
Article https://doi.org/10.1038/s41467-024-53666-8

HiDDEN: a machine learning method for
detection of disease-relevant populations in
case-control single-cell transcriptomics data

Aleksandrina Goeva 1 , Michael-John Dolan1, Judy Luu1, Eric Garcia1,

Rebecca Boiarsky1,2, Rajat M. Gupta 1,3 & Evan Macosko 1,4

In case-control single-cell RNA-seq studies, sample-level labels are transferred

onto individual cells, labeling all case cells as affected, when in reality only a

small fraction of themmay actually be perturbed. Here, using simulations, we

demonstrate that the standard approach to single cell analysis fails to isolate

the subset of affected case cells and their markers when either the affected

subset is small, or when the strength of the perturbation is mild. To address

this fundamental limitation, we introduce HiDDEN, a computational method

that refines the case-control labels to accurately reflect the perturbation status

of each cell. We show HiDDEN’s superior ability to recover biological signals

missed by the standard analysis workflow in simulated ground truth datasets

of cell type mixtures. When applied to a dataset of human multiple myeloma

precursor conditions, HiDDEN recapitulates the expertmanual annotation and

discovers malignancy in early stage samples missed in the original analysis.

When applied to a mouse model of demyelination, HiDDEN identifies an

endothelial subpopulation playing a role in early stage blood-brain barrier

dysfunction. We anticipate that HiDDEN should find wide usage in contexts

that require the detection of subtle transcriptional changes in cell types across

conditions.

High-dimensional transcriptional profiling of cells has enabled the

comprehensive characterization of cellular changes in response to

perturbations, such as disease1–4, treatment with a drug5, or gene

knockouts6–8. Existing computational strategies address different

aspects of this general question, each accompanied by a set of

assumptions9. Differential expression and differential abundance

approaches aim to identify changes in gene expression and cell type

proportion between perturbation conditions with the caveat that their

power to infer the biological alterations is compromised when the

condition labels do not correctly represent the presence or absence of

an effect in individual cells. For example, many perturbations only

affect a subset of the cells in a given cell type while the rest of the cells

are largelyunaffected10. Condition-agnostic approaches aim to identify

perturbation-affected groups of neighboring cells within the latent

space, which may be clouded by the presence of several additional

axes of biological or technical variation11–13 making it challenging to

tease out the perturbation-relevant signal.

Detecting cell-level transcriptional changes across experimental

conditions is one of the big promises of high-resolution single-cell

expressiondata9. In recent years, severalmethods have been proposed

to characterize perturbation effects in single-cell data. The standard

analysis workflow performs label-agnostic dimensionality reduction

and clustering, followed by comparisons of cell attributes across

condition labelswithin clusters. CNA12provides a cluster-free approach

to identifying regions in the latent space of unevenmixing of condition

labels. MELD14 produces a continuous measure of the perturbation
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effect by distributing the condition labels among neighbors in the cell

state manifold. Milo15 performs differential abundance testing among

experimental conditions in the presence of continuous trajectories.

Mixscape8 removes known confounding sources of variation and dis-

sects successfully from unsuccessfully perturbed cells in gene knock-

out screens where it is expected that a high proportion of cells in the

case samplewill be perturbed. These approaches rely on at least one of

the following assumptions: 1) the condition labels correctly represent

the presence or absence of an effect in individual cells; 2) the pertur-

bation effect is a dominant signal in the latent space; or 3) that any

confounding sources of variation are known and can be removed.

However, these assumptions might not always be met—often, pertur-

bation effects are small relative to the biological heterogeneity and

technical noise, or the proportion of affected cells is small and there-

fore the condition labels are mostly incorrect.

To address these challenges, we developed a statistical frame-

work called HiDDEN, which refines the labels of individual cells

within perturbation conditions to accurately reflect their status as

affected or unaffected. We systematically generate ground truth

datasets of cell type mixtures and demonstrate that HiDDEN can

accurately identify marker genes from affected subpopulations of

cells that are undetected by standard approaches to single-cell ana-

lysis. We used HiDDEN to recapitulate manual annotation of neo-

plastic cells in human multiple myeloma precursor conditions and

discover malignancy in previously considered healthy early-stage

samples, as well as to identify an endothelial cell subpopulation that

regulates blood-brain barrier function during the early stages of

demyelination in a mouse model.

Results
Overview of problem and method
In many case-control experiments, only a subset of the cells in case

samples are affected by the perturbation (Fig. 1a). The standard ana-

lysis workflowof jointly clustering gene expression profiles of case and

control cells can fail to distinguish affected from unaffected cells,

resulting inmixed clusters (Fig. 1b) due tomultiple sources of variance

competing with the perturbation signal. Differential expression using

the sample-level labels within a mixed cluster can fail to recover the

Fig. 1 | Overview of problem and HiDDEN label refinement framework. a Setup

of a case-control single-cell experiment, inwhich cells of a given cell type in control

samples are labeled as unaffected, while cells in case samples can be either affected

or unaffected by the perturbation. b Standard clustering can produce clusters

containing cells with mixed case-control sample-level labels while the subset of

truly affected cells can be hidden. Colors as defined in A. c Representative violin

plots of the average log normalized expression of perturbation markers split by

sample-level labels (left) and highlighting the difference in the distributions of

affected and unaffected cells within the case sample (right). Colors as defined in A.

Area not scaled to count. d Overview of the HiDDEN label refinement framework.

First, gene expression profiles are summarized through a dimensionality reduction

method. Then, a prediction model takes the reduced expression profiles and the

sample-level binary labels and transforms them into per cell continuous

perturbation scores. Finally, the continuous scores of cells originating from the

case samples canbe binarized through a classificationmethod intoHiDDEN-refined

binary labels (Methods). e Representative scatterplot of -log10 adjusted p values

per gene computedusingdifferential expression (DE)on case-control sample labels

(x-axis) and HiDDEN-refined binary labels (y-axis). P values are calculated using a

one-sidedWilcoxon rank sum test with Benjamini-Hochberg correction. Horizontal

and vertical dashed lines drawn at -log10(0.05) significance threshold. Ground

truth DE genes colored in green. Standard DE analysis on case-control labels cap-

tures only a small number of ground truth markers, while HiDDEN successfully

recovers many of them. Figure 1 panel a Created in BioRender. Lab, M. (2024)

BioRender.com/f66p361. Figure 1 panel B created in BioRender. Lab, M. (2024)

BioRender.com/j24d711. Figure 1 panel d created in BioRender. Lab, M. (2024)

BioRender.com/z12o210.
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perturbation markers due to the incorrect labels decreasing detection

power (Fig. 1c).

The standard analysis of single-cell data is not tailored to identi-

fying perturbation-associated signals. However, combining gene

expression profiles and sample-level labels in a novel way allows us to

leverage that at least some of the labels are correct and empowers

HiDDEN to utilize the shared variability in features corresponding to

correctly labeled cells. HiDDEN transforms the sample-level labels into

cell-specific continuous perturbation-effect scores and assigns new

binary cell labels, revealing their status as affected or unaffected

(Fig. 1d, Methods). The resulting binary labels can accurately capture

the perturbation signature and boost power to detect genes whose

expression is affected by the perturbation (Fig. 1e).

HiDDEN detects biological signal missed by the standard ana-
lysis workflow in simulated ground truth datasets of cell-type
mixtures
To simulate the biological change in cell function induced by a per-

turbation, we conducted simulations using the single-cell RNA-seq

profiles of Naive B and Memory B cells from a dataset of peripheral

blood mononuclear cells (PBMC)16 (Fig. 2a, Methods). Naive B and

Memory B cells have relatively similar expression profiles but with

biologically relevant differences17,18, making them suitable for model-

ing perturbation-induced changes. To mimic the outcome of a per-

turbation experiment, we constructed a control sample consisting of

Naive B (representing unperturbed) cells and a case sample consisting

of both Naive B and Memory B (representing perturbed) cells (Fig. 2b,

Methods). We observed that, as Memory B and Naive B cells became

increasingly imbalanced, the ability of a commonly used single-cell

analysis pipeline (Methods) to identify the Memory B cluster became

impaired. For example, having 5%Memory B cells in the case condition

results in a highly heterogeneous latent space produced by the

standard dimensionality reduction workflow, making it impossible to

detect a locus of perturbed cells (Fig. 2c). Indeed, using a standard

clustering workflow with default parameter values (Methods) fails to

recover a cluster that purely represents the Memory B labeled cells

(Fig. 2d). Exposing the ground truth labels reveals that even the cluster

with the highest enrichment of case-labeled cells contains amajority of

Naive B cells (Fig. 2d). The recovery of theMemory B cluster could not

be improved by varying the number of principal components (PCs)

used to construct the latent space, adjusting the resolution parameter

of the clustering algorithm, or varying the gene selection, including by

utilizing Naive B andMemoryBmarkers in lieu of highly variable genes

(Supplementary Fig. 1). By contrast, HiDDEN was far better able to

identify the Memory B signature within this artificial mixture and dis-

tinguish Memory B from Naive B cells (Fig. 2e).

This example reveals a more general feature of how cell types are

detected in single-cell data. To comprehensively characterize the pro-

blem difficulty and assess the power of our method to detect the per-

turbation signal, we constructed a collection of ground truth case-

control datasets by varying two key aspects (Fig. 2b, Methods). First, to

study the effect of perturbation strength, we defined perturbed cells as

hybrids of Naive B and Memory B cells of variable relative weight

(Methods). Decreasing the strength of the transcriptional difference

between perturbed and unperturbed cells increased the difficulty of

identifying the perturbed cell cluster (Fig. 2f, Supplementary Fig. 2,

Methods). However, evenwhenonly 5%of the case cells are even slightly

perturbed, HiDDEN continuous perturbation scores identified the bio-

logical differences between perturbed and unperturbed cells with high

accuracy (Supplementary Fig. 2a). Second, to explore the influence of

class imbalance, we varied the percent of perturbed cells in the case

sample (Supplementary Table 1). Strikingly, in datasets with fewer than

20% Memory B cells, using the standard analysis pipeline with the

sample-level labels completely failed to retrieve any of the Naive B and

Fig. 2 | HiDDEN detects biological signal missed by the standard analysis

workflow in simulated ground truth mixtures of two cell types. a tSNE

embeddings of gene expression of Naive B and Memory B cells. b Schematic of

problem difficulty and definition of synthetic datasets along two axes: percent

perturbed cells in case sample (x-axis) and strength of the perturbation (y-axis).

Detecting the perturbation is most challenging when there are few affected cells

and the difference between affected and unaffected cells is small. c tSNE embed-

dings of a representative simulated dataset containing 5% Memory B cells in the

case sample. Cells colored by case-control labels. Colors as defined in B.

d Distribution of case-control (left) and Memory B-Naive B (right) cell identities

across Seurat clusters. Colors as defined in A andB. eViolin plot of the distributions

of the continuous perturbation score of Naive B and Memory B cells split over

control and case and colored by ground truth labels, for the dataset containing 5%

Memory B cells in the case sample. f Area under the Receiver Operating Char-

acteristic (AUROC) curves for classification of ground truth cell labels as a function

of perturbation strength for the dataset containing 5% perturbed cells in the case

sample with the AUROC indicated in the legend for a sampling of the curves.

g Recall of ground truth DE genes by DE testing on indicated labels as a function of

percent Memory B cells in case sample. Source data of (a, c, d, e, f, g) are provided

as a Source Data file.
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Memory B marker genes, and overall retrieved only a fraction even in

datasets with high sample label accuracy (Fig. 2g, Methods). Themarker

gene recovery was not improved evenwhenwe considered the union of

case-control label-derived Differentially Expressed (DE) genes per clus-

ter since the reduction in numberof cells dramatically hinders thepower

of DE testing to recapitulate the markers (Supplementary Fig. 3, Meth-

ods). By contrast, the HiDDEN-refined binary labels had superior power

todetect the ground truthmarkers. Furthermore, HiDDEN-refined labels

appeared to provide accuracy beyond the ground truth labels for this

dataset. Specifically, the genes identified by DE testing on HiDDEN-

refined labels, but not by DE testing on ground truth labels, identified

additional genes that are consistent with markers of Naive B and Mem-

ory B cells (Supplementary Fig. 4), suggesting that HiDDEN labels pos-

sess corrective power for a slight amount ofmisclassification thatmight

have occurred in the original annotation.

Dimensionality reduction is a key component of the HiDDEN

analysis framework that defines the input features of the label-

prediction model (Fig. 1d). We provide a collection of dimen-

sionality reduction approaches that the user can select from, or a

pre-computed embedding can be plugged in. To examine the

performance of different dimensionality reduction strategies in

our Naive B / Memory B ground truth datasets, we compared

approaches ranging from linear methods to deep-learning alter-

natives and found that a simple dimensionality reduction method

performs as well as or better than an auto-encoder (Supplemen-

tary Fig. 5, Methods).

Several computational methods have recently been proposed to

characterize perturbation effects in single-cell data, each designed to

tackle a particular aspect of this general problem. Specifically, CNA12

provides cluster-free detection of perturbation-affected areas of

the latent space, while MELD14 offers the identification of a per-

turbation gradient. A third method, Milo15, performs differential

abundance testing over continuous trajectories. Mixscape8 iden-

tifies cells that have escaped a gene knockout perturbation in

pooled CRISPR screens. When applied to our target task of

refining the sample-level case status into perturbed and unper-

turbed cell labels, HiDDEN continuous perturbation scores and

binary-refined labels outperformed the corresponding con-

tinuous and binarized scores from CNA, MELD, Milo, and Mixs-

cape across ground truth Naive B / Memory B mixtures

(Supplementary Fig. 6, Methods). Each of these methods relies on

veritable cell-level labels as input, such that HiDDEN-refined

labels could augment their respective performances. Indeed,

when HiDDEN is applied first, there was an improvement in the

performance of CNA, MELD, and Milo-derived continuous scores

(Supplementary Fig. 7, Methods) and binarized labels (Supple-

mentary Fig. 8, Methods) to recover the ground truth perturba-

tion labels.

The HiDDEN method has a single model parameter: the

number of features in the predictive model. To explore how this

parameter affects the stability and accuracy of HiDDEN results,

we generated two heuristics for automatically choosing it and

demonstrated that either strategy works well, indicating that the

parameter is not especially influential for model performance

(Supplementary Fig. 9, Methods).

HiDDEN recapitulates manual annotation of neoplastic cells in
human multiple myeloma precursor conditions and discovers
malignancy in previously considered healthy early-stage
samples
To test the ability of our method to capture perturbation signal in a

real dataset, we applied HiDDEN to single-cell RNA-seq profiles of

human bone marrow plasma cells from patients with multiple mye-

loma (MM), its precursor conditions smoldering multiple myeloma

(SMM) and monoclonal gammopathy of undetermined significance

(MGUS), and healthy donors with normal bone marrow (NBM)4

(Methods). Precursor samples can contain a mixture of neoplastic and

normal cells (Fig. 3a) and the authors of the original study defined two

orthogonal strategies for describing the malignancy status of pre-

cursor samples and their cells. The first strategy is a per-sample com-

putational analysis excluding immunoglobulin light chain genes

followed bymanual annotation resulting in binary labels defining cells

as healthyormalignant. The second strategy is a tumor-purity estimate

of the proportion of malignant cells in each precursor sample from a

model based on the distribution of immunoglobulin gene expression.

According to the manual annotation, three MGUS and five SMM

samples contain a mixture of malignant and healthy cells. Application

of HiDDEN continuous perturbation scores to distinguish cells in these

mixed samples showed remarkable agreement with this manual

annotation (Fig. 3b, Supplementary Fig. 10, Methods). Furthermore,

sample purity estimates derived from HiDDEN binary labels agreed

with their correspondingpoint estimates ofmalignant cell proportions

and outperformedmanual annotation-based estimates in the majority

of mixed precursor samples (Fig. 3c, Methods, Supplementary

Table 2).

We next turned our attention to the threeMGUS samples with the

lowest tumor purity. In those samples, themanual annotation strategy

failed to identify any neoplastic cells. By contrast, HiDDEN was able to

discover malignant cells in these early-stage patients that weremissed

by the manual annotation (Fig. 3e, Methods, Supplementary Table 2).

To computationally validate that thesewere indeedmalignant cells, we

assessed whether the distinguishing genes of these cells matched with

known signatures of healthy plasma and malignancy. Indeed, pre-

viously described gene signatures distinguishing normal from malig-

nant cells4 were heavily differentially enriched between the HiDDEN-

defined normal and malignant cells in these samples (Fig. 3f, Supple-

mentary Fig. 11, Methods).

Of note, HiDDEN successfully recapitulates both types of malig-

nancy estimates in the presence of pronounced patient-specific batch

effects in this dataset (Supplementary Fig. 12a). Mirroring the analysis

in the original study, we deployed a batch-sensitive strategy to fitting

the HiDDEN model, namely training it on all NBM, all MM, and one

precursor sample at a time. Additionally, we also developed a batch-

agnostic strategy, where we fit all samples together (Methods). HiD-

DEN outputs under both strategies were closely aligned and almost

indistinguishable (Supplementary Fig. 12B-F).We provide a heuristic to

automatically choose the optimal number of features used in the

training of the prediction model and demonstrate that HiDDEN out-

puts were closely aligned and almost indistinguishable across a wide

range of values for the tunable model parameter (Supplementary

Fig. 13, Methods).

We leveraged our refineddefinition of healthy andneoplastic cells

in precursor states to derivemarkers of early disease.We find a total of

8208 differentially expressed genes, 2400 of which significantly

overlap (hypergeometric test, p-value = 3.066e-31) with basic malig-

nancy markers derived from a comparison of healthy and multiple

myeloma patients, and 5808 of which are uniquely found using the

HiDDEN-refined labels in precursor samples (Fig. 3d, Methods).

HiDDEN identifies an endothelial subpopulation affected in the
early stages of demyelination
To explore HiDDEN’s ability to identify rare, subtle perturbations, we

applied the method to single-nucleus RNA-seq (snRNA-seq) profiles

from a time-resolved dataset of a mouse model of demyelination19,20

(Fig. 4a, Methods). In this experiment, case animals received a corpus

callosum injection containing lysophosphatidylcholine (LPC), a com-

pound toxic to oligodendrocytes, while control animals are injected

with saline (PBS) (Methods). LPC induces white matter loss, demyeli-

nation, which is rapidly repaired in a stereotyped manner over three

weeks. Several cell types showed dramatic changes in response to this
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injury (Supplementary Fig. 14a) as expected21–23, but the effects on

endothelial cells (ECs) appearedmodest (Fig. 4b,c). As vascular cells of

the brain, ECs play critical roles in homeostasis, myelin formation and

tissue repair, but the altered genes and pathways underlying these

functions in demyelination are poorly understood24,25.

We first examined ECs during remyelination using an existing

analytic pipeline26. The standard dimensionality reduction workflow

produced a homogeneous distribution of sample-level labels in the

latent space (Fig. 4c, Methods), and clustering failed to identify a

perturbation-enriched subpopulation (Fig. 4d, e, Methods). The case-

control identities were similarly mixed across time points (Supple-

mentary Fig. 14c). By contrast, fittingHiDDEN to the ECs across all time

points (Methods) generated a bimodal distribution of continuous

perturbation scores for case cells at the earliest time point, suggesting

an underlying mixture of affected and unaffected cells (Fig. 4f, Sup-

plementary Fig. 14d). We split the bimodal distribution of continuous

scores and used the resulting binary cell-labels to define

demyelination-affected and unaffected EC subpopulations, denoted

LPC1 and LPC0, respectively (Fig. 4g, Methods). Together this

demonstrates that HiDDEN can reveal demyelination-specific effects

on endothelial cells not apparent using conventional analysis

approaches.

We next analyzed the differential response of LPC1 and LPC0 ECs

to demyelination. The LPC1 subpopulation was characterized by 28

uniquemarkers (Fig. 5a, Supplementary Table 3, Methods), a subset of

which we experimentally validated to be lesion-specific with in-situ

hybridization at the 3dpi timepoint (Fig. 5b). To understand the bio-

logical functions of these changes, we applied Gene Set Enrichment

Analysis. This revealed the observed changes in gene expression were

consistent with alterations that occur in the context of inflammation

and demyelination, such as increased angiogenesis27, blood-brain

barrier breakdown28,29, and increased production of extracellular

matrix components (Fig. 5c, d, Methods). Together, this suggests that

the LPC1 EC subset, revealed by theHiDDENmethod, have altered core

endothelial functions specifically during the early stages of white

matter damage.

Fig. 3 | Application of HiDDEN to a human bone marrow dataset with pre-

viouslypublishedannotations. a Schematic of the dataset4which includes human

plasma cells from healthy donors, multiple myeloma patients, and two precursor

states. Precursor samples possibly contain amixture of healthy andmalignant cells.

Manual annotation of healthy and malignant cells per precursor patient were

reported previously4. b AUROC for predicting per-cell malignancy status in mixed

samples averaged for each precursor state. c Comparison of manual annotation,

Bayesian purity model, and HiDDEN predictions for estimating the neoplastic

proportion (y-axis) in mixed MGUS and SMM samples (x-axis). Data are presented

as an estimated proportion of neoplastic cells with 95% confidence intervals com-

puted over n = 116 cells forMGUS-2,n = 321 forMGUS-3,n = 82 forMGUS-6,n = 1857

for SMM-2,n = 349 for SMM-3,n = 711 for SMM-8,n = 1253 for SMM-9, and n = 67 for

SMM-10. Significance for testing the difference between manual annotation and

HiDDEN-based estimatewith the Bayesian ground truthpoint estimate is calculated

using a two-sided Beta-Binomial test (Methods), indicated with an asterisk for

Bonferroni-adjusted p values < 0.01. Exact p-values are reported in the Source Data

file and Supplementary Table 2. d Venn diagram of DE genes comparing neoplastic

with normal cells based on NBM/MM samples and HiDDEN refined labels in pre-

cursor samples identified 2400 significantly overlapping genes (one-sided hyper-

geometric test, p-value = 3.066e-31) and 5808 genes uniquely found using HiDDEN.

e Comparison of manual annotation, Bayesian purity model, and HiDDEN predic-

tions for estimating the neoplastic proportion (y-axis) in non-mixedMGUS samples

(x-axis). Colors as defined in c. Data are presented as estimated proportion of

neoplastic cells of each sample with 95% confidence intervals computed over

n = 133 cells for MGUS-1, n = 62 for MGUS-4, and n = 53 for MGUS-5. Significance is

established using the same approach as in c. Exact p values are reported in the

Source Data file and Supplementary Table 2. f Computational validation of cells

predicted to bemalignant byHiDDEN in lowpurityMGUS samples.Mean activity ±

SEM (y-axis) of genes assigned to a normal plasma signature for the normal and

abnormal populations within each sample (x-axis). SEM is computed over n = 30

normal and n = 103 neoplastic cells for MGUS-1, n = 10 normal and n = 52 neoplastic

cells forMGUS-4, and n = 10 normal andn = 43neoplastic cells forMGUS-5. Figure 3

panel a created in BioRender. Lab, M. (2024) BioRender.com/x13c819. Source data

of (b, c, d, e, f) are provided as a Source Data file.
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The blood-brain barrier is an active hub for cell-cell interactions

between the ECs comprising blood vessel walls and the surrounding

cell types. In particular, endothelial-endothelial, endothelial-fibroblast,

and endothelial-astrocyte interactions are crucial in tightly regulating

blood-brain barrier permeability30 and have been implicated in neu-

rodegenerative disease pathogenesis29. To investigate if these inter-

cellular pathways could be dysregulated during a demyelinating event,

we examined differences in cellular communication of the affected

LPC1 and unaffected LPC0 endothelial subpopulations with neigh-

boring cell types, we used a computational method for targeted

hypothesis testing of ligand-receptor expression (Fig. 5e, Supple-

mentary Fig. 15, Methods). The changes in communication were con-

sistent with increased angiogenesis, blood-brain barrier breakdown,

and increased extracellular matrix. The anti-angiogenic interactions of

Flt1with Vegfa/Vegfb and of Sema3awith Npr2were decreased in LPC1

endothelial cells, supporting increased angiogenesis. In addition,

interactions between collagen and integrin components were

increased in LPC1, pointing to the remodeling of the extracellular

matrix. Interactions supporting the tight junctions between endothe-

lial cells, such as Jam2 and Jam3 with integrins, were also decreased in

LPC1, suggesting compromised barrier function. Furthermore, we

found that LPC1 endothelial cells have an increased expression of

Vcam1, which acts as a ligand for recruiting immune cells from the

bloodstream to cross the blood-brain barrier (Fig. 5f). In summary,

changes in EC function during white matter damage are poorly

understood.While established approaches failed to identify changes in

ECs during de- and remyelination, HiDDEN revealed a temporally-

specific alteration of a subset of ECs during demyelination which likely

drives blood-brain barrier breakdown and immune cell influx. As few

biological contexts or perturbations are truly uniform, this illustrates

the power and broad utility of HiDDEN to isolate bonafide effects from

complex biological systems in vivo.

Discussion
With the increased amount of annotated single-cell atlases there is an

increased opportunity to automate the labeling of existing cell types in

novel datasets. However, when we are seeking to identify the pertur-

bation effect in a single-cell case-control study of a novel disease or

treatment, we would not have any existing annotated data to draw

from. Towards this end, in this work we developed HiDDEN, a com-

putational method for the identification of subtle perturbation effects

in single-cell data. HiDDEN accurately refines the condition labels of

case cells into affected and unaffected for more sensitive detection of

perturbation signals.We leveraged the HiDDEN output to find hard-to-

detect disease-affected subpopulations of cells and characterized their

marker genes using differential expression testing. We provide a

computationally efficient Python implementation of HiDDEN at

https://github.com/tudaga/LabelCorrection31, making it scalable to

large datasets. At the same time, in the application to endothelial cells,

we found that HiDDEN can detect subtle perturbation changes invol-

ving tens of genes even in small datasets on the order of a hundred

cells. In the application to human bone marrow plasma cells, we

showed that HiDDEN can be successfully applied to samples from

heterogeneous conditions with pronounced batch effects without the

necessity of sophisticated preprocessing or alignment. Therefore,

HiDDEN has the potential to be applicable to single-cell atlases with

batch effects and a high variability in retrieved numbers of cells across

cell types.

The identification of phenotype-associated cells has important

uses in both genomic and translational studies. In biological contexts

Fig. 4 | Application of HiDDEN to ECs fromamouse demyelination time-course

experiment. a Overview of experimental design. Corpus callosum injection with

saline (PBS) and a compound toxic to oligodendrocytes (LPC) used to induce

demyelinationwith n = 3mice per condition per time point across four time points.

b UMAP embeddings of non-neuronal cells from PBS (control) and LPC conditions

across all time points colored by annotation of major cell type. ECs highlighted in

red. UMAP embeddings of ECs across all time points colored by PBS/LPC sample-

level labels (c), and Seurat cluster labels (d). e Relative abundance of case-control

cell identities across Seurat clusters. f Violin plots of HiDDEN continuous pertur-

bation scores split overPBS andLPC labels andgroupedby timepoint.g Swarmplot

of HiDDEN continuous perturbation scores for the 3dpi cells colored by original

PBS/LPC labels (left) and with color indicating the refinement of LPC cells into

affected (LPC1) and unaffected (LPC0) (right). Source data of (b, c, d, e, f, g) are

provided as a Source Data file.
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Fig. 5 | Characterization of the demyelination-affected endothelial sub-

population (LPC1) identifiedbyHiDDEN. aDotplot ofmean expression at 3 dpi of

LPC1 marker genes ordered by p-value. P-values are calculated using a one-sided

Wilcoxon rank sum test with Benjamini-Hochberg correction. b Validation of gene

expression with fluorescent in-situ hybridization (FISH) and confocal microscopy

showingpresenceof endothelial cells (Flt1-positive cells, green) coexpressing Lgals1

(red) and S100a6 (magenta) specifically present in demyelinating lesion (top) and

not control (bottom)brains, 3days after injection. Left:Overviewof ademyelinating

or control white matter lesion. Corpus callosum outlined in gray dashed line. Right:

High-resolution confocal images of single endothelial cells. All images are repre-

sentative of n = 2–3. Scale bars are left top = 200um, left bottom = 100um, right =

10um. c Significantly enriched GO molecular function terms (top) and Reactome

pathways (bottom) based on LPC1 marker genes ordered by significance. The

reported p-values are computed using the over-representation statistical test in

g:Profiler and are Bonferroni-adjusted. d ReviGO plot summarizing the significantly

enriched GO biological processes based on LPC1 marker genes colored by sig-

nificance with selected labels. Significance values are computed in the same was as

described in c. Dot size indicates the log10 of the number of genes associated with

each term. e Significantly enriched (purple) and depleted (green) ligand-receptor

interactions between LPC1 (relative to LPC0) endothelial cells and neighboring cell

types split by interaction direction: from endothelial to neighboring cell type (left),

and fromneighboring cell type to endothelial (right). P values are calculated using a

one-sided permutation test. f Dot plots of mean expression of Vcam1 across time

and condition labels. Source data of (a, c, d, e, f) are provided as a Source Data file.
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where perturbation effects are small relative to the biological het-

erogeneity and technical noise, or the proportion of affected cells is

small, the condition labels are mostly incorrect and a refinement of

the perturbation label at the single-cell level is needed. We show that

HiDDEN outperforms existing methods in producing accurate per-

turbation labels. Furthermore, we demonstrate that HiDDEN-refined

binary labels can be used to boost the performance of existing

approaches relying on cell-level labels accurately representing the

presence of a perturbation effect, including CNA and MELD, as well

as methods for differential abundance across conditions, such

as Milo.

In this paper, we focused on applications of HiDDEN to detect the

presence or absence of a disease effect at single-cell resolution.

However, as a future direction, the HiDDEN framework could be

applied to other challenges, in additional contexts, in which the aim is

to focus the latent space on a particular distinction, for example, to

explore subtle genotype effects (i.e. eQTLs) and sexual dimorphism.

TheHiDDEN framework is amenable to extensions to spatial andmulti-

omics data, as well as applications beyond a binary output, such as

multi-stage disease progressions or time-course experiments, with

appropriate modification to the dimensionality reduction and pre-

diction modules of the framework.

HiDDEN has several limitations. First, given that the perturbation

effect would likely differ across cell types, the method needs to be

applied one cell type at a time. Second, HiDDEN can single out an

affected subpopulation, but that does not imply that the perturbation

effect is homogeneous amongst the affected cells. Additional down-

stream analyses need to be carried out to disentangle the potential

presence ofmultiple perturbation responses within the same cell type.

Third, currently we do not provide a statistical test to distinguish

whether the perturbation effect is binary or if the strength of the effect

forms a continuum. As a result, it is up to the researcher to interpret

the distribution of the continuous perturbation scores produced by

HiDDEN in case and control cells and decide whether to proceed with

clustering either set.

Despite these limitations, HiDDEN is a sensitive approach to

identifying perturbation effects that would otherwise be missed by

existing approaches, especially when a small fraction of cells is

affected or when the perturbation effect is subtle relative to

naturally observed variation in single-cell RNA-seq data. As our

quest for better understanding human disease at single-cell reso-

lution continues, computational methods that can pull out hard-to-

detect transcriptional changes across conditions will become

central in realizing the promise of high-resolution single-cell

expression data.

Methods
HiDDEN: A computational method for revealing subtle tran-
scriptional heterogeneity and perturbation markers in case-
control studies
Intuition. In a case-control experiment, typically all cells in control

samples will be unaffected, and possibly only a subset of the cells in

case samples will be affected by the perturbation (Fig. 1a). Using the

gene expression profiles alone can fail to separate out the affected

from unaffected cells (Fig. 1b). Using the sample-level labels alone can

fail to recover the perturbation markers (Fig. 1c). However, combining

the twoallows us to leverage that at least someof the labels are correct

and allows a prediction model to utilize the shared variability in fea-

tures corresponding to correctly labeled cells. As a result, we trans-

form the sample-level labels into cell-specific perturbation effect

scores and can assign binary cell labels representing their status as

affected or unaffected (Fig. 1d). We use this information to find hard-

to-detect affected subpopulations of cells, characterize their marker

genes, and contrast their cellular communication patterns with those

of unaffected cells.

Notation. Let XϵRN×Mdenote thematrix containing the gene expression

profiles of N cells across M genes. Let ZϵRN×K denote the reduced

representation of the N cells in a K-dimensional latent space of fea-

tures. Let Yϵf0, 1gN denote the binary vector encoding the sample-level

label of each cell, where 0 stands for control and 1 stands for case. We

train a predictivemodel denotedbyh :ð Þ on the reduced representation

Z and the binary sample-level labels Y . Due to the binary nature of the

case-control labels Y , the predictive model is a binary classifier mod-

eling the probability of label 1 given the input features, i.e.,

P Y = 1, j,Zð Þ=h Zð Þ. We train the parameters of the classifier on a

dataset of interest and denote the fitted value of P Y = 1, j,Zð Þ with p̂.

Finally, we cluster the continuous scores p̂ to derive refined binary

labels, denoted by eY , reflecting the status of each cell as affected or

unaffected by the perturbation regardless of which sample it

originated from.

Construction of the latent space. We transform the N ×M gene

expression matrix X into an N ×K matrix Z containing an information-

rich reduced representation of the gene expression profile of each cell

in the dataset. Throughout the applications to real data in this workwe

used principal component analysis (PCA) for this task, which is a

commonly used dimensionality reduction technique for single-cell

RNA-seq data. In principle, any other information-preserving dimen-

sionality reduction method can be used to construct the latent fea-

tures in lieu of PCA, such as non-negative matrix factorization (NMF),

or the latent representations from a state-of-the-art single-cell

expression autoencoder11. We did not find convincing evidence that

using more sophisticated dimensionality reduction techniques

improved model performance (Supplementary Fig. 5) and thus adop-

ted PCA as the most computationally efficient option.

Estimation of the continuous perturbation score. For each cell, we

derive a continuous score, p̂ϵ 0, 1½ �, reflective of the strength of the

perturbation effect on that cell relative to the rest of the cells in the

dataset. Throughout this work we use logistic regression for this task.

That is, the predicted probability of label 1 given the input features is

given by

p̂=P Y = 1, j,Zð Þ=h Z^β
� �

= g�1 Z^β
� �

ð1Þ

where h is the logit link function, i.e., g is the logistic function, and ^β is

the K-dimensional vector of fitted regression parameters. In principle,

we can use any classifier h : RN ×K ! 0, 1½ �N , including large-parameter

non-linear models such as neural networks. In practice, we opted for

logistic regression as a simple yet powerful model with a canonical

parameter optimization routine that does not introduce additional

hyperparameters, training heuristics, and increased computational

resources and time demands.

Derivation of the refined binary label. Each cell in a dataset from a

case-control experiment possesses a binary sample-level label reflect-

ing whether it originated from a case or control sample. As these

coarse labels do not reflect the individual cell identity of being affected

or unaffected by the perturbation, wederive a new refined binary label

that captures the presence or absence of a perturbation effect in each

cell. When we want to distinguish between affected and unaffected

cells in the case sample, we cluster the continuous perturbation scores

p̂ for all the cells with initial label 1 into two groups. The cells in the

group with lower p̂ scores receive new label eY =0 and the cells in the

group with higher p̂ scores get a new label eY = 1 matching their old

label. To do this, we use k-means clustering with k =2. In principle, any

other clustering algorithm, such as Gaussian mixture models with two

components for example, can be utilized in lieu of k-means. We com-

pared these two clustering methods across our ground truth Naive B /

Memory B mixtures and concluded that the two clustering strategies
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tend to perform similarly, especially for the datasets with 15% to 75%

Memory B cells in the case condition. For datasets with less than 15%

Memory B cells, the Gaussian mixture model approach had overall

more power to detect ground truth marker genes. However, for

datasets with more than 75% Memory B cells in the case condition,

k-means performed better, especially due to a lower false

discovery rate.

Choosing the number of latent dimensions. When selecting K , the

number of latent dimensions, our guiding principle is thatK should be

chosen in a data-dependent manner aiming to retain informative

transcriptional heterogeneity while avoiding overfitting the not-

entirely-correct sample-level labels. For example, note that using

K>rankðX Þ will yield predictions p̂ synonymous with the sample-level

labels. In practice, this implies we should choose K<<minðN,MÞ.

Therefore, we develop two novel data-driven heuristics to quantify the

amount of informative heterogeneity retained in the latent space by

measuring the perturbation signal downstream of redefining the bin-

ary labels.

The first heuristic is to use the number of differentially expressed

genes defined by the refined labels eY . A large number of DE genes

indicates ameaningful signal in eY , and in turn in p̂ and the latent space

Z . Intuitively, when K is too small, the continuous scores p̂ do not

contain enough heterogeneity to yield labels eY that distinguish DE

genes. Conversely, when K is too large, we are overfitting to the

sample-level labels resulting in low power to detect the perturbation

markers. To achieve an appropriate balance, we scan a range of values

for K that traverses the concave relationship between K and the

number of DE genes and choose the number of latent dimensions

maximizing it.

The second heuristic is to use the strength of the difference

between the values of p̂ for cells in the case sample with new label
eY = 1 and new label eY =0. We quantify the probability that these two

sets of values are drawn from the same distribution using the two-

sample Kolmogorov-Smirnov (KS) test32. The larger the value of the

KS test statistic, the more different the sample distributions of the

perturbation score are between the cells predicted to be affected and

unaffected. This value is generally an increasing function of K ,

therefore we pick the smallest value of K that maximizes the KS test

statistic.

Note that we do not need access to ground truth labels of the

perturbation effect for neither heuristic. When ground truth data is

available, we find that the ability of the refined binary labels eY to

represent the true perturbation effect per cell is similarly high for a

wide range of values of K and that either heuristic yields a choice in

that range (Supplementary Fig. 9).

Assessing performance on semi-simulated ground truth data
To demonstrate and quantify the problem difficulty and to assess the

power of our method, we conducted simulations using a real single-

cell dataset. We used the RNA profiles of n = 1900 Naive B and n= 1630

Memory B cells from a dataset of peripheral blood mononuclear cells

(PBMC) freely available from 10x Genomics16. We first describe our

design of simulated case-control datasets by combining the two B cell

subpopulations. We then describe the challenge of separating the two

subpopulations using the standard single cell clustering analysis

workflow. Finally, we describe how we train our method and the

metrics weuse to assess its power to detect the biological signal and to

compare it against related methods.

Generation of ground truth datasets. The RNA profiles of all

n=30672 cells in the human PBMC data from 10x Genomics were

clustered and annotated independently of the ATAC-seq profiles fol-

lowing standard approaches detailed in the Seurat Weighted Nearest

Neighbor Analysis vignette33. This resulted in 27 annotated cell types of

which we subset all Naive B and Memory B cells for the subsequent

generation of ground truth datasets.

For the tSNE representationof all Naive B and allMemoryB cells in

Fig. 2a, we normalized the gene counts, performed variable gene

selection, scaled the normalized counts, performed dimensionality

reduction using PCA, built the nearest-neighbor graph, and ran tSNE,

all with default hyperparameter values using the standard functions in

Seurat v 3.2.326.

To comprehensively describe the problem difficulty and test the

performance of our method, we constructed a collection of ground

truth case-control datasets by varying two aspects (Fig. 2b). In each

dataset, the control sample consists entirely of Naive B cells, which we

refer to as unperturbed, whereas the case dataset consists of both

unperturbed and perturbed cells, which are either Memory B or s of

Naive B andMemory B cells. Each dataset is indexed by (1) the percent

perturbed cells in the case sample and (2) the strength of the

perturbation.

To explore the effect of the percent perturbed cells in the case

sample, we randomly drew 100� pð Þ% of the cells in the case from the

Naive B cells and p% from the Memory B cells. The remaining Naive B

cells were all allocated to the control sample. We explored 18 values of

the percent perturbed cells pϵf5, 10, 15, . . . , 85, 90g%: The resulting

number of Naive B and Memory B cells across case and control per

dataset is provided in Supplementary Table 1.

To explore the effect of the strength of the perturbation, we

varied the extent to which perturbed and unperturbed cells in the case

sample differ from each other. LetW mð Þ andW nð Þ denote the weight of

Memory B and Naive B contribution, respectively, for each hybrid cell,

where W mð Þ +W nð Þ = 1, and W mð Þ,W mð Þ
≥0, i.e. W mð Þ denotes the

strength of the perturbation. Let i index the perturbed (Memory B)

cells in the case sample and let Ni denote the total number of UMIs in

cell i. Each Memory B / Naive B hybrid cell has the same number of

UMIs, Ni, as the Memory B cell it originates from, N mð Þ

i of which are

subsampled from the originating Memory B cell and N nð Þ

i of which are

drawn from the Naive B centroid profile, as described below.

Let ~xi denote the gene expressionprofile of the originalMemoryB

cell i. Let ~pi denote the normalized counts, i.e., the relative proportion

of counts across genes. We drew a Memory B / Naive B hybrid gene

expression profile ~hi by first subsampling N mð Þ

i = ceiling W mð Þ*Ni

� �

counts from the original Memory B expression profile xi
!

:

h
mð Þ

i

��!
� Multinomial N mð Þ

i , pi
!

� �
,

where the ceiling function for any real number x, integer z, and the set

of integersZ is defined as ceiling ðxÞ=minfzϵZjz ≥ xg, i.e. the ceiling is

the smallest integer greater than or equal to x; and Multinomial

denotes the Multinomial probability distribution.

We then drewN nð Þ

i : =Ni � N mð Þ

i counts from the Naive B centroid,

p nð Þ
�!

, defined as the average normalized counts overrightarrowtor

across all Naive B cells in the dataset:

h
nð Þ

i

�!
� Multinomial N nð Þ

i , p nð Þ
�!� �

,

and finally, summed the two count overrightarrowtors hi

!
=h

mð Þ

i

��!
+ h

nð Þ

i

�!

to compose the hybrid profile.

We explored 17 values of the perturbation strength parameter

W mð Þ
ϵf0:25, 0:3, 0:35, . . . , 0:95, 1g. Overall, spanning both the percent

perturbed cells in case and the perturbation strength axes, we gener-

ated 72 datasets to characterize the problem difficulty and assess the

performance of our method, as described below.

Clustering analysis of ground truth datasets. For the tSNE repre-

sentation in Fig. 2c, we focused on the simulated dataset containing 5%
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Memory B cells in the case.We used the standard Seurat functions and

normalized the gene counts, performed variable gene selection with

default parameter values, scaled the normalized counts, performed

dimensionality reduction using PCA with default parameter values,

built the nearest-neighbor graph with the default number of nearest

neighbors, used the Leiden algorithm with the default value of the

resolution parameter to find clusters, and ran tSNE. For the bar plots in

Fig. 2d and Supplementary Fig. 1, we computed the abundance of case

and control-labeled cells and the abundance of Naive B andMemory B

cells in each cluster.

Several hyperparameters influence the clustering results, and we

varied each one to study their effects on the problem difficulty. The

challenge of capturing the biological signal and separating Memory B

from Naive B cells using the standard pipeline lies in (1) the con-

struction of the latent space; and (2) the resolution parameter of the

clustering algorithm. To quantify the problem difficulty, we investi-

gated the degree of separability of Naive B and Memory B cells in the

latent space via the distribution of the number of Memory B nearest

neighbors across Memory B cells. For a given simulated dataset,

varying the number of principal components (PCs) used to build the

nearest-neighbor graph impacts the separability of the latent space

with including more PCs resulting in a more mixed latent space

(Supplementary Fig. 1a). The choice of a feature selection strategy

along with the choice of the resolution parameter of the Leiden clus-

tering algorithm have a significant impact on the results. We observed

that using highly variable gene selectionwith the resolution parameter

chosen to yield two clusters (since we are aiming to separate two cell

types) fails to isolate the Memory B cells (Supplementary Fig. 1b). In

this simulated ground truth setting, we can compute the differentially

expressed (DE) genes, i.e., marker genes, between the two classes and

use them as the selected features. However, that choice alone is also

not sufficient to yield improved clustering when using the default

value of the resolution parameter (Supplementary Fig. 1c).

HiDDEN model training. The HiDDEN model training was done in

python and consists of three steps: (1) we preprocess the raw gene

expression counts, (2) we train a logistic regression model, and (3) we

binarize the predictions for cells in the case sample. First, we followed

the standard preprocessing routine for single-cell RNA-seq data in

scanpy26 which consists of filtering out cells with <20 genes and fil-

tering out genes not expressed in any cells, followed by log-normal-

ization, and then, we used the standard PCA dimensionality reduction

routine in scanpy on the scaled gene features. For the comparison of

the choice of dimensionality reduction technique in Supplementary

Fig. 5, we trained a state-of-the-art gene expression autoencoder, using

the scVI framework11, varying the size of the latent spaceKϵf10, 25, 50g.

Second, we used the LogisticRegression function from the sklearn.li-

near_model python library to train a logistic regression on the binary

sample-level labels and thefirstK features. Finally,weused theKMeans

function from the sklearn.cluster python library with n clusters = 2 on

the continuous perturbation scores output by the logistic regression

for cells in the case sample.

Note that HiDDEN does not require parameter tuning. Since we

use all genes when computing the PC embedding of the data, the only

parameter in the model is K , the number of PCs used in the training of

the logistic regression. As described earlier in this section, we provide

two data-driven heuristics for automatically choosing an appropriate

value for K . For each dataset and for each heuristic, we scanned all

integer values for K in the range ½2, 60�. The first heuristic is to choose

K that maximizes the number of DE genes defined by the HiDDEN

refined binary labels. To compute the number of DE genes down-

stream of a given value of Kϵ½2, 60�, we used the Wilcoxon rank-sum

differential expression test in scanpy with adjusted p-value threshold

<0:05 (Supplementary Fig. 9a). The second heuristic is to choose the

smallest value of K that maximizes the value of the two-sample

Kolmogorov-Smirnov (KS) test statistic comparing the sampling dis-

tributions of p̂ for cells in the case sample with new refined label eY = 1

and eY =0 (Supplementary Fig. 9b). To compute the value of the KS test

statistic, we used the ks_2samp function from the scipy.stats python

library.

Assessing agreement between HiDDEN continuous perturbation

scores and ground truth labels. To quantify the ability of the con-

tinuous perturbation scores output by HiDDEN to capture the biolo-

gical difference betweenMemoryB andNaive B cells in each simulated

dataset, we computed the Area Under the Receiver Operating Char-

acteristic Curve (AUROC) using the roc_auc_score function from the

sklearn.metrics python library (Fig. 2f, Supplementary Figs. 2a, 5a, 6a,

7I-K). The AUROC score can take values in the range ½0, 1�, with higher

values indicating better agreement between the continuous prediction

scores and the ground truth Naive B / Memory B binary labels.

Assessing agreement between HiDDEN-refined binary labels and

ground truth labels. To evaluate the agreement between ground truth

Naive B / Memory B labels and the binary labels refined by HiDDEN in

each simulated dataset, wemeasured the accuracyof retrieved ground

truthmarkers. Herewe considered two scenarios– (1)workingwith the

(unclustered) dataset as a whole and (2) looking for perturbation

markers across clusters produced by the standard Seurat workflow.

The unclustered case: To define the set of ground truth markers

for Naive B and Memory B cells in each simulated dataset, we com-

puted the DE genes using the Naive B / Memory B ground truth labels

using the Wilcoxon rank-sum differential expression test in scanpy

with adjusted p-value threshold <0:05. Analogously, wedefined the set

of HiDDEN-derived marker genes as well as a baseline set of marker

genes using the refined binary labels and the sample-level case-control

labels, respectively, under the same testing procedure. We then com-

puted the number of True Positives (TP), False Negatives (FN), False

Positives (FP), and associatedmetrics of Recall, Precision, and F1-score

(Fig. 2g, Supplementary Figs. 2b, 3, 4a, 5b, 6b). Recall can take values in

the range ½0, 1�, with higher values indicating a higher fraction of cor-

rectly retrieved ground truth markers. Precision can take on values in

the range ½0, 1�, with lower values indicating a higher fraction of falsely

discovered marker genes. The F1-score is calculated as the harmonic

mean of the precision and recall. F1-score can take values in the range

½0, 1�, with higher values indicating better agreement between the

HiDDEN refined binary labels and the ground truth Naive B /Memory B

binary labels.

The clustered case:We proceeded analogously to the unclustered

case with the difference that DE testing was performed per cluster and

the union of all DE genes across clusters defined the final gene set

(Supplementary Fig. 3).

Comparing HiDDEN to CNA,MELD,Milo, andMixscape. While these

methods are developed with different objectives within the larger

question of characterizing the effect of a perturbation in single-cell

data, all of them utilize expression profiles (or a neighborhood graph

derived from them) and cell labels reflecting the condition of the

sample a cell comes from (as well as other metadata, optionally) as

input. All methods output a continuous score measuring the effect of

the perturbation in each cell, which can further be binarized whenever

appropriate. Therefore, we can compare the performance of these five

methods alongboth continuous scores andbinary labels. Towards that

end, we use the ground truth datasets of Naive B and Memory B cell

mixtures.

Training of CNA was performed in python following the jupyter

notebook tutorial provided by the authors of the method34. The ori-

ginal CNA implementation has a hard-coded assumption that the

dataset to be analyzed is composed of at least five samples.We relaxed

this assumption to accommodate our B cell mixtures and obtained
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continuous perturbation scores as the per-cell neighborhood coeffi-

cient using the CNA association function with case/control status as

the sample-level attribute of interest and case/control status as sample

id. The resulting CNA continuous score is a correlation value ranging

from −1 to 1.

Training of MELD was done in python following the code used by

the authors of Milo in their comparison section35. We computed the

k-nearest neighbors graph based on the expression matrix subsetted

to the top 2000 highly variable genes. Then we used the meld_op.-

transform function to compute the density of the case/control sample

labels and transformed the density to likelihood per condition using

the meld.utils.normalize_densities function. Continuous perturbation

scores, which take on values between 0 and 1, were obtained as the

likelihood of label 1, which denotes the case condition.

Training of Milo was performed in python following the Differ-

ential abundance analysis in python with milopy jupyter notebook

tutorial provided by the authors of the method36. The underlying

implementation of Milo is done in R and calls on the glmFit routine

from the edgeR R package. This routine cannot estimate the negative

binomial dispersion parameter if it is not given at least three samples.

To overcome this hard-coded assumption, we randomly created three

samples per condition. We created the partially overlapping cellular

neighborhoods using the milo.make_nhoods function. This results in a

collection of neighborhoods, each identified by an index cell. A frac-

tion of the cells in the dataset are deliberately excluded from the Milo

analysis as outliers. Cells included in the analysis canalso belong toone

or more neighborhoods at the same time. Then we used the case/

control sample level labels to count the number of cells from each

sample in each neighborhood using the milo.count_nhoods function.

We used the milo.DA_nhoods function to perform differential abun-

dance testing, which outputs a log fold-change test statistic per

neighborhood. Since we aim to make comparisons at the level of

individual cells, when a cell belonged tomore thanoneneighborhood -

we reported the average log fold-change across neighborhoods. For

cells excluded from the analysis, the average log fold-change is NA.

Continuous perturbation scores were obtained as the average log fold-

change and can take on values between minus to plus infinity.

Training of Mixscape was performed in python following the

code provided by the Theis lab as part of pertpy tools on github

at https://github.com/theislab/pertpy/blob/development/pertpy/

tools/_mixscape.py. We calculated perturbation signatures by

subtracting the averaged expression profile of the 20 control

neighbors from the expression profile of each cell using the

perturbation_signature function. We then identified perturbed

and non-perturbed cells within the case condition using the

mixscape function with default hyperparameter values.

Comparison of the continuous perturbation scores fromHiDDEN,

CNA, MELD, Milo, and Mixscape (Supplementary Figs. 6a, 7) was per-

formed using the AUROC described earlier in theMethods section as a

metric for assessing agreement between continuous perturbation

scores and ground truth labels.

Converting the continuous perturbation scores into binarized

labels was done in an identical manner for HiDDEN, CNA, MELD, and

Milo, as described earlier in theMethods section. Mixscape has a built-

in function for computing binary perturbed/non-perturbed labels.

Comparison of the binary labels across all five methods (Supplemen-

tary Figs. 6b, 8) was performed using the F1-score described earlier in

the Methods section as a metric for assessing the agreement between

HiDDEN-refined binary labels and ground truth labels.

Using HiDDEN-refined binary labels as input to CNA, MELD,

andMilo. HiDDEN-refinedbinary labelsdemonstrate better agreement

with ground truth labels than the sample-level case/control labels.

Therefore, we explored the performance of CNA, MELD, and Milo

when given HiDDEN binary labels in lieu of case/control labels as input

(Supplementary Figs. 7, 8). CNA continuous perturbation scores were

obtained as the per-cell neighborhood coefficient using the CNA

association function with Memory B / Naive B ground truth labels as

the sample-level attribute of interest and HiDDEN-refined binary labels

as sample id. MELD continuous perturbation scores were obtained as

the density of the HiDDEN-refined binary labels transformed to like-

lihoodof label 1.Milo continuousperturbation scoreswereobtained as

the average log fold-change downstream of differential abundance

testing per neighborhood using the HiDDEN-refined binary labels to

count the number of cells per condition. All continuous scores were

binarized in the same manner as above.

Assessing performance on human multiple myeloma and pre-
cursor states data
The first real dataset we analyzed consists of single-cell RNA-seq pro-

files of human bone marrow plasma cells from patients with multiple

myeloma (MM) (n=8 patients, N = 10790 cells), its precursor condi-

tions smoldering multiple myeloma (SMM) (n= 12 patients, N =8431

cells) and monoclonal gammopathy of undetermined significance

(MGUS) (n=6 patients, N =817 cells), and healthy donors with normal

bone marrow (NBM) (n =9 patients, N =9329 cells)4.

Precursor samples can contain amixtureof neoplastic and normal

cells (Fig. 3a) and the authors of the original study define two sources

of ground truth describing themalignancy status of precursor samples

and their cells. The first source is a manual annotation of binary labels

reflectingwhether a cell is healthy ormalignant. The second source is a

tumor-purity estimate of the proportion of malignant cells in each

precursor sample.

HiDDENmodel training. This dataset has pronounced patient-specific

batch effects (Supplementary Fig. 12a). Therefore, echoing the analysis

in the original study, we first deployed a batch-sensitive strategy to

refine the malignancy status of cells in precursor samples using HiD-

DEN. Additionally, we developed a batch-agnostic strategy as well, to

explore the ability of our method to perform well in the presence of

strongbatcheffects.Mirroring thewithin-patient annotation approach

in the original study, our batch-sensitive fitting approach considers

eachprecursor sample one at a time.We trained themodel on all NBM,

oneprecursor sample, and allMMsamples, wherewegive allNBMcells

label 0, or healthy, and all the rest label 1, reflecting that they do not

originate from healthy donors. The batch-agnostic fitting approach

consists of fitting the model to all NBM samples, all precursor samples

manually annotated tobemixed, and allMMsamples together.Besides

this, all other aspects of model training were carried out the same way

between the two strategies. The results from the batch-specific strat-

egy are featured in Fig. 3, and the results of the batch-agnostic

approach, along with a comparison of the two, are included in Sup-

plementary Fig. 12.

The HiDDEN model training was done in python. First, we fol-

lowed the standard preprocessing routine for single-cell RNA-seq data

in scanpy and log-normalized each sample separately. We then used

the standard PCA dimensionality reduction routine in scanpy on the

scaled gene features. Next, we used the LogisticRegression function

from the sklearn.linear_model python library to train a logistic

regression on the binary NBM / non-NBM labels and the first K PCs.

Finally, we used the KMeans function from the sklearn.cluster python

library with n clusters = 2 on the continuous perturbation scores out-

put by the logistic regression for cells in each precursor sample

separately (Supplementary Table 2). We used all genes to compute the

PCdimensionality reduction and automatically choseK , the number of

PCs used in the logistic regression, using the heuristic for maximizing

the number of DE genes downstream of the HiDDEN refined binary

labels (Supplementary Fig. 13). The specific strategy for defining theDE

genes in this dataset characterized by strong batch effects is described

in detail below.
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Under both fitting strategies, we used the same downstream

metrics to evaluate the performance of our method at recovering the

manually annotated cell-level labels and the purity sample-level esti-

mates, as described below.

Assessing agreement between HiDDEN continuous perturbation

scores and ground truthmanually annotated labels. To quantify the

ability of the continuous perturbation scores produced by HiDDEN to

capture the manually annotated healthy-malignant binary labels in all

mixed precursor samples, we computed the AUROC using the

roc_auc_score function from the sklearn.metrics python library. The

average AUROC across samples per precursor state from the batch-

sensitive training strategy is depicted in Fig. 3b, and the per-sample

curves and distributions of perturbation scores are included in Sup-

plementary Fig. 12.

Assessing agreement between HiDDEN refined binary labels and

tumor-purity sample estimates. The sample-level source of ground

truth provided in the original study is an estimate of the proportion of

malignant cells from a Bayesian hierarchical model based only on the

expression of immunoglobulin light chain genes. Additionally, we esti-

mated the per-sample tumor-purity using the manual labels and the

HiDDEN-refined binary labels. Confidence bounds in all three cases were

derived following the same approach as in the original study (Fig. 3c, e).

There are three quantities relevant to the ability of HiDDEN and

manual annotation labels to recapitulate the ground truth point esti-

mates of sample purity, i.e. the proportion of neoplastic cells in a

sample:

1. sample purity estimates derived from HiDDEN-refined binary

labels, denoted as p1,

2. manual annotation-based estimates of sample purity reported in

the paper the data originated from4 denoted as p2,

3. ground truth point estimates of proportion of malignant cells4,

denoted as p3.

Deriving significance values that quantify the ability of HiDDEN-

derived labels and manual annotation labels to match the ground

truth point estimates of malignant cell proportions. we treat p1 and

p2 as random variables, and the point estimate p3 as a scalar. The

probability distributions of p1 and p2 follow from the derivation of

confidence bounds in the original study4 and are described in more

detail below.

For a given sample, let p be the proportion of neoplastic cells

(denoting the population parameter and not just the estimate based on

the sequenced cells from that sample). Wemodel the observed data as

x � Binomialðn,pÞ,

where n denotes the total number of sequenced cells in the sample, x

of which are labeled as neoplastic. We put a noninformative uniform

prior on p:

p � Betað1, 1Þ:

Due to the Beta-Binomial conjugacy, the posterior distribution of

p is closed form:

pjn, x � Betaðx + 1,n� x + 1Þ,

with p taking on values in ½0, 1�.

For each of the 11 precursor samples we consider in Fig. 3c, e, we

test a pair of hypotheses:

H0 : p1 =p3

HA : p1≠p3and

H0 : p2 =p3

HA : p2≠p3:

Sincewe are testing analogous hypotheses forp1 andp2, belowwe

describe the hypothesis test with respect to p1.

The distribution of the test statistic (the difference between p1

and p3) under the null hypothesis is:

p3jn,H0 � Betaðx3 + 1,n� x3 + 1Þ,

with support ½�p3, 1� p3�, where x3 is the expected number of neo-

plastic cells under the null, calculated as p3*n rounded to the nearest

integer.

Therefore, the p-value is calculated as the probability to observe a

test statistic equal to ormoreextreme (in either directionaway from0)

according to the null distribution:

P Beta x3 + 1,n� x3 + 1
� �

≤ � p1 � p3

		 		� �
+P Beta x3 + 1,n� x3 + 1

� �
≥ p1 � p3

		 		� �
:

ð2Þ

The resulting p-values for testing p1 � p3 and p2 � p3 across all 11

mixed precursor samples are reported in Supplementary Table 2. The

significance depicted in Fig. 3c, e is with respect to a Bonferroni-

adjusted threshold of alpha=0.01/22 = 4.55E-04. A smaller p-value

indicates a larger discrepancy with the ground truth. Whenever the

HiDDEN-based approach produced a larger p-value compared to the

manual annotation, we concluded that HiDDEN agreed better with the

ground truth compared to the manual annotation approach.

Differential expression analysis using manually annotated and

HiDDEN binary labels. To demonstrate the ability of the HiDDEN-

refined binary labels to discover additional malignancy markers from

precursor samples, we computed the DE genes using the manual

annotation in NBM and MM samples and contrasted it against the DE

genes found using the HiDDEN refined labels in precursor samples

(Fig. 3d). Due to the presence of strong batch effects in the data,

mirroring the DE testing strategy in the original paper, we find the DE

genes per patient and take the union across patients. For a gene to be

considered DE, it had to have an adjusted p-value <0:05 from the t-test

differential expression testing routine in scanpy and a maximum

absolute log-foldchange >1:5.

To assess the significance of the overlap between the two sets of

DE genes, we ran a hypergeometric test using the dhyper function

from the Stats R package. The background number of genes was cal-

culated based ongenes expressed in at least one cell fromall precursor

samples (18, 770 genes).

Validation of HiDDEN binary labels in non-mixed MGUS samples.

The authors of the original study computed a Bayesian non-negative

matrix factorization (NMF) to highlight gene signatures that are active

in this patient cohort and validated them in external cohorts. Several

signatures were annotatedwith a biological interpretation. There were

three MGUS samples considered to consist of only healthy cells,

according to themanual annotation. They are also the three precursor

samples with lowest, although not zero, estimated sample purity

according to the Bayesian purity model from the original study. The

HiDDEN refined binary labels for these patients annotate some of their

cells as malignant. To validate this annotation, we plotted the mean

activity of the genes identified by the original study for each signature

in the cells labeled as healthy and asmalignant for each sample (Fig. 3f,
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Supplementary Fig. 11). The confidence bounds (SEM) in Fig. 3f were

derived following the same approach as in the original study.

Analysis of mouse endothelial cells from a time-course demye-
lination experiment
Generation of demyelination and control tissue. The second real

dataset analyzed consists of single-nucleus RNA-seq profiles of mouse

endothelial cells from a demyelination model with matched controls.

Case and control animals received 500nl of 1% lysophosphatidylcho-

line (LPC, Cat# 440154, Millipore Sigma, US) or saline vehicle (PBS)

injection, respectively. This was delivered intracranially, using stan-

dard approaches, with a Nanoject III (Drummond, US) into the corpus

callosum at the following stereotaxic coordinates: Anterior-Posterior:

−1.2, Medio-lateral: 0.−5 relative to bregma and a depth of 1.4mm

normalized to the surface of the skull.

All micewere housed on a 12-h light/dark cycle between 68 °F and

79 °F and 30-70% humidity. All animal work was approved by the

Broad’s Institutional Animal Care and Use Committee (IACUC). The

only mouse strain used was C57BL/6 J which was purchased directly

from The Jackson Labs (cat# 000664). Mice were sacrificed at four

time points: 3, 7, 12, and 18 days post injection (dpi) with n=3 animals

per time point per condition, totaling n=24 animals (Fig. 4a). At the

appropriate timepoint,micewere perfusedwith ice-cold pH7.4HEPES

buffer (containing 110mMNaCl, 10mMHEPES, 25mMglucose, 75mM

sucrose, 7.5mM MgCl2, and 2.5mM KCl) to remove blood from the

brain. Brainswere fresh frozen for 3min in liquidnitrogen vapor and all

tissue was stored at −80 °C for long-term storage. The full dataset will

be described in a forthcoming paper (Dolan et al., in preparation).

Generation of single-nucleus RNA profiles. Frozen mouse brains

were mounted onto cryostat chucks with OCT embedding compound

within a cryostat. Brainswere sectioneduntil reaching the injection site

location, which was confirmed by the presence of hypercellularity

using a Nissl stain (Histogene Staining Solution, KIT0415, Thermo-

fisher). For saline controls, anatomical landmarks were used to deter-

mine the injection site. Lesions or control white matter was

microdissected using a 1mmbiopsy punch (IntegraMiltex, US), whose

circular punchwas bent into a rectangle shape with a sterile hemostat.

Lesion punches were 300 μm deep.

Each excised tissue punch was placed into a pre-cooled 0.25ml

PCR tube using pre-cooled forceps and stored at −80 °C for a max-

imum of 24 hours. Nuclei were extracted from this frozen tissue using

gentle, detergent-based dissociation, according to a protocol available

at protocols.io (https://doi.org/10.17504/protocols.io.bck6iuze) with

minor changes to maximize nuclei extraction, which will be described

in a forthcoming paper (Dolan et al. in preparation). Nuclei were loa-

ded into the 10x Chromium V3 system. Reverse transcription and

library generation were performed according to the manufacturer’s

protocol (10x Genomics). Sequencing reads from mouse cerebellum

experiments were demultiplexed and aligned to a mouse (mm10)

premrna reference using CellRanger v3.0.2 with default settings.

Digital gene expression matrices were generated with the CellRanger

count function. Initial analysis and generation of overall UMAP and

clustering (Fig. 4b) was performed with Seurat v326.

Clustering analysis of endothelial cells. For the UMAP representa-

tions in Fig. 4c, d, and Supplementary Fig. 14 of the profiles of N =891

endothelial cells from n=6 animals spanning both case and control

conditions and all four timepoints, we used the standard scanpy

functions to log-normalize and scale the gene counts, ran PCA, com-

puted thenearest-neighborgraphwith 10 neighbors in the latent space

defined by the first 50 PCs, and ran the UMAP algorithm.

To cluster the endothelial cells (Fig. 4d), we used the standard

preprocessing and clustering workflow in Seurat. We normalized the

gene counts, performed variable gene selection with default

parameter values, scaled the normalized counts, performed dimen-

sionality reduction using PCA with default parameter values, built the

nearest-neighbor graph with the default number of nearest neighbors,

and used the Leiden algorithmwith resolution parameter =0:5 to find

clusters.

For the heatmaps in Fig. 4e and Supplementary Fig. 14c, we

computed the abundance of case (LPC) and control (PBS) labels in

each cluster and across time points, respectively.

HiDDEN model training. Model training was performed in python on

all n =891 endothelial cells together. We followed the standard pre-

processing routine for single-cell RNA-seq data in scanpy and log-

normalized the gene counts, followed by PCA dimensionality reduc-

tion of the scaled gene features. For the continuous perturbation score

in Fig. 4f and Supplementary Fig. 14d, we used the LogisticRegression

function from the sklearn.linear_model python library to train a logistic

regression on the binary PBS / LPC labels and the first K PCs. We used

all genes to compute the PC embedding and automatically choseK = 5,

the number of PCs used in the logistic regression, using the heuristic

for maximizing the number of DE genes downstream of the HiDDEN

refined binary labels. The strategy for defining the DE genes in this

dataset is described in detail below.

For the HiDDEN refined binary labels in Fig. 4g, we used the

KMeans function from the sklearn.cluster python library with

n clusters = 2 to split the continuous perturbation scores of all LPC

endothelial cells at 3 dpi into two groups. We denote the group with

lower perturbation scores LPC0, corresponding to endothelial cells

unaffected by the LPC injection and similar to endothelial cells in the

PBS control condition, and the group with higher perturbation

scores LPC1, as the subset of endothelial cells affected by the LPC

injection.

Differential expression analysis to defineendothelial LPC1markers.

Todefine the set of endothelial LPC1markers depicted in thedotplot in

Fig. 5a, we took the unique perturbation-enriched genes found in DE

analysis using the HiDDEN refined labels and not in DE analysis using

the original PBS / LPC labels.We performed bothDE analyses using the

Wilcoxon rank-sum test in scanpy with a threshold for the adjusted p-

value <0:05. The comprehensive output from both tests can be found

in Supplementary Table 3, with the unique genes found using the

HiDDEN refined binary labels highlighted in bold font.

Validation of endothelial LPC1 markers using RNAscope. Fresh-

frozen, 14 μm sections of 3 days post injection (dpi) demyelinating or

saline control tissue were mounted on cold Superfrost plus slides

(Fisher Scientific, US). These slides were stored at −80 °C. We per-

formed RNAscope Multiplex Fluorescent v2 (Advanced Cell Diag-

nostics, US) using probes targeting S100a6 (412981), Lgals1 (897151-

C2) and Flt1 (415541-C3), where Flt1 is a general marker for endo-

thelial cells. RNAscope was performed following the manufacturer’s

protocol for fresh frozen tissue and the following dyes were used at a

concentration of 1/1500 to label specific mRNAs (TSA Plus fluor-

escein, TSA Plus Cyanine 3, TSA Plus Cyanine 5 from PerkinElmer,

USA). Imaging was performed on an Andor CSU-X spinning disk

confocal system coupled to a Nikon Eclipse Ti microscope equipped

with an Andor iKon-M camera. Images were acquired using 20x air

and 60x oil immersion objectives (Nikon). All images shown in

Fig. 5b are representative images taken from at least 2 independent

experiments.

Interpretation of endothelial LPC1 markers using gene ontology

analysis. For the identification of gene ontology (GO) categories

summarizing the list of unique endothelial LPC1markers (Fig. 5c, d), we

performed GO enrichment analysis in g:Profiler37 with default settings

and ReviGo38 to summarize and visualize the results.
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Ligand-receptor analysis to identify cell-cell communication

changes between endothelial LPC1 and LPC0. To contrast the

ligand-receptor communication of the two endothelial LPC subtypes

with neighboring cell types in the tissue (Fig. 5e), we used a mod-

ification (Goeva et al., in preparation) to CellphoneDB39. We separated

the output for each interaction in three bins based on the sign of the

test statistic (Supplementary Fig. 15) and themagnitude of the p-value,

reflected in the figure legend: significantly depleted in LPC1 with

respect to LPC0, not significant (p-value ≥0:05), and significantly

enriched in LPC1 with respect to LPC0.

Statistics and reproducibility. HiDDEN was evaluated on data origi-

nating from two publicly available datasets and one novel dataset,

using as many samples as possible in these datasets (no statistical

method was used to predetermine the sample size and no data were

excluded from the analyses). Preprocessing steps were performed

according to standard practice and reported for each dataset inde-

pendently. The experiments involving running computational meth-

ods on previously published publicly available datasets did not require

randomization. The investigators were not blinded to allocation dur-

ing experiments and assessment of outcome. Further information on

researchdesign is available in theNature Portfolio Reporting Summary

linked to this article.

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
The endothelial single-nucleus RNA-seq data used in this study are

available in the GEO database under accession code GSE276570. The

rest of the datasets used in this study were already publicly available.

The processes PBMC data used in this study are freely available from

10x Genomics and can be downloaded by following the link: https://

support.10xgenomics.com/single-cell-multiome-atac-gex/datasets/1.

0.0/pbmc_granulocyte_sorted_10k. The scRNA-seq human bone mar-

row plasma cell data from patients with multiple myeloma, precursor

states, and healthy donors is available in the GEO database under

accession code GSE193531. All relevant data supporting the key find-

ings of this study are available within the article and its Supplementary

Information files. Source data are provided with this paper.

Code availability
Code and scripts to reproduce analyses presented here are available

on Github at https://github.com/tudaga/LabelCorrection31.

References
1. Grubman, A. et al. A single-cell atlas of entorhinal cortex from

individuals with Alzheimer’s disease reveals cell-type-specific gene

expression regulation. Nat. Neurosci. 22, 2087–2097 (2019).

2. Wilk, A. J. et al. A single-cell atlas of the peripheral immune

response in patients with severe COVID-19. Nat. Med. 26,

1070–1076 (2020).

3. Kamath, T. et al. A molecular census of midbrain dopaminergic

neurons in Parkinson’s disease. bioRxiv https://doi.org/10.1101/

2021.06.16.448661 (2021).

4. Boiarsky, R. et al. Single cell characterization of myeloma and its

precursor conditions reveals transcriptional signatures of early

tumorigenesis. Nat. Commun. 13, 7040 (2022).

5. Aissa, A. F. et al. Single-cell transcriptional changes associatedwith

drug tolerance and response to combination therapies in cancer.

Nat. Commun. 12, 1628 (2021).

6. Dixit, A. et al. Perturb-Seq: Dissecting Molecular Circuits with

Scalable Single-Cell RNA Profiling of Pooled Genetic Screens. Cell

167, 1853–1866.e17 (2016).

7. Replogle, J. M. et al. Mapping information-rich genotype-pheno-

type landscapes with genome-scale Perturb-seq. Cell 185,

2559–2575.e28 (2022).

8. Papalexi, E. et al. Characterizing the molecular regulation of inhi-

bitory immune checkpoints with multimodal single-cell screens.

Nat. Genet. 53, 322–331 (2021).

9. Petukhov, V. et al. Case-control analysis of single-cell RNA-seq

studies. bioRxiv (2022) https://doi.org/10.1101/2022.03.15.

484475 (2022).

10. Keren-Shaul, H. et al. A Unique Microglia Type Associated with

Restricting Development of Alzheimer’s Disease. Cell 169,

1276–1290.e17 (2017).

11. Gayoso, A. et al. A Python library for probabilistic analysis of single-

cell omics data. Nat. Biotechnol. 40, 163–166 (2022).

12. Reshef, Y. A. et al. Co-varying neighborhood analysis identifies cell

populations associatedwith phenotypes of interest from single-cell

transcriptomics. Nat. Biotechnol. 40, 355–363 (2022).

13. Kotliar, D. et al. Identifying gene expression programs of cell-type

identity and cellular activity with single-cell RNA-Seq. Elife8, (2019).

14. Burkhardt, D. B. et al. Quantifying the effect of experimental per-

turbations at single-cell resolution. Nat. Biotechnol. 39,

619–629 (2021).

15. Dann, E., Henderson, N. C., Teichmann, S. A., Morgan, M. D. &

Marioni, J. C. Differential abundance testing on single-cell data

using k-nearest neighbor graphs. Nat. Biotechnol. 40,

245–253 (2022).

16. Datasets -Single Cell Multiome ATAC + Gene Exp. -Official 10x

Genomics Support. https://support.10xgenomics.com/single-cell-

multiome-atac-gex/datasets/1.0.0/pbmc_granulocyte_sorted_

10k (2022).

17. Akkaya, M., Kwak, K. & Pierce, S. K. B cell memory: building two

walls of protection against pathogens. Nat. Rev. Immunol. 20,

229–238 (2020).

18. Bhattacharya, D. et al. Transcriptional profiling of antigen-

dependent murine B cell differentiation and memory formation. J.

Immunol. 179, 6808–6819 (2007).

19. Cantuti-Castelvetri, L. et al. Defective cholesterol clearance limits

remyelination in the aged central nervous system. Science 359,

684–688 (2018).

20. Miller, R. H., Fyffe-Maricich, S. & Caprariello, A. C. Chapter 37 -

AnimalModels for the Study ofMultiple Sclerosis. in AnimalModels

for the Study of Human Disease (Second Edition) (ed. Conn, P. M.)

967–988 (Academic Press, 2017).

21. Lloyd, A. F. & Miron, V. E. The pro-remyelination properties of

microglia in the central nervous system. Nat. Rev. Neurol. 15,

447–458 (2019).

22. Molina-Gonzalez, I. & Miron, V. E. Astrocytes in myelination and

remyelination. Neurosci. Lett. 713, 134532 (2019).

23. Shen, K. et al. Multiple sclerosis risk gene Mertk is required for

microglial activation and subsequent remyelination. Cell Rep. 34,

108835 (2021).

24. Yuen, T. J. et al. Oligodendrocyte-encoded HIF function couples

postnatal myelination and white matter angiogenesis. Cell 158,

383–396 (2014).

25. Zhou, T. et al. Microvascular endothelial cells engulf myelin debris

and promote macrophage recruitment and fibrosis after neural

injury. Nat. Neurosci. 22, 421–435 (2019).

26. Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell

177, 1888–1902.e21 (2019).

27. Girolamo, F., Coppola, C., Ribatti, D. & Trojano, M. Angiogenesis in

multiple sclerosis and experimental autoimmune encephalomyeli-

tis. Acta Neuropathol. Commun. 2, 84 (2014).

28. Berghoff, S. A. et al. Blood-brain barrier hyperpermeability pre-

cedes demyelination in the cuprizone model. Acta Neuropathol.

Commun. 5, 94 (2017).

Article https://doi.org/10.1038/s41467-024-53666-8

Nature Communications |         (2024) 15:9468 14

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE276570
https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets/1.0.0/pbmc_granulocyte_sorted_10k
https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets/1.0.0/pbmc_granulocyte_sorted_10k
https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets/1.0.0/pbmc_granulocyte_sorted_10k
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE193531
https://github.com/tudaga/LabelCorrection
https://doi.org/10.1101/2021.06.16.448661
https://doi.org/10.1101/2021.06.16.448661
https://doi.org/10.1101/2022.03.15.484475
https://doi.org/10.1101/2022.03.15.484475
https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets/1.0.0/pbmc_granulocyte_sorted_10k
https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets/1.0.0/pbmc_granulocyte_sorted_10k
https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets/1.0.0/pbmc_granulocyte_sorted_10k
www.nature.com/naturecommunications


29. Nguyen, B., Bix, G. & Yao, Y. Basal lamina changes in neurodegen-

erative disorders. Mol. Neurodegener. 16, 81 (2021).

30. Abbott, N. J., Rönnbäck, L. & Hansson, E. Astrocyte-endothelial

interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7,

41–53 (2006).

31. Goeva, A. HiDDEN: A Machine Learning Method for Detection of

Disease-Relevant Populations in Case-Control Single-Cell Tran-

scriptomics Data, https://github.com/tudaga/LabelCorrection.

(Zenodo, 2024). https://doi.org/10.5281/ZENODO.13823942.

32. Massey, F. J. Jr. The kolmogorov-smirnov test for goodness of fit. J.

Am. Stat. Assoc. 46, 68–78 (1951).

33. Weighted nearest neighbor analysis. https://satijalab.org/seurat/

articles/weighted_nearest_neighbor_analysis.html (2022).

34. Notebook on nbviewer. https://nbviewer.org/github/yakirr/cna/

blob/master/demo/demo.ipynb (2023).

35. Run_meld.Py at Main · MarioniLab/Milo_analysis_2020.

(Github, 2023).

36. Notebook on nbviewer. https://nbviewer.org/github/emdann/

milopy/blob/master/notebooks/milopy_example.ipynb (2023).

37. Raudvere, U. et al. g:Profiler: aweb server for functional enrichment

analysis and conversions of gene lists (2019 update). Nucleic Acids

Res. 47, W191–W198 (2019).

38. Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes

and visualizes long lists of gene ontology terms. PLoS One 6,

e21800 (2011).

39. Efremova,M., Vento-Tormo,M., Teichmann, S. A. &Vento-Tormo, R.

CellPhoneDB: inferring cell–cell communication from combined

expression of multi-subunit ligand–receptor complexes. Nat. Pro-

toc. 15, 1484–1506 (2020).

Acknowledgements
We thank J. Langlieb, B. Sanchez, V. Kozareva, Y. Pita-Juarez, J. Webber,

A. Lawler, Z. Piran, and members of the Macosko lab for helpful dis-

cussions. This work was supported by a BroadIgnite Philanthropic Grant

to AG, Open Philanthropy Project Award of the Life Sciences Research

Foundation to MJ-D, and NIMH grant 5U01MH124602 to EZM.

Author contributions
A.G. developed the algorithm and performed all analyses. M.J.-D.

acquired the demyelination data and performed the imaging validation

experiments, with help from J.L. and E.G. RB and RMG assisted with

biological interpretation of the analyses. A.G. and EM conceived the

study and wrote the paper, with contributions from all authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains

supplementary material available at

https://doi.org/10.1038/s41467-024-53666-8.

Correspondence and requests for materials should be addressed to

Aleksandrina Goeva or Evan Macosko.

Peer review information Nature Communications thanks Rahul Dho-

dapkar, Qin Ma and the other, anonymous, reviewer(s) for their con-

tribution to the peer review of this work. A peer review file is available.

Reprints and permissions information is available at

http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-

isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution-NonCommercial-NoDerivatives 4.0 International License,

which permits any non-commercial use, sharing, distribution and

reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if you modified the licensed

material. Youdonot havepermissionunder this licence toshare adapted

material derived from this article or parts of it. The images or other third

party material in this article are included in the article’s Creative

Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons

licence and your intended use is not permitted by statutory regulation or

exceeds the permitted use, you will need to obtain permission directly

from the copyright holder. To view a copy of this licence, visit http://

creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-53666-8

Nature Communications |         (2024) 15:9468 15

https://github.com/tudaga/LabelCorrection
https://doi.org/10.5281/ZENODO.13823942
https://satijalab.org/seurat/articles/weighted_nearest_neighbor_analysis.html
https://satijalab.org/seurat/articles/weighted_nearest_neighbor_analysis.html
https://nbviewer.org/github/yakirr/cna/blob/master/demo/demo.ipynb
https://nbviewer.org/github/yakirr/cna/blob/master/demo/demo.ipynb
https://nbviewer.org/github/emdann/milopy/blob/master/notebooks/milopy_example.ipynb
https://nbviewer.org/github/emdann/milopy/blob/master/notebooks/milopy_example.ipynb
https://doi.org/10.1038/s41467-024-53666-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/naturecommunications

	HiDDEN: a machine learning method for detection of disease-relevant populations in case-control single-cell transcriptomics data
	Results
	Overview of problem and method
	HiDDEN detects biological signal missed by the standard analysis workflow in simulated ground truth datasets of cell-type mixtures
	HiDDEN recapitulates manual annotation of neoplastic cells in human multiple myeloma precursor conditions and discovers malignancy in previously considered healthy early-stage samples
	HiDDEN identifies an endothelial subpopulation affected in the early stages of demyelination

	Discussion
	Methods
	HiDDEN: A computational method for revealing subtle transcriptional heterogeneity and perturbation markers in case-control studies
	Intuition
	Notation
	Construction of the latent space
	Estimation of the continuous perturbation score
	Derivation of the refined binary label
	Choosing the number of latent dimensions

	Assessing performance on semi-simulated ground truth data
	Generation of ground truth datasets
	Clustering analysis of ground truth datasets
	HiDDEN model training
	Assessing agreement between HiDDEN continuous perturbation scores and ground truth labels
	Assessing agreement between HiDDEN-refined binary labels and ground truth labels
	Comparing HiDDEN to CNA, MELD, Milo, and Mixscape
	Using HiDDEN-refined binary labels as input to CNA, MELD, and Milo

	Assessing performance on human multiple myeloma and precursor states data
	HiDDEN model training
	Assessing agreement between HiDDEN continuous perturbation scores and ground truth manually annotated labels
	Assessing agreement between HiDDEN refined binary labels and tumor-purity sample estimates
	Deriving significance values that quantify the ability of HiDDEN-derived labels and manual annotation labels to match the ground truth point estimates of malignant cell proportions
	Differential expression analysis using manually annotated and HiDDEN binary labels
	Validation of HiDDEN binary labels in non-mixed MGUS samples

	Analysis of mouse endothelial cells from a time-course demyelination experiment
	Generation of demyelination and control tissue
	Generation of single-nucleus RNA profiles
	Clustering analysis of endothelial cells
	HiDDEN model training
	Differential expression analysis to define endothelial LPC1 markers
	Validation of endothelial LPC1 markers using RNAscope
	Interpretation of endothelial LPC1 markers using gene ontology analysis
	Ligand-receptor analysis to identify cell-cell communication changes between endothelial LPC1 and LPC0
	Statistics and reproducibility

	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information


