth curves of bacterial strains lacking individual
methyltransferases
E. coli starter cultures ofmultiple strains (BW25113, rsmAKO, rsmGKO,
rsmD KO, rsmB KO, rsmJ KO, rsmH KO and rsmE KO) were grown
overnight in 10mL tubes at 37 °C 180 rpm, in biological duplicates.
Overnight cultures were added into a final volume of 200μl in 96-well
plates with an initial OD600 of 0.01. Different antibiotic concentrations
(streptomycin: 8, 16, 32, 64 and 128μl/mL; kasugamycin: 62, 125, 250,
500 and 1000μl/mL) were tested for each strain. For each strain and
antibiotic concentration, three technical replicates were generated
and the experiment was performed with two biological replicates, in
two independent days. Bacteria were grown at 37 °C and OD600 was
measured every 10minutes with a TECAN M200 Plate Reader. Area
Under the Curve (AUC) calculations were performed in R using the
growthcurver package94.

Bacterial ribodepletion
Ribodepletion was performed using riboPOOL oligos (siTOOLs, cat
#055) following the manufacturer’s protocol (version: riboPOOL Pro-
tocol_v1-8). Briefly, 5ug of total RNA was mixed together with 1uL
resuspended riboPOOL oligos, 5 uL hybridization buffer (10mM Tris-
HCl pH 7.5, 1mM EDTA, 2M NaCl) and 0.5 uL SUPERase•In RNase
Inhibitor (Thermo Fisher, AM2694) followed by a 10min incubation at
68 °C and slow cool down to 37 °C for hybridization. In parallel,
Dynabeads MyOne Streptavidin C1 (Thermo Fisher, #65001) beads
were resuspended, and 80uL of the resuspended beads were trans-
ferred into a tube and placed on a magnetic rack. Then, the super-
natant was removed and 100uL of bead resuspension buffer (0.1M
NaOH, 0.05M NaCl) was added to the sample. Beads were then
resuspended in the buffer by agitation, the tube was placed again on a
magnetic rack, and the supernatant was aspirated. This step was per-
formed twice. Beads were then resuspended in 100 uL of washing
buffer (0.1M NaCl) and placed again onto the magnet to remove the
supernatant. The beads were then resuspended in 160 uL of depletion
buffer (10mMTris-HCl pH 7.5, 1mMEDTA, 1MNaCl). Thismixturewas
then divided into two tubes of 80uL, which were used sequentially.
20 uL of hybridized riboPOOL oligos and total RNA was spun down
briefly and then transferred into a tube with 80uL of beads in the
depletion buffer. Then, it was mixed by pipetting carefully and incu-
bated at 37 °C for 15min, followed by a 50 °C incubation for 5min. The

reaction was placed on the magnetic rack and the supernatant was
transferred into the second tube of beads, fromwhich the supernatant
was removed before its use. The solution was mixed and incubated at
37 °C for 15min, followed by a 50 °C incubation for 5min. After briefly
spinning down the droplets, themix was placed on amagnet for 2min
and the supernatant was transferred into a different tube. Finally, long
RNA species (>200 bp) were separated from short ones (<200 nt)
using RNA Clean & Concentrator-5 kit (Zymo, R1013).

End-capture nanopore cDNA sequencing (Nano3P-seq)
E. coli total RNA was sequenced using Nano3P-seq78, which is a cDNA
library preparation variation that relies on the SQK-DCS109 direct cDNA
nanopore sequencing kit. Notably, Nano3P-seq does not require the
presence of polyA tails, which are typically absent in bacterialmRNAs, to
initiate the library (whereas the standard direct cDNA nanopore
sequencing library requires thepresence of polyA tail). The protocolwas
executed as previously described (https://www.protocols.io/view/
nano3p-seq-protocol-3byl4j292lo5/v1). Briefly, 50ng of ribodepleted
total RNA per sample wasmixed with 1 µL pre-annealed RNA-DNA oligos
(RNA oligo: 5′ rGrArArGrArUrArGrArGrCrGrArCrArGrGrCrArArGrUr-
GrArUrCrGrGrArArG/3SpC3/3′; DNA oligo: 5′/5Phos/CTTCCGAT-
CACTTGCCTGTCGCTCTATCTTCN 3′), 1uL 100mMDTT, 4 µL 5X TGIRT
buffer, 1uL RNasin Ribonuclease Inhibitor (Promega, N2511), 1uL TGIRT
(InGex) and nuclease-free water (NFW) up to 19uL.This reverse tran-
scriptionmixwas first incubated at RT for 30minutes before 1uL 10mM
dNTPmix (NEB, N0447S) was added. Then, the solution was brought to
60 °C for 60min, and inactivated by heating at 75 °C for 15min before
moving to ice. Afterwards, RNAse Cocktail (Thermo Scientific, AM2286)
was added followed by an incubation at 37 °C for 10minutes and a clean
up step using 0.8X AMPure XP Beads (Agencourt, A63881). Then, 1 µL
100 µM of the DNA oligo (5′ GAAGATAGAGCGACAGGCAAGTGAT
CGGAAGA 3′), complementary to the initial one, was added to 15uL
solution containing cDNA with 2.25 µL 0.1M Tris pH 7.5, 2.25 µL 0.5M
NaCl and 2 µL NFW. The mix was incubated at 94 °C for 1min and the
temperature was ramped down to 25 °C (−0.1 °C/s). Later, 2.5uL from a
single native barcode and 25 µL Blunt/TA Ligase Mix (NEB, M0367S)
were added, followed by a 10min incubation at RT and a clean up step
with 0.5X AMPure XP beads and eluted with 16uL NFW. The con-
centration of each sample was quantified using Qubit ssDNA HS assay
(Thermo Scientific, Q10212). Individual samples were pooled together
with a final concentration that did not exceed 200 fmol and a final
volume of 65uL. All the subsequent steps used reagents from the direct
cDNAnanopore sequencing kit (ONT, SQK-DCS109). The pooled sample
was mixed with 5uL Adapter Mix (AMI), 20uL 5X NEB Quick Ligation
buffer (NEB, B6058S) and 10uL Quick T4 DNA ligase (NEB, M0202M)
and then incubated for 10min at RT. Finally, the sample was cleaned
with 0.5X AMPure XP beads (Beckman Coulter, A63881), using washing
buffer (WSB) and elution buffer (EB). The library was mixed with
sequencing buffer (SQB) and loading Beads (LB) prior to loading it onto
a primed R9.4.1 MinION flowcell. Biological triplicates were run on
independent MinION flowcells, and prepared on different days.

Base-calling, demultiplexing and mapping of Nano3P-seq
datasets
FAST5 reads sequenced with the Nano3Pseq protocol were analyzed
using the MasterOfPores version 2 (MoP2) Nextflow workflow61 (Sup-
plementary Data S4). Firstly, the mop_preprocess module was used to
basecall and demultiplex all FAST5 using Guppy 4.0 (OxfordNanopore
Technologies) with the DNA basecalling model dna_r9.4.1_70bps_hac.
Reads whose barcode could not be identified, went through a second
round of demultiplexing using readucks (version 0.0.3)95 with para-
meters --limit_barcodes_to 1 2 3 4 5 6 --adapter_threshold 73 --threshold

50. Demuxed reads were then aligned to the E.coli BW251113 genome
(NCBI ID: CP009273.1) using minimap2 v.2.17 with -ax spliced -k14 -uf
parameters. Both per-gene counts and per-transcript counts were
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generated. Briefly, per-gene counts were obtained by htseq-count
(version 0.13.5)96 with the option --stranded reverse as well as using
the --nonunique all option to account for reads spanning more than
one feature (ie: bacterial operons). On the other hand, to obtain per-
transcript estimates, bacterial reads were aligned to the reference
transcriptome that was built from the reference genome annotation
(NCBI ID: CP009273.1, see code in GitHub: https://github.com/
novoalab/NanoConsensus/Nano3Pseq_analysis/) using minimap2
v.2.17 with -ax map-ont -k14 parameters. Per-transcript abundance
estimates were obtained from the aligned reads using salmon quant
(version 1.9.0)97 with the parameters --ont -l SR. Both per-gene
counts (using either –stranded and per-transcript estimates were
used as input for differential expression analysis (Fig. 5C, see
also Fig. S34).

Differential expression and GO term enrichment analysis
Differential expression analysis was performed both on per-gene and
per-transcript counts of untreated samples compared to antibiotic-
treated samples (streptomycin or kasugamycin) using DeSeq2
v.1.34.098. Genes with an absolute log2(Fold Change) greater or equal
than 2 and an adjusted p-value lower or equal than 0.05 were con-
sidered as differentially expressed. Results were visualized using the R
package EnhancedVolcano v.1.12.099 (Fig. 5C and Fig. S34). Scripts
used for differential expression analysis are available in GitHub:
https://github.com/novoalab/NanoConsensus/scripts/Differential_
Expression). Genes with absolute log2(Fold Change) greater or equal
than 2wereused as input for aGOtermenrichment analysis,whichwas
performed using Panther (release 17.0)100. All genes included in the
differential expression analysis were included as the reference list for
this analysis. The annotation data set used was GO biological process
complete, the statistical test was the Fisher’s Exact Test, followed by
calculating the FalseDiscoveryRate (FDR).Only termswith a FDR<0.05
were included in the final results (Fig. 5D).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The FAST5 data generated in this study have been deposited in the
European National Archive (ENA) database under accession codes
PRJEB42568 [https://www.ebi.ac.uk/ena/browser/view/PRJEB42568]
(E. coli total RNA DRS samples from different strains), PRJEB48806
(E. coli total RNA DRS samples exposed to antibiotics), PRJEB58640
[https://www.ebi.ac.uk/ena/browser/view/PRJEB58640] (E. coli

Nano3P-seq ribodepleted total RNA samples) and PRJEB78295 [https://
www.ebi.ac.uk/ena/browser/view/PRJEB78295] (NSUN5 KO datasets).
Base-called FAST5 files from yeast total RNA correspond to ENA under
accession PRJEB37798101. A description of all samples used in this work
with their corresponding ENA numbers can be found in Supplemen-
tary Data S2-S4. Source data are provided with this paper.

Code availability
NanoConsensus code and documentation is publicly available in
GitHub (https://github.com/novoalab/NanoConsensus) and in Zenodo
(https://doi.org/10.5281/zenodo.5805806) Moreover, to facilitate its
implementation by future users, NanoConsensus has been integrated
as a module into the MasterOfPores61 Nextflow102 workflow for the
analysis of direct RNA nanopore sequencing data (https://github.com/
biocorecrg/MoP2), under version 2.0 of MasterOfPores.
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