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26  Abstract
27  The rapid advancement of foundation models has significantly enhanced the

28  analysis of single-cell omics data, enabling researchers to gain deeper insights
29 into the complex interactions between cells and genes across diverse tissues.
30 However, existing foundation models often exhibit excessive complexity,
31  hindering their practical utility for downstream tasks. Here, we present
32 CellPatch, a lightweight foundation model that leverages the strengths of the
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33 cross-attention mechanism and patch tokenization to reduce model complexity
34 while extracting efficient biological representations. Comprehensive
35 evaluations conducted on single-cell RNA-sequencing datasets across
36 multiple organs and tissue states demonstrate that CellPatch achieves
37  state-of-the-art performance in downstream analytical tasks while maintaining
38 ultra-low computational costs during both pretraining and finetuning phases.
39  Moreover, the flexibility and scalability of CellPatch allow it to serve as a
40 general framework that can be incorporated with other well established
41  single-cell analysis software, thereby enhancing their performance through

42 transfer learning on diverse downstream tasks.

43 Main

44  Single-cell RNA sequencing (scRNA-seq) technology has revolutionized
45 molecular biology in recent years through its capacity to generate
46 high-resolution transcriptomic profiles at unprecedented cellular scales'3. This
47  technological advancement enables precise measurements of gene
48  expression patterns in individual cells, yielding crucial insights into cellular
49  heterogeneity, developmental trajectories, and disease mechanisms*>.
50  Meanwhile, The establishment of the Human Cell Atlas® has further facilitated
51 the systematic study of gene regulatory networks at single-cell resolution.
52 Deep learning approaches have emerged as powerful tools for integrating and
53 modeling large-scale scRNA-seq datasets, revealing complex cellular states
54  and dynamics’8. Recent Transformer-based foundation models of cells, such
55 as scBERT®, scGPT® GeneFormer'®, scFoundation'’, and LangCell'?,
56  particular show promise in effective feature extraction and versatile
57  downstream applications, providing new insights into cellular functions. These
58 models demonstrate that Transformer-based architectures™ significantly
59  outperform traditional deep learning algorithms, including scVAE' and scVI'5,
60 in learning representations of single cells. However, despite their success in
61  processing single-cell data and addressing downstream analytical tasks’®,
62  current foundation models face significant challenges. The high dimensionality
63  of transcriptomics data introduces considerable computational complexity
64  within attention-based architectures, while batch-specific variations in gene
65 detection necessitate complex preprocessing workflows. These challenges
66  collectively constrain the models' transferability, scalability, and flexibility
67  across a range of biological applications.
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68 To address these challenges, we present CellPatch, a novel foundation
69 model that employs an effective gene patching strategy to reduce model
70  complexity. Unlike text sequences, which can be chunked based on syntactic
71  order, or images, where pixels can be patched according to spatial position,
72 there is currently no universal patching strategy specifically designed for gene
73 expression data'’. CellPatch employs an innovative cross-attention
74 mechanism where integrated patch tokens automatically patch genes as prior
75 information and extract patch-level features. CellPatch is designed to directly
76~ execute downstream tasks using an encoder coupled with a task-specific
77 decoder. Through comprehensive evaluation using extensive real datasets,
78  CellPatch demonstrates superior performance compared to state-of-the-art
79  (SOTA) algorithms. Moreover, the modular design of CellPatch allows for
80 integration with existing SOTA models to enhance their capabilities. When
81 integrated with STAGATE', a prominent spatial transcriptomics analysis
82  algorithm, CellPatch significantly improves spatial domain identification,
83  leading to more precise hierarchical structural determinations.
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87  through pretraining, enabling application to various downstream tasks via fine-tuning or
88  embedding. b, | Patch Module. lllustrating how a single cell derives patch features through
89  the cross-attention mechanism. Il Cell type annotation. Cell features are classified through
90 three dense layers. Ill Model extension. The patching module and an additional fully
91 connected layer are integrated into the existing STAGATE framework.

92

93 The core innovation of CellPatch lies in its distinctive pretraining method
94  and feature extraction mechanism (Fig. 1a). CellPatch extracts patch features
95 from scRNA-seq data through unsupervised masked gene modeling
96 (Methods), utilizing a comprehensive dataset of 10M cells (described in Data
97  Availability). To optimize computational efficiency, we retained only non-zero
98 elements, with each assigned a gene token that encodes positional
99 information. These elements are subsequently integrated into input features
100 through a sophisticated combination of Patch Tokens and cross-attention
101 mechanisms (Fig. 1b). This approach enables CellPatch to extract gene
102  expression features across diverse cellular contexts and generate
103  standardized patch features of fixed dimensionality. The subsequent
104  application of the self-attention mechanism to these patch features facilitates
105 deep feature extraction, yielding higher-quality representations. A key
106  innovation in the decoder architecture is the incorporation of gene embeddings
107  as semantic prompts, which are not only utilized within the encoder but are
108  also reintroduced in the decoder for enhanced contextual integration. By
109 utilizing the cross-attention mechanism, the model effectively extracts
110 information from patch features and accurately reconstructs gene expression
111 profiles through the decoder. This dual-phase application of gene embeddings
112 enhances the semantic representation capabilities of the gene embeddings.
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Fig. 2 Performance of CellPatch on scRNA-seq and Spatial Transcriptomic Dataset.
a, The cell type prediction performance of CellPatch on Zheng68K dataset. (Left)
Consistency between the ground truth and the predicted results of CellPatch; (Middle)
UMAP visualization of the ground truth; (Right) UMAP visualization of the predicted
results. b, Cell type annotation accuracies of various methods on real scRNA-seq
datasets, including Zheng68K, Pancreas, Myeloid, and Segerstolpe. Error bars indicate
95% confidence intervals across 10 replicates. ¢, Clustering results of original STAGATE
and CellPatch+STAGATE on sample 151675 from the DLPFC dataset. The ground truth
for tissue regions is based on the manual annotation of six cortex layers or white matter
(WM) provided by the original study. d, Boxplots illustrating clustering accuracies across
all 12 sections for original STAGATE and CellPatch+STAGATE. Asterisk (*) denotes

p-value less than 0.05 based on a paired one-sided t-test. e, UMAP visualizations and
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126 PAGA graphs of sample 151675 generated from original STAGATE and
127  CellPatch+STAGATE embeddings, respectively.

128

129 To showcase the embedding capability of CellPatch, we evaluated its cell
130  type annotation performance against competitive algorithms across diverse
131 scRNA-seq datasets that include a variety of organs and tissue states. Taking
132 Zheng68K dataset as an example, we visualized the prediction results of
133 CellPatch (Fig. 2a) and annotated cells that were not consistently predicted.
134 We further calculated the confusion matrix to assess classification consistency
135 (Supplementary Figure 1). Model performance was systematically assessed
136 using accuracy and F1 score metrics. CellPatch demonstrated superior
137 performance across all benchmark datasets compared to existing methods,
138 achieving higher accuracy (Fig. 2b) and F1 scores (Supplementary Figure 2).
139  Additionally, we calculated the runtime required by different models to perform
140  the annotation task by incrementally increasing number of genes per cell as
141 input (Supplementary Figure 3). CellPatch excelled in both speed and
142 tolerance for higher number of input genes, outperforming other models and
143 demonstrating its efficiency, stability, and broad applicability across various
144  tissue states and experimental platforms.

145 To demonstrate the transfer learning capacity of CellPatch, we used
146  pretrained CellPatch model to assist STAGATE in capturing transcriptional
147 heterogeneity with spatial context. We assessed the spatial domain detection
148 performance of CellPatch combined with STAGATE (CellPatch+STAGATE)
149 and the original STAGATE using the human dorsolateral prefrontal cortex
150 (DLPFC) data by 10X Visium. In the following section, CellPatch+STAGATE is
151 referred to as CellPatch, and the original STAGATE is referred to as
152  STAGATE. In a representative analysis of slice 151675, which comprises
153 3,592 spots across 33,538 genes annotated into six neuronal layers and white
154  matter, CellPatch effectively delineates distinct cortex layers and accurately
155 recovers layer boundaries. In contrast, STAGATE struggles to accurately
156  recover cortical layers 4 and 5, resulting in inferior clustering performance
157 (STAGATE: ARI 0.59, CellPatch: ARI 0.65) (Fig. 2c). Moreover, CellPatch
158  significantly enhances clustering performance across the twelve samples
159 compared to STAGATE (Fig. 2d). Manual annotations and clustering results
160  for other DLPFC slices are shown in Supplementary Figure 4. Furthermore, we
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161  performed UMAP and Partition-based graph abstraction (PAGA'®) graph
162  visualization of low-dimensional embeddings generated by CellPatch and
163 STAGATE. CellPatch depicts the spatial trajectory from layer 1 to layer 6 and
164  white matter in the UMAP plot, as well as in the PAGA graph, reflecting the
165  established "inside-out" pattern of corticogenesis. However, since layers 4 and
166 5 cannot be effectively separated, the PAGA graph of STAGATE embedding
167  reveals a circular spatial trajectory pattern from layer 4 to layer 6 (Fig. 2e).
168  Gene set enrichment analysis (GSEA?°2?") revealed layer-specific enrichment
169 of key pathways, including myelin sheath, cytoplasmic translation, and
170  synapse-related pathways, highlighting critical transcriptional programs in
171 cortical development (Supplementary Figure 5). These findings were further
172 validated using the STARmap dataset with single-cell resolution
173 (Supplementary Figure 6). In summary, these results demonstrated
174 CellPatch's capacity to enhance the performance of downstream analysis
175  methods through transfer learning.

176 To investigate the interpretability of CellPatch, we analyzed the
177 correlations between attention scores from the first-layer patching process and
178  gene embeddings. Using Zheng68k dataset, we extracted and normalized the
179  attention weights during the transformation of gene expression data into patch
180 features. The normalized attention score matrix revealed distinct cell
181  type-specific patterns (Supplementary Figure 7). For example, in CD8+
182 Cytotoxic T cells, we observed elevated attention scores for the /IL32 gene, a
183 gene known to trigger cytokine production, including TNFa, which aligns with
184  the biological role of CD8+ Cytotoxic T cells in producing host defense
185  cytokines. On the heatmap, we highlighted representative cell type-specific
186 markers, demonstrating that the model's attention scores were significantly
187  higher for these genes within their respective cell populations, indicating a
188  targeted recognition of distinct cellular phenotypes.

189 Furthermore, we investigated whether the model-learned gene
190 embeddings contained semantic information beyond merely providing
191  positional context for expression values in downstream tasks. We extracted
192 the top 30 marker genes for each cell type in Zheng68k dataset, along with
193  marker genes reported in the original publication, and generated UMAP
194  visualizations of their embedding weights (Supplementary Figure 8). The
195 analysis revealed remarkable patterns, with embedding weights logically
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196  representing gene-gene relationships. For example, multiple genes involved in
197  cytotoxic pathways expressed in CD56+ NK cells clustered near GZMK in the
198  lower left region, which was identified as an NK cell type-specific gene in
199  original Zheng68k study. Similarly, platelet-associated genes PF4 and PPBP
200 clustered in the upper region, which also contained multiple CD34+ cell
201  type-specific marker genes. These analyses demonstrate that CellPatch
202 achieves cell type-specific recognition while effectively learning gene-gene
203 interaction relationships, validating both its robust learning capability and
204  post-training interpretability.

205 In summary, the comprehensive experimental results presented herein
206 validate the effectiveness of CellPatch across diverse single-cell
207  transcriptomic and related data types, establishing a robust foundation for its
208  further utilization. The model demonstrates exceptional interpretability and
209 exploration potential in both cell type classification and gene relationship
210 analysis, highlighting the advantages of the CellPatch architecture. While our
211 current analyses are based on training results from 10M data points over 50
212 epochs, UMAP visualization of the pre-training results suggests potential for
213 further model optimization. By increasing training iterations, and broadening
214  the sample space through additional data collection, CellPatch could be a
215 more comprehensive single-cell foundation model. In conclusion, the
216  CellPatch architecture provides an efficient training paradigm for gene-centric
217  data analysis, addresses the gap in scCRNA-seq data patching, and achieves
218 excellent performance across multiple aspects of single-cell analysis.

219  Methods

220  CellPatch overview

221  CellPatch introduces the concept of patch tokens, which extract features from
222 input gene expression data through a cross-attention mechanism. Through
223 pretraining, we obtained a set of patch tokens with high generalization
224  capability, effectively reducing the dimension of gene expression data to a
225 unified meta-gene level. CellPatch improves upon masked gene modeling
226 (MGM), a commonly used training strategy, by extending the utility of gene
227  embeddings: beyond their conventional role as positional encodings in the
228  encoder, they are also employed as prompts in the decoder for expression
229  value reconstruction, thereby enriching their semantic representation.
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230 Gene and expression embedding

231  CellPatch employs a distinctive embedding approach tailored to the unique
232 structure of single-cell data. Since each expression vector contains mixed
233 information of both gene IDs and their corresponding expression values,
234 mapping these components into feature vectors constitutes a critical step. In
235  this study, we assigned a learnable feature vector to the i-th gene:

236 gi = fy(gene_id) € RE™ i = 1,27,

237 where g; represents the gene embedding vector, f, denotes the

238  gene-to-embedding transformation layer, dim denotes the embedding
239  dimension, and n denotes the number of genes. This maps gene IDs into a
240 predefined feature space. For gene expression values, we implemented a
241  robust processing approach. We initially performed standard normalization on
242 the data. Following the methodology employed in scBERT, the expression
243 values are then clipped at a maximum of 5 and rounded to discrete values
244  before being fed into the model. Subsequently, these processed values are
245  transformed through an embedding layer into dim -dimensional expression
246  features

247 ¢; = f.(exp;) € R%m,

248 where c; represents the count embedding vector, f. denotes the
249  count-to-embedding transformation layer, and exp; represents the count
250 value of gene .

251 Finally, the feature representation for a single cell at input is denoted as
252 X = {xl, xngene},

253  where x; = g; + c;. This design not only effectively captures information about
254 both gene ID and expression value, but also provides rich contextual
255 information for the model, thereby enhancing performance in downstream
256  tasks.

257  Pretrain Encoder
258 In the encoder design of CellPatch, we proposed a novel architecture that
259  differs from traditional Transformer structures. The model predefines a set of
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260  Patch Tokens and generates patch features by extracting information from cell
261  features through cross-attention mechanism. Specifically, we first defined a set
262 of PT (Patch Tokens) as

263 PT = { pty, pty, - Ptn,,.,} € Réim

264  where n,,., represents the number of patch tokens, a hyperparameter that

265  controls the dimension reduction ratio of gene features to patch features. The
266  cross-attention blocks (Supplementary Note 1) then transform the input cell
267 features X into patch features PF (patch feature), which is formulated as

268 PF = (pf 1, Pf n, ) = CAPT, X),

2690 where CA denotes Cross-Attention blocks. Subsequently, these patch
270  features are further processed through self-attention blocks (Supplementary
271 Note 2) to obtain the final patch feature representation PF', which serves as
272 input for various downstream tasks, formulated as

273 PF = SA(PF),

274  where S4 denotes Self-Attention blocks.

275  Pretrain Decoder

276  For the pretraining decoder design of CellPatch, we developed a
277 prompt-based cell reconstruction architecture. We innovatively utilized gene
278  embeddings as decoder prompts to reconstruct their corresponding gene
279  expressions. This process extracts information from PF' through
280  cross-attention mechanism and reconstructs gene expression via self-attention
281  modules. Specifically, the reconstruction process can be formulated as

282 h; = CA(g, PF),

283 rec; = SA(h;),
284  where h; represents the intermediate features extracted from PF using gene
285 embedding g; as the query in cross-attention operations, and rec; denotes
286  the reconstructed expression value for the i-th gene. The cross-attention block
287 and self-attention blocks consist of multi-head attention layers followed by
288  layer normalization and feed-forward networks.
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289 During pretraining, we employed mean squared error (MSE) as the loss
290 function to measure the discrepancy between the reconstructed expression
291  values rec; and the original expression values c;, which can be formulated as

292 Lge.c = MSE Loss(rec, ¢) = %Z?zl (rec; — c;)?,

293  where n denotes the number of gene prompts input to the decoder for each
294  cell. This reconstruction loss guides the model to learn meaningful
295  representations of gene expression patterns through the pretraining process.
296 Our experimental results demonstrate that, as the number of training
297 iterations increases, the intermediate representations PF generated by the
298  model progressively develop the ability to discriminate between different cell
299  types, validating the effectiveness of our training approach (Supplementary
300 Figure 9).

301 Downstream task

302 Classification Task Decoder

303  For cell type annotation tasks, we implemented a classification decoder
304 architecture that comprising stacked dense layers to predict cell type
305 assignments. Specifically, we first flattened the learned intermediate
306 representations PF', which are then processed through a Dense Block
307  consisting of three fully connected layers with dimensionality reduction.

308 The Dense Block projects the flattened features into a probability
309  distribution over the predefined cell type space for each input cell. This
310  transformation can be formulated as

311 Pi = {Pi, Pizs " Ping,,, } = Dense Block(PF;).

312 To quantify the performance, we adopt the cross-entropy criterion as our
313 loss function, which measures the dissimilarity between the predicted
314  probability distribution and ground truth annotations. The loss function is
315  defined as

316 L; = CrossEntropy(p;, ;) =— X" v;; log (py),

317 where p; € R"™ss denotes the predicted probability distribution for the i-th cell,
318  n.uss represents the cardinality of the cell type set, and y; is the one-hot
319  encoded ground truth label.
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320 Downstream Application: Enhancing Spatial Transcriptomics Analysis
321  through CellPatch-STAGATE Integration

322 To further demonstrate the extensibility of CellPatch and its potential for
323 complex downstream tasks, we proposed an innovative integration with
324  STAGATE, a prominent spatial transcriptomics analysis framework.

325 Specifically, we utilized CellPatch to process spatial transcriptomic data
326  and generate PF, which is then concatenated with the original input features
327 to serve as the enhanced input x; for the modified STAGATE module. The
328 downstream analysis is performed through the intermediate representations z;,
329  which can be formulated as

330 Z; = fe (concat(xi, PF)),

331  where f,, denotes the encoder of STAGATE. Given the graph autoencoder
332 architecture of STAGATE, we added an additional Dense layer at the end of
333 decoder to maintain consistency with the original feature space

334 rec,, = Dense(f4(2)),

335 where rec,, denotes the reconstructed features and f,; denotes the decoder

336 of STAGATE.

337 Implementation details

338  Gene Symbol Unification

339 We established a comprehensive gene reference set based on the
340 CELLXGENE dataset, encompassing 60,690 genes along with their
341 corresponding Ensemble IDs and gene symbols. This reference set
342 incorporates, but not limited to human protein-coding genes and common
343 mitochondrial genes. During the training and fine-tuning processes, each gene
344  is assigned a unique token ID. For genes not present in the training set, new
345 token IDs are dynamically allocated to ensure that no critical information is lost
346  during model adaptation.

347 Data Preprocessing

348 We implemented a standardized data preprocessing pipeline using the Scanpy
349 framework, which includes quality control filtering, library size normalization
350 (scaling total counts per cell to 1e4), and log transformation (log1p) of
351 normalized counts. For the pretraining phase, we further optimize the input by
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352 filtering out zero-expression genes to reduce computational complexity,
353 followed by padding the sequences to a uniform length to facilitate efficient
354  batch processing.

355 Differential gene expression analysis and spatial domain annotation

356  We employed the MAST algorithm implemented in the FindMarkers function of
357 the Seurat package to identify differentially expressed genes for each spatial
358 domain with a 5% FDR threshold (Benjamin-Hochberg adjustment). Then,
359  Spatial domains are annotated by marker genes and comparing expression
360  spatial patterns against manual annotations.

361  Trajectory inference
362  After obtaining the clustering labels, we employed the PAGA algorithm to
363  depict spatial trajectory.

364 Gene enrichment analysis

365 We performed gene set enrichment analysis (GSEA) on the differentially
366  expressed genes sorted by adjusted p-values using enrichGO function in the
367  clusterProfiler?? package, showing the top five enriched pathways. Gene sets
368 are downloaded from the Molecular Signatures Database (MSigDB, Broad
369 Institute) including C2 (KEGG), C5 (GO BP: biological process, GO CC:
370  cellular component, GO MF: molecular function).

371 Evaluation metrics

372 To quantitatively assess the cell type annotation performance, we employed
373 two complementary metrics: accuracy and F1 score. The accuracy metric,
374  defined as the ratio of correctly classified cells to the total number of cells, is
375  formulated as:

376 Accuracy = (TP + TN)/(TP + TN + FP + FN),

377 where TP, TN, FP, and FN denote true positives, true negatives, false
378  positives, and false negatives, respectively.

379 To provide a more comprehensive evaluation, particularly for imbalanced
380 cell type distributions, we additionally utilized the F1 score, which is the
381  harmonic mean of precision and recall

382 F1 = 2-(Precision-Recall) /(Precision + Recall),

383  where
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384 Precision = TP/(TP + FP)

385 and

386 Recall = TP/(TP + FN).

387 We adopted adjusted Rand index (ARI) to measure clustering

388 performance of CellPatch and STAGATE in spatial domain detection.
389  Specifically, given two sets of clustering labels, the ARl is calculated as

2,(;) - ()G ()
220+ (0))-E OO0

390  where n;; is the number of spots overlapped by cluster i and cluster j. n;

ARI =

391 and n; are the number of spots in cluster i and j, respectively.

392 Model Parameters

393  Pretrain

394  The model is implemented using Py Torch. The model architecture is based on
395 a Transformer structure with 64 patch tokens and an embedding dimension of
396  32. The encoder consists of 1 cross-attention layer followed by 2 self-attention
397 layers for pathway embedding processing, with 2 attention heads. The
398 encoder projects the output features into a 10-dimensional space. The
399  decoder comprises 1 cross-attention layer and 1 self-attention layer for gene
400 embedding processing, with final projection to 1-dimensional output. We set
401  the maximum number of genes to 70,000 and utilized 64 learned pathway
402  tokens as preset embeddings.

403 For training, we used the Adam optimizer with a learning rate of 1e-4 and
404  weight decay of 5e-5. The model was trained for 50 epochs with a batch size of
405  512. Input gene expression data underwent log transformation, and random
406  masking was applied to 30% of non-zero values during training. The maximum
407  sequence lengths were set to 3,000 and 1,000 for encoding and decoding
408  respectively.

409  Cell type annotation

410  For the downstream cell type annotation task, we finetuned the pretrained
411 model by replacing the original decoder with three dense layers. The decoder
412 architecture consists of a first dense layer that projected the pathway
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413 embeddings (dimension: n,.uwe, * 32) to 512 dimensions, followed by a

414  second layer reducing to 100 dimensions, and a final classification layer
415  outputting predictions for cell types. Each of the first two layers is followed by
416 RelLU activation and dropout regularization. The model is finetuned for 50
417  epochs using a batch size of 256. The Adam optimizer was employed with a
418  learning rate of 1e-3 and weight decay of 5e-4. Gradient clipping was applied
419  with a threshold of 5 to prevent exploding gradients.

420 CellPatch-STAGATE Integration

421  The first layer of CellPatch is integrated into the STAGATE framework to
422  enhance spatial feature extraction. The model architecture maintains the
423  original cross-attention layers for patch-gene interactions, followed by
424 STAGATE's graph attention network with a two-layer structure to obtain
425  30-dimensional latent representations z;. Finally, the pathway embeddings are
426  projected through a linear decoder to match the output dimension.

427 The integrated model is trained for 1,000 epochs using the Adam optimizer
428  with a learning rate of 1e-4 and weight decay of 1e-4. Gradient clipping was
429  applied with a threshold of 0.1 to ensure stable training.

430  Data availability
431  All data used in this study are publicly accessible. For pretraining, a total of
432 10M cells were sampled from the CELLXGENE database

433 (hitps://cellxgene.cziscience.com/datasets), which comprises 30M cells across

434  various cell types. Our model was evaluated using multiple publicly available
435 datasets, including Zheng68k dataset from the 'Fresh 68K PBMCs' section
436 (https://support.10xgenomics.com/single-cell-gene-expression/datasets)??,

437  pancreatic datasets from the scGPT foundation model processed datasets
438  (https://hemberg-lab.github.io/scRNA.seq.datasets/)**, the Myeloid dataset
439  from Gene Expression Omnibus (GEO: GSE154763)%°, and the Segerstolpe
440  dataset from ArrayExpress (E-MTAB-5061)?. The human DLPFC dataset
441  measured by 10X Visium is available at (http://research.libd.org/spatialLIBD/)?’.

442  The STARmap dataset for mouse medial prefrontal cortex dataset is available
443  at (https://www.starmapresources.org/data)?®; Data and scripts associated
444 with this study are available at Github.

445  (https://github.com/HanwenZhu98/CellPatch).
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446  Code availability
447 The source code of CellPatch is freely available on Github
448  (https://github.com/HanwenZhu98/CellPatch).
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