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Abstract26
The rapid advancement of foundation models has significantly enhanced the27

analysis of single-cell omics data, enabling researchers to gain deeper insights28

into the complex interactions between cells and genes across diverse tissues.29

However, existing foundation models often exhibit excessive complexity,30

hindering their practical utility for downstream tasks. Here, we present31

CellPatch, a lightweight foundation model that leverages the strengths of the32
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cross-attention mechanism and patch tokenization to reduce model complexity33

while extracting efficient biological representations. Comprehensive34

evaluations conducted on single-cell RNA-sequencing datasets across35

multiple organs and tissue states demonstrate that CellPatch achieves36

state-of-the-art performance in downstream analytical tasks while maintaining37

ultra-low computational costs during both pretraining and finetuning phases.38

Moreover, the flexibility and scalability of CellPatch allow it to serve as a39

general framework that can be incorporated with other well established40

single-cell analysis software, thereby enhancing their performance through41

transfer learning on diverse downstream tasks.42

Main43

Single-cell RNA sequencing (scRNA-seq) technology has revolutionized44

molecular biology in recent years through its capacity to generate45

high-resolution transcriptomic profiles at unprecedented cellular scales1–3. This46

technological advancement enables precise measurements of gene47

expression patterns in individual cells, yielding crucial insights into cellular48

heterogeneity, developmental trajectories, and disease mechanisms4,5.49

Meanwhile, The establishment of the Human Cell Atlas6 has further facilitated50

the systematic study of gene regulatory networks at single-cell resolution.51

Deep learning approaches have emerged as powerful tools for integrating and52

modeling large-scale scRNA-seq datasets, revealing complex cellular states53

and dynamics7,8. Recent Transformer-based foundation models of cells, such54

as scBERT9, scGPT5, GeneFormer10, scFoundation11, and LangCell12,55

particular show promise in effective feature extraction and versatile56

downstream applications, providing new insights into cellular functions. These57

models demonstrate that Transformer-based architectures13 significantly58

outperform traditional deep learning algorithms, including scVAE14 and scVI15,59

in learning representations of single cells. However, despite their success in60

processing single-cell data and addressing downstream analytical tasks16,61

current foundation models face significant challenges. The high dimensionality62

of transcriptomics data introduces considerable computational complexity63

within attention-based architectures, while batch-specific variations in gene64

detection necessitate complex preprocessing workflows. These challenges65

collectively constrain the models' transferability, scalability, and flexibility66

across a range of biological applications.67
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To address these challenges, we present CellPatch, a novel foundation68

model that employs an effective gene patching strategy to reduce model69

complexity. Unlike text sequences, which can be chunked based on syntactic70

order, or images, where pixels can be patched according to spatial position,71

there is currently no universal patching strategy specifically designed for gene72

expression data17. CellPatch employs an innovative cross-attention73

mechanism where integrated patch tokens automatically patch genes as prior74

information and extract patch-level features. CellPatch is designed to directly75

execute downstream tasks using an encoder coupled with a task-specific76

decoder. Through comprehensive evaluation using extensive real datasets,77

CellPatch demonstrates superior performance compared to state-of-the-art78

(SOTA) algorithms. Moreover, the modular design of CellPatch allows for79

integration with existing SOTA models to enhance their capabilities. When80

integrated with STAGATE18, a prominent spatial transcriptomics analysis81

algorithm, CellPatch significantly improves spatial domain identification,82

leading to more precise hierarchical structural determinations.83

84

Fig. 1 Model Framework. a, Overall framework of CellPatch. CellPatch reduces the85

dimensionality of single-cell RNA sequencing data by utilizing patch tokens obtained86
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through pretraining, enabling application to various downstream tasks via fine-tuning or87

embedding. b, I Patch Module. Illustrating how a single cell derives patch features through88

the cross-attention mechanism. II Cell type annotation. Cell features are classified through89

three dense layers. III Model extension. The patching module and an additional fully90

connected layer are integrated into the existing STAGATE framework.91

92

The core innovation of CellPatch lies in its distinctive pretraining method93

and feature extraction mechanism (Fig. 1a). CellPatch extracts patch features94

from scRNA-seq data through unsupervised masked gene modeling95

(Methods), utilizing a comprehensive dataset of 10M cells (described in Data96

Availability). To optimize computational efficiency, we retained only non-zero97

elements, with each assigned a gene token that encodes positional98

information. These elements are subsequently integrated into input features99

through a sophisticated combination of Patch Tokens and cross-attention100

mechanisms (Fig. 1b). This approach enables CellPatch to extract gene101

expression features across diverse cellular contexts and generate102

standardized patch features of fixed dimensionality. The subsequent103

application of the self-attention mechanism to these patch features facilitates104

deep feature extraction, yielding higher-quality representations. A key105

innovation in the decoder architecture is the incorporation of gene embeddings106

as semantic prompts, which are not only utilized within the encoder but are107

also reintroduced in the decoder for enhanced contextual integration. By108

utilizing the cross-attention mechanism, the model effectively extracts109

information from patch features and accurately reconstructs gene expression110

profiles through the decoder. This dual-phase application of gene embeddings111

enhances the semantic representation capabilities of the gene embeddings.112
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113

Fig. 2 Performance of CellPatch on scRNA-seq and Spatial Transcriptomic Dataset.114

a, The cell type prediction performance of CellPatch on Zheng68K dataset. (Left)115

Consistency between the ground truth and the predicted results of CellPatch; (Middle)116

UMAP visualization of the ground truth; (Right) UMAP visualization of the predicted117

results. b, Cell type annotation accuracies of various methods on real scRNA-seq118

datasets, including Zheng68K, Pancreas, Myeloid, and Segerstolpe. Error bars indicate119

95% confidence intervals across 10 replicates. c, Clustering results of original STAGATE120

and CellPatch+STAGATE on sample 151675 from the DLPFC dataset. The ground truth121

for tissue regions is based on the manual annotation of six cortex layers or white matter122

(WM) provided by the original study. d, Boxplots illustrating clustering accuracies across123

all 12 sections for original STAGATE and CellPatch+STAGATE. Asterisk (*) denotes124

p-value less than 0.05 based on a paired one-sided t-test. e, UMAP visualizations and125
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PAGA graphs of sample 151675 generated from original STAGATE and126

CellPatch+STAGATE embeddings, respectively.127

128

To showcase the embedding capability of CellPatch, we evaluated its cell129

type annotation performance against competitive algorithms across diverse130

scRNA-seq datasets that include a variety of organs and tissue states. Taking131

Zheng68K dataset as an example, we visualized the prediction results of132

CellPatch (Fig. 2a) and annotated cells that were not consistently predicted.133

We further calculated the confusion matrix to assess classification consistency134

(Supplementary Figure 1). Model performance was systematically assessed135

using accuracy and F1 score metrics. CellPatch demonstrated superior136

performance across all benchmark datasets compared to existing methods,137

achieving higher accuracy (Fig. 2b) and F1 scores (Supplementary Figure 2).138

Additionally, we calculated the runtime required by different models to perform139

the annotation task by incrementally increasing number of genes per cell as140

input (Supplementary Figure 3). CellPatch excelled in both speed and141

tolerance for higher number of input genes, outperforming other models and142

demonstrating its efficiency, stability, and broad applicability across various143

tissue states and experimental platforms.144

To demonstrate the transfer learning capacity of CellPatch, we used145

pretrained CellPatch model to assist STAGATE in capturing transcriptional146

heterogeneity with spatial context. We assessed the spatial domain detection147

performance of CellPatch combined with STAGATE (CellPatch+STAGATE)148

and the original STAGATE using the human dorsolateral prefrontal cortex149

(DLPFC) data by 10X Visium. In the following section, CellPatch+STAGATE is150

referred to as CellPatch, and the original STAGATE is referred to as151

STAGATE. In a representative analysis of slice 151675, which comprises152

3,592 spots across 33,538 genes annotated into six neuronal layers and white153

matter, CellPatch effectively delineates distinct cortex layers and accurately154

recovers layer boundaries. In contrast, STAGATE struggles to accurately155

recover cortical layers 4 and 5, resulting in inferior clustering performance156

(STAGATE: ARI 0.59, CellPatch: ARI 0.65) (Fig. 2c). Moreover, CellPatch157

significantly enhances clustering performance across the twelve samples158

compared to STAGATE (Fig. 2d). Manual annotations and clustering results159

for other DLPFC slices are shown in Supplementary Figure 4. Furthermore, we160
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performed UMAP and Partition-based graph abstraction (PAGA19) graph161

visualization of low-dimensional embeddings generated by CellPatch and162

STAGATE. CellPatch depicts the spatial trajectory from layer 1 to layer 6 and163

white matter in the UMAP plot, as well as in the PAGA graph, reflecting the164

established "inside-out" pattern of corticogenesis. However, since layers 4 and165

5 cannot be effectively separated, the PAGA graph of STAGATE embedding166

reveals a circular spatial trajectory pattern from layer 4 to layer 6 (Fig. 2e).167

Gene set enrichment analysis (GSEA20,21) revealed layer-specific enrichment168

of key pathways, including myelin sheath, cytoplasmic translation, and169

synapse-related pathways, highlighting critical transcriptional programs in170

cortical development (Supplementary Figure 5). These findings were further171

validated using the STARmap dataset with single-cell resolution172

(Supplementary Figure 6). In summary, these results demonstrated173

CellPatch's capacity to enhance the performance of downstream analysis174

methods through transfer learning.175

To investigate the interpretability of CellPatch, we analyzed the176

correlations between attention scores from the first-layer patching process and177

gene embeddings. Using Zheng68k dataset, we extracted and normalized the178

attention weights during the transformation of gene expression data into patch179

features. The normalized attention score matrix revealed distinct cell180

type-specific patterns (Supplementary Figure 7). For example, in CD8+181

Cytotoxic T cells, we observed elevated attention scores for the IL32 gene, a182

gene known to trigger cytokine production, including TNFα, which aligns with183

the biological role of CD8+ Cytotoxic T cells in producing host defense184

cytokines. On the heatmap, we highlighted representative cell type-specific185

markers, demonstrating that the model's attention scores were significantly186

higher for these genes within their respective cell populations, indicating a187

targeted recognition of distinct cellular phenotypes.188

Furthermore, we investigated whether the model-learned gene189

embeddings contained semantic information beyond merely providing190

positional context for expression values in downstream tasks. We extracted191

the top 30 marker genes for each cell type in Zheng68k dataset, along with192

marker genes reported in the original publication, and generated UMAP193

visualizations of their embedding weights (Supplementary Figure 8). The194

analysis revealed remarkable patterns, with embedding weights logically195
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representing gene-gene relationships. For example, multiple genes involved in196

cytotoxic pathways expressed in CD56+ NK cells clustered near GZMK in the197

lower left region, which was identified as an NK cell type-specific gene in198

original Zheng68k study. Similarly, platelet-associated genes PF4 and PPBP199

clustered in the upper region, which also contained multiple CD34+ cell200

type-specific marker genes. These analyses demonstrate that CellPatch201

achieves cell type-specific recognition while effectively learning gene-gene202

interaction relationships, validating both its robust learning capability and203

post-training interpretability.204

In summary, the comprehensive experimental results presented herein205

validate the effectiveness of CellPatch across diverse single-cell206

transcriptomic and related data types, establishing a robust foundation for its207

further utilization. The model demonstrates exceptional interpretability and208

exploration potential in both cell type classification and gene relationship209

analysis, highlighting the advantages of the CellPatch architecture. While our210

current analyses are based on training results from 10M data points over 50211

epochs, UMAP visualization of the pre-training results suggests potential for212

further model optimization. By increasing training iterations, and broadening213

the sample space through additional data collection, CellPatch could be a214

more comprehensive single-cell foundation model. In conclusion, the215

CellPatch architecture provides an efficient training paradigm for gene-centric216

data analysis, addresses the gap in scRNA-seq data patching, and achieves217

excellent performance across multiple aspects of single-cell analysis.218

Methods219

CellPatch overview220

CellPatch introduces the concept of patch tokens, which extract features from221

input gene expression data through a cross-attention mechanism. Through222

pretraining, we obtained a set of patch tokens with high generalization223

capability, effectively reducing the dimension of gene expression data to a224

unified meta-gene level. CellPatch improves upon masked gene modeling225

(MGM), a commonly used training strategy, by extending the utility of gene226

embeddings: beyond their conventional role as positional encodings in the227

encoder, they are also employed as prompts in the decoder for expression228

value reconstruction, thereby enriching their semantic representation.229
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Gene and expression embedding230

CellPatch employs a distinctive embedding approach tailored to the unique231

structure of single-cell data. Since each expression vector contains mixed232

information of both gene IDs and their corresponding expression values,233

mapping these components into feature vectors constitutes a critical step. In234

this study, we assigned a learnable feature vector to the �-th gene:235 �� = �� ����_��� ∈ R���, � = 1,2,⋯, �,236

where �� represents the gene embedding vector, �� denotes the237

gene-to-embedding transformation layer, ��� denotes the embedding238

dimension, and � denotes the number of genes. This maps gene IDs into a239

predefined feature space. For gene expression values, we implemented a240

robust processing approach. We initially performed standard normalization on241

the data. Following the methodology employed in scBERT, the expression242

values are then clipped at a maximum of 5 and rounded to discrete values243

before being fed into the model. Subsequently, these processed values are244

transformed through an embedding layer into ��� -dimensional expression245

features246 �� = �� ���� ∈  R���,247

where �� represents the count embedding vector, �� denotes the248

count-to-embedding transformation layer, and ���� represents the count249

value of gene �.250

Finally, the feature representation for a single cell at input is denoted as251 � = �1,⋯, ������ ,252

where �� = �� + ��. This design not only effectively captures information about253

both gene ID and expression value, but also provides rich contextual254

information for the model, thereby enhancing performance in downstream255

tasks.256

Pretrain Encoder257

In the encoder design of CellPatch, we proposed a novel architecture that258

differs from traditional Transformer structures. The model predefines a set of259
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Patch Tokens and generates patch features by extracting information from cell260

features through cross-attention mechanism. Specifically, we first defined a set261

of �� (Patch Tokens) as262 �� = { ��1,��2,⋯,�������ℎ} ∈ R���,263

where �����ℎ represents the number of patch tokens, a hyperparameter that264

controls the dimension reduction ratio of gene features to patch features. The265

cross-attention blocks (Supplementary Note 1) then transform the input cell266

features � into patch features �� (patch feature), which is formulated as267 �� = {��1,⋯,�������ℎ} = �� ��,� ,268

where �� denotes Cross-Attention blocks. Subsequently, these patch269

features are further processed through self-attention blocks (Supplementary270

Note 2) to obtain the final patch feature representation ��' , which serves as271

input for various downstream tasks, formulated as272 ��' = SA �� ,273

where SA denotes Self-Attention blocks.274

Pretrain Decoder275

For the pretraining decoder design of CellPatch, we developed a276

prompt-based cell reconstruction architecture. We innovatively utilized gene277

embeddings as decoder prompts to reconstruct their corresponding gene278

expressions. This process extracts information from ��' through279

cross-attention mechanism and reconstructs gene expression via self-attention280

modules. Specifically, the reconstruction process can be formulated as281 �� = �� ��,��' ,282 ���� = �� �� ,283

where �� represents the intermediate features extracted from ��' using gene284

embedding �� as the query in cross-attention operations, and ���� denotes285

the reconstructed expression value for the �-th gene. The cross-attention block286

and self-attention blocks consist of multi-head attention layers followed by287

layer normalization and feed-forward networks.288
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During pretraining, we employed mean squared error (MSE) as the loss289

function to measure the discrepancy between the reconstructed expression290

values ���� and the original expression values ��, which can be formulated as291 ���� = MSE Loss ���, � = 1� �=1� ���� − �� 2� ,292

where � denotes the number of gene prompts input to the decoder for each293

cell. This reconstruction loss guides the model to learn meaningful294

representations of gene expression patterns through the pretraining process.295

Our experimental results demonstrate that, as the number of training296

iterations increases, the intermediate representations ��' generated by the297

model progressively develop the ability to discriminate between different cell298

types, validating the effectiveness of our training approach (Supplementary299

Figure 9).300

Downstream task301

Classification Task Decoder302

For cell type annotation tasks, we implemented a classification decoder303

architecture that comprising stacked dense layers to predict cell type304

assignments. Specifically, we first flattened the learned intermediate305

representations ��' , which are then processed through a Dense Block306

consisting of three fully connected layers with dimensionality reduction.307

The Dense Block projects the flattened features into a probability308

distribution over the predefined cell type space for each input cell. This309

transformation can be formulated as310 �� = { ��1,��2,⋯, ��,������ } = Dense Block ���' .311

To quantify the performance, we adopt the cross-entropy criterion as our312

loss function, which measures the dissimilarity between the predicted313

probability distribution and ground truth annotations. The loss function is314

defined as315 �� = CrossEntropy ��,�� =− �=1������ ���� log ��� ,316

where �� ∈ ������� denotes the predicted probability distribution for the �-th cell,317 ������ represents the cardinality of the cell type set, and �� is the one-hot318

encoded ground truth label.319
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Downstream Application: Enhancing Spatial Transcriptomics Analysis320

through CellPatch-STAGATE Integration321

To further demonstrate the extensibility of CellPatch and its potential for322

complex downstream tasks, we proposed an innovative integration with323

STAGATE, a prominent spatial transcriptomics analysis framework.324

Specifically, we utilized CellPatch to process spatial transcriptomic data325

and generate ��, which is then concatenated with the original input features326

to serve as the enhanced input �� for the modified STAGATE module. The327

downstream analysis is performed through the intermediate representations ��,328

which can be formulated as329 ��  = �se concat �� ,  �� ,330

where ��� denotes the encoder of STAGATE. Given the graph autoencoder331

architecture of STAGATE, we added an additional Dense layer at the end of332

decoder to maintain consistency with the original feature space333 ����� = ����� ��� �� ,334

where ����� denotes the reconstructed features and ��� denotes the decoder335

of STAGATE.336

Implementation details337

Gene Symbol Unification338

We established a comprehensive gene reference set based on the339

CELLxGENE dataset, encompassing 60,690 genes along with their340

corresponding Ensemble IDs and gene symbols. This reference set341

incorporates, but not limited to human protein-coding genes and common342

mitochondrial genes. During the training and fine-tuning processes, each gene343

is assigned a unique token ID. For genes not present in the training set, new344

token IDs are dynamically allocated to ensure that no critical information is lost345

during model adaptation.346

Data Preprocessing347

We implemented a standardized data preprocessing pipeline using the Scanpy348

framework, which includes quality control filtering, library size normalization349

(scaling total counts per cell to 1e4), and log transformation (log1p) of350

normalized counts. For the pretraining phase, we further optimize the input by351
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filtering out zero-expression genes to reduce computational complexity,352

followed by padding the sequences to a uniform length to facilitate efficient353

batch processing.354

Differential gene expression analysis and spatial domain annotation355

We employed the MAST algorithm implemented in the FindMarkers function of356

the Seurat package to identify differentially expressed genes for each spatial357

domain with a 5% FDR threshold (Benjamin-Hochberg adjustment). Then,358

Spatial domains are annotated by marker genes and comparing expression359

spatial patterns against manual annotations.360

Trajectory inference361

After obtaining the clustering labels, we employed the PAGA algorithm to362

depict spatial trajectory.363

Gene enrichment analysis364

We performed gene set enrichment analysis (GSEA) on the differentially365

expressed genes sorted by adjusted p-values using enrichGO function in the366

clusterProfiler22 package, showing the top five enriched pathways. Gene sets367

are downloaded from the Molecular Signatures Database (MSigDB, Broad368

Institute) including C2 (KEGG), C5 (GO BP: biological process, GO CC:369

cellular component, GO MF: molecular function).370

Evaluation metrics371

To quantitatively assess the cell type annotation performance, we employed372

two complementary metrics: accuracy and F1 score. The accuracy metric,373

defined as the ratio of correctly classified cells to the total number of cells, is374

formulated as:375 �������� = (�� + ��)/(�� + �� + �� + ��),376

where �� , �� , �� , and �� denote true positives, true negatives, false377

positives, and false negatives, respectively.378

To provide a more comprehensive evaluation, particularly for imbalanced379

cell type distributions, we additionally utilized the F1 score, which is the380

harmonic mean of precision and recall381 �1 = 2· ���������·������ / ���������+ ������ ,382

where383
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��������� = ��/(�� + ��)384

and385 ������ = ��/ ��+ �� .386

We adopted adjusted Rand index (ARI) to measure clustering387

performance of CellPatch and STAGATE in spatial domain detection.388

Specifically, given two sets of clustering labels, the ARI is calculated as389

��� = �,� ���2 − � ��2 � ��2�� / �2�12 � ��2 + � ��2�� − � ��2 � ��2�� / �2 ,
where ��� is the number of spots overlapped by cluster � and cluster � . ��390

and �� are the number of spots in cluster � and �, respectively.391

Model Parameters392

Pretrain393

The model is implemented using PyTorch. The model architecture is based on394

a Transformer structure with 64 patch tokens and an embedding dimension of395

32. The encoder consists of 1 cross-attention layer followed by 2 self-attention396

layers for pathway embedding processing, with 2 attention heads. The397

encoder projects the output features into a 10-dimensional space. The398

decoder comprises 1 cross-attention layer and 1 self-attention layer for gene399

embedding processing, with final projection to 1-dimensional output. We set400

the maximum number of genes to 70,000 and utilized 64 learned pathway401

tokens as preset embeddings.402

For training, we used the Adam optimizer with a learning rate of 1e-4 and403

weight decay of 5e-5. The model was trained for 50 epochs with a batch size of404

512. Input gene expression data underwent log transformation, and random405

masking was applied to 30% of non-zero values during training. The maximum406

sequence lengths were set to 3,000 and 1,000 for encoding and decoding407

respectively.408

Cell type annotation409

For the downstream cell type annotation task, we finetuned the pretrained410

model by replacing the original decoder with three dense layers. The decoder411

architecture consists of a first dense layer that projected the pathway412
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embeddings (dimension: ����ℎ��� × 32) to 512 dimensions, followed by a413

second layer reducing to 100 dimensions, and a final classification layer414

outputting predictions for cell types. Each of the first two layers is followed by415

ReLU activation and dropout regularization. The model is finetuned for 50416

epochs using a batch size of 256. The Adam optimizer was employed with a417

learning rate of 1e-3 and weight decay of 5e-4. Gradient clipping was applied418

with a threshold of 5 to prevent exploding gradients.419

CellPatch-STAGATE Integration420

The first layer of CellPatch is integrated into the STAGATE framework to421

enhance spatial feature extraction. The model architecture maintains the422

original cross-attention layers for patch-gene interactions, followed by423

STAGATE's graph attention network with a two-layer structure to obtain424

30-dimensional latent representations ��. Finally, the pathway embeddings are425

projected through a linear decoder to match the output dimension.426

The integrated model is trained for 1,000 epochs using the Adam optimizer427

with a learning rate of 1e-4 and weight decay of 1e-4. Gradient clipping was428

applied with a threshold of 0.1 to ensure stable training.429

Data availability430

All data used in this study are publicly accessible. For pretraining, a total of431

10M cells were sampled from the CELLxGENE database432

(https://cellxgene.cziscience.com/datasets), which comprises 30M cells across433

various cell types. Our model was evaluated using multiple publicly available434

datasets, including Zheng68k dataset from the 'Fresh 68K PBMCs' section435

(https://support.10xgenomics.com/single-cell-gene-expression/datasets)23,436

pancreatic datasets from the scGPT foundation model processed datasets437

(https://hemberg-lab.github.io/scRNA.seq.datasets/)24, the Myeloid dataset438

from Gene Expression Omnibus (GEO: GSE154763)25, and the Segerstolpe439

dataset from ArrayExpress (E-MTAB-5061)26. The human DLPFC dataset440

measured by 10X Visium is available at (http://research.libd.org/spatialLIBD/)27.441

The STARmap dataset for mouse medial prefrontal cortex dataset is available442

at (https://www.starmapresources.org/data)28; Data and scripts associated443

with this study are available at Github.444

(https://github.com/HanwenZhu98/CellPatch).445
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Code availability446

The source code of CellPatch is freely available on Github447

(https://github.com/HanwenZhu98/CellPatch).448
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