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Abstract

Our understanding of age-related physiology and metabolism has grown through the study of
systems biology, including transcriptomics, single-cell analysis, proteomics and metabolomics. Studies in
lab organisms in controlled environments, while powerful and complex, fall short of capturing the breadth
of genetic and environmental variation in nature. Thus, there is now a major effort in geroscience to
identify aging biomarkers and to develop aging interventions that might be applied across the diversity of
humans and other free-living species. To meet this challenge, the Dog Aging Project (DAP) is designed to
identify cross-sectional and longitudinal patterns of aging in complex systems, and how these are shaped
by the diversity of genetic and environmental variation among companion dogs. Here we surveyed the
plasma metabolome from the first year of sampling of the Precision Cohort of the DAP. By incorporating
extensive metadata and whole genome sequencing information, we were able to overcome the limitations
inherent in breed-based estimates of genetic and physiological effects, and to probe the physiological and
dietary basis of the age-related metabolome. We identified a significant effect of age on approximately
40% of measured metabolites. Among other insights, we discovered a potentially novel biomarker of age
in the post-translationally modified amino acids (ptmAAs). The ptmAAs, which can only be generated by
protein hydrolysis, covaried both with age and with other biomarkers of amino acid metabolism, and in a
way that was robust to diet. Clinical measures of kidney function mediated about half of the higher ptmAA
levels in older dogs. This work identifies ptmAAs as robust indicators of age in dogs, and points to kidney
function as a physiological mediator of age-associated variation in the plasma metabolome.
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Introduction

Lab-based studies on the biology of aging have led to major advances over the last several
decades (Fontana et al., 2010; Kaeberlein et al., 2015; López-Otín et al., 2023). However, it is not clear
how lab discoveries apply to aging in the real world, where variation in genotype, environment and their
interaction, all present major challenges to translational geroscience (Partridge et al., 2018). More
recently, modern molecular tools have made it possible to identify biomarkers for age, morbidity and
mortality through the study of -omic domains, including the epigenome, transcriptome, metabolome,
microbiome, and proteome (López-Otín et al., 2023). Among the -omic domains, here we focused on the
metabolome, the collection of small molecules that make up the structural and functional building blocks
of cells. Targeted metabolome profiles typically consist of measures of one to several hundred features.
The metabolome integrates variation in vast numbers of environmental and genetic factors, whose effects
converge onto a relatively small number of metabolomic endophenotypes (Panyard et al., 2022; Patti et
al., 2012). The metabolome may thus reflect important axes of metabolic and physiological variation that
underlie traits as complex as aging in nature.

One goal of gerontological research is to understand the causes and consequences of aging in humans.
There are now many systems-level studies of age and aging in human populations (e.g. (Hannum et al.,
2013; Horvath, 2013; Lehallier et al., 2019; Peters et al., 2015; Wilmanski et al., 2021)). There are a few
limitations common to human studies. First, with few exceptions (e.g. (Kuo et al., 2022; van den Berg et
al., 2023; Zhang et al., 2024)), studies of humans are carried out using cross-sectional designs, which
introduce selection and survivor biases among other challenges (Nelson et al., 2020). The long average
lifespan of humans introduces yet another challenge. In studies of middle-age or older humans,
meaningful follow-up periods to assess either mortality risk, or longevity, of biomarkers exceed 10 years
and may require 20+ years to achieve statistical power sufficient to identify the majority of biomarkers that
portend future risk (Tessier et al., 2024). We need aging models in species with shorter lifespans and that
parallel the complexity of the human environment and genetic variation. Into this space leaps the
companion dog.

The companion dog has much to teach us about healthy aging and its associations with genetics and the
environment (Creevy et al., 2016). Dogs vary tremendously, not only in size, shape and behavior, but also
in their patterns of aging. Breed life expectancy can vary by a factor of more than two, from relatively
short-lived giant breed dogs like Leonbergers and Mastiffs, to longer-lived small breeds, such as
Pomeranians and Border Terriers (Yordy et al., 2020). Because dogs live with us, they experience the
same local and regional environmental variation that we experience; they have a healthcare system as
sophisticated as ours; and they have wide-ranging genetic variation. Most of these features are almost
completely absent for laboratory models of aging. Moreover, the short lifespans of companion dogs
relative to that of humans gives researchers a chance to see the impact their discoveries have on both
dog and human health in their own lifetimes (Creevy et al., 2022).

In 2020, the Dog Aging Project (DAP) began enrolling tens of thousands of companion dogs in the United
States to a long-term longitudinal study of normative aging (Creevy et al., 2022). The goal of DAP is to
characterize the range of aging patterns in dogs, to discover the genetic and environmental factors that
shape this variation, and to identify the mechanisms by which they do so. By combining information from
owner-reported surveys, detailed demography, environmental data, veterinary electronic medical records
(VEMR), ongoing studies of cognitive and behavioral traits, whole genome sequencing, clinical chemistry,
and systems biology, and using epidemiological and public health research approaches, the DAP aims to
identify how these factors influence dog heath and healthy aging (Creevy et al., 2022).
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Though analysis of DAP data, we aim to shorten the timeframe for both biomarker discovery and analysis
of normative aging, and to quicken the pace by which we test aging interventions in animals that mirror
human genetic diversity and environmental complexity (Barnett et al., 2023; Creevy et al., 2022;
Kaeberlein et al., 2016; Urfer et al., 2017). The few studies of age on the dog metabolome have revealed
substantial differences between either the metabolome of cells cultured from young or old dogs (Brookes
& Jimenez, 2021), or the blood plasma from dogs of a range of ages (Puurunen et al., 2022). Puurunen et
al,. (2022) analyze plasma from over 2000 dogs and found age-associated variation in lipids, fatty acids
and amino acids, amidst substantial variation due to diet, sex, and by breed.

Here we analyzed a panel of 137 aqueous metabolites measured in plasma collected from the Precision
Cohort, which consists of a subset of DAP dogs recruited specifically for deep molecular profiling
(Prescott et al., In review 2024). The data analyzed here were from 784 Precision Cohort dogs,
representing a diversity of ages, during their first year of enrollment in the Cohort. We found that over a
third of metabolites measured in dog plasma were associated with age, and we highlight three specific
groups of age-associated metabolites, including acylcarnitines, indole derivatives, and post-translationally
modified amino acids (ptmAA). These metabolites have been reported in studies of human age (Panyard
et al., 2022), and here we investigated the physiological basis of age association with ptmAAs in
particular. The only known source of free ptmAAs is the breakdown of protein, and we found additional
evidence for protein catabolism within the metabolome. We found that clinical measures of kidney
function at least partially mediate the age-associations of the ptmAAs. These results suggest that ptmAAs
accumulate with age among dogs and may serve as a biomarker of aging physiology.

Results

Study Subject: The Dog Aging Project Precision Cohort
The Precision Cohort is a subcohort of the approximately 50,000 dogs that have so far been

recruited into the Dog Aging Project. Beginning in January of 2021, 976 dogs were recruited into the
Precision Cohort, representing a wide diversity of both dog age, genetics and geography. A summary of
the cohort is shown in Figure 1. Here we analyzed metabolome data among 784 dogs from the first year
of the Precision Cohort, which include 49% females and 51% males. Most dogs in the cohort were
sterilized (87%). In designing the Precision Cohort within the overall DAP Pack, care was taken to recruit
a cohort that reflects the full range of variation in American companion dogs in terms of geography, age,
size, sex, sterilization status and purebred versus mixed breed status (Creevy et al., 2022). The Precision
Cohort dogs with metabolome data at baseline resided in all but 1 of the 50 United States (Figure 1A),
with an average of 15.7 dogs per state and 21%, 60% and 19% living in rural, suburban and urban
environments, respectively.
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Figure 1 Demographic and health characteristics of the DAP Precision Cohort. (A)The geographic distribution of
784 dogs from the Precision Cohort. The number of dogs enrolled from each of the 50 United States is indicated by
the color scale (range 1 to 79 dogs, white=0 dogs). (B) The age distribution by sex for the Precision Cohort (C) Based
on the ancestry estimated from among 115,427 SNPs (Methods), 148 of the dogs consist of one of eight common
breeds (those with at least eight dogs and at least 85% ancestry), and that also have representation from both sexes.
The remaining 636 dogs were of either an under-represented breed, had ancestries from more than one breed, or
did not include both sexes (Newfoundlands). (D) Dog weight at the time of blood collection for the most common
breeds (upper panel), and for all other dogs (lower panel). (E) The number of dogs (note the log10 scale) at each
general health category as given by owner reports. The upper panel summarizes the baseline Precision Cohort and
the lower panel summarizes 47,444 dogs in the remainder of the DAP. Most Precision dogs (92%) were either in
‘Excellent’ or ‘Very good’ health, and no Precision dogs were categorized below ‘Fair’, whereas 0.8% of all DAP dogs
were listed as being in ‘Poor’ or ‘Very Poor’ health. (F) Dogs reported to be in better general health were younger, on
average, than dogs reported to be in worse health.

Among all dogs in the Precision Cohort, we identified evidence of ancestry from 110 different breeds
(Sexton et al., in prep 2024, Methods). The maximum proportion of ancestry assigned to a single breed in
a given dog ranged from 4.0% to 99.9%. To analyze the influence of breed on the metabolome, we chose
dogs for which ancestry of the maximum breed exceeded 85% (Morrill et al., 2022), for breeds in which
there were at least eight dogs in the cohort, and with representation from both sexes. This resulted in 148
dogs from eight breeds (Figure 1C and 1D). Each of the remaining 636 dogs were among a less
common purebred group or had mixed ancestries contributed by a median of 5 breeds per dog (range of
2 to 38), and these 636 were treated as a single group (‘remaining dogs’) in breed-level analysis.
Precision Cohort dogs were generally of good owner-reported health, with 92% (n=754) reported to have
excellent or very good health status, and no dogs reported to have poor or very poor health (Figure 1E
and 1F).
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Targeted plasma metabolomics
The metabolome data consisted of 137 aqueous metabolites on a targeted liquid

chromatography-mass spectrometry (LC-MS) panel. The panel included amino acids and their
derivatives, short-chain fatty acids and fatty esters, nucleotides, carbohydrates, organic phosphates and
other metabolites.

Multivariate metabolome analysis
We first investigated shared variation among metabolites in dog plasma using Principal

Component Analysis (PCA). By comparing the distribution of data across each PC to that expected from
random data, we found evidence that each of the first 23 PCs capture non-random variation
(Tracy-Widom test, α<0.05); altogether, the first 23 PCs explain 63.3% of the variance in the metabolome
(Figure 2A, Methods). Using Analysis of Covariance (ANCOVA), we estimated the variance of each PC
that could be explained by the following variables: age, weight, sex, sterilization status, life stage (puppy,
young, mature or senior), breed, the duration of fasting prior to blood collection, and 17 complete blood
count (CBC) variables (Methods). These variables explained between 4.7% and 18.3% of the variance in
each of the first 23 PCs (Figure 2A). Of all variables, age explained the most variance of any PC at 6.5%
for PC4, and weight explained 5.6% of PC2 (Figure 2A). The CBC variables together explained up to
8.3% of the total variance among the first 23 PCs (Figure S1B), while common breed, life stage, sex,
sterilization status, and the duration of fasting each explained less than 5.0% of any of the PCs. While
accounting for less than 5% of the variance, breed effects on the metabolome manifest across 5 of the
first 23 PCs (P≤0.05, Figure 2A).
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Figure 2 The age-associated dog plasma metabolome (A) ANCOVA sum of squares (SS) among covariates
(Methods) within the first 23 principal components (PC). The residual SS is not shown (see Supplementary Figure
S1). (B) The proportion of variation in each PC that can be explained by the genetic relatedness among all dogs
(HSNP, Methods). Note that the SS in (A) represents the total variance among the metabolome regardless of the PC,
whereas in (B) HSNP estimates the proportion of variance within each PC that was explained by relatedness. (C) PC4
associates strongly with age (square root-transformed years), Spearman’s 𝜌=-0.42, P<2.2x10-16. (D) The significance
(-log10(P)) over the effect of age (βage) fit in a linear mixed model controlling for dog weight, sex, sterilization status,
the duration of fasting prior to blood collection, CBC, and relatedness among the dogs (Methods). The FDR threshold
of α = 0.05 is shown in red and representative metabolites are labeled.
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Figure S1 The multivariate dog plasma metabolome (A) ANOVA sum of squares (SS) among the covariates
(term) within each of the first 23 principal components (PC) of the plasma metabolome. The residual SS not
accounted for by the terms is shown in gray. In (A) the SS from the 17 CBC traits are combined and indicated by the
term ’CBC’ (pink). (B) The SS for each of the 17 CBC traits (CBC term) across the first 23 PCs of the metabolome.
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Figure S2 Breed has complex effects on the metabolome, partly accounted for by relatedness (A) The 5
principal components (PCs) with effects of the 8 common breeds (ANCOVA P<0.05) plotted by breed, including all
other remaining dogs. Within each plot, breeds are ordered by the mean weight of the dogs in each breed (n=8 to 44
cohort dogs per breed). (B) The average variance among the 5 PCs in (A) that was accounted for by the fixed effects
indicated on the x-axis (BLUEs, Methods) in models that either include a random effect of relatedness by including
the gene relatedness matrix (+GMR), or not (naïve, Methods). The percent reduction in average variance is indicated
for the three most affected terms.

Given the difficulties associated with breed assignment in a genetically diverse cohort and the availability
of low-pass sequencing data, we chose to dissect the multivariate metabolome variation attributed to the
eight common breeds using the available genetic data. Using linear mixed effects models, we measured
the degree to which the effect of breed on the metabolome could be explained by genome-wide
relatedness. We fit each of the first 23 PCs to the fixed effects of the above-mentioned covariates along
with the genetic relatedness matrix (GRM, Methods), which was treated as a random effect. Adding
relatedness to the model reduced the effect of breed by 9.1% on average among the 5 PCs with breed
effects (Figure S2B), indicating that only a modest proportion of variation due to breed can be explained
by genome-wide relatedness.

In this diverse cohort, breed level effects were only evaluated for the 19% of dogs in the Precision Cohort
that were one of the common breeds. The remaining dogs were either of mixed breed, or of breeds
without sufficient representation to confidently attribute breed-level effects. Thus, to extend the analysis of
genetic effects among all dogs, we asked to what extent the finer-scale relatedness could explain
metabolome variation. For each PC, the proportion of variance explained by the GRM is referred to as its
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SNP-heritability (HSNP, (Yang et al., 2011)). Among the first 23 PCs, HSNP averaged 28.3% with a range of
6.8% to 62.3% (Figure 2B). Therefore, in contrast to any genetic effects that may be represented by
breed designation among the common breeds, the genomic data could hold more explanatory potential.
In a separate study of the genetic associations within the plasma metabolome, we found that up to ~60%
of the variation in individual metabolites in the Precision Cohort can be explained by genetic relatedness
(Sohrab et al., in prep 2024). In the following analysis, we controlled for the relatedness in order to ensure
that genetic relatedness does not bias the results in our investigation of the effects of age on the
metabolome. Age, which ranged from 0.7 to 18.0 years among the Precision Cohort, explained a
significant portion of the variance (P<0.05) in 10 of the first 18 PCs, and was highly associated with PC4,
where it accounted for 6.6% of the variance (Figure 2C, ANCOVA, F1,748, P<2x10-16).

Effects of Age on the Dog Plasma Metabolome
Controlling for the covariates and relatedness, the effect of age (βage) was statistically significant

for 54 of 137 metabolites at a false discovery rate (FDR) of α≤0.05 (Figure 2D). No metabolites showed a
significant age x weight interaction effect (FDR>0.05), and so that term was removed from the model.
Among age-associated metabolites, we observed two enriched groups of metabolites—the carnitines and
the free forms of ptmAAs. Five of six carnitines on the targeted panel were age-associated, four were
more abundant in older dogs and one, γ-butyrobetaine, lower in older dogs. Of the 21 metabolites that
increase with age, nine were either a carnitine derivative or a ptmAA (Figure 2D, Table S1).

Post-translationally modified amino acids as a biomarker of age
Older dogs have higher abundance of four ptmAAs, including N-terminally acetylated (N-Ac)

N-Ac-alanine, N-Ac-phenylalanine, N-Ac-tryptophan, and N-Ac-glutamine (Table S1). The three ptmAAs
reduced in the plasma of older dogs compared to younger dogs were hydroxyproline, dimethylarginine,
and N-Ac-aspartate (Table S1). The unmodified forms of each of the ptmAAs were also measured, and
four of the unmodified amino acids were also age associated (Table S1). Age effects are prominent
among the 12 measured ptmAAs (Figure 3A) We tested the hypothesis that the association between
ptmAAs and age might be related to age-association of the corresponding unmodified version of each of
the ptmAAs. The βage of ptmAAs was not correlated with the βage of the unmodified amino acids (linear
regression r2=0.09, P=0.19). Similarly, of the 12 ptmAAs, the seven that were age associated did not
correspond to which of the 12 corresponding unmodified amino acids were (Fisher’s exact test, odds
ratio=0.24, P=0.5).
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Figure 3 Post-translationally-modified amino acids associate with age and co-vary in plasma. (A) The
distribution of the effect of age (βage) fit to each metabolite in a linear mixed model controlling for covariates
(Methods). The distribution of βage among the 12 quantified post-translationally-modified amino acids (ptmAA, red),
the 19 quantified unmodified amino acids (AA, blue), and the 106 remaining metabolites of other classes (other,
grey). (B) A heatmap of clustered pairwise correlation among the ptmAA, with the addition of four modified amino
acids that are not necessarily port-translationally modified and may form either from protein hydrolysis, or from de
novo synthesis (ambiguous), the unmodified amino acids (parent AA), and two nitrogenous waste products (N waste):
creatinine (CREAT) and blood urea nitrogen (BUN). Values in the map are Pearson’s r from correlations calculated
among the residuals of the full mixed model, and so are adjusted for age, relatedness and the other covariates. The
diagonal was made white for clarity. The rows are annotated by metabolite class and a dendrogram of UPGMA
clustering (Methods) is shown at left.

There are two alternative explanations for the difference in abundance of ptmAAs in young and old dogs.
First, there might be broad changes with age in the influx or removal of ptmAAs from the blood, from a
common source, such as might be caused by differences in protein catabolism, or the removal of its
byproducts. Alternatively, there might be a variety of processes that could generate or remove individual
ptmAAs in plasma, such as the turnover of particular endogenous proteins, the transport of specific
ptmAAs from the gut to the bloodstream, or the degradation or excretion of select ptmAAs. While we do
not rule out the latter possibility, we found empirical support for the former hypothesis. If protein
catabolism broadly differs among young and old dogs, then, a priori, this should give rise to ptmAAs in
rough stoichiometry to their abundance among digested proteins. Therefore, we would anticipate that,
broadly, the abundance of ptmAAs would positively co-vary in plasma. Alternatively, if ptmAAs were
acquired, synthesized or removed independently, without a common origin, their abundances would not
be expected to correlate. We examined the correlation among metabolites after removing the effects of
age and other covariates (Methods). By clustering the Pearson’s correlation among both the ptmAAs and
their unmodified forms, we found that each metabolite covaried positively with between 2 and 16 other
metabolites (FDR<0.05), and that the ptmAAs and unmodified AAs cluster separately (Figure 3B). The
covariation among ptmAAs supports the hypothesis that there is a general age-related shift towards
protein catabolism and/or diminished removal of its byproducts in dogs.

The primary physiological sources of amino acids from protein catabolism are from proteolysis of dietary
protein by microbiota in the intestine, digestion of protein in muscle and other tissue, and proteolysis in
the liver (Denton & Elvehjem, 1954; Levitt & Levitt, 2018). Amino acids originating either from intestinal
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hydrolysis of protein, or from tissue protein digestion, circulate to the liver via the portal vein where, if they
are metabolized, generate nitrogenous waste in the forms of creatinine and urea. Creatinine was
measured on the targeted panel and the blood samples also had standard clinical blood chemistry
measured, which includes blood urea nitrogen (BUN) and serum creatinine. As expected by the protein
catabolism hypothesis, the level of serum creatinine and of BUN correlate positively with the abundance
of 11 and nine of the 13 ptmAAs, respectively (mean r = 0.125 and 0.165, P<0.05), and not with any of
the unmodified AAs (mean r=-0.101 and -0.109, P>0.05 Figure 3B).

Testing putative sources of post-translationally modified amino acids
The age-association of ptmAAs could be caused by age-related changes in metabolism, including

the catabolism of either dietary protein, or endogenous sources of protein like the digestion of tissue or
cells. Alternatively, age may be accompanied by changes to the rates of clearance of ptmAAs from the
blood. We evaluated variation in diet as a potential driver of ptmAA in plasma. Drawing on survey
responses from 761 dog owners, we found these dogs vary substantially in their primary diet category
from the most popular, dry kibble, to raw, canned and freeze-dried foods, including representation from
both commercial and home-prepared diets (Figure S3A). We tested each diet type for associations with
plasma metabolites using dry kibble, the primary diet of 86% of P1 dogs, as the reference diet (Methods).
There were up to 30 metabolites associated with at least one diet type, with the effects of home-prepared
(raw or cooked), and raw commercial diets being similar (Figure S3B). Of the age-associated ptmAAs,
only N-Ac-aspartate was affected by diet, being lower in abundance in plasma of dogs primarily eating
commercial raw diets (refrigerated or frozen raw) in comparison to dry kibble (β=-0.49, FDR=0.023,
Figure S3C). Additionally, the ptmAA S-methylcysteine, which was not age-associated, was higher in
dogs eating commercial raw and home cooked diets than those eating kibble (Figure S3C).
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Figure S3 Primary diet composition does not explain variation in post-translationally modified amino acids in
plasma. (A) The distribution of the primary diet type among owner survey responses of 761 dogs, with counts plotted
on a log scale. Diet components were divided into those commercially sourced (Commercial), home prepared
(Home), or of some other type (Other). Non-responses were omitted, and so Other reflects diet components that do
not fit one of the seven categories or where diet was not consistent. (B) A heatmap showing the effect of diet type on
each metabolite (𝛽diet) in comparison to dry kibble in a mixed model to control for age, weight, and other covariates
(Methods). Alongside the metabolite values among the reference diet, only metabolites and diets that had at least
one effect are shown (𝛽diet≠0, FDR < 0.05, asterisks). (C) N-Ac-aspartate and S-methylcysteine were the only
post-translationally modified amino acids to associate with any primary diet component (FDR<5%, asterisks).

As an additional means to identify effects of age while controlling for the effect of diet, we tested for
effects of age only among the 653 dogs that eat kibble as their primary dietary source. Even with reduced
statistical power due to smaller sample size, all four of the ptmAAs that were positively associated with
age among all dogs, and two of the three negatively associated metabolites, hydroxyproline and
dimethylarginine, remained age-associated (FDR<0.05). N-Ac-aspartate, which was negatively
associated with age, was no longer age-associated among the dogs primarily eating kibble (FDR=0.14).
While diet may influence the ptmAAs that were lower in older dogs compared to younger dogs, we found
no evidence that variation in primary food type among the dogs explains the increased abundance of
ptmAAs in the plasma of older dogs.

The kidneys play a key role in removing metabolomic byproducts to the urine, including the waste
products of protein and amino acid catabolism. To test for effects of kidney function on plasma ptmAA, we
evaluated several potential biomarkers. Serum creatinine is a common clinical metric used to estimate
glomerular filtration rate (GFR, (Dahlem et al., 2017; Hokamp & Nabity, 2016; Yamaguchi et al., 2021)).

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2024. ; https://doi.org/10.1101/2024.10.17.618956doi: bioRxiv preprint 

https://paperpile.com/c/IZ1Wdw/rypn+gGNX+HVVT
https://doi.org/10.1101/2024.10.17.618956
http://creativecommons.org/licenses/by/4.0/


Given that serum creatinine co-varies with many of the ptmAAs in plasma (Figure 3B), we tested the
potential for creatinine to act as a mediator of the elevated ptmAAs in the plasma of older dogs
(Methods). By comparing the effect of age on each metabolite, with and without the addition of creatinine
to a full mixed model, we found evidence that the age association of six of the seven age-associated
ptmAAs were substantially mediated by serum creatinine (Figure 4A, FDR<5%, Methods). Therefore, for
the ptmAAs other than hydroxyproline, if we account for serum creatinine, which was inversely
proportional to the GFR, we can account for between 45 and 68% of the effect of age.

We sought alternative indicators of kidney function from clinical urinalysis of 741 of the Precision dogs.
Among 10 urinalysis measures, both bilirubin and urine specific gravity (uSG) declined with age
(FDR<5%, Figure 4B). We failed to find metabolites associated with bilirubin. However, there were 15
metabolites, including hydroxyproline, associated with uSG (Figure 4C, FDR<5%). No other ptmAA
associated with uSG. Urine specific gravity was not associated with serum creatinine (linear mixed model,
βcreatinine, P=0.059), and therefore uSG could indicate kidney function that was independent of serum
creatinine. While uSG was associated with hydroxyproline when controlling for all other covariates, uSG
was not a mediator of age on hydroxyproline (FDR>23%).

Figure 4 Indicators of kidney function partially explain the age-association of ptmAAs (A) Of the 7 ptmAAs that
associate with age, the proportion of the age effect on ptmAAs in a full mixed model that remains (proportion
mediated) after the addition of serum creatinine to the model (error bars are 95% confidence intervals, Methods).
Filled bars correspond to metabolites mediated by creatinine (ACME, FDR<5%). (B) Urine specific gravity (uSG) from
clinical urinalysis associated with age among 741 dogs in a mixed model controlling for covariates (FDR = 1x10-10,
Methods), gray shaded region indicates 95% confidence interval for ordinary least squares regression. (C) The
effects of uSG (β uSG) on each of 15 metabolites while controlling for covariates (FDR<5%, Methods).
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Discussion
We have surveyed the age-related plasma metabolome among the diverse Precision Cohort of

the Dog Aging Project. Amidst the genetic and environmental complexity of the companion dog, we found
metabolites associated with CBC/Chem variables, dog weight, sterilization status and the duration of
fasting, as well as significant variation by breed, only some of which could be explained by finer-scale
genetic relatedness. In controlling for these covariates we sought plasma biomarkers of age with higher
translational potential. In doing so, we found substantial differences in the plasma metabolome of dogs by
age, including almost 40% of metabolites. The age-associated metabolites were similar to those in
humans, and include byproducts of protein catabolism. We then query the available data for the Precision
Cohort and identify diet and biomarkers of kidney function as potential mediators of parts of the
age-associated metabolome.

While most studies of dogs aimed at identifying biomarkers of age or health focus on dogs of a particular
breed (Morelli et al., 2022; Qu et al., 2022), or on dogs living in the limited environment of a dog colony
(Christie et al., 2009), the Precision Cohort of the DAP is similar to the large-scale cohort of Puurunen et
al (2022), with the shared aim for a comprehensive representation of a wide range of dog genetic and
environmental variation. Similar to Puurunen et al. (2022), we saw indications of genetic influences
throughout the metabolome. Here we made use of genome-wide allelic variation to show that a
substantial portion of the metabolome was explained by fine-scale relatedness among dogs, which points
toward genetic influences on the metabolome that transcend breed level variation. For sake of
comparison to the large cohort analysis of Puurunen et al. (2022), however, we first considered a
breed-level analysis. The effects of breed that we report are less extensive than those in Puurunen et al.
(2022). We evaluate breed level effects with caution, as others have demonstrated that traits perceived as
breed-specific are often better explained by finer-scale genetic analysis (Morrill et al., 2022). We then
used linear regression to decompose the metabolome variation associated with breed and found that only
a modest portion of breed-level effects could be explained by genetic relatedness. Given the limitations of
breed-level analysis in a diverse cohort, we focused our analysis of age effects in a more general model
that simply controls for relatedness and other covariates.

Of all biological covariates considered here, age had the most substantial influence on any single
principal component of the metabolome (Figure 2). However, we note several likely sources for bias in
this study cohort, all of which lead us to reason that the baseline characterization of age-associations
among the Precision Cohort may reflect healthy aging, rather than indicators of unhealthy aging (Nelson
et al., 2020). A baseline cohort of any species, particularly one that recruits both younger and older
participants, is inherently subject to survivor bias, where subjects in the study, particularly at later ages,
can only represent the subset of individuals who have survived to that age (Anderson et al., 2011).
Furthermore, an owner’s decision to enroll a dog can be influenced by their perception of whether their
dog is a good fit for the study, creating a self-selection bias. For instance, owners may avoid enrolling
dogs they perceive as "too young", "too old", or “too sick.” This mirrors the volunteer bias in human
studies, where individuals with certain health status or demographics are often underrepresented (Fry et
al., 2017a; Galea & Tracy, 2007). Last, bias can arise when participation is skewed toward those with
more resources. Owners with more resources—time and money—to participate in a longitudinal study are
more likely to enroll their dogs, leading to a sample that may not accurately reflect socioeconomic status
in the broader dog-owning population (Fry et al., 2017b). While acknowledging these caveats, we discuss
our results as indications of age-related variation in the plasma metabolome, and what it might indicate
about the physiology of dogs as they age.
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We used a mixed model framework to estimate age-association in the univariate plasma metabolome
while simultaneously correcting for the covariates mentioned above. In doing so, we avoided the
confounding influence of common variation among dogs with the aim of identifying age-associations that
are more likely to translate to dogs generally. We found a significant effect of age in 39% of plasma
metabolites (Figure 2. Table S1). We focus our discussion on three groups of metabolites—carnitines,
indole-derived metabolites, and the ptmAAs and other products of protein catabolism—for their similarity
to age-associated metabolites in humans, and with regard to the ptmAAs, because they provide novel
clues to the physiological differences between young and old dogs. Each of these groups includes
metabolites that are associated with age in human plasma, and in the following sections, we summarize
these associations and their similarities to that in humans and discuss potential physiological processes
that may lead to this variation.

Age-associated plasma metabolites in dogs, and parallels in humans

Acylcarnitines: Among the most consistently age-associated plasma metabolites in humans and mice
are those involved in fatty acid metabolism, including the fatty acids themselves, as well as carnitine and
acylcarnitines (Darst et al., 2019; Houtkooper et al., 2011; Jarrell et al., 2020; Johnson et al., 2019;
Lassen et al., 2023; Robinson et al., 2020; Sol et al., 2023; Tessier et al., 2024). In this study, we limited
our analysis to the aqueous metabolome, which lacks hydrophilic lipids. However, of the six carnitines
measured, four associated strongly with age, with all but one, γ-butyrobetaine, positively associated with
age. Acylcarnitines and carnitine are required to shuttle fatty acids into mitochondria for β-oxidation, and
several authors speculate that the rise in acetylcarnitine with age in humans could be due to reduced
function of mitochondria (Jarrell et al., 2020; Lassen et al., 2023), or of the kidneys (Yamaguchi et al.,
2021). γ-butyrobetaine, the only carnitine negatively associated with age, is interconverted with carnitine,
which associated positively with age. The opposite relationship of carnitine and γ-butyrobetaine therefore
could be due to the age-related change in balance between carnitine and γ-butyrobetaine. Overall, the
increased abundance of acylcarnitines in plasma among older dogs was consistent with patterns seen in
humans, although the cause is unclear.

Tryptophan/Indol metabolites: In contrast to many metabolites whose sources are ambiguous,
indole-conjugated metabolites found in plasma are generated exclusively by the conversion of tryptophan
by gut microbes (Sinha et al., 2024; Wikoff et al., 2009). Of the three indol-3 derivatives measured here,
indole-3-propionate was lower in the plasma of older dogs, and indole-3-lactate was higher. Metabolites
related to tryptophan and its indol derivatives are also associated with age in human plasma (Johnson et
al., 2019; Lassen et al., 2023; Sol et al., 2023). Associations between the abundance of microbial-derived
metabolites and dog age strongly suggests that gut microbial metabolism influences the age-related
plasma metabolome.

The fecal microbiome of older dogs in the Precision Cohort is both less diverse and is more unique
between older dogs than in younger dogs (Bamberger et al., in prep 2024). Both of these age-related
trends are also observed in humans (Wilmanski et al., 2021). Furthermore, reduced diversity of the
human microbiome associates with plasma metabolites, and with longevity (Wilmanski et al., 2019). That
indol-derived metabolites were age-associated in dog plasma suggests a role for the microbiome in dog
aging and its influence on the plasma metabolome. Future longitudinal multi-omic analysis could test for
effects of tryptophan derivatives and the role of the microbiome in dog aging.

Byproducts of Protein Catabolism: ptmAAs are only known to form on polypeptides or, in the case of
N-formyl-methionine, on methionine-charged tRNA prior to protein synthesis (Ree et al., 2018). Therefore,

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2024. ; https://doi.org/10.1101/2024.10.17.618956doi: bioRxiv preprint 

https://paperpile.com/c/IZ1Wdw/olaY+9b8w+5ulI+YoQi+1GMC+P4NH+wRHa+IcBw
https://paperpile.com/c/IZ1Wdw/olaY+9b8w+5ulI+YoQi+1GMC+P4NH+wRHa+IcBw
https://paperpile.com/c/IZ1Wdw/olaY+9b8w
https://paperpile.com/c/IZ1Wdw/gGNX
https://paperpile.com/c/IZ1Wdw/gGNX
https://paperpile.com/c/IZ1Wdw/AEye+9f45
https://paperpile.com/c/IZ1Wdw/5ulI+9b8w+YoQi
https://paperpile.com/c/IZ1Wdw/5ulI+9b8w+YoQi
https://paperpile.com/c/IZ1Wdw/Mcsx
https://paperpile.com/c/IZ1Wdw/iRsy
https://paperpile.com/c/IZ1Wdw/fK2v9
https://doi.org/10.1101/2024.10.17.618956
http://creativecommons.org/licenses/by/4.0/


the only known source of these metabolites, in the free forms measured by LC-MS, is protein catabolism.
We identified four additional age-associated modified amino acids—pyroglutamate, 1/3-methylhistidine,
dimethylglycine, and N-Ac-glutamate. However, each of these can be generated either post-translationally
or by modification of free amino acids, and so their source is ambiguous. Studies of plasma metabolites
often include measures of the amino acids, and in both dogs and humans, amino acid concentrations are
regularly found associated with age (Darst et al., 2019; Houtkooper et al., 2011; Johnson et al., 2018;
Panyard et al., 2022; Puurunen et al., 2022; Sol et al., 2023; Wang et al., 2023). Because amino acids
can be synthesized de novo or generated from proteolysis of either cellular or dietary protein, the
physiological source of age-associated amino acids has not been identified, though several studies
speculate that protein catabolism may vary by age (Lawton et al., 2008; Panyard et al., 2022).
Measurement of ptmAAs on the other hand, which has only recently become more common in targeted
metabolomic analysis, offers a clearer picture of the contributions from protein catabolism versus de novo
synthesis (Darst et al., 2019; Mardinoglu et al., 2015). Here we found many ptmAAs associated with age,
indicating that protein catabolism is an important aspect of age-related metabolome variation. Further
support for this hypothesis was provided by the fact that the concentration of ptmAAs within the plasma of
dogs was associated with BUN and creatinine, two biomarkers of amino acid catabolism (Figure 3B).
Together, this evidence points to protein catabolism as a physiological nexus for age-associated variation
in plasma metabolites among companion dogs.

We investigated several potential physiological influences on the abundance of ptmAAs in plasma,
looking for those that might explain the age-association in particular. Diet can have large influences on the
human serum metabolome (Bar et al., 2020). We found evidence that diet influences the abundance of
two ptmAAs—S-methylcysteine and N-Ac-aspartate. The abundance of N-Ac-aspartate, which were
age-associated, was lower in dogs whose primary diet was raw commercial food. Effects of pet-food
processing on nutritional content is well studied and includes limiting the availability of amino acids from
cooked food (Oba et al. 2022). S-methylcysteine was not age-associated and can form on internal
cysteine residues, in contrast to the N-Ac-AAs, which are only formed on the N-terminus of protein.
N-Ac-aspartate was the only N-Ac-AA negatively associated with age. However, among dogs whose
primary diet type was dry kibble, N-Ac-aspartate was not age-associated. Therefore, it may be that the
N-Ac-AAs, which were generally higher in older dogs, reflect a common physiological cause, somewhat
distinct from that which gives rise to S-methylcysteine, and that the negative association of
N-Ac-aspartate with age was simply explained by diet.

For there to be more ptmAAs in the plasma of old vs. young dogs, the rate of their addition to the plasma
must be greater than their rate of removal or metabolism. Studies of digestive enzymes and digestibility in
young and old dogs of several breeds, either in a >100-dog cohort, or in a controlled setting, indicate that
older dogs more readily digest protein (Buddington et al., 2003; Weber et al., 2003). Thus, the elevated
plasma ptmAAs we found in older dogs may be due in part to increased generation from dietary protein,
all else being equal. In addition, we found that the lower rate of removal by glomerular filtration in the
kidney in older dogs could explain their elevated ptmAAs. Glomerular filtration rate (GFR) is typically
estimated as a function of the inverse of serum creatinine. While we do not estimate the GFR in this
study, we found that approximately 50% of the effect of age on those ptmAAs that were higher in older
dogs can be accounted for by variation in creatinine among the dogs (Figure 4A). Creatinine positively
covaries with the abundance of ptmAAs generally (Figure 3B), suggesting that high creatinine, an
indication of low GFR, leads to higher ptmAAs. This result is consistent with the association between GFR
and N-Ac-ornithine in human blood (Suhre et al. 2011). Therefore, the elevated ptmAAs in the plasma of
older dogs appears to be due to lower rates of removal by glomerular filtration.
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Another indicator of kidney function, uSG (McGlynn et al., 2023), associates with the ptmAA
hydroxyproline, the only age-associated ptmAA that was not mediated by serum creatinine. That uSG
itself does not associate with creatinine suggests that the reduced hydroxyproline, and the increased
N-Ac-AAs, in older dogs may have independent physiological explanations. Urine specific gravity is a
direct measure of the amount of solute removed to the urine, and is considered a measure of efficiency in
urine concentration. Hydroxyproline can be metabolized into toxic byproducts, and so we would assume
that the removal of hydroxyproline to the urine would be at its most efficient at high uSG (Belostotsky &
Frishberg, 2022). The positive association between uSG and plasma hydroxyproline is therefore
paradoxical. However, it is possible that uSG rises and falls directly or otherwise in response to
hydroxyproline. Additionally, while maximal uSG is an indicator of renal function, uSG also varies in
response to water consumption throughout the day and can also be affected by endocrine disease. Thus
at any given point in time it may not be possible to determine whether or not a dog’s uSG represents its
maximal renal concentrating ability and this may confound the ability to associate uSG with metabolite
concentrations

Hydroxyproline is a major constituent of collagen and is reasoned to indicate tissue degradation, including
muscle wasting, liver injury and fibrosis, or may reflect the level of dietary animal protein (Keiser et al.,
1963). We failed to found an association between hydroxyproline and the primary diet component. An
alternative explanation is that its age-related decline somehow reflects sarcopenia in older dogs.
Sarcopenia, the degradation of endogenous muscle tissue with age, is a hallmark of aging in animals
(Attaix et al., 2005; Fielding et al., 2011; Saini et al., 2009). Several studies have attempted to
characterize serum or plasma metabolites associated with sarcopenia in humans. However, a consensus
on plasma biomarkers of sarcopenia has not been reached, including an inconsistent association
between plasma hydroxyproline and age-related muscle loss (Kameda et al., 2020, 2021; Pan et al.,
2021). Here plasma hydroxyproline levels decline in older dogs, which is inconsistent with elevated levels
of muscle and liver cell degradation as dogs age.

Conclusion
The DAP is designed, in part, to develop a companion dog model of aging, which could provide

major insights into healthy aging in one of the most variable species of mammal in terms of longevity,
behavior, morphology and pathophysiology (Creevy et al., 2022). Conceptually, the metabolome provides
us with a mechanistic bridge in the genotype-phenotype map (Harrison et al., 2020). As such, the
metabolome can indicate the ways in which genotypic variation leads to the variation in longevity and
healthspan that is exemplified by companion dogs. We use the age-associated plasma metabolome as a
window into the physiological processes that vary with age in dogs and found that protein catabolism
might provide insight into aging. The results presented here come with the important caveat that they
represent patterns in a cross-sectional cohort. As the Dog Aging Project progresses, it will be important to
examine longitudinal patterns, asking how metabolites change with age within individual animals as they
age. In fact, given the demographic bias that may exist among the baseline Precision Cohort, as with
cross-sectional studies of humans, we may be observing what healthy aging looks like among the older
subjects in this study. Having identified age-associated change in about 39% of the aqueous metabolome,
we have considerable leverage to detect environmental and genetic factors that influence the pace of
aging in the longitudinal phases of the DAP, and to identify physiological processes that may respond to
aging interventions and their effect on longevity and geriatric health.

Materials and Methods
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The Dog Aging Project (DAP) is a long-term longitudinal study of companion dogs in the United
States. The project is designed to identify the genetic and environmental factors that influence age-related
morbidity and mortality, and the mechanisms by which they do so. Dogs in DAP were recruited with the
goal of retaining them for their lifetime. For the Precision Cohort dogs, beginning with the first year of
enrollment and at one-year intervals thereafter, owners bring their dog to their primary care veterinary
clinic for biospecimen collection. During this visit, clinical data were recorded, including the dog’s age,
weight, sex and sterilization status, as well as the duration of fasting prior to blood collection (Prescott et
al., in prep). Additionally, a veterinarian or veterinary technician collects hair, urine, a fecal sample, and
blood samples, the last of which were separated into whole blood, plasma, serum, and peripheral blood
mononuclear cells (Prescott et al., in prep). One aliquot of plasma was used for targeted aqueous LC-MS
metabolomics.

Blood Sampling, Plasma Extraction and Metabolite Extraction
For full details on the design and execution of dog owner contact and sampling in the Precision

Cohort, see Prescott et al. (in prep). Briefly, blood samples in EDTA tubes, from either one draw of 20mL
for dogs > 8kg, or two draws of 12mL each, six weeks apart, for dogs ≤8kg, were shipped to the Texas
Veterinary Medical Diagnostic Laboratory. Along with sample appearance and other qualitative checks,
the travel time and arrival temperature were recorded. For the samples measured here, the median travel
time was 26.3h (range from 14.2 to 168.7h). The median arrival temperature was 18.8°C (ranged from 1.8
to 28.7°C). Plasma was extracted and transferred to 250μL aliquots in cryovials at the DAP Central Lab at
Texas A&M University and stored frozen at -80°C until shipment to the University of Washington (UW). At
UW, plasma samples were checked for hemolysis based on the Center for Disease Control and
Prevention Hemolysis Reference Palette (CDCHRP, Figure S4). Metabolite extraction was performed at
the UW Northwest Metabolomics Research Center (NW-MRC) in batches of up to 40 samples using a
cold-methanol extraction protocol (Prescott et al., in prep) and stored at -80°C.

Figure S4 Hemolysis Reference Palette. The
colorimetric reference palette used by the Dog Aging
Project (DAP) to assess plasma sample hemolysis.
Plasma samples in polypropylene microfuge tubes were
compared to the Center for Disease Control and
Prevention (CDC) palette and given a score from 1 to 4.
Samples with a score of 4 were not analyzed.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2024. ; https://doi.org/10.1101/2024.10.17.618956doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.17.618956
http://creativecommons.org/licenses/by/4.0/


Prior to LC-MS, samples were reconstituted in 500 µL HILIC solvent containing 13C2-tyrosine, 13C3-lactate
and 10mM ammonium acetate in 5% methanol and 0.3% acetic acid. To track secular trends in LC-MS
detection that occur during the run, multiple replicates of two different control samples were included in
each LC-MS experiment. These include a reference dog plasma sample from the Cornell Veterinary
Biobank, referred to as QC(S), and an NW-MRC human plasma control sample. Each of these was run
first, then again, interspersed across the experiment, between every ten DAP samples, and at the end of
the run. LC-MS peaks were integrated to give metabolite count data, which were sent from the NW-MRC
back to the Promislow Lab. Raw LC peak and MS spectral data are stored on servers at the NW-MRC.

  The chromatography separations were performed on a duplex-LC system composed of two Shimadzu
UPLC pumps (Shimadzu Corp., Columbia, MD), Agilent 1290 temperature-controlled column
compartment (Agilent Technologies, Santa Clara, CA) and CTC Analytics PAL HTC-xt
temperature-controlled auto-sampler (LEAP Technologies, Morrisville, NC). The LC modules were
controlled by Analyst 1.7.2 software (AB Sciex, Toronto, ON, Canada). Each sample was injected twice,
10 µL for analysis using negative (NEG) ionization mode and 5 µL for analysis using positive (POS)
ionization mode. Both chromatographic separations were performed in HILIC mode on two XBridge BEH
Amide columns (150 x 2.1mm, 2.5µm particle size, Waters Corporation, Milford, MA, Part No. 186009930)
connected in parallel. While one column was performing the separation, the other column was
reconditioned in preparation for the next injection. The flow rate was 0.300 mL/min, auto-sampler
temperature was kept at 4°C, the column compartment was set at 45°C, and total separation time for both
ionization modes was 18 min (total analysis time per sample was 36 min). The mobile phase in POS
mode was composed of Solvents A (10mM ammonium acetate in 95% H2O/3% acetonitrile/2% methanol
+ 0.2% acetic acid) and B (10mM ammonium acetate in 93% acetonitrile/5% H2O/2% methanol + 0.2%
acetic acid). The gradient conditions for POS mode separation are shown in Table 1.

Table 1: LC Gradient Conditions for POS Mode Chromatography.
Time Segment, min. Solvent A, % Solvent B, %
0 - 3 5 95

3 - 8 from 5 to 50 from 95 to 50

8 - 12 50 50

12 - 13 from 50 to 5 from 50 to 95

13 - 18 5 95

The mobile phase in NEG mode was composed of Solvents A (10mM ammonium acetate in 95%
H2O/5% methanol + 0.3% acetic acid) and B (10mM ammonium acetate in 90% acetonitrile/ 5% H2O/5%
methanol + 0.3% acetic acid). The gradient conditions for POS mode separation are shown in Table 2.

Table 2: LC Gradient Conditions for NEG Mode Chromatography.
Time Segment, min. Solvent A, % Solvent B, %
0 – 1.5 5 95

1.5 - 6 from 5 to 30 from 95 to 70

6 - 10 30 70

10 - 12 from 30 to 55 from 70 to 45
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12 - 14 55 45

14 - 15 from 55 to 5 from 45 to 95

15-18 5 95

Data Transformation and Technical Covariates
The LC-MS data were composed of peak intensity values for 361 metabolites among a total of

1346 samples. This includes 920 baseline Precision Cohort samples, with the remaining samples
belonging to other DAP cohorts. These data were collected over the course of five LC-MS runs. In each
run, between 73 and 600 samples were run in the same order in which they were processed during
metabolite extraction. This design maximizes the statistical power to detect and remove batch and LC-MS
run-order effects. We normalized and pre-processed all LC-MS data together. We removed 224
metabolites across the study due to missingness in >10% of all samples. The level of hemolysis was
associated with the abundance of some metabolites, and 72 samples were removed due to hemolysis
exceeding 500 mg/dL (CDCHRP score=4, Figure S6). The remaining data were loge-transformed, and
mean-centered by sample to account for sample-to-sample variation in metabolite abundance.

Both metabolite extraction (batch) and LC-MS runs generate secular variation in metabolite data. Such
variation could be due to undefined chemical reactivity, sample matrix effects, ion suppression
(interference), etc., and thus differs by metabolite. In these cases, the LC-MS peak corresponding to an
affected metabolite drifts with the order in which a sample was processed within a batch. There is also the
potential for peak area to vary with the order of samples within an LC-MS run. To correct both for main
effects of batch, and for run-order effects, we take the residuals ( ) of the regression model:𝑒𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒 ~ 𝑏𝑎𝑡𝑐ℎ ×  𝑟𝑢𝑛 𝑜𝑟𝑑𝑒𝑟 +  𝑒 

(Equation 1)

This results in peak areas that are both normalized, and that correct for effect of run order. To correct for
variation in dynamic range among metabolites within experiments, we scaled each metabolite to unit
variance by batch. After these procedures, there were an average of 6 missing values per metabolite, with
at most 125 missing (9.8%). These missing values were then imputed by 10-nearest neighbor
mean-imputation. Effects of the remaining technical covariates, travel time, hemolysis and arrival
temperature on metabolite abundance were corrected for by linear regression. The data processing and
normalization resulted in 137 normalized metabolites measured in 865 dogs in the baseline Precision
Cohort.

Breed Ancestry and Genetic Relatedness
Each dog of the Precision Cohort has had low-pass whole genome sequencing (Sexton et al., in

prep 2024). Briefly, reads were aligned to the CanFam3.1 reference genome assembly (NCBI accession
GCF_000000145.2) and imputation using a panel of reference haplotypes including >34M SNPs and
>11M indels shared by 109 modern dog breeds, 3 village dog populations and North American and
European wolf populations (Sexton et al., in prep 2024). SNPs with a minor allele frequency greater than
1% and genotype call rates greater than 95% were retained. Here we used the genetic data in two
ways—first, to determine breed by genetic ancestry and evaluate the effect of such breed information on
metabolome profiles, and second, to control for relatedness among all dogs regardless of breed. For
breed ancestry, we estimated the proportion of genetic ancestry in each dog genome using publicly
available genotype data from 109 modern breeds, village dog populations from three regions, and two
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wolf populations. Ancestry proportions for each dog were then estimated using ADMIXTURE on genotype
data from 115,427 biallelic SNPs. Where applicable here, purebred was defined as any dog with ≥85%
ancestry assigned to a single breed (Morrill et al., 2022). To estimate relatedness, the
variance-standardized GRM was calculated with autosomal markers in PLINK2 using the default settings
in the make-rel function (Chang et al., 2015).

Variable Selection and Normalization
Of the data collected on Precision Cohort dogs, age and weight were square root transformed,

and sex (male and female) and sterilization status (intact or sterile) were coded as factors (i.e., 0 and 1).
The duration of fasting prior to blood collection was rounded to the nearest hour. Based on the American
Animal Hospital Association’s Canine Life Stage Guidelines, Precision Cohort dogs were classified into
one of five age categories: puppy (<1 year), adolescent (1-3 years), young adult (3-7 years), mature adult
(7-11 years), and senior (11+ years) (Prescott et al in prep 2024).

Complete Blood Count and blood chemistry (CBC/Chem) data were acquired at the Texas Veterinary
Medical Diagnostic Laboratory, from samples in the DAP biospecimen kits. CBC measures were taken
from blood samples in EDTA tubes on an Advia 120 Hematology System (Siemens Medical Solutions,
Malvern, PA) from 784 of the Precision Cohort dogs that had metabolome profiles. Parallel blood
chemistry profiles were performed with serum extracted from an accompanying additive-free tube, and
run on a DxC700AU Chemistry Analyzer (Beckman Coulter, Brea, CA). Together the raw data consist of
45 CBC and 42 chemistry measures. The 36 dogs without CBC/Chem data were removed from further
analysis. Of the 45 CBC traits, we removed five invariant measures, 36 that had >10 missing values, and
any that were relative measures when an absolute measure was available. Among the remaining 39
variables, ten of the numerical CBC variables were non-normal, including counts of band cells,
neutrophils, lymphocytes, monocytes, eosinophils, basophils and reticulocytes, red cell distribution width,
mean platelet volume, and plateletcrit (Shapiro-Wilk statistic <0.96), and were loge-transfomed. There was
an average of one missing entry among each of the variables at this point (maximum missiness was five).
All missing data were imputed by 10-nearest neighbor mean imputation, which gave 38 complete and
normalized CBC/Chem variables in 784 dogs (Table S2). The effect of blood sample travel time and
arrival temperature on each CBC trait were removed by linear regression. The adjusted 17 CBC variables
were used as covariates in mixed models.

Urinalysis was performed with approximately 3 mL of urine on 738 of these 784 dogs. The uSG was
calculated by refractometer; chemical analysis was performed with Multistix 10 SG Urine Test Strips
(Siemens Medical Solutions, Malvern, PA); and microscopy was performed manually (Prescott et al., in
prep). After removing two invariant urinalysis variables, there were two numeric variables: uSG and pH,
and 12 categorical variables. Eight of the categorical variables: protein, white blood cells, red blood cells,
squamous cells, urothelial cells, bilirubin, fat and blood, were ordered semi-quantitatively. For example,
urothelial and other cell counts were coded 'None Observed' < 'Rare' < '0-3' < '3-6' < '6-10' < '10-20' <
'20-40' < 'Too Numerous to Count'. The remaining categorical variables, including urine color,
transparency, crystals and casts, were not evaluated. This gave 10 clinical urinalysis variables (Table S2).
As covariates, the ordered categories were converted to integers and, along with the continuous numeric
variables, were mean-centered and scaled to unit variance prior to model fitting with each as a fixed
effect, using the mixed model described below (Equation 2).
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Table S2: Summary of Complete Blood Count, Serum Chemistry and Urinalysis Variables

Analysis Variable Units N Mean Sd Min Max Kurtosis Skewness variableCode

CBC Total WBCs K uL-1 825 7.8 2.3 2.9 21 6.5 1.2 krt_cbc_total_wbcs

CBC Abs Bands K uL-1 825 0.0019 0.022 0 0.5 328 17 krt_cbc_abs_bands

CBC Abs Neutrophils K uL-1 825 1.8 0.29 0 2.9 4.7 0.051 krt_cbc_abs_neutrophils

CBC Abs Lymphocytes K uL-1 825 0.99 0.3 0.086 2.2 3 0.21 krt_cbc_abs_lymphocytes

CBC Abs Monocytes K uL-1 825 0.3 0.17 0 0.92 3.8 0.79 krt_cbc_abs_monocytes

CBC Abs Eosinophils K uL-1 825 0.37 0.23 0 1.4 4 0.91 krt_cbc_abs_eosinophils

CBC Abs Basophils K uL-1 825 0.003 0.02 0 0.3 104 9.1 krt_cbc_abs_basophils

CBC RBC M uL-1 825 7.1 0.75 4.7 10 3.4 -0.13 krt_cbc_rbc

CBC HGB g dL-1 825 18 1.8 12 23 3.2 -0.27 krt_cbc_hgb

CBC HCT % 825 52 5.4 34 72 3.3 -0.21 krt_cbc_hct

CBC MCV fL 825 74 3.3 60 88 4.4 0.32 krt_cbc_mcv

CBC MCH pg 825 25 1.1 19 29 4.2 -0.14 krt_cbc_mch

CBC MCHC g dL-1 825 33 1 29 40 6.8 0.37 krt_cbc_mchc

CBC RDW % 825 2.6 0.051 2.4 2.8 5.7 0.98 krt_cbc_rdw

CBC MPV fL 825 2.6 0.26 2 3.7 3.9 0.78 krt_cbc_mpv

CBC PCT K uL-1 825 0.27 0.086 0.058 0.67 4.4 0.95 krt_cbc_pct

CBC Retic Abs Count K uL-1 825 4 0.56 2.2 5.9 2.6 -0.25 krt_cbc_retic_abs

Chem Total Protein g dL-1 825 6.1 0.45 4.7 8 3.7 0.2 krt_cp_total_protein_value

Chem Albumin g dL-1 825 3.2 0.26 2.4 4.2 3.7 0.15 krt_cp_albumin_value

Chem Globulins g dL-1 825 2.9 0.39 1.9 5.1 4.8 0.68 krt_cp_globulins_value

Chem Albumin : Globulin Ratio ratio 825 1.1 0.18 0.5 1.9 3.9 0.28 krt_cp_alb_glob_ratio_valu
e

Chem Calcium mg dL-1 825 2.4 0.056 2 2.6 15 -2.1 krt_cp_calcium_value

Chem Phosphorus mEq L-1 825 1.5 0.18 0.79 3.2 13 0.48 krt_cp_phosphorus_value

Chem Magnesium mg dL-1 825 1 0.081 0.83 1.4 3.3 0.5 krt_cp_magnesium_value

Chem Glucose mg dL-1 825 4.6 0.18 2.4 5.4 46 -4.5 krt_cp_glucose_value
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Chem BUN mg dL-1 825 2.9 0.27 2.1 4.2 5.5 0.62 krt_cp_bun_value

Chem Creatinine mg dL-1 825 0.7 0.12 0.33 1.5 7.6 0.8 krt_cp_creatinine_value

Chem Bilirubin - Total mg dL-1 825 0.2 0.06 0.095 0.79 17 2.2 krt_cp_bilirubin_total_value

Chem ALKP U L-1 825 3.6 0.86 1.8 7.2 5.3 1.3 krt_cp_alkp_value

Chem ALT U L-1 825 3.7 0.51 1.6 6 5.4 1 krt_cp_alt_value

Chem GGT U L-1 825 1.5 0.24 1.1 4.3 33 4.2 krt_cp_ggt_value

Chem Amylase U L-1 825 6.2 0.33 4.9 7.6 3.8 0.34 krt_cp_amylase_value

Chem Triglycerides mg dL-1 825 4.2 0.62 3 8.6 11 2.3 krt_cp_triglycerides_value

Chem Cholesterol mg dL-1 825 5.5 0.28 4.6 7.2 5.7 0.61 krt_cp_cholesterol_value

Chem Sodium mEq L-1 825 147 1.8 137 155 4.9 0.033 krt_cp_sodium_value

Chem Potassium mEq L-1 825 4.5 0.36 3.1 6.2 4.3 0.57 krt_cp_potassium_value

Chem Chloride mEq L-1 825 4.7 0.023 4.6 4.9 6.2 -0.41 krt_cp_chloride_value

Chem Sodium : Potassium Ratio ratio 825 33 2.7 23 48 4.3 0.22 krt_cp_sp_ratio_value

Urinalysis Specific Gravity NA 738 1 0.014 1 1.1 2.5 -0.53 krt_urine_sg

Urinalysis Bilirubin mg dL-1 738 1.4 0.54 1 3 2.3 0.65 krt_urine_bilirubin

Urinalysis Blood/HGB Hb dL-1 738 1.2 0.75 1 5 19 4.1 krt_urine_blood_hbg

Urinalysis pH pH 738 6.8 0.74 6 8.5 2.5 0.69 krt_urine_ph

Urinalysis Protein mg dL-1 738 1.9 1 1 5 3.6 1 krt_urine_protien

Urinalysis WBC/HPF hpf-1 738 2.8 1.5 1 8 4.7 1 krt_urine_wbc_hpf

Urinalysis RBC/HPF hpf-1 738 2.2 1.6 1 8 6.1 1.7 krt_urine_rbc_hpf

Urinalysis Squamous/HPF hpf-1 738 2.5 1.2 1 8 3.3 0.23 krt_urine_squamous_hpf

Urinalysis Urothelial/HPF hpf-1 738 1.5 0.96 1 8 7.8 2 krt_urine_urothelial_hpf

Urinalysis Fat/HPF hpf-1 738 3.9 1.2 1 5 2.7 -0.82 krt_urine_fat_hpf

Table S2 Summary of Complete Blood Count, Serum Chemistry and Urinalysis Variables. The names, units and
summary statistics: N=number of dogs with available data, SD=standard deviation, and measures of skewness and
kurtosis, for variables selected for analysis based on completeness and other factors (Methods). The variable names
in the meta data are given (variableCodes). There were 17 variables selected from the complete blood count (CBC)
analysis, (variableCodes contain ‘krt_cbc’), 21 serum chemistry variables (Chem, variableCodes contain ‘krt_cp’), and
10 variables from the Urinalysis (variableCodes contain ‘krt_urine’).
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Principal components analysis
Principal component analysis was performed on normalized metabolome data from 784 dogs for which
we also had CBC data, with additional scaling by metabolite. We used the Tracy-Widom test in the
AssocTest package to identify the first 23 PCs that describe significantly non-random variation (α = 0.05).
Type III ANCOVA was used to estimate the variance of each of the first 23 PCs that could be explained by
effects of each covariate.

Linear Mixed Model
The fixed effects ( ) of , the design matrix of the covariates: age, weight, sex, sterilization status, theβ 𝑋
duration of fasting prior to blood collection, the 17 CBC traits, and the interactions between age and
weight, and sex and sterilization status, were fit simultaneously on each metabolite ( ), along with the𝑦
random effects (best linear unbiased predictions, ) of the covariance in the GRM.𝑢 𝐵𝐿𝑈𝑃𝑠

𝑦 = 𝑋β +  𝑍𝑢 +  𝑒
(Equation 2)

The mixed model was fit by maximum likelihood in the EMMREML package (Akdemir & Okeke, 2015).
We tested for significance ( >0) of fixed effects within the emmreml function, and the P values wereβ
corrected for multiple comparisons by the false discovery rate method (FDR, (Benjamini & Hochberg,
1995)). When comparing models with and without the GRM, we fit an identity matrix (diagonals =1,
off-diagonals =0) in place of the GRM.

Adjustment for Fixed and Random Effects
When assessing the correlation among the ptmAAs, creatinine, BUN, and the unmodified amino acids, we
removed the effects of the fixed covariates from the metabolite values ( ) by subtracting both fixed effects𝑦
from Equation 2 (the best linear unbiased estimators, ), and random effects ( ) from Equation𝐵𝐿𝑈𝐸𝑠 𝐵𝐿𝑈𝑃𝑠
2 using equation 3: 𝑦' = 𝑦 − 𝐵𝐿𝑈𝐸𝑠 − 𝐵𝐿𝑈𝑃𝑠

(Equation 3)

where BLUEs were derived by multiplying the design matrix ( ) by the matrix of fixed effects ( ), which,𝑋 β
when subtracted from , give the fully-adjusted values ( ).𝑦 𝑦'
For metabolite covariation analysis, Pearson r was calculated on pairs of fully-adjusted metabolite values
( and the measures of similarity among the resulting r among all pairs were clustered by the𝑦')
unweighted pair group method with arithmetic mean UPGMA in R.

Mediation analysis
We performed mediation analysis with the mediation R package (Tingley et al., 2014), testing for the
causal mediation effect ( ) of a mediator ( ) on the effect of age ( ) on a metabolite. Mediation wasγ 𝑀 β
estimated in linear models with the same fixed-effects covariates ( ) used in the mixed model (Equation𝑋
2), without the random effect of the GRM (Equation 4):𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒 =  β 𝑎𝑔𝑒 + γ(𝑀) +  𝑋 +  𝑒

(Equation 4)
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The causal mediation effect (Figure S5) was estimated and tested for >0 using up to 106 bootstrapγ
randomizations of age. The proportion mediated is given by dividing by the effect of age on a metaboliteγ
without the mediator (Figure S5). We tested the sensitivity of to unmeasured confounding among theγ
predictors by sensitivity analysis, where correlation ( ) between the residual effects of the mediator andρ
outcome variables was artificially introduced to estimate the at which =0 (Imai et al., 2010). None of theρ γ
mediation models with >0 at FDR≤5% were sensitive.γ

Figure S5 Path representation of causal mediation models A path representation of a causal mediation model
using, as an example, the hypothetical effect of age on hydroxyproline, with urine specific gravity as a potential
mediator. The mediation model (path a-b), was compared to a model without urine specific gravity (path c). The total
effect was path c, without considering path a-b. To detect causal mediation, after satisfying the assumption that path
a was significant, the direct effect (c|b) of urine specific gravity was the effect of path c given path b. The mediation
effect was the total effect minus the direct effect, and its significance (γ>0) was tested by bootstrap resampling age in
the model (Methods). The proportion mediated was γ divided by the total effect.
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Data and Code Availability
Dog Aging Project data are available on the TERRA platform at the Broad Institute of MIT and Harvard
(https://app.terra.bio/). Code for this study will be made available on GitHub:
https://github.com/ben6uw/DAPmetabolome upon publication.
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