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{

 'title': 'Direct imaging of extrasolar planets: overview of ground and space programs’,
  'pages': 8, 

 'abstract': ‘With the ever-growing number of exoplanets detected, the issue of characterization is becoming more and more...’,
  'sections’: [
  {'title': 'Context', 'page': '1-2', 'Text': 'The study of extrasolar planets has become in a decade an exciting field in modern …’}, 
  {'title': 'Problematic and solutions', 'page': '2-3', 'Text': 'The problematic issue is well known: planets are many: planets are fainter...’}, 
  {'title': 'Planned projects', 'page': '3-5’, 
  'section’: [
   {'title': 'Planet finders" on 8-m class telescopes (2011)', 'page': '3-4', 'Text': 'Ground based 8-m class telescopes are now equipped...’}, 
   {'title': 'JWST (2014)', 'page': '4-5', 'Text': 'The James Webb Space Telescope is an observatory that allows diffraction...’}, 

   {'title': 'Extremely Large Telescopes (>2017)', 'page': '5', 'Text': 'The ELTs instruments for extrasolar planet direct imaging is more...’}
  ]},

  {'title': 'Future projects', 'page': '5-7', 'Text': 'In contrary to section sec: , the following projects are not yet approved neither...’}, 
 {'title': 'Tentative conclusions', 'page': '7-8', 'Text': 'From the above, it is instructive to put on a timeline the different planned projects...’} 

]

}

DocOwl 2:Parse the structure of this paper with the json format. (https://arxiv.org/pdf/0910.4339)

DocOwl 2:

What is the name of the company? Answer the 

question with detailed explanation.

ITC Limited. 

In accordance with the image 10, ITC Limited is the name of the company mentioned in the 

text. The text mentions the company's various brands and products multiple times and also 

talks about the supply chain infrastructure that ITC has created to ensure the availability and 

freshness of its products. The company's name is also mentioned in the header of the document.

(a) The efficiency and performance comparison. (b) Detailed explanation with evidence.

(c) Overall structure parsing for a document.

Figure 1: (a) mPLUG-DocOwl2 achieves state-of-the-art Multi-page Document Understanding per-
formance with faster inference speed and less GPU memory; (b-c) mPLUG-DocOwl2 is able to
provide a detailed explanation containing the evidence page as well as the overall structure parsing
of the document.

ABSTRACT

Multimodel Large Language Models(MLLMs) have achieved promising OCR-
free Document Understanding performance by increasing the supported resolu-
tion of document images. However, this comes at the cost of generating thou-
sands of visual tokens for a single document image, leading to excessive GPU
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memory and slower inference times, particularly in multi-page document compre-
hension. In this work, to address these challenges, we propose a High-resolution
DocCompressor module to compress each high-resolution document image into
324 tokens, guided by low-resolution global visual features. With this com-
pression module, to strengthen multi-page document comprehension ability and
balance both token efficiency and question-answering performance, we develop
the DocOwl2 under a three-stage training framework: Single-image Pretraining,
Multi-image Continue-pretraining, and Multi-task Finetuning. DocOwl2 sets a
new state-of-the-art across multi-page document understanding benchmarks and
reduces first token latency by more than 50%, demonstrating advanced capa-
bilities in multi-page questioning answering, explanation with evidence pages,
and cross-page structure understanding. Additionally, compared to single-image
MLLMs trained on similar data, our DocOwl2 achieves comparable single-page
understanding performance with less than 20% of the visual tokens. Our codes,
models, and data are publicly available at https://github.com/X-PLUG/
mPLUG-DocOwl/tree/main/DocOwl2.

1 INTRODUCTION

Understanding a multi-page document or news video is common in human daily life. To tackle
such scenarios, Multimodal Large Language Models (MLLMs) (Ye et al., 2023c;d; 2024; Bai et al.,
2023; Liu et al., 2023) should be equipped with the ability to understand multiple images with rich
visually-situated text information. Different from natural images mainly comprising of objects, com-
prehending document images asks for a more fine-grained perception to recognize all texts. To tackle
high-resolution document images, some works (Hong et al., 2023; Wei et al., 2023) propose to add an
additional high-resolution encoder while more works (Ye et al., 2023b; Hu et al., 2024; Chen et al.,
2024; Dong et al., 2024b;a) choose to crop a high-resolution image to low-resolution sub-images and
let the Large Language Model to understand their relationship. By increasing the cropping number,
the latter achieves better performance of OCR-free document understanding but also results in too
many visual tokens for only 1 document image, e.g., InternVL 2 (Chen et al., 2024) costs a average
of 3k visual tokens on single-page document understanding benchmark DocVQA (Mathew et al.,
2021). As shown in Fig. 1(a), such long visual tokens not only result in long inference time but also
occupy too much GPU memory, making it difficult to understand a complete document or video and
greatly limiting their application scenarios. Inspired by Natual Language Processing work (Cheng
et al., 2024; Ge et al., 2024; Chevalier et al., 2023) which summarizes a textual paragraph/document
into fewer tokens and maintains most semantics, we argue that visual tokens of document images
can also be further compressed while maintaining both layout and most textual information.

Existing compressing architecture in MLLMs are hard to balance information retention and token
efficiency during document image encoding. As shown in Fig. 2(a), independently compressing
each crop of a document image (Li et al., 2024b; Hu et al., 2024) could reduce visual tokens of
each sub-image but still results in a long sequence of visual tokens after concatenating all sub-
images. Leveraging learnable queries (Bai et al., 2023; Li et al., 2023a; Ye et al., 2023c) or selected
tokens (Liu et al., 2024) as compressing guidance could produce an identical length of tokens for
any resolution but overlook the overall layout information, as shown in Fig. 2(b). Layout-aware
guidance is important for compressing visual features of document images because texts within a
layout region are semantic-coherent and easier to summarize. For example, in a two-column paper,
texts belonging to the ‘Related Work’ section are difficult to summarize with texts on the same line
but belonging to the ‘Method’ section.

In this work, as shown in Fig. 2(c), we propose a layout-aware compressing architecture High-
resolution DocCompressor based on cross-attention to compress document images into fewer to-
kens and achieve better performance than existing compressing methods. Considering that a global
low-resolution image can well capture the overall layout information, we utilize visual features of a
global low-resolution image as the compressing guidance (query). Each visual feature in the global
feature map just captures the layout information of partial regions. Therefore, each query attending
to all high-resolution features will not only make information compression more difficult but also
increase computation complexity. To summarize text information within a layout region, for each
query from the global feature map, a group of high-resolution features with identical relative posi-
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Figure 2: Illustrations of different compressing methods for OCR-free document understanding.

tions in the raw image is collected as compressing objects, sometimes spanning multiple sub-images.
Besides, since the vision-to-text (V2T) module of MLLMs could convert visual features into textual
feature space, we argue that compressing visual features after the vision-to-text module could better
maintain textual semantics in document images. Therefore, based on the architecture of DocOwl
1.5 (Hu et al., 2024), we propose mPLUG-DocOwl2 by placing the High-resolution DocCompres-
sor afther its V2T module: H-Reducer. To take full advantage of the compressing method, our model
DocOwl2 is trained with a three-stage framework: Single-image Pretraining, Multi-image Continue-
Pretraining, and Multi-task Finetuning to support both single-image and multi-image/frame under-
standing. Our experiments on single-page and multi-page document benchmarks demonstrate the
good balance of OCR-free document understanding performance and token efficiency of DocOwl2.
We perform sufficient ablation studies to validate the superiority of our High-resolution DocCom-
pressor and the benefits of the three-stage training framework for both single-page and multi-page
understanding performance.

Our contributions in this work are three-fold:

• We propose a novel compressing architecture, namely High-resolution DocCompressor, to
greatly reduce visual tokens of high-resolution document images. Compared with exist-
ing compressing methods, our method achieves better OCR-free single-image document
Understanding performance with fewer visual tokens.

• DocOwl2 achieves state-of-the-art performance on Multi-page Document understanding
benchmarks with <50% First Token Latency.

• Compared with state-of-the-art MLLMs with similar model size and training data, Do-
cOwl2 achieves comparable performance with <20% visual tokens on 10 single-image
document benchmarks.

2 RELATED WORK

2.1 OCR-FREE VISUAL DOCUMENT UNDERSTANDING

Visual Document Understanding aims to comprehend images with rich text information, including
scans of document pages (Mathew et al., 2021; Tito et al., 2022; Landeghem et al., 2023; Zhang et al.,
2023; Wei et al., 2023), infographics (Mathew et al., 2022), charts (Masry et al., 2022; Kafle et al.,
2018; Methani et al., 2020; Kahou et al., 2018), tables images (Pasupat & Liang, 2015; Chen et al.,
2020; Zhong et al., 2020), webpage screenshots (Tanaka et al., 2021; Chen et al., 2021) and natural
images with scene texts (Singh et al., 2019; Sidorov et al., 2020; Hu et al., 2021). Recently, many
Multimodal Large Language Models have been proposed to perform visual document understand-
ing in an OCR-free manner. mPLUG-DocOwl (Ye et al., 2023a) and UReader (Ye et al., 2023b)
first propose to unify different tasks across 5 types of document images in the seq-to-seq format.
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To encode rich text information in high-resolution images, UReader (Ye et al., 2023b) proposes a
Shape-adaptive Cropping Module to cut the raw image into multiple low-resolution sub-images and
utilizes an identical low-resolution encoder to encode both sub-images and a global image. Mon-
key (Li et al., 2023b) proposes to employ a sliding window to partition high-resolution images and
a resampler to reduce redundant information of each sub-image. mPLUG-DocOwl1.5 (Hu et al.,
2024) increases the basic resolution of the low-resolution encoder and replaces the Visual Abstrac-
tor (Ye et al., 2023c) with 1 simple convolution layer to better maintain the structure information.
DocPedia (Feng et al., 2023) directly processes high-resolution images in the frequency domain. Co-
gAgent (Hong et al., 2023) proposes to utilize a high-resolution encoder to encode high-resolution
visual features and a low-resolution encoder to encode low-resolution global features. Series work
of InternLM-XComposer (Dong et al., 2024a;b) and InternVL (Chen et al., 2024) further optimize
the cropping method or increase the cropping number and greatly improves the OCR-free Document
Understanding performance. These works achieve promising performance but suffer from too many
visual tokens for a high-resolution image (always >1k tokens for a common A4-sized document
page), which hinders the development of OCR-free multi-page document understanding.

2.2 VISUAL FEATURE COMPRESSING

Reducing visual tokens of a single image enables a Multimodal Large Language Model with limited
maximum sequence length to leverage more images as contexts to perform complex multimodal
tasks, such as video understanding, embodied interaction, or multi-page document understanding.
There have been some architectures proposed for compressing visual features of general images
with fewer learnable queries, such as the Resampler (Alayrac et al., 2022; Bai et al., 2023), Ab-
stractor (Ye et al., 2023c;d) and Q-former (Li et al., 2023a). Randomly initialized Learnable queries
can ensemble object information in general images but is hard to summarize rich text information
in high-resolution document images. As a compromise solution, TokenPacker (Li et al., 2024b)
proposes to compress each sub-image with its downsampled visual features as the query to per-
form cross-attention. TokenPacker just reduces each sub-image’s visual tokens, thus still creates
more than 1k visual tokens when processing high-resolution document images. TextMonkey (Liu
et al., 2024) first filters valuable visual tokens and then uses them as guidance to aggregate all visual
tokens. Due to that valuable visual tokens are selected by measuring the token similarity, visual
information of partial regions may not be covered and thus not well compressed during following
cross-attention. In this work, our High-resolution DocCompressor leverages visual features from
the row-resolution global images as the query, the ensembled feature map of sub-images as key and
value. This not only produces a fixed number of visual tokens for images of any resolution but also
covers all areas during compression. Compared to Mini-Gemini (Li et al., 2024c) which compresses
general visual features, there are major two differences with our DocOwl2. Firstly, we make full
use of global visual features and sub-image features produced by an identical low-resolution vision
encoder and don’t need to add an extra high-resolution encoder. Secondly, for better summarizing
textual information in document images, our cross-attention is applied based on visual features that
have been aligned with textual features of LLM. We argue that directly compressing outputs of the
vision encoder will lose more visually situated textual information while comprising features aligned
with LLM is like summarizing texts (Cheng et al., 2024; Ge et al., 2024; Chevalier et al., 2023) and
can better maintain textual semantics in document images. Fair comparisons are performed in our
experiments to support our hypothesis.

3 MPLUG-DOCOWL2

As shown in Fig. 3, DocOwl2 leverages a Shape-adaptive Cropping Module and a low-resolution
vision encoder to encode high-resolution document images. Then, it utilizes a vision-to-text module
H-Reducer to ensemble horizontal visual features and align the dimension of vision features with
Large Language Models. Furthermore, a high-resolution compressor is designed to greatly reduce
the number of visual features while maintain most visual information. Finally, compressed visual to-
kens of multiple images/pages are concatenated with text instructions and input to a Large Language
Model for multimodal understanding.
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Figure 3: The architecture of DocOwl2. Each image is independently encoded by the pipeline of
Shape-adaptive Cropping, High-resolution Visual Encoding and High-resolution DocCompressor.

3.1 HIGH RESOLUTION VISION ENCODING

Following UReader (Ye et al., 2023b) and DocOwl 1.5 (Hu et al., 2024), DocOwl2 utilizes a
parameter-free Shape-adaptive Cropping Module to preprocess high-resolution images. Concretely,
it cuts each high-resolution image I into R×C size-fixed sub-images Is = {Isxy}, 1 ≤ x ≤ R, 1 ≤
y ≤ C, where cropping rows R and columns C are flexibly decided based on the raw resolution of
I . Besides, to maintain the overall layout information, the raw image is also directly resized to a
global image Ig . Both the global image and sub-images are sized H ×W .

After the cropping module, a low-resolution transformer-based vision encoder ViT (Dosovitskiy
et al., 2021) is utilized to independently extract vision features of each sub-image and the global
image as follows:

V g = ViT(Ig) (1)

V s
xy = ViT(Isxy), 1 ≤ x ≤ R, 1 ≤ y ≤ C, (2)

where both V g and V s
xy are visual features with the shape of h× w × d, d is the feature dimension

and w, h are the width and height of the feature map.

Following DocOwl 1.5, after the ViT, for each sub-image or global image, we apply a vision-to-
text module H-Reducer to ensemble horizontal 4 features by a convolution layer and align the
feature dimension with the Large Language Model with a fully connected layer. The calculation of
H-Reducer is represented as follows:

V̂ = FC(Conv(V )), V ∈ {V g, V s
xy}, 1 ≤ x ≤ R, 1 ≤ y ≤ C, (3)

where the shape of the visual feature map V̂ is h× w
4
× d̂, d̂ is the dimension of hidden states of the

large language model.
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3.2 HIGH RESOLUTION FULL-COMPRESSING

Although the H-Reducer has reduced the visual tokens of each sub-image or global image to 1

4

the length of original visual features, the token length of high-resolution images is still too long to
perform multi-page/image joint understanding for Large Language Models. For example, the token
length of 1 high-resolution image in DocOwl 1.5 (Hu et al., 2024) is (R × C + 1)× h× w

4
, which

will be 2,560 when the raw resolution is 1, 344× 1, 344.

In Natural Language Processing, a sentence/paragraph/document of text tokens can be compressed
into fewer summary vectors while maintaining most semantics (Cheng et al., 2024; Ge et al., 2024;
Chevalier et al., 2023). Besides, since visual features have been aligned with the textual feature space
of large language models, the visual tokens of document images after the vision-to-text module can
also be treated as textual tokens encoding different parts of textual information in the image. Thus,
taking into account these two points, in this work, we argue that visually situated textual information
of document images can also be further compressed into fewer tokens, especially after the vision-
to-text alignment.

Ideally, the compression of visual texts should be based on their layout. Texts from the same layout
region (e.g., a title/paragraph region) are more appropriate to be fused into an identical token. After

the vision-to-text module H-Reducer, the global visual feature V̂ g mainly encodes the overall text

layout information while visual features of sub-images {V̂ s
xy} capture detailed textual information.

Besides, due to both the global image and cropped sub-images come from an identical image, there

is a clear mapping between the visual tokens of V̂ g and {V̂ s
xy}. As shown in Fig. 3, each visual

token in V̂ g can be aligned with R×C visual tokens in {V̂ s
xy}. Therefore, in this work, with global

visual features as query, and the visual features from sub-images as key and value, we propose to
utilize cross-attention to ensemble textual semantics and greatly reduce the number of visual tokens
of a high-resolution image to the one of a low-resolution global image.

Concretely, we first re-organize feature maps of cropping images ({V̂ s
xy}, 1 ≤ x ≤ R, 1 ≤ y ≤ C)

to a complete feature map V̂ s according to their positions in the raw high-resolution image. Then,

for each visual token in the feature map V̂ g of the global image, we collect its corresponding R×C

visual tokens from V̂ s as the key and value, the cross-attention layer in this compressor is calculated
as follows:

v̂gij ∈ V̂ g, 1 ≤ i ≤ h, 1 ≤ j ≤ w/4 (4)

v̂sij = [v̂s
i
′
j
′ ] ⊂ V̂ s, (i− 1)R+ 1 ≤ i

′ ≤ iR, (j − 1)C + 1 ≤ j
′ ≤ jC (5)

v̄ij = softmax(
W q v̂gijW

kv̂sij√
dk

)W v v̂sij + v̂gij (6)

where v̂gij is a visual token from the feature map of the global image, v̂sij are visual tokens from the

re-organized feature map of cropping images. v̂gij and v̂sij correspond to the same area in the raw

image. W q,W k,W v are learnable projection matrics.

After high-resolution compressing, the compressed feature map of each image is organized into a
sequence V̄ = [v̄1, v̄2, ..., v̄h×w

4
] for subsequent understanding of the large language model.

3.3 MULTI-IMAGE MODELING WITH LLM

Through the high-resolution compressing, the number of visual tokens for each high-resolution im-
age is reduced from (R × C + 1) × h × w

4
to h × w

4
. Such efficient vision encoding allows joint

understanding of multiple document images with Large Language Models. To help the LLM better
distinguish visual features from different images and understand the ordinal number of images, we
add a textual ordinal token ‘<img x>’ before the visual features of each image, where x is the
ordinal number. Overall, the decoding of the decoder for multiple images is as follows:

Y = LLM([P0; V̄0;P1; V̄1, ..., Pn; V̄n;T ]) (7)

6



where [; ] means the concatenation operation, n is the number of images, Px, 1 ≤ x ≤ n is the
textual embedding of the ordinal token ‘<img x>’, V̄x is the visual features for each image, T is
the textual instruction and Y is the predicted answer.

3.4 MODEL TRAINING

DocOwl2 is trained with three stages: Single-image Pre-training, Multi-image Continue Pretraining,
and Multi-task Finetuning.

At the first stage, to ensure the compressed visual tokens can encode most visual information, es-
pecially visually situated texts, we first perform Unifed Structure Learning as DocOwl 1.5 with the
dataset DocStruct4M (Hu et al., 2024), which covers the learning of struct-aware document parsing,
table parsing, chart parsing and natural image parsing of a single image.

After Single-image Pretraining, to empower our model with the ability to correlate multiple im-
ages, we further perform Multi-image Continue Pretraing with a struct-aware multi-page document
parsing dataset MP-DocStruct1M. With partial documents from two datasets of PixParse12, we
design two symmetrical tasks of multi-image understanding: Multi-page Text Parsing and Multi-
page Text Lookup. Given successive page images in a document, the Multi-page Text Parsing
instructs the model to parse texts of specified one or two pages, such as ‘Recognize texts

in image 2 and image 10.’. As for the Multi-page Text Lookup task, with texts from 1-2
pages as input, the model is required to predict the concrete ordinal number of images containing
these texts, for example, ‘Looking for the image with text <doc> ...</doc>

and <doc> ...</doc>.’. Besides MP-DocStruct1M, during this stage, we also randomly
chose 0.5M samples from DocStruct4M to avoid the catastrophic forgetting of structure parsing
across different types of images.

Finally, we ensemble single-image and multi-image instruction tuning datasets to perform multi-
task tuning. We leverage DocDownstream-1.0 (Hu et al., 2024) and DocReason25K (Hu et al.,
2024) as single-image datasets. DocDownstream-1.0 is an ensembled dataset comprising of
DocVQA (Mathew et al., 2021), InfoVQA (Mathew et al., 2022), DeepForm (Svetlichnaya, 2020),
KLC (Stanislawek et al., 2021), WTQ (Pasupat & Liang, 2015), TabFact (Chen et al., 2020),
ChartQA (Masry et al., 2022), TextVQA (Singh et al., 2019), TextCaps (Sidorov et al., 2020) and Vi-
sualMRC (Tanaka et al., 2021). DocReason25K is a question-answering dataset with detailed expla-
nations. As for multi-image understanding, we ensemble 2 document datasets, MP-DocVQA (Tito
et al., 2022) and DUDE (Landeghem et al., 2023), and 1 news video dataset NewsVideoQA (Ja-
hagirdar et al., 2023) as concise question-answering datasets. MP-DocVQA contains 46k question-
answering pairs on 60k page images scanned from 6k industry documents with rich tables, diagrams,
pictures, and both handwritten and printed texts. DUDE covers more domains of documents, includ-
ing medical, legal, technical, financial, etc. It contains 41k question-answering pairs on 5k docu-
ments. NewsVideoQA collects news videos with rich visually-situated texts from diverse English
news channels around the world, such as BBC, CNN, etc. It contains 8k question-answering pairs
framed on 3k videos. Besides, to trigger the ability of detailed explanations with evidence pages,
we built MP-DocReason51K based on DocReason25K. Concretely, for each single-image sample
from DocReason25K, we construct two multi-image samples with noisy images randomly chosen
from the same or different categories. After randomly inserting the evidence image into noisy im-
ages, we add an extra evidence description (e.g., ‘According to the 5th image,’) into
the raw detailed explanation to get the target of multi-image samples. Most question-answering
samples just focus on 1-2 pages of a document, to further strengthen the ability of a comprehensive
understanding of a document, we leverage a small part of annotations from DocGenome (Xia et al.,
2024) to construct text sequences in the JSON format, which represents the hierarchical structure of
a scientific paper and partial detailed texts.

The detailed statistics of training datasets of DocOwl2 are shown in Table 1.

1https://huggingface.co/datasets/pixparse/idl-wds
2https://huggingface.co/datasets/pixparse/pdfa-eng-wds
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Table 1: Detailed statistic of training datasets of DocOwl2.

Training Stage Input Image Dataset Num

Single-image Pretraining Single DocStruct4M 4,036,402

Multi-image Continue Pretraining
Single DocStruct4M 501,781

Multiple MP-DocStruct1M 1,113,259

Multi-task Finetuning

Single

DocVQA, InfoVQA, DeepForm,
KLC, WTQ, TabFact, ChartQA,
TextVQA, TextCaps, VisualMRC

552,315

DocReason25K 25,877

Multiple

MP-DocVQA 70,154
DUDE 35,438

NewsVideoQA 8,619
MP-DocReason51K 51,754

DocGenome12K 12,010

Table 2: Comparison with OCR-free methods on single-image document understanding tasks. The
‘∗’ refers to models without LLMs and separately fine-tuned on each downstream task. ‘TokenV ’
means the average number of visual tokens of a single image. ‘Bold’ means SOTA performance
within the group and ‘Underline’ means achieving 80% SOTA performance among all baselines.

Model Size TokenV Doc Info Deep
KLC WTQ

Tab Chart Text Text Visual
VQA VQA Form Fact QA VQA Caps MRC

Donut∗ <1B 4,800 67.5 11.6 61.6 30.0 18.8 54.6 41.8 43.5 74.4 93.91
Pix2Struct∗base <1B 2,048 72.1 38.2 - - - - 56.0 - 88.0 -
Pix2Struct∗large 1B 2,048 76.6 40.0 - - - - 58.6 - 95.5 -

T
o
k
e
n
V

≥
1
k

CogAgent 17B 6,656 81.6 44.5 - - - - 68.4 76.1 - -
IXC 2.5 7B ∼ 5,118 90.9 69.9 71.2 - 53.6 85.2 82.2 78.2 - 307.5
InternVL 2 8B ∼ 3,133 91.6 74.8 - - - - 83.3 77.4
TokenPacker 13B ∼ 1,833 70.0 - - - - - - - - -
DocOwl 1.5 8B ∼ 1,698 82.2 50.7 68.8 38.7 40.6 80.2 70.2 68.6 131.6 246.4
DocPeida 7B 1,600 47.1 15.2 - - - - 46.9 60.2 - -
Monkey 9B 1,280 66.5 36.1 40.6 32.8 25.3 - - 64.3 93.2 -

T
o
k
e
n
V

<
1
k DocOwl 7B ∼ 841 62.2 38.2 42.6 30.3 26.9 60.2 57.4 52.6 111.9 188.8

UReader 7B ∼841 65.4 42.2 49.5 32.8 29.4 67.6 59.3 57.6 118.4 221.7
TextMonkey 9B 768 73.0 28.6 59.7 37.8 31.9 - 66.9 65.9 - -
TokenPacker 13B ∼ 467 58.0 - - - - - - - - -
QwenVL 9B 256 65.1 35.4 - - - - 65.7 63.8 - -
Vary 7B 256 76.3 - - - - - 66.1 - - -
DocOwl2 8B 324 80.7 46.4 66.8 37.5 36.5 78.2 70.0 66.7 131.8 217.4

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

The maximum number of crops is set to 12. The resolution of each sub-image or the global image is
504x504. The High-resolution DocCompressor comprises of 2 layers of cross attention. Initialized
from mPLUG-Owl2 (Ye et al., 2023d), the vision encoder (ViT/L-14 (Dosovitskiy et al., 2021)),
H-Reducer and High-resolution DocCompressor are trained during the Sinlge-image Pretraining.
Besides, the main parameters of the Large Language Model (Touvron et al., 2023) are frozen while a
Modality Adaptive Module (MAM) (Ye et al., 2023d) used to distinguish visual and textual features
in the LLM is tuned. The first stage is trained 12k steps with a batch size of 1,024 and the learning
rate set as 1e-4. During the Multi-image Continue-pretraining, the vision encoder is further frozen
and the H-Reducer, High-resolution DocCompressor and MAM is tuned. The second stage is trained
2.4k steps with a batch size of 1,024 and the learning rate set as 2e-5. At the final Multi-task
Finetuning stage, all parameters except the vision encoder are optimized. The batch size, training
step, and learning rate at this stage are set as 256, 9k, and 2e-5, respectively.

4.2 MAIN RESULTS

We compare DocOwl2 with state-of-the-art Multimodal Large Language Models on 10 single-image
document understanding benchmarks, 2 Multi-page document Understanding benchmarks, and 1
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(a) Performance (b) Average Number of Visual Tokens

Figure 4: The comparison of our DocOwl2 with state-of-the-art Multimodal Large Language Models
on (a) OCR-free performance and (b) the average number of visual tokens on 10 Visual Document
Understanding benchmarks.

Table 3: Comparison with OCR-free Multimodal Large Language Models on single-image docu-
ment understanding benchmarks. ‘FTL(s)’ refers to the First Token Latency (seconds)

Model Size
DocVQA ChartQA TextVQA

TokenV FTL(s)↓ ANLS↑ TokenV FTL(s)↓ ANLS↑ TokenV FTL(s)↓ ANLS↑

InternVL 2 8B ∼ 3,198 0.94 91.6 ∼ 1,827 0.56 83.3 ∼2,864 1.01 77.4
IXC 2.5 7B ∼7,395 3.73 90.9 ∼1,971 1.05 82.2 ∼2,075 1.11 78.2
DocOwl 1.5 8B ∼1,806 0.58 82.2 ∼1,713 0.53 70.2 ∼1,664 0.56 68.6

TextMonkey 9B 768 0.58 73.0 768 0.51 66.9 768 0.50 65.9
DocOwl2 8B 324 0.26 80.7 324 0.21 70.0 324 0.23 66.7

text-rich video understanding benchmark. Both question-answering performance and the First To-
ken Latency (seconds) are considered to show the effectiveness of our model.

4.2.1 SINGLE-IMAGE DOCUMENT UNDERSTANDING

For Single-image Document Understanding, we divide baselines into three groups: (a) models
without Large Language Models as decoders (Kim et al., 2022; Lee et al., 2023), (b) Multimodal
LLMs (Hong et al., 2023; Dong et al., 2024a; Chen et al., 2024; Li et al., 2024b; Hu et al., 2024;
Feng et al., 2023; Li et al., 2023b) with an average number of visual tokens over 1k for a single
document image and (c) Multimodal LLMs (Ye et al., 2023a;b; Liu et al., 2024; Li et al., 2024b; Bai
et al., 2023) with an average number of visual tokens less than 1k. As shown in Table 2, although
specifically fine-tuned on each downstream dataset, Donut (Kim et al., 2022) or PixsStruct Lee
et al. (2023) are not as good as Multimodal LLMs, showing the potential of MLLMs for gener-
alized OCR-free document understanding. Compared with MLLMs with <1k visual tokens, our
DocOwl2 achieves better or comparable performance on 10 benchmarks. Especially, with fewer
visual tokens, our model outperforms both TextMonkey (Liu et al., 2024) and TokenPacker (Li
et al., 2024b) which also aim to compress visual tokens, showing that our layout-aware architec-
ture High-resolution DocCompressor is better at summarizing and maintaining textual information
in high-resolution document images. Besides, compared with state-of-the-art MLLMs with >1k
visual tokens, DocOwl2 achieves >80% performance on 7/10 benchmarks while with <20% visual
tokens. Fig. 4 visualizes the comparison with SOTA in terms of question-answering performance
and the number of visual tokens.

Furthermore, we compare the First Token Latency (seconds) on the 3 most frequently compared
datasets, representing documents, charts, and natural images. As shown in Table 3, the far greater
number of visual tokens enable InternVL 2 (Chen et al., 2024) and IXC 2.5 (Dong et al., 2024a)
to achieve better performance but also result in higher inference time. Considering the model ar-
chitecture and training data, it’s most fair to compare DocOwl2 with DocOwl 1.5. After adding
the High-resolution DocCompressor, with similar training data of OCR learning, DocOwl2 achieves
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Table 4: Comparison with OCR-free Multimodal Large Language Models on multi-image/video
document understanding benchmarks. ‘FTL(s)’ refers to the First Token Latency (seconds).
‘TokenV ’ means the average number of visual tokens of a single page/frame.

Model TokenV MP-DocVQA DUDE NewsVideoQA
FTL(s)↓ ANLS↑ FTL(s)↓ ANLS↑ FTL(s)↓ ANLS↑

LongVA-7B ∼2,029 2.13 60.80 2.26 38.37 4.29 50.61
Idefics3-8B ∼838 2.26 67.15 2.29 38.65 6.39 60.16
LLaVA-next-interleave-7B 729 1.56 44.87 1.47 28.03 4.35 56.66
DocOwl2-8B 324 0.95 69.42 0.94 46.77 1.17 64.09

Table 5: Ablation study about the architecture of the compressor on single-image document bench-
marks. ‘Imgbase’ refers to the basic resolution of the global image and each sub-image.

Imgbase Crop
Compressor

DocVQA WTQ ChartQA
Name Compressing Layer Position TokenV

r1 448 9 Resampler learnable query - after H-Reducer 256 69.0 29.4 66.6
r2 448 9 CAbstractor Adaptive Mean - after H-Reducer 256 73.0 32.6 67.6
r3 448 9 DocCompressor Group Att 2 after H-Reducer 256 76.1 35.1 69.2

r4 448 9 DocCompressor Group Att 2 after ViT 256 75.7 33.3 68.7
r5 448 9 DocCompressor Complete Att 2 after H-Reducer 256 74.4 33.7 68.2
r6 448 9 DocCompressor Group Mean - after H-Reducer 256 74.6 31.9 68.2

r7 448 9 DocCompressor Group Att 1 after H-Reducer 256 76.4 34.2 69.2
r8 448 9 DocCompressor Group Att 4 after H-Reducer 256 75.9 35.8 70.1

r9 448 12 DocCompressor Group Att 2 after H-Reducer 256 76.8 35.6 69.5
r10 504 12 DocCompressor Group Att 2 after H-Reducer 324 78.7 36.7 69.4

98% performance of DocOwl 1.5 while reducing 50% First Token Latency with just 20% visual
tokens. This validates the effectiveness of our compressor for compressing visually-situated text
information on the most common documents, charts, and natural images.

4.2.2 MULTI-PAGE/VIDEO DOCUMENT UNDERSTANDING

For Multi-page Document Understanding and Text-rich Video Understanding benchmarks, we
choose recently proposed Multimodal LLMs (Zhang et al., 2024; Laurençon et al., 2024; Li et al.,
2024a) with multi-page OCR-free document understanding abilities and can be fed into more than
10 images under a single A100-80G as baselines. As shown in Table 4, with fewer visual tokens for a
single image/frame, our model DocOwl2 achieve better question-answering performance and much
less First Token Latency, validating the good balance of DocOwl2 between the OCR-free document
understanding performance and token efficiency.

4.3 ABLATION STUDY

We perform sufficient ablation studies to show the effectiveness of the architecture of High-
resolution DocCompressor and the three-stage training strategy of DocOwl2.

4.3.1 COMPRESSOR ARCHITECTURE

To validate the effectiveness of our High-resolution DocCompressor, we compare different com-
pressing architectures with an identical training pipeline of Single-image Pretraing and Single-image
Document Understanding Finetuning, keeping both training data and training setting consistent.

As shown in Table 5, compared with CAbstractor (Cha et al., 2023), Resampler (Bai et al., 2023)
achieves worse document understanding performance (r2 vs r1). This shows that due to no prior
knowledge, such as spatial relationship, is leveraged as compressing guidance, utilizing queries
learned from scratch to compress rich visually-situated text information is more challenging than
simple adaptive mean pooling. Our High-resolution DocCompressor outperforms CAbstractor (r3 vs
r2), validating that leveraging global visual features as layout-aware guidance can better distinguish
the information density of each fine-grained visual feature and therefore maintain more visually-
situated text information.
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Table 6: Ablation study about the training stages of DocOwl2. ‘Single’ and ‘Multi’ refer to training
samples utilizing single or multiple images as input. ‘Page Num’ and ‘Evidence Page’ refer to the
number of input page images and the page ordinal number with the ground-truth answer.

Pretraining SFT
DocVQA

MP-DocVQA

Single Multi Single Multi
Page Num Evidence Page

Overall
1 2-10 >10 1 2-10 >10

r1 ✓ ✓ 78.7 81.3 55.0 5.8 67.7 45.9 6.2 54.2
r2 ✓ ✓ 75.2 78.7 65.2 34.6 74.3 54.9 40.9 63.8
r3 ✓ ✓ ✓ 74.2 78.9 65.7 37.9 74.2 56.8 43.4 64.7
r4 ✓ ✓ ✓ ✓ 80.7 83.3 70.2 42.5 78.6 60.9 53.6 69.4

Instead of placing the compressor after the vision-to-text module H-Reducer, we also try inserting it
between the vision encoder and the vision-to-text module. Such a setting results in performance de-
creases across three datasets (r4 vs r3), validating our hypothesis that compressing features after the
vision-to-text module is like summarizing textual features and can maintain more textual semantics
while compressing visual features after the visual encoder loses more visually situated text informa-
tion. Besides, without aligning each query token in the global feature map with R× C fine-grained
visual tokens from the re-organized feature map to perform attention within a group as Eq. (5), we
try utilizing each query token to attend all visual tokens of sub-images. Such complete attention
not only brings higher computational complexity but also causes performance decreases (r5 vs r3),
showing that the positional correspondence between the global visual map and the re-organized
fine-grained visual map is a reliable prior knowledge for compressing visual features efficiently.
Furthermore, directly performing mean pooling on each group of R×C fine-grained visual features
underperforms utilizing global visual features as the query to perform cross-attention (r6 vs r3). This
also proves the importance of reliable guidance during compressing.

Compared with 2 layers of cross-attention, decreasing cross-attention layers bring a slight perfor-
mance increase on DocVQA (Mathew et al., 2021) but more performance decrease on WikiTab-
lesQA (WTQ) (Pasupat & Liang, 2015) (r7 vs r3). Further increasing to 4 layers doesn’t signifi-
cantly improve performance (r8 vs r3). This shows that compressing high-resolution visual features
doesn’t require a deep neural network. Finally, increasing the maximum number of crops and the
base resolution of the global image or each sub-image are two main strategies to increase the sup-
ported input resolution. Our experiments show that increasing the cropping number (r9 vs r3) or
basic resolution (r10 vs r9) benefits the document understanding performance. Increasing basic
resolution brings more improvement because of more visual tokens after compressing.

4.3.2 TRAINING STRATEGY

DocOwl2 is trained with three stages: Single-image Pretraining, Multi-image Continue-pretraining,
and Multi-task Finetuning. Table 6 shows the influence of each stage for OCR-free single-page and
multi-page document understanding. With the Single-image Pretraining and Single-image finetun-
ing (r1), the model achieves promising performance on single-page benchmark DocVQA and doc-
uments from MP-DocVQA with only 1 page. Although only trained with 1 image as the input, the
model can also achieve around 50% accuracy when fed into 2-10 page images. However, the model
struggles to understand documents with more than 10 pages, which greatly exceeds the number of
input images during training and brings great difficulty in correlating images and finding answers.
Performing Multi-image Fintuing could greatly improve the model’s ability to understand multiple
images (r2 vs r1). Furthermore, adding the Multi-image Continue-pretraining could also improve
the question-answering performance on downstream datasets, especially for documents with more
than 10 pages (r3 vs r2). This demonstrates that parsing texts of the specified page or judging which
pages contain specified texts among multi-page documents is a basic ability for multi-page document
understanding. Finally, by ensembling both single-image and multi-image instruction tuning sets to
perform the Multi-task Finetuning (r4), DocOwl2 achieves the best performance on both single-page
and multi-page document benchmarks, showing the cross-improvement between single-image and
multi-image comprehension.

11



Extract words from the 14th picture and 17th picture.

<doc 14> Page 14.       Georgia Garden Railway Society       Sep 2020

Atlanta Senior Life: Big Fun with Little Trains

 The Atlanta Senior Life newspaper carried an article in its July 2020 Vol. 

5 No. 7 edition featured a couple of couples from the 

GGRS. …
Later in the article, another GGRS pair, Russ and Leslie Ann Bundy 

were also interviewed. Maybe we can pick up a couple of new members 

from this coverage. The Atlanta Senior Life is available online at at 

atlantaseniorlife.com or on facebook.com/atlantaseniorlife . 

2020 Piedmont Pilgrimage -- An Online Tour of the Atlanta Area’s Great 
Model Railroads

By Russ Bundy 

The Piedmont Pilgrimage is sponsored each year by the Piedmont 

Division …
the 18th annual pilgrimage, 2020 is proving to be quite a challenging 

year. 

Social distancing to minimize chances of contracting the COVID - 19 

virus has affected a lot of activities, including the Piedmont Pilgrimage. 

Continued page 10 </doc 14>

 <doc 17> Page 17     Georgia Garden Railway Society       Sep 2020

 The sound module is operated with less than 5 

volts. Some use three ‘button cells’ for a total of about 
4.5 volts. Buttons do not last very long. AAA cells also do not have to 

replace periodically. 

The modules also operate on a single Li-Ion rechargeable 

cell (voltage nominal current modules). These modules use 

very few milliamps so I used a 240 AmpHour 

(mAh) Li-Ion battery purchased on AliExpress. It 

rarely require recharge. It is shown in Figure 2. 

…
With some soldering I replaced the pushbutton switches provided with 

the sound Magnet Trigger modules with magnetic switches. The 

magnetic switch was hot-glued to existing structure on the bottom of the 

flat car as shown in Figure 4. </doc 17>

DocOwl 2:

Identify the image that features text <doc> (vii) the provisions of this Agreement governing 

payments with respect to Certificates and related notices, including Sections 2.4, 3.1 and 

3.2

… 

SECTION 10.1. Termination of Intercreditor Agreement. Following payment of Final 

Distributions with respect to each Class of Certificates 

and the payment in full of all Liquidity Obligations to the Liquidity Providers and provided 

that there shall then be no other amounts due to the 

Certificateholders, the Trustees, the Liquidity Providers and the 

53 </doc> ?

<img 7>

DocOwl 2:

(a)

(b)

Figure 5: Qualitative results of the Multi-page Text Lookup (a) and Multi-page Text Parsing (b)
given by DocOwl2 after the Multi-image Continue Pretraining.
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What is the "required filing frequency"? 

Answer the question with detailed explanation?

Required filing frequency is once per month. 

In accordance with the 7th image, the text 

states that the filing requirement for the 

NYS Income Tax withholdings is once per 

month. This means that taxpayers must file 

their tax returns once a month to report their 

income and pay any applicable taxes.

DocOwl 2:

Mention any 2 Expected principle source of payments? 

Answer the question with ' 'detailed explanation.

Self pay and Workmen's compensation. 

As shown in the 18th image, the text states that the expected principal source of payment for the hospital ID numbered 

1014 is self pay and workmen's compensation. This means that the patient will be responsible for paying for their own 

medical expenses and will also receive payment from Workers' Compensation for any work-related injuries they may 

have sustained while working in the hospital.

DocOwl 2:

Is there more than 5 tables in chapter 18 of page 2? 

Answer the question with detailed explanation There is no information about chapter 

18 of page 2 in the given texts. 

According to the second image, the 

texts only provide information about 

the U.S. Senate Committee on Banking, 

the Ranking Members, and the Senators 

who cosponsored the Secure and Fair 

Enforcement (SAFE) Banking Act in 

the 117th Congress. There is no 

mention of chapter 18 of page 2 or any 

information related to it. Therefore, the 

answer to the question is that there is no 

information provided about the number 

of tables in chapter 18 of page 2 in the 

given texts. 

DocOwl 2:

(a)

(b)

(c)

Figure 6: Qualitative results of the Multi-page Question Answering with detailed explanation.
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Which year birthday is NFT celebrating? Answer the question with detailed explanation. 

Stan Lee's 99th birthday. 

According to the 16th image, the text in the image mentions "NFT to 

celebrate Stan Lee's 99th birthday", indicating that the NFT collection 

is being celebrated on Stan Lee's birthday. Therefore, Stan Lee's 99th 

birthday is the year being referred to in this context.

DocOwl 2:

States and Centre.

 In accordance with the image 3, the text mentions that the air 

crisis is a centre-stage issue and states have a responsibility to 

respond to it. Therefore, it can be inferred that the Supreme 

Court is responding to the crisis by directing states and the 

Centre to take appropriate actions. 

Who are being responded in supreme court? Answer the question with detailed explanation. 

DocOwl 2:

(a)

(b)

No physical coins or bills in cryptocurrency.

As shown in the image 4, the text clearly states that 

there are no physical coins or bills in cryptocurrency. 

This means that the digital currency only exists in the 

form of electronic coins or tokens, and there is no 

physical currency associated with it.

Are there physical coins or bills in cryptocurrency? Answer the question with detailed explanation. 

DocOwl 2:

(c)

Figure 7: Qualitative results of the Text-rich Video Understanding.
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4.4 QUALITATIVE RESULTS

As shown in Fig. 5, after the Multi-image Continue Pretraining stage, DocOwl2 is able to locate
the corresponding image of the given texts accurately. Besides, although representing each high-
resolution image with just 324 tokens, DocOwl2 is still capable of parsing detailed texts of specified
two images, validating the promising OCR-free multi-page document understanding performance
of DocOwl2 . It also demonstrates our proposal that 324 tokens are enough to encode detailed
text information in common A4-sized document pages and the effectiveness of our High-resolution
DocCompressor.

After the Multi-task Finetuning, given multiple images and a question, DocOwl2 can give a simple
answer first and then provide a detailed explanation with the evidence, as shown in Fig. 6. Do-
cOwl2 can comprehend not only page images rendered from PDF files (Fig. 6(c)) but also scan
images of a document (Fig. 6(a-b)). When a question is unanswerable, DocOwl2 can also tell and
give corresponding reasons (Fig. 6(c)).

Besides multi-page documents, DocOwl2 is also capable of understanding text-rich videos. As
shown in Fig. 7, among similar frames within a video, DocOwl2 can distinguish fine-grained textual
differences, locate relevant frames, and give accurate answers.

5 CONCLUSION

In this work, we propose mPLUG-DocOwl2, a Multimodal Large Language Model with the ability
of efficient OCR-free Multi-page Document Understanding. The novel architecture High-resolution
DocCompressor in DocOwl2 compresses each high-resolution document image into 324 tokens
through cross-attention with the global visual feature as guidance, and re-organized features of
cropped images as keys and values. On single-image document understanding benchmarks, with
fewer visual tokens, DocOwl2 outperforms existing compressing methods and achieves comparable
performance with SOTA MLLMs with similar training data. Besides, DocOwl2 achieves OCR-free
state-of-the-art performance on two multi-page document understanding benchmarks and 1 text-
rich video understanding benchmark. Our experiments validate that thousands of visual tokens for
1 common A4-sized document page may be so redundant that too many computational resources
are wasted. We hope DocOwl2 could bring more researchers’ attention to the balance of efficient
representation of high-resolution images and OCR-free Document Understanding performance.
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