

1 Nanomaterials trigger functional responses in primary 2 human immune cells

3
4 Vincent Mittelheisser¹⁻⁶, Olivier Lefebvre¹⁻⁵, Mainak Banerjee⁵⁻⁷, Shayamita Ghosh⁵⁻⁷,
5 Amandine Dupas¹⁻⁵, Marie-Charlotte Diringer⁵⁻⁷, Juliette Blumberger⁵⁻⁷, Louis Bochler¹⁻
6 ⁵, Sébastien Harlepp⁵⁻⁷, Annabel Larnicol¹⁻⁵, Angélique Pichot^{2-4,8}, Tristan Stemmelen²⁻
7 ^{4,8}, Anne Molitor^{2-4,9}, Chloé Moritz⁹, Christine Carapito⁹, Raphaël Carapito^{2-4,8,10}, Loïc
8 J. Charbonnière¹¹, François Lux^{12,13}, Olivier Tillement¹², Jacky G. Goetz^{1-5,*} and
9 Alexandre Detappe^{5-7,11,*}

10

11 ¹Tumour Biomechanics lab, Strasbourg, France.

12 ²INSERM UMR_S1109, Strasbourg, France.

13 ³Université de Strasbourg, Strasbourg, France.

14 ⁴Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.

15 ⁵Équipe Labellisée Ligue Contre le Cancer.

16 ⁶Nanotranslational lab, Institut de cancérologie Strasbourg Europe.

17 ⁷Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France.

18 ⁸Plateforme GENOMAX, Institut thématique interdisciplinaire (ITI) de Médecine de
19 Précision de Strasbourg Transplantex NG, Faculté de Médecine.

20 ⁹Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC UMR 7178,
21 CNRS, Université de Strasbourg, Infrastructure nationale ProFI FR 2048, Strasbourg,
22 France.

23 ¹⁰Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie,
24 Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, 1 Place de l'Hôpital,
25 67091, Strasbourg, France.

26 ¹¹Institut Pluridisciplinaire Hubert Curien CNRS UMR 7178, Strasbourg, France.

27 ¹²Institut Lumière Matière, CNRS UMR 5306, Université Claude Bernard – Lyon 1,
28 Villeurbanne, France.

29 ¹³Institut Universitaire de France (IUF), Paris, France.

30

31

32

33

34 *Correspondence and co-last authors

35 Jacky G. Goetz, jacky.goetz@inserm.fr

36 Tumour Biomechanics lab, INSERM UMR_S1109, Centre de Recherche en
37 Biomédecine de Strasbourg

38 1 rue Eugène Boeckel, 67000 Strasbourg.

39 Web: www.goetzlab.fr, @GoetzJacky

40

41 Alexandre Detappe, a.detappe@icans.eu

42 Institut de Cancérologie Strasbourg

43 3, rue de la porte de l'Hôpital, 67000 Strasbourg France

44 Web: www.detappelab.com, @AlxDetappe

45

46

47 **Abstract**

48 Targeting the immune system with nanoparticles (NPs) to deliver immunomodulatory
49 molecules emerged as a solution to address intra-tumoral immunosuppression and
50 enhance therapeutic response. While the potential of nanoimmunotherapies in
51 reactivating immune cells has been evaluated in several preclinical studies, the impact
52 of drug-free nanomaterials on the immune system remains unknown. Here, we
53 characterize the molecular and functional response of human NK cells and pan T cells
54 to a selection of five NPs that are commonly used in biomedical applications. After a
55 pre-screen to evaluate the toxicity of these nanomaterials on immune cells, we
56 selected ultrasmall silica-based gadolinium (Si-Gd) NPs and poly(lactic-co-glycolic
57 acid) (PLGA) NPs for further investigation. Bulk RNA-sequencing and flow cytometry
58 analysis showcase that PLGA NPs trigger a transcriptional priming towards activation
59 in NK and pan T cells. While PLGA NPs improved NK cells anti-tumoral functions in
60 cytokines-deprived environment, Si-Gd NPs significantly impaired T cells activation as
61 well as functional responses to a polyclonal antigenic stimulation. Altogether, we
62 identified PLGAs NPs as suitable and promising candidates for further targeting
63 approaches aiming to reactivate the immune system of cancer patients.

64

65 **Keywords: Immunotherapy, nanomaterial, proteogenomics**

66

67

68

69

70

71

72

73

74

75

76

77

78 **Introduction**

79 Over the past decade, immunotherapies became increasingly attractive for
80 cancer treatment^[1–4]. Among them, adoptive cell therapy (ACT) emerge as one of the
81 most promising approaches^[5]. These therapies aim to modify *ex vivo* the immune cells
82 to induce the expression of an exogenous antigen receptor, enabling the detection of
83 tumor antigens and hence resulting in potent anti-tumoral responses. T cells isolated
84 from blood or tumor tissue were the first genetically reprogrammed immune cells for
85 ACT^[6–8]. The infusion of autologous modified T cells demonstrate positive clinical
86 outcomes in relapsed hematological malignancies^[9,10], yet, adoptively transferred T
87 cells are often associated with severe life-threatening side effects such as graft-versus-
88 host disease, cytokine release syndrome (CRS), and neurological toxicities^[11]. To
89 overcome these limitations, emerging strategies utilizing the cytotoxic activity of non-
90 MHC restricted NK cells are being evaluated clinically^[12]. Allogeneic engineered NK
91 cells administered to patients have shown tremendous potential to treat cancer
92 patients, as they do not induce the abovementioned limitations while offering the
93 possibility to be used off-the shelf^[13,14]. In contrast to hematological malignancies,
94 intratumoral infiltration of immune cells is restricted in solid tumors that quickly build an
95 immunosuppressive TME which induces a rapid functional impairment of immune
96 cells^[15–19]. The emergence of cancer immunotherapies approaches allows to tackle the
97 tumor microenvironment (TME) immunosuppression, but these therapies are
98 associated with low response rate and life-threatening immune-related adverse events
99^[20–23]. Consequently, improving cancer immunotherapy efficacy and safety remains a
100 priority.

101 One of the most promising solution lies in the utilization of nanoimmunotherapy
102 approaches to specifically target immune cells and to promote immune cells mediated
103 anti-tumoral responses through controlled spatiotemporal immunomodulation^[24].
104 Specifically, nanoimmunotherapies were evaluated by using carbon nanotubes (CNTs)
105 or a combination of CNTs and poly(lactic-co-glycolic acid) (PLGA) polymeric
106 nanoparticles (NPs) to act as artificial antigen presenting cells, which are pivotal in
107 ACT manufacturing^[25,26]. In addition, polymeric NPs are also leveraged to deliver
108 immune reactivating agents *in vivo*^[27] and to genetically engineer immune cells through
109 *ex vivo* and *in vivo* virus-free transfection methods^[28,29]. More recently, targeted
110 ultrasmall metallic NPs were developed to monitor *in vivo* cancer expression of
111 immune checkpoint molecules^[30]. While these nanoimmunotherapies are successfully

evaluated in preclinical trials, the impact of the NPs chemistry on primary immune cells remains surprisingly unexplored despite their known passive internalization. Here, we use untargeted and drug-free NPs to precisely investigate the impact of their material on innate NK cells and adaptive pan T cells sourced from healthy donors to explore the fate of NPs post-internalization in immune cells, to ensure their safety profile and guide the selection of specific NPs based on the therapeutic need. To conduct pre-screening studies integrating cytotoxicity assessments and comprehensive proteomic analysis, we selected five nanosystems from the broad array being explored in both pre-clinical and clinical research. First, we included theranostic ultrasmall polysiloxane-based gadolinium nanoparticles (Si-Gd), which are currently evaluated in two Phase II clinical trials as magnetic resonance (MR)-guided radio-enhancers (NCT04789486, NCT04899908). To assess the potential impact of chelated metals on their behavior, we also evaluated a variant of these nanoparticles where gadolinium is substituted with terbium (Si-Tb). In addition, we explored inorganic terbium NPs (Tb NPs), leveraging their luminescent properties for fluorescence imaging and biological labeling, while also investigating whether metal chelation differentially affects their performance compared to unprotected metallic NPs. Poly(lactic-co-glycolic acid) (PLGA) NPs were included for their well-established role as multifunctional drug carriers. Finally, carbon nanotubes (CNTs) were selected as model non-organic drug delivery systems, given their distinctive structural and physicochemical characteristics. Based on these results, we selected two NPs with minimal cytotoxicity and effects on the proteome. We further evaluated their internalization in primary immune cells and highlight efficient internalization of the two NPs in both primary NK and pan T cells, with CD4⁺ T cells displaying higher internalization potential when compared to CD8⁺ T cells. Proteogenomic mapping of immune cells response to the selected nanomaterial revealed that PLGA NPs trigger pro-inflammatory transcriptional programs in NK and pan T cells, while ultrasmall polysiloxane-based gadolinium NPs (Si-Gd NPs) do not alter their transcriptomes. We further probed the effect of NPs on the functional behavior of immune cells and observed that PLGA NPs transcriptional priming of NK cells improved anti-tumoral function of NK cells. Conversely, Si-Gd NPs treatment impaired pan T cells responses to polyclonal antigenic stimulation. This study provides a unique resource of the impact of NP materials on human NK and pan T cells that will be beneficial to the tailoring of nanoimmunotherapeutic strategies in oncology.

146 **Results and Discussion**

147 **Unequal internalization and subsequent toxicities of nanomaterials on human**
148 **innate and adaptative lymphocytes**

149 We use a library of five NPs, composed of (i) oxidized carbon nanotubes (oxCNTs), (ii)
150 ultrasmall polysiloxane-based gadolinium (Si-Gd) NPs synthesized by a top-down
151 method from core (gadolinium oxide) shell (polysiloxane) NPs^[31] and (iii) ultrasmall
152 polysiloxane-based terbium (Si-Tb) NPs synthesized with a bottom-up one pot
153 synthesis^[32], as well as (iv) unfunctionalized terbium fluoride (Tb) NPs and (v) PLGA
154 NPs (**Fig.1A**). These NPs are used at both pre-clinical and clinical stages^[33] and cover
155 a large range of hydrodynamic diameter distributions (from 5 to 120 nm) and ζ -
156 potentials (from -50 to 40 mV), representing a wide spectrum of the nanomedicine field
157 (**Fig.S1A–N**). To assess the impact of these NPs on primary human immune cells, we
158 negatively isolate NK and pan T cells from healthy donor buffy coats with high purity
159 (>95%) and subject them to a cytotoxicity-driven screening test (**Fig.S2A–B**). We
160 incubate the sorted NK and pan T cells with increasing NPs concentration for 48 h
161 (**Fig.1B**). We observe that oxCNTs markedly decrease NK cells ($IC_{50} = 68.37\mu\text{g/mL}$)
162 and pan T cells ($IC_{50} = 47.65\mu\text{g/mL}$) viability at low concentrations. Inversely, the other
163 tested nanomaterials do not significantly decrease immune cells viability (**Fig.1B**). We
164 perform a whole proteome (liquid chromatography-tandem mass spectrometry, LC-
165 MS/MS) analysis to further assess nanomaterials impact on immune cells (**Fig.S3A**).
166 While terbium-based NPs (Si-Tb and Tb NPs) do not overtly affect immune cell viability
167 (**Fig.1B**), the whole proteome analysis reveals an upregulation of proteins linked with
168 necroptosis (**Fig.S3A**). Based on this initial pre-screening that combines proteomic and
169 viability read-outs, we exclude cytotoxic oxCNT and terbium-based NPs as they
170 appear unattractive for further preclinical development in this context. On the other
171 hand, Si-Gd and PLGA NPs display no toxicity towards primary human immune cells
172 ($IC_{50} > 1 \text{ mg/mL}$) (**Fig.1B**) and the observed deregulated proteins are not associated
173 with specific gene ontology terms (**Fig.S3A**). We thus decided to further evaluate their
174 impact on immune cells using concentrations of 150 $\mu\text{g/mL}$ of Si-Gd NPs^[34] and 50
175 $\mu\text{g/mL}$ of PLGA NPs^[35] (median of the tested range for immune cells viability assay).
176 We next confirm that Cyanine5.5-labelled Si-Gd NPs and PLGA NPs efficiently
177 penetrate NK and pan T cells despite their low phagocytic potential (**Fig.1C**).
178 Furthermore, we assess their cellular uptake via flow cytometry 48h post-treatment.
179 We observe that Si-Gd NPs and PLGA NPs are uniformly internalized in NK cells,

180 forming a single continuous population with no significant differences between
181 CD56^{High} and CD56^{Low} NK cells (**Fig.1D-E**). Conversely, we notice that pan T cells
182 exhibited two distinct populations based on the uptake levels - *i.e.* one with low
183 internalization rates comparable to NK cells and another with significantly higher levels
184 of both NPs (**Fig.1D**). Further flow cytometric analysis revealed that high internalizing
185 T cells population predominantly comprises CD4⁺ T cells, while the low internalizing
186 population is enriched in CD8⁺ T cells (**Fig.1F**). Importantly, increasing the
187 concentration of NPs resulted in a dose-dependent uptake in NK cells and low-
188 internalizing pan T cells (**Fig.S3B**). At the opposite, the high internalizing pan T cells
189 population reached a plateau starting at the lowest tested Si-Gd NPs concentration
190 and only a marginal increase in PLGA NPs uptake at higher doses (**Fig.S3C**).
191 Altogether, we demonstrate that Si-Gd NPs and PLGA NPs are successfully
192 internalized by NK and pan T cells without associated toxicities. Yet, NK cells and CD4⁺
193 or CD8⁺ T cells are not equal with regards to nanomaterials uptake.

194

195 **PLGA NPs trigger a pro-inflammatory signature in immune cells**

196 To provide a refined analysis of the impact of the NPs on human NK and pan T cells,
197 we perform a gene expression analysis using bulk RNA sequencing after 48 hours of
198 treatment. Unsupervised analysis of the entire transcriptome using principal
199 component analysis (PCA) reveal that PLGA NPs-treated populations clustered
200 separately from control (untreated) and Si-Gd NPs-treated cells in the principal
201 component space, indicating significant transcriptomic differences (**Fig.2A**). We
202 identify 249 differentially expressed genes (DEGs) in NK cells and 395 DEGs in pan T
203 cells following PLGA NPs exposure (adjusted *p*-value ≤ 0.05 and fold-change > 2)
204 (**Fig.S4A and Table S1-2**). In contrast and in agreement with the PCA analysis, only
205 16 and 11 genes are differentially expressed in Si-Gd NPs-treated NK cells and pan T
206 cells respectively (**Fig.S4A and Table S1-2**).

207 Upstream regulators analysis of the deregulated genes following PLGA NPs treatment
208 reveals that TNF was the most significant activated regulator (NK cells Z-score 7.79;
209 pan T cells Z-score 5.354 and *p*-values of overlap were 2.82×10^{-42} and 4.60×10^{-38} ,
210 respectively). Other regulators in the top five included IL1B, NF κ B, and IFN, all of which
211 were predicted to be activated upon PLGA NPs treatment (**Fig.S4B**). When we
212 compared expected protein-protein interactions network among upregulated genes in

213 PLGA NPs-treated pan T cells, we found a complex interaction between TNF, NF κ B,
214 and IFN in NK- (**Fig.S4C**) and pan T cells (**Fig.S4D**).

215 Using an aggregate expression analysis, we confirm the global upregulation of tumor
216 necrosis factor- α (TNF α) signaling via the nuclear factor- κ B (NF κ B) and interferon
217 gamma (IFN γ) pathways in PLGA NPs-treated NK cells compared with the untreated
218 and Si-Gd NPs-treated populations (**Fig.2B-C**). Overexpression of key downstream
219 regulators NF κ B and IRF1 mRNA is further confirmed by reverse transcription
220 quantitative polymerase chain reaction (RT-qPCR) (**Fig.2D-E**). In addition to
221 significant enrichments of upregulated genes in GO terms/pathways associated with
222 cytokines signaling and several immune-associated pathways, we observe that PLGA
223 NPs treatment also induce an upregulation of immune cells specific transcriptional
224 programs such as NK cells cytotoxicity against tumour cells, α/β T cells activation and
225 T H 1 immune response (**Fig.S4E**).

226 When probing transcriptional programs specific to immune cells activation, we observe
227 that PLGA NPs treatment lead to a significant overexpression of genes linked to NK
228 cells activating receptors (*NCR2/NKp44*), immediate-early response genes (*DUSP4*,
229 and *EGR2*), and co-stimulatory receptors (*TNFRSF4/OX-40*, *TNFRSF9/4-1BB*,
230 *TNFRSF18/GITR*, *CRTAM* and *TNFSF10/TRAIL*)^[36,37] (**Fig.2F and Table S3**).

231 Correlatively, PLGA NPs-treatment induce a trend increase in the early activation
232 marker CD69 expression at the basal level in NK cells, which we further confirm by
233 flow cytometry (**Fig.2G**). PLGA NPs also induced an overexpression of the high-affinity
234 interleukin-2 receptor (*IL2RA/CD25*) and NME1 (Fold Change: 2.46; *q*-value =
235 4.02x10⁻⁴) which are critical for NK cells activation and proliferation^[38] (**Table S3**).

236 Additionally, PLGA NPs-treated NK cells displayed an upregulation of *IFNG* (Fold
237 Change: 7.46; *q*-value = 4.67x10⁻⁵), *ICAM1* (Fold Change: 2.29; *q*-value = 2.86x10⁻⁵)
238 transcripts required for NK cells killing of tumour cells^[13,39] as well as *XCL1* (Fold
239 Change: 2.15; *q*-value = 2.10x10⁻⁶) transcripts linked to cDC1 recruitment and
240 orchestration of adaptive immunity by NK cells^[40] (**Table S3**). Transcriptional programs
241 analysis also revealed that PLGA NPs treatment induced the upregulation of genes
242 associated with a NK cells adaptative/memory phenotype (*LAG3*, *IRF4* and
243 *BCL2L11/BIM*)^[41-43] (**Fig.2F and Table S3**). These NK cells also overexpressed *CCR7*
244 (Fold change: 2.97; *q*-value = 8.63x10⁻¹⁰) and *CD83* (Fold change: 3.38; *q*-value =

245 1.07×10^{-23}), genes associated with migratory and helper phenotypes leading to high
246 ability to produce IFN- γ ^[44].

247 Similarly, transcriptional programs analysis of PLGA NPs treated pan T cells present
248 a positive z-score for genes related with activation (*TNFRSF4*/OX-40, *TNFRSF9*/4-
249 1BB, *TNFRSF18*/GITR), proliferation (*IL15*/*IL15RA*, *LIF*), and cell division (*G0S2*,
250 *NME1*)^[45,46] as well as effector functions (*GNLY*, *GZMB*, *SLAMF7*, *NKG7*)^[47,48] (**Fig.2H**
251 and **Table S3**). Alongside, PLGA NPs-treated pan T cells displayed an upregulation
252 of ATF-like transcription factors such as *BATF* (Fold Change: 2.38; *q*-value = 0.001)
253 and *BATF3* (Fold Change: 2.34; *q*-value = 0.04), that are essential checkpoints for
254 early effector T cells differentiation^[49,50]. Furthermore, as highlighted in the differentially
255 expressed term analysis (**Fig.S4C**), these effector-primed T cells displayed a T_{H1}
256 transcriptional landscape (*STAT1*, *ADAM12*)^[51,52] as well as a reduction in T_{H2}
257 transcription factors transcripts (*GATA3*) and cytokines (*IL12B*, *TNF*, *IL17F*, *XCL1*,
258 *CCL3L1*, *CCL4L1*) known to prime and to be expressed during T_{H1}/T_{H17} -like pro-
259 inflammatory response^[53-55] (**Table S3**). Similarly to NK cells and in accordance with
260 the upregulation of activation/effector-associated genes, PLGA NPs treatment
261 increased CD69 expression at the basal level in pan T cells as observed by flow
262 cytometry (**Fig.2I**). We confirmed such priming with a nanomaterial-induced dose-
263 dependent decrease in CD3 expression (**Fig.S5A-B**) and with an increase in pan T
264 cells size (**Fig.S5C-D**), that are classically associated with their activation^[56]. On the
265 other hand, and as expected, Si-Gd NPs did not induce pan T cells basal activation
266 (**Fig.S5A-E**). Besides, transcriptional activation of pan T cells by PLGA NPs was
267 further underpinned by the induction of multiple gene families associated with
268 canonical IFN response module (*IFIT1*, *IFIT2*, *IFIT3*, *IFITM1*, *IFITM2*, *IRF1*, *IFI44*,
269 *IFI44L*, *STAT1*, *GBP1*, *GBP4*, *GBP5*)^[47,57,58] (**Table S2**). Of note, we also found a
270 significant increase in the expression of immune checkpoint transcripts (*LAG3*,
271 *HAVCR2/TIM3*) (**Fig.2I and Table S3**) that can be counteract by the upregulation of
272 *EGR2* (**Table S3**) whose role was recently described in maintaining anti-tumor
273 responses of exhausted T cells^[59,60].

274 Altogether, we identify a transcriptional priming in NK and pan T cells upon drug-free
275 PLGA NPs treatment, but not with Si-Gd NPs through bulk RNA sequencing of immune
276 cells. Flow cytometry analysis further exhibit that drug-free PLGA NPs exposure was
277 sufficient to trigger NK and pan T cells activation.

278

279 **PLGA NPs enhance anti-tumor functions of NK cells**

280 As PLGA NPs could transcriptionally prime NK cells, we sought to investigate whether
281 they could functionally activate their tumor-lytic properties (**Fig.3A and Fig.S6A-B**).
282 We co-culture NPs-treated NK cells with their prototypical targets, the K562 cells, over
283 4h with or without supplementing the pro-survival cytokine IL-15 to mimic tumor
284 microenvironments that often lack pro-survival cytokines required by cytotoxic NK
285 cells^[61] (**Fig.3A**). With IL-15, both Si-Gd NPs and PLGA NPs-treated NK cells
286 successfully clear the K562 targets (**Fig.3B**). Without supplementary IL-15, only PLGA
287 NPs-treated NK cells efficiently induce killing of 25% of the target cells (**Fig.3B**). Of
288 note, NK cells anti-tumoral functions alterations observed in control NK cells or upon
289 Si-Gd NPs treatment are not resulting from an impaired NK cells activation, as all
290 conditions exhibited similar CD69 expression levels (**Fig.3C**). In addition, both NPs-
291 treatment do not impair K562 target cells recognition, as observed through the
292 measurement of available NKG2D receptor at the NK cells surface by flow cytometry
293 (**Fig.3D**). The killing capacity of NK cells also requires efficient cytotoxic granules
294 polarization at the immune synapse (IS). We next induce IS formation and assess the
295 distance between mature perforin and the plasma membrane of NK-K562 synapses
296 (**Fig.3E**), using stable expression of palmitoylated tdTomato (**Fig.S6C**). Without IL-15,
297 PLGA NPs-treatment favor cytotoxic granules convergence at the IS, as measured by
298 the reduction of granules distance to the IS (**Fig.3E**). Concomitantly, PLGA NPs-
299 treatment increase the percentage of NK cells presenting a polarized IS (**Fig.3E**). In
300 contrast, neither Si-Gd NPs treated, nor untreated NK cells present polarized IS (or
301 reduced distance between perforin and the IS) (**Fig.3E**), suggesting that, as expected,
302 PLGA NPs treatment induce efficient K562 cells lysis through an increase in NK cells
303 perforin polarization. Coming back to our proteogenomic analysis, we highlight that
304 PLGA NPs induce the upregulation of proteins associated with NK cells maturation
305 (IKZF3)^[62], cell adhesion (VLA-1: ITGA1/ITGB1)^[63] and vesicle transport (STX11)^[64]
306 (**Fig.S6D**). Conversely, Si-Gd NPs repress the expression of these proteins and
307 stimulate the expression of proteins associated with NK cells inhibitory signaling (HLA-
308 E and GSK3B)^[65-67] that are less or not expressed in PLGA NPs-treated NK cells
309 (**Fig.S6D**). NK cell-induced cytotoxicity requires both polarization of the cytotoxic
310 granules and their fusion with the plasma membrane, allowing the release of their
311 cytotoxic content. We next monitor NK cells degranulation by dosing the cytotoxic

312 cytokines $\text{TNF}\alpha$ ^[68] and $\text{IFN}\gamma$ ^[69] in the supernatant after 4h of NK cells co-incubated
313 with their target K562 cells. Increased cytotoxic granules polarization in PLGA NPs-
314 treated NK cells is corroborated by a trend, yet non-significant, augmentation in $\text{TNF-}\alpha$
315 and $\text{IFN-}\gamma$ concentrations when compared to control and Si-Gd NPs-treated NK cells
316 (**Fig.3F**).

317 According to these results, we demonstrate that NK cells transcriptional priming
318 towards an activated phenotype induced by PLGA NPs results in an enhancement of
319 their anti-tumoral cytotoxic capacity *in vitro* in a cytokines-deprived (*i.e.*,
320 immunosuppressive) environment.

321

322 **Silica-based gadolinium NPs treatment impairs pan T cells functions**

323 When investigating the impact of NPs on T cell functions, we notice from the unbiased
324 proteomic approach previously described (**Fig.S3A**) that proteins involved in TCR
325 signaling are significantly downregulated (CD48, PLCG1 and CARD11)^[70-72] upon Si-
326 Gd NPs treatment (**Fig.4A**). These modifications are accompanied by a significant
327 reduction in proteins associated with pan T cells cytoskeletal remodeling, including
328 small GTPase (CDC42, RAC1 or SEPT7)^[73,74], actin binding proteins (Ezrin, EZRI or
329 WAVE2)^[75,76] as well as formins (formin-like-1, FMNL1)^[77] (**Fig.4A**). Si-Gd NPs-treated
330 pan T cells also display a significant decrease in the levels of integrin $\beta 1$, which
331 sustains cytotoxic T cells functions^[78,79] and their efficient intra-tumoral infiltration^[80].
332 Similarly, we also observe a significant diminution in proteins required for terminal
333 transport (KLC1 and KIF5B)^[81] and membrane fusion (SNAP23 and VAMP8)^[82,83] of
334 lytic granule at the immune synapse (**Fig.4A**). Incidentally, PLGA NPs have no or little
335 effects on these proteins (**Fig.4A**). Building on these observations, we aim at testing
336 the effect of NPs on pan T cells function. We mimic stimulation of the TCR and co-
337 receptors by coating surfaces with activating antibodies against CD3 (part of the TCR
338 complex) and CD28 (a costimulatory receptor) and measure how T cells activate and
339 spread, as they would over the surfaces of antigen presenting cells (APCs)^[84] (**Fig.4B**).
340 We first observe that both Si-Gd and PLGA NPs treatment do not prevent global pan
341 T cell activation when comparing CD69 expression after 24h of culture on a surface
342 coated with increasing concentrations of anti-CD3 and a fixed concentration of anti-
343 CD28 antibodies (hereafter, anti-CD3/CD28) (**Fig.4C**). This result further suggests that
344 transcriptional priming is antigen-independent and mediated by intracellular cues.

345 However, in line with TCR signaling proteins downregulation observed in our
346 proteomic data, Si-Gd NPs-treated pan T cells require higher anti-CD3/CD28
347 concentrations to reach similar activation levels than control and PLGA NPs-treated
348 pan T cells, suggesting a reduced sensitivity to TCR activation (**Fig.4C**). We further
349 confirm this weakened TCR signaling by measuring OX-40 expression, a co-
350 stimulatory molecule selectively induced after TCR stimulation^[85,86]. When normalizing
351 to untreated pan T cells, we notice that Si-Gd NPs reduced by 25% OX-40 expression
352 (**Fig.4D**).

353 Next, we sought to analyze NPs treatment effect on actin remodeling at the IS. We
354 compare pan T cell spreading on glass surfaces coated with anti-CD3 together with a
355 recombinant ICAM1-Fc chimera protein (**Fig.4B**). We monitor T cells morphology and
356 cytoskeletal remodeling and observe that Si-Gd NPs, but not PLGA NPs, significantly
357 reduce cell spreading and F-actin content (**Fig.4E**). T cells-mediated functions require
358 not only spreading on the APCs surface but also degranulation. We thus assess the
359 effect of NPs treatments on the degranulation of pan T cells as well as of their CD4⁺
360 and CD8⁺ subpopulations. To do so, we follow the cell surface expression of CD107a
361 (LAMP-1) and cytokines release in T cells activated by anti-CD3/CD28 and ICAM1-Fc
362 chimera protein. When compared to control, CD107a expression is significantly
363 decreased by Si-Gd NPs treatment in pan T cells from all tested donors, hinting at an
364 inhibition of their degranulation (**Fig.4F**). This phenotype is associated with a
365 significant two-fold reduction in TNF α and IFN γ secretion (**Fig.4G**). We previously
366 observe that CD4⁺ and CD8⁺ T cells internalized differentially the NPs (**Fig.1F**) and
367 thus wonder whether the uptake level of NPs affect the T cells functionality. Hence, we
368 further evaluate the CD107a expression of CD4⁺ and CD8⁺ T cells within the pan T
369 cells population. Interestingly, CD4⁺ and CD8⁺ T cells exhibited similar significant two-
370 fold diminution in CD107a expression upon Si-Gd NPs treatment, suggesting that their
371 detrimental effect already occurs at low NP doses (**Fig.4H**).

372 Altogether, we highlight that Si-Gd NPs treatment widely impairs T cells activation, and
373 functional responses to a polyclonal antigenic stimulation.

374

375

376

377

378

379 **Conclusion**

380 Nanoimmunotherapies, combining nanotechnology and immunotherapy, represent a
381 promising therapeutic strategy to improve anti-tumoral immune response.
382 Understanding how NPs materials impact immune cells post-internalization is essential
383 to ensure their safety profile and rationally guide the selection of specific NPs based
384 on the therapeutic need.

385 Here, we present a pioneering analysis of the material impact from untargeted and
386 drug-free NPs on two human primary immune cell types. Through a pre-screen
387 combining cytotoxicity measurement and whole proteome analysis of a panel of five
388 different nanomaterials under preclinical and clinical evaluation, we first highlight the
389 toxicity of oxCNTs and terbium-based NPs (Tb and Si-Tb NPs) on NK and pan T cells.
390 Overt toxicity at low concentration induced by oxCNTs might be partially explained by
391 the downregulation of a wide range of proteins associated with cellular metabolic
392 processes as well as ribosomal associated proteins, as observed by whole proteome
393 analysis (**Fig.S3A**). Of note, ribosomal associated proteins modulation was previously
394 observed following co-culture of Jurkat T cells with carbon-based NPs^[87].

395 Based on this pre-screen, we identify Si-Gd NPs and PLGA NPs as promising
396 candidates for further preclinical development. We further examine Si-Gd NPs and
397 PLGA NPs interactions with immune cells using a proteogenomic approach. Bulk RNA-
398 sequencing reveal that PLGA NPs triggered a strong transcriptional priming towards
399 activation in NK and pan T cells. We additionally validate by flow cytometry that drug-
400 free PLGA NPs exposure was sufficient to activate NK and pan T cells, further
401 confirming the transcriptional priming. Upstream regulators and aggregate expression
402 analysis reveal that this priming is, in part, mediated by TNF- α via NF κ B and IFN- γ
403 pathways. Investigation of the expected protein-protein interactions network among
404 upregulated genes in PLGA NPs-treated NK- and pan T cells (**Fig.S4C-D**) further
405 underpin the complex interaction between TNF, NF κ B, and IFN pathways. If we identify
406 the signaling pathway involved in NK- and pan T cells activation by PLGA NPs, we still
407 lack the precise identification of the first events and targets engaged during the
408 immune cells-NPs interaction. Hence, further evaluation to decipher to exact
409 mechanism of NK and pan T cells activation are required.

410 More detailed investigations of NK functions upon NPs exposure reveal that PLGA
411 NPs treatment efficiently enhance NK cells tumoricidal activity in cytokines-deprived
412 environment. In depth analysis showcase that the NK cells functional enhancement is

413 mediated by a better mature perforin polarization at the IS associated with a surge in
414 cytotoxic cytokines release. Increased perforin polarization might be partially explained
415 by an enhanced NK cells maturation and vesicles transport as observed in our
416 proteogenomic data. In line with our results, another study recently demonstrated that
417 drug-free polymer micropatches were able to activate murine neutrophils and induce
418 an N1 anti-tumoral response^[88]. Yet, our *in vitro* analysis does not allow to evaluate
419 how NK cells priming integrate into the global adaptative immune system. Since NK
420 cells are key player in the regulation of adaptive immune responses^[89], notably by the
421 recruitment dendritic cells via XCL1^[40] (that is overexpressed by PLGA NPs-treated
422 NK cells), thorough *in vivo* evaluation remained to be performed to decipher *ex vivo*
423 primed NK cells tumoricidal enhancement on tumor burden regression and systemic
424 immune response induction.

425 In parallel, explorations of pan T functions expose that Si-Gd NPs treatment widely
426 impaired their activation, and functional responses to a polyclonal antigenic
427 stimulation. Detailed analysis reveals that impairment was similar in CD4⁺ and CD8⁺ T
428 cells despite different internalization rates, suggesting that their detrimental effect
429 already occurs at low doses. Si-Gd NPs are under clinical evaluation as a MRI contrast
430 agent^[90] and radio-enhancer^[91] (NCT04789486). Si-Gd NPs increase the radiation
431 effects on tumor cells, inducing higher immunogenic cell death levels and higher
432 immune cells recruitment to the tumor bed^[92]. Therefore, a careful assessment of the
433 impact of Si-Gd NPs on recruited immune cells is necessary. In addition, Si-Gd NPs
434 were recently targeted with a programmed death-ligand 1 (PD-L1) VHH to monitor
435 immune checkpoint molecules expression *in vivo* through medical imaging^[30].
436 However, human effector T cells are also PD-L1^[93,94]. These results suggest that Si-
437 Gd NPs development as medical imaging tracers to assess immune infiltration in
438 tumors and to predict response to immunotherapy treatments should be carefully
439 evaluated. Interestingly, a previous study exhibit that ultrasmall silica NPs were able
440 to induce a dose-dependent CD4⁺ and CD8⁺ T cells activation^[34]. These ultrasmall
441 silica NPs possess a hydrodynamic diameter similar than our Si-Gd NPs, suggesting
442 than metallic loading can impact T cells response. Further investigations in that sense
443 should be performed to evaluate other metals (such as gold or silver NPs). While
444 transcriptomic analysis reveals that PLGA NPs seemed to promote a T_H1 anti-tumoral
445 polarization signature, working with healthy pan T cells we were not able to investigate
446 this aspect of the NPs impact. Indeed, healthy pan T cells do not possess a tumor

447 antigen-specific TCR. Further evaluation working with T cells sourced from cancer
448 patients or TCR-engineered T cells are required to evaluate the function impact of the
449 transcriptional T_H1 polarization.

450 Our findings provide new insights for rational selection of NPs materials in
451 nanoimmunotherapeutic approach. While additional *in vivo* investigations are required,
452 we identify drug-free PLGA NPs as suitable and promising candidates for further
453 targeting approaches aiming to reactivate the immune system of cancer patients. Our
454 results suggest that intrinsic PLGAs NPs materials impact could synergize with
455 immuno-activating agents to efficiently target and modulate the immune system.

456

457 **Experimental section**

458 **Nanoparticles synthesis.**

459 Nanoparticles were synthetized as previously described. Briefly, carbon nanotubes
460 have been shortened under strong acid conditions (H₂SO₄/HNO₃ 3:1) and sonication
461 for 24h to generate a high amount of carboxylic groups at the tips and around the side
462 walls^[95]. The ultra-small metal-based NPs are composed by a polysiloxane core, and
463 a shell comprising amine function and metal complexed by DOTAGA (in same amount)
464 and were provided by the Institut Lumière-Matière of the University of Lyon. Si-Gd were
465 synthetized by a top-down process^[31] and Si-Tb were synthetized in a one-pot
466 protocol^[32]. Lanthanide-doped La_{0.9}Tb_{0.1}F₃ NPs (hereafter, Tb NPs) were synthetized
467 by dropwise addition of 0.9 LaCl₃ and 0.1 TbCl₃ to 3 NH₄F followed by heating at 150°C
468 for 12 mins and purification, as described in^[96]. Finally, hybrid PLGA-lipid NPs were
469 synthetized via self-assembly of poly(D,L-lactide-co-glycolide) acid (30-60 kDa,
470 lactide:glycolide 50:50; Sigma #P2191) and 1,2-distearoyl-sn-glycero-3-
471 phosphoethanolamine-N-[carboxy(polyethylene glycol)-2000] (sodium salt) (DSPE-
472 PEG-CO₂H; Avanti Polar Lipids #880135) through a one-step nanoprecipitation
473 method as described previously in^[97]. Briefly, PLGA polymer was dissolved with or
474 without 0.2% Cyanine 5.5 carboxylic acid (Lumiprobe #17090,; $\lambda_{\text{ex}}/\lambda_{\text{em}}$: 684nm/710
475 nm) in acetonitrile at a concentration of 5 mg/mL. DSPE-PEG-CO₂H, at a weight ratio
476 of 20% relative to PLGA polymer, was dissolved in 10 mL of 4 wt% ethanol aqueous
477 solution and stirred vigorously at 65 °C. The PLGA solution was then added dropwise
478 into the lipid solution using a syringe pump (0.5 mL/h) under constant stirring. The
479 entire mixture was kept under gentle stirring for 2 hours at room temperature under a
480 chemical hood. The remaining organic solvent and unloaded molecules were removed

481 by washing the NP solution with ultrapure water using an Amicon Ultra-15 centrifugal
482 filter from Millipore, France (cut-off: 50 kDa; 3 cycles, 3,000g, 10 min) via tangential
483 centrifugation. The final NP formulation was reconstituted in 1 mL of ultrapure water.
484

485 **Dynamic Light Scattering (DLS).**

486 DLS measurements were conducted using a nano-ZS instrument (Malvern). The
487 suspensions of NPs were prepared in a solution of nanopure water (Milli-Q). DLS
488 measurements were performed in sets of 10 acquisitions. The average hydrodynamic
489 diameters of the NPs were determined by analyzing the DLS correlation function
490 through a regularization fitting method.
491

492 **Human NK and pan T cells isolation.**

493 Peripheral blood mononuclear cells (PBMC) were obtained by density gradient
494 centrifugation (1,200g, 20mins) of buffy coats from healthy volunteer blood donors
495 under written informed consent recruited at Établissement Français du Sang Grand-
496 Est, Strasbourg, France (agreement A122395/2022). Following erythrolysis
497 (MiltenyiBiotec #130-094-183), NK cells and pan T cells were isolated from PBMC by
498 negative magnetic cell-sorting (MiltenyiBiotec #130-092-657 and #130-096-535)
499 following manufacturer instructions. The cell purity was then controlled by flow
500 cytometry on a Attune NxT (Invitrogen) flow cytometer using PE anti-CD56 (1:100,
501 MiltenyiBiotec # 130-113-312) and FITC anti-CD3 (1:100, MiltenyiBiotec #130-126-
502 882) staining and ranged from 90% to 99.2% (median 96.3%). Gating strategy is
503 shown in Figure S2.

504 NK- and pan T cells (10^6 cells/mL) were cultured for further experiment in R10 medium:
505 RPMI 1640 (Gibco #72400054) containing 2mM Glutamine, 25mM HEPES and
506 completed with 10 % v/v of (fetal bovine serum) FBS (Gibco), 100 U/mL penicillin, 100
507 μ g/mL streptomycin (PanBiotech #P06-07100) and 50 μ M β -mercaptoethanol (Gibco
508 #11508916).
509

510 **Cell lines and cell line engineering.**

511 The human chronic myelogenous leukemia cell line K562 (ATCC CCL-243) was
512 cultured under standard conditions (37°C, 5% CO₂) using R10 medium. Cell viability
513 *in vitro* was assayed before functional experiment by a Countess 3® automated cell
514 counter (ThermoFisher).

515 For immune synapse formation, K562 cells were engineered to express a
516 palmitoylated tdTomato. Briefly, the tdTomatoDNA fragment from the Addgene
517 plasmid tdTomato-Lifeact-7 (#54528) was amplified by PCR to add the palmitoylation
518 sequence of the GAP43 gene and then cloned in pJET 1.2 vector according to
519 manufactory instructions (ThermoFisher #K1231). The generated Mb-tdTomato
520 fragment was then cloned in a lentivirus pLSFFV-IRES-Blasticidin vector. Lentivirus
521 generated from the pLSFFV-Mb-tdTomato-IRES-Blasticidin construct were produced
522 by transfection together with 3 additional vectors (pLP1, pLP2 and pLP3-VSV
523 plasmids) in HEK293T cells using JetPRIME transfection reagent (Polyplus).

524 For K562 cells transduction, 6 wells plate was coated with Retronectin (Takara,
525 10 μ g/cm²) for 2h at room temperature. Wells were washed in PBS before blocking with
526 2% BSA in PBS for 30 min. After a wash with PBS, 400.000 K562 cells were seeded
527 and let adhere overnight under standard conditions (37°C, 5% CO₂). The day after,
528 lentiviruses encoding for the pLSFFV-Mb-tdTomato-IRES-Blasticidin construct were
529 added in the presence of polybrene (10 μ g/mL). After one day of transduction, selection
530 with blasticidin (5 μ g/mL) was performed until highly fluorescent cells were FACS
531 sorted.

532

533 **Nanoparticles impact on immune cells viability.**

534 Negatively sorted NK and pan T cells (100,000/wells) were treated with increasing
535 concentrations of each NPs types in R10 medium. Cells were treated for 48h under
536 standard conditions (37°C, 5% CO₂). Immune cells viability was measured at the
537 endpoint using the CellTiterGlo® luminescent cell viability assay (Promega #G7570).

538

539 **Immune cells RNA extraction and bulk RNA-sequencing.**

540 *RNA extraction and quantification.* After 48h of culture, NK and pan T cells untreated
541 or treated with NPs at the indicated concentrations were harvested and washed in ice-
542 cold PBS. Total RNA was isolated using the RNAeasy kit (Qiagen #74136) with on-
543 column DNase I digestion (Qiagen #79256) according to manufacturer's instruction.
544 RNA was eluted in 50 μ L final volume, and its concentration was assessed with the
545 NanoPhotometer® N60 (Implemen). RNA integrity was assessed using a total RNA
546 Pico Kit by Bioanalyzer 2100 Instrument (Agilent Technologies). All samples had RNA
547 integrity numbers above 7.

548 *Library preparation and sequencing.* Sequencing libraries were prepared using
549 “NEBNext Ultra II Directional RNA Library Prep Kit for Illumina” and enriched in mRNA
550 using “NEB Ultra II polyA m RNA magnetic isolation” kit (New England Biolabs).
551 Libraries were pooled and sequenced (single-end, 100bp) on a NextSeq2000
552 according to the manufacturer’s instructions (Illumina Inc.).

553 *Multidimensional scaling (MDS) and differential expression analysis.* For each sample,
554 quality control was carried out and assessed with the NGS Core Tools FastQC^[98].
555 Sequence reads (minimum 22.4 million) were mapped to *Homo sapiens* hg19 using
556 STAR^[99] to obtain a BAM (Binary Alignment Map) file. An abundance matrix was
557 generated based on read counts identified by HTSeq-count^[100]. Multidimensional
558 scaling (MDS) was performed on gene expression counts normalized using the
559 DESeq2 R package^[101] to investigate relative similarities across the different
560 conditions. The first two principal components were plotted against each other, along
561 with their respective variances explained. Differential expression analysis was then
562 performed between the NPs treated conditions and the control using DESeq2^[101]
563 package of the Bioconductor framework for RNASeq data^[102]. Volcano plots were
564 constructed based on \log_2 fold change (\geq or \leq 2) and $-\log_{10}$ FDR adjusted *p*-value
565 (<1.3).

566 *Enrichment analysis.* Enrichment analysis of Gene Ontology (GO) terms was
567 conducted using Metascape (<http://metascape.org>)^[103]. Functional analysis of gene
568 expression changes was undertaken using Ingenuity Pathway Analysis (IPA, Ingenuity
569 Systems).

570 *Estimation of aggregate expression.* Genes related to TNF α signaling via NF κ B and
571 IFN γ pathways were curated from the MSigDb Hallmark 2024 database (**Table S4**).
572 For each experimental condition, aggregate expression levels of the indicated gene
573 signatures were estimated by first performing a normalization on the cell counts. The
574 normalized counts were then z-scored by gene (across all the conditions), after which
575 the genes of interest were subsetted and their distribution of z-scored gene counts
576 visualized as violin plots.

577

578 **RT-qPCR analysis.**

579 Downstreamed regulators expression was performed by generating complementary
580 DNA (cDNA) with the High-Capacity cDNA Reverse Transcription Kit (Applied
581 Biosystems #4368814), according to the manufacturer’s instructions. qPCR analysis

582 on each biological sample was performed using technical replicates with the TaqMan
583 system on a QuantStudio™ 3. The cDNA concentration of target genes was
584 normalized by amplification of GAPDH and fold changes in gene expression were
585 obtained using the $2^{-\Delta\Delta Ct}$ method. TaqMan probes were NFKB1 (Hs00765730_m1),
586 NFKB2 (Hs01028890_g1), RELA (Hs01042014_m1), RELB (Hs00232399_m1), IRF1
587 (Hs00971965_m1), GAPDH (Hs02786624_g1).

588

589 **Whole proteome analysis.**

590 *Protein extraction and samples preparation.* After 48h of culture, NK and pan T cells
591 untreated or treated with NPs at the indicated concentrations were harvested and
592 washed in ice-cold PBS. Immune cells dry pellets were flash frozen in liquid nitrogen.
593 Cellular pellets were resuspended in 2% SDS, 62.5 mM Tris-HCl pH = 6.8 and lysed
594 using a water bath sonicator cooled with ice. Protein concentration was estimated
595 using the Biorad DC kit (Hercules). Proteins (2 μ g) were prepared using a modified SP3
596 workflow based on^[104]. Briefly, proteins were reduced 30 minutes at 37°C with
597 dithiothreitol (final conc. 12mM) and alkylated 30 minutes, RT, in the dark with
598 iodoacetamide (final conc. 40mM). SP3 magnetic beads (Sera-Mag SpeedBeads)
599 were rinsed 3 times with H₂O before being added to the sample (ratio 1:10
600 protein/beads). Acetonitrile (final conc. 50% v/v) was added to precipitate the proteins
601 on the beads and the samples were incubated for 15min, RT, with agitation. The beads
602 were washed twice with 200 μ L of 80% ethanol and once with 180 μ L of acetonitrile
603 before being resuspended in 40 μ L of ammonium bicarbonate (100mM) followed by
604 5min sonication in a water bath. Trypsin/Lys-C was added to achieve a final ratio of
605 1:10 (enzyme:protein) and the proteins were digested overnight, 37°C, 600rpm.
606 Samples were acidified with formic acid to a final conc. of 1% v/v and centrifuged for
607 10min at 3500rpm. The samples were incubated for 10 minutes on the magnetic rack
608 and the supernatants containing the peptides were transferred to a new plate. Peptide
609 clean-up was performed on a Bravo AssayMap (Agilent) using 5 μ L RP-C18 cartridges
610 (Agilent) following the manufacturer's instructions.

611 *nLC-MS/MS analysis.* After evaporation, peptides were resuspended in H₂O/ACN/FA
612 (98/2/0.1) and 1/6th of the peptides were injected in randomised order on a
613 nanoAcuity (Waters) - Q-Exactive HF-X coupling (Thermo Fisher Scientific). Peptides
614 were separated using a 79min gradient at a flow rate of 400nL/min. The amount of
615 solvent B (ACN/FA, 99.9/0.1) started at 1%, increased to 8% in 2min and then to 35%

616 B in 77min. The column was washed by increasing the percentage of B to 90% in 1min
617 and for 5min before decreasing to 1% B in 2min and for 2min to re-equilibrate the
618 column. MS analysis was performed using a TOP20 data-dependent acquisition. The
619 scan range was 375 to 1500m/z with a dynamic exclusion of 40s. For precursor
620 analysis, a resolution of 120,000 was used with an AGC target of 3.0E+06 and a
621 maximum injection time of 60ms. For fragment analysis, the resolution was 15,000 with
622 an AGC target of 1.0E+05, a maximum injection time of 60ms and an isolation window
623 of 2m/z.

624 *Data treatment and differential analysis.* Data searches were performed on a local
625 Mascot server (Matrix Science) using a database containing all human protein entries
626 from the UniProtKB/SwissProt database and classical MS contaminant proteins. A
627 tolerance of 5 ppm for precursors and 0.05 Da for fragments was applied.
628 Carbamidomethylation of cysteine residues was defined as a fixed modification, while
629 acetylation of the N-termini of the proteins and oxidation of methionines were defined
630 as variable modifications. Proline studio^[105] was used for validation of protein
631 identifications and quantification using a 1% FDR at both the protein and PSM levels.
632 The Prostar software (v 1.22.6)^[106] was used for the differential analysis. The filtering
633 keeps only proteins with at least two values for one condition. The abundance was
634 normalised using a quantile centering normalisation over all the analysis. The
635 imputation of the Partially Observed Value (POV) was realised using Structured Least
636 Square Adaptive (SLSA) imputation whereas the imputation of the values Missing in
637 an Entire Condition (MEC) was realised using det quantile imputation. The hypothesis
638 testing used a Limma test for one condition in comparison to the control. Finally, the
639 P-value calibration was realised using Benjamini-Hochberg calibration. Results were
640 filtered to obtain a FDR of around 1%.

641

642 **NK cells activation and K562 killing assay.**

643 For NK cells activation, 40,000 K562 target cells were seeded per wells in a U-bottom
644 96-wells plate. Untreated or NPs-treated NK cells were washed and resuspended at
645 4.10⁶ cells/mL in R10 medium and added at increasing effector-to-target ratios (0:1:
646 0.625:1; 1.25:1; 2.5:1 and 5:1) to K562 cells. NK were co-incubated with their target
647 cells for 4h at 37°C, 5% CO₂. After incubation, the cells were washed in PBS and non-
648 viable cells were stained with Fixable Viability Dye-eFluor450 (eBioscience #65-0863-
649 14) for 15 minutes at room temperature in the dark. Aspecific antibodies binding was

650 minimized by treating the cells with TruStain FcX anti-CD32/CD16 blocking antibody
651 (1:50, BioLegend # 422301) for 20 minutes at 4°C. Then, cells were stained with PE
652 anti-CD56 (1:100, MiltenyiBiotec #130-113-312) and PE-Vio700 anti-CD69 (1:50,
653 MiltenyiBiotec #130-112-615) and APC anti-NKG2D (1:50, MiltenyiBiotec #130-111-
654 846) for 15 min at 4°C. Samples were acquired with Attune NxT (Invitrogen) flow
655 cytometer and data were analyzed using FlowJo™ v10 Software (ThreeStar). Gating
656 strategy is shown in Figure S6A-B.

657

658 **NK cells immune synapse formation.**

659 Conjugates between untreated or NPs-treated NK cells and K562-palmitoylated
660 tdTomato target cells at a 2:1 ratio were formed in suspension for 20 min at 37°C in
661 serum-free R10 medium. Cells were then gently mixed and transferred to 0.01% poly-
662 L-lysine coated 12-wells ibidi slides (ibidi #81201). Slides were incubated for 25
663 minutes at 37°C/5% CO₂ and then fixed with 2% PFA in PBS for 20 min at room
664 temperature. Fixative was removed and wells were rinsed three times with 150 µl PBS.
665 Cells were permeabilized with 0.1% Triton X-100 / 2% BSA in 1x PBS for 5 min and
666 unspecific antibody binding was blocked for 1 h in blocking solution (3% bovine serum
667 albumin-BSA, 5% FBS, 0.01% Triton X-100, in PBS). Immunostaining was performed
668 with purified mouse anti-perforin (10 µg/mL, BioLegend, clone dG9), incubated
669 overnight at 4°C followed by secondary antibodies (Goat anti-mouse-AlexaFluor 647,
670 1:250, ThermoFisher #A-21236) and Phalloidin-iFluor488 (1:1,000, Abcam
671 #ab176753) for 1h room temperature prior to slides mounting (Fluoromount/DAPI).
672 Background and nonspecific staining controls were used.

673 Perforin-stained NK-K562 conjugates were imaged with a 60X water-immersion
674 objective on an inverted Olympus Spinning-disk, and z-series images were acquired
675 with a space of 0.45 µm. Images were processed using ImageJ software (National
676 Institutes of Health). For scoring of cytotoxic granules distance to the immune synapse
677 (based on perforin staining), 20 conjugates between NK cells and K562 target cells
678 were chosen randomly per condition. Distance quantification was performed using the
679 ImageJ macro “Shortest_distance_between_objects” as described in^[107].

680

681 **Pan T cells activation analysis.**

682 For T cells activation, F-bottom 96-wells plate were coated increasing anti-CD3
683 concentrations (ranging from 0.001 to 10 µg/mL, BioLegend, clone OKT3) overnight at

684 4°C. Wells were washed once in PBS before adding the cells. Untreated or NPs-
685 treated pan T cells were washed and resuspended at 10⁶ cells/mL in R10 medium and
686 anti-CD28 (5µg/mL, BioLegend, clone 28.2) was added to each condition. 100,000
687 cells per wells were incubated for 24h at 37°C, 5% CO₂. After incubation, the cells were
688 washed in PBS and non-viable cells were stained with Fixable Viability Dye-eFluor780
689 (eBioscience #65-0865-14) for 15 minutes at room temperature in the dark. Aspecific
690 antibodies binding was minimized by treating the cells with TruStain FcX anti-
691 CD32/CD16 blocking antibody (1:50, BioLegend # 422301) for 20 minutes at 4°C.
692 Then, cells were stained with FITC anti-CD3 (1:100, MiltenyiBiotec #130-126-882),
693 PE-Vio700 anti-CD69 (1:50, MiltenyiBiotec #130-112-615) and Brilliant Violet 421 anti-
694 OX40 (1:20, BioLegend, clone Ber-ACT35) for 15 min at 4°C. Samples were acquired
695 with Attune NxT (Invitrogen) flow cytometer and data were analyzed using FlowJo™
696 v10 Software (ThreeStar).

697

698 **Pan T cells spreading and F-actin analysis.**

699 For T cells spreading, 8-wells ibidi slides (ibidi #80841) were coated with 0.01% poly-
700 L-lysine for 45 min at room temperature. After washing in PBS, the coverslips were
701 coated with anti-CD3 (10µg/mL, BioLegend, clone OKT3) and rhICAM1-Fc (2µg/mL,
702 BioLegend #552906) overnight at 4°C. Coverslips were washed once in PBS before
703 adding the cells. Untreated or NPs-treated pan T cells were washed and resuspended
704 at 10⁶ cells/mL in serum-free R10 medium for 1h at 37°C/5%CO₂. After, 100,000 cells
705 per wells were incubated with anti-CD28 (5µg/mL, BioLegend, clone 28.2) for 25 min
706 at 37°C, 5% CO₂. Coverslips were then washed once with PBS and fixed with % PFA
707 in PBS for 20 min at room temperature. Fixative was removed and wells were rinsed
708 three times with 150 µl PBS. Cells were permeabilized with 0.1% Triton X-100 / 2%
709 BSA in 1x PBS for 5 min and F-actin was stained by Phalloidin-iFluor488 (1:1,000,
710 Abcam #ab176753) for 1h room temperature prior to slides mounting
711 (Fluoromount/DAPI).

712 Phalloidin-stained pan T cells were imaged with a 60X water-immersion objective on
713 an inverted Olympus Spinning-disk, and z-series images were acquired with a space
714 of 0.45 µm. Images were processed using ImageJ software (National Institutes of
715 Health). To analyze cell spreading on surfaces, only the z-stack plane corresponding
716 to the contact between cells and the surface was considered, and a projection of the
717 DAPI stain was used to individualize each cell. Briefly, cell areas were obtained by

718 polygon selection definition and spreading area as well as F-actin intensity at the
719 immunological synapse were measured. F-actin intensity was normalized by each cell
720 area.

721

722 **Pan T cells degranulation analysis.**

723 For T cells degranulation, F-bottom 96-wells plate were coated anti-CD3 (10 μ g/mL,
724 BioLegend, clone OKT3) and rhICAM1-Fc (2 μ g/mL, BioLegend #552906) overnight at
725 4°C. Wells were washed once in PBS before adding the cells. Untreated or NPs-
726 treated pan T cells were washed and resuspended at 10⁶ cells/mL in R10 medium and
727 anti-CD28 (2 μ g/mL, BioLegend, clone 28.2) was added to each condition. 100,000
728 cells per wells were incubated for 1h at 37°C, 5% CO₂ in presence of APC-conjugated
729 anti-CD107a (1:50, MiltenyiBiotec #130-111-847). After 1h, protein transport inhibitor
730 cocktail (1:500, eBioscience) was added in each well and cell were incubated for
731 addition 4h at 37°C, 5% CO₂. After incubation, the cells were washed in PBS and non-
732 viable cells were stained with Fixable Viability Dye-eFluor780 (eBioscience #65-0865-
733 14) for 15 minutes at room temperature in the dark. Aspecific antibodies binding was
734 minimized by treating the cells with TruStain FcX anti-CD32/CD16 blocking antibody
735 (1:50, BioLegend # 422301) for 20 minutes at 4°C. Then, cells were stained with
736 VioBright B515 anti-CD3 (1:50, MiltenyiBiotec #130-126-882), Pacific Blue anti-
737 CD4 (1:100, BioLegend, clone RPA-T4) and PE anti-CD8 (1:100, BioLegend, clone
738 RPA-T8) for 15 min at 4°C. Samples were acquired with Attune NxT (Invitrogen) flow
739 cytometer and data were analyzed using FlowJo™ v10 Software (ThreeStar).

740

741 **Cytokine measurement.**

742 Supernatants from 96-well plates were aliquoted after 4h of NK-K562 cells co-
743 incubated or after 24h of pan T cells activation and stored at -20 °C. Cytokines were
744 quantified by custom LEGENDplex (5-plex, BioLegend # 740510) with the Attune NxT
745 Flow Cytometer. Cytokine assays were analyzed using the LEGENDplex software
746 Qognit (<https://legendplex.qognit.com>).

747

748 **Statistics.**

749 Statistical analysis was performed with GraphPad Prism 9.5. The normal distribution
750 of the data sets was assessed by the Shapiro–Wilk normality test. According to the
751 number of data sets compared, Student's t-test test or One-way ANOVA test with

752 original FDR method of Benjamini-Hochberg were applied (*p<0.05; **p<0.01,
753 ***p<0.001, ****p<0.0001). In all cases, the α -level was set at 0.05. All the data in
754 graphs were presented as median \pm standard deviation.

755

756 **Data Availability.**

757 Raw RNA-seq data have been deposited in the EMBL-EBI ArrayExpress archive
758 (accession number E-MTAB-14550). Complete proteomics dataset has been
759 deposited to the ProteomeXchange Consortium via the PRIDE partner repository^[108]
760 (accession number PXD056695). All the other data are available within the article and
761 its Supplementary Information. Raw data are accessible through reasonable requests
762 to the corresponding authors.

763

764 **Acknowledgements**

765 We thank all members of the JGG and AD labs for helpful discussions. The authors
766 wish to thank R. Soltani and A. Bianco for kindly providing the oxidized carbon
767 nanotubes. We thank Pascal Kessler (PICSTRA, CRBS) for assistance in imaging as
768 well as Claudine Ebel and Muriel Philipps (IGBMC, Strasbourg, France) for assistance
769 in FACS sorting. We are grateful to Alexandre F. Carisey (St. Jude Children's
770 Research Hospital, Memphis, USA) for sharing K562 cells. This work was supported
771 by a fellowship from the French Ministry of Science (MESRI) and a fourth-year thesis
772 fellowship from the Fondation ARC pour la recherche sur le cancer to VM. Work and
773 people in the lab of JGG are supported by the INSERM, the University of Strasbourg,
774 as well as by La Ligue Nationale Contre le Cancer (LNCC) and the Association pour
775 la Recherche contre le Cancer (ARC). LB is funded by FRM (Fondation pour la
776 Recherche Médicale). We are also thankful for recent donators (Rohan Athlétisme
777 Saverne and Traileurs de la Rose) to support our work. AD acknowledges funding from
778 the Cancéropôle Grand Est, the Fondation Française contre le Myélome et les
779 Gammapathies, the International Myeloma Foundation, as well as support from the
780 Institut de Cancérologie Strasbourg Europe and the European Research Council
781 (ERC) under the European Union's Horizon 2020 research and innovation program
782 (ERC Starting Grant TheranolImmuno, grant agreement No. 950101) and the Ligue
783 Nationale Contre le Cancer. Additionally, this work was also supported by the CNRS,
784 the University of Strasbourg, the Agence National de la Recherche, the French
785 Proteomics Infrastructure (ProFI FR2048; ANR-10-INBS-08-03), the Interdisciplinary

786 Thematic Institute IMS, the drug discovery and development institute, as part of the ITI
787 2021-2028 program of the University of Strasbourg, CNRS and Inserm supported by
788 IdEx Unistra (ANR-10-IDEX-0002) and SFRI-STRAT'US project (ANR-20-SFRI-0012)
789 under the framework of the French Investments for the Future Program. We finally also
790 acknowledge funding by IBiSA and Region Grand Est.

791

792 **Disclosure and competing interest statement**

793 A.D., O.T., and F.L. are shareholders of NH Theraguix who is translating to the clinic
794 Gd-NPs. The other authors declare that they have no conflict of interest.

795

796 **Authorship contributions**

797 Conceptualization, V.M., O.L., J.G.G., and A.D.; Methodology, V.M., and O.L.;
798 Investigation, V.M., M.C.D., J.B., A.L., A.P., and C.M.; Resources, M.B., S.G., L.J.C.,
799 F.L., and O.T.; Formal Analysis, V.M., O.L., A.D., M.C.D., L.B., S.H., A.P., T.S., A.M.,
800 M.R., C.C., and R.C.; Writing – Original Draft, V.M., O.L., J.G.G., and A.D.; Writing –
801 Review & Editing, V.M., O.L., C.C., R.C., L.J.C., F.L., O.T., J.G.G., and A.D.;
802 Supervision, C.C., R.C., J.G.G., and A.D.; Funding Acquisition, J.G.G., and A.D.

803

804 **References**

805 [1] I. Mellman, G. Coukos, G. Dranoff, *Nature* **2011**, 480, 480.
806 [2] J. Galon, D. Bruni, *Nat Rev Drug Discov* **2019**, 18, 197.
807 [3] L. Galluzzi, J. Humeau, A. Buqué, L. Zitvogel, G. Kroemer, *Nat Rev Clin Oncol*
808 **2020**, 17, 725.
809 [4] L. Galluzzi, M. J. Aryankalayil, C. N. Coleman, S. C. Formenti, *Nat Rev Clin*
810 *Oncol* **2023**, 20, 543.
811 [5] M. A. Fischbach, J. A. Bluestone, W. A. Lim, *Sci. Transl. Med.* **2013**, 5, DOI
812 10.1126/scitranslmed.3005568.
813 [6] Z. Eshhar, T. Waks, G. Gross, D. G. Schindler, *Proc. Natl. Acad. Sci. U.S.A.*
814 **1993**, 90, 720.
815 [7] J. Maher, R. J. Brentjens, G. Gunset, I. Rivière, M. Sadelain, *Nat Biotechnol*
816 **2002**, 20, 70.
817 [8] R. J. Brentjens, J.-B. Latouche, E. Santos, F. Marti, M. C. Gong, C. Lyddane, P.
818 D. King, S. Larson, M. Weiss, I. Rivière, M. Sadelain, *Nat Med* **2003**, 9, 279.
819 [9] S. L. Maude, T. W. Laetsch, J. Buechner, S. Rives, M. Boyer, H. Bittencourt, P.
820 Bader, M. R. Verneris, H. E. Stefanski, G. D. Myers, M. Qayed, B. De Moerloose, H.
821 Hiramatsu, K. Schlis, K. L. Davis, P. L. Martin, E. R. Nemecek, G. A. Yanik, C. Peters,
822 A. Baruchel, N. Boissel, F. Mechinaud, A. Balduzzi, J. Krueger, C. H. June, B. L.
823 Levine, P. Wood, T. Taran, M. Leung, K. T. Mueller, Y. Zhang, K. Sen, D. Lebwohl, M.
824 A. Pulsipher, S. A. Grupp, *N Engl J Med* **2018**, 378, 439.
825 [10] P. Rodriguez-Otero, S. Ailawadhi, B. Arnulf, K. Patel, M. Cavo, A. K. Nooka, S.
826 Manier, N. Callander, L. J. Costa, R. Vij, N. J. Bahlis, P. Moreau, S. R. Solomon, M.

827 Delforge, J. Berdeja, A. Truppel-Hartmann, Z. Yang, L. Favre-Kontula, F. Wu, J.
828 Piasecki, M. Cook, S. Giralt, *N Engl J Med* **2023**, 388, 1002.

829 [11] J. N. Brudno, J. N. Kochenderfer, *Blood* **2016**, 127, 3321.

830 [12] E. Liu, D. Marin, P. Banerjee, H. A. Macapinlac, P. Thompson, R. Basar, L.
831 Nassif Kerbauy, B. Overman, P. Thall, M. Kaplan, V. Nandivada, I. Kaur, A. Nunez
832 Cortes, K. Cao, M. Daher, C. Hosing, E. N. Cohen, P. Kebriaei, R. Mehta, S. Neelapu,
833 Y. Nieto, M. Wang, W. Wierda, M. Keating, R. Champlin, E. J. Shpall, K. Rezvani, *N
834 Engl J Med* **2020**, 382, 545.

835 [13] T. Bald, M. F. Krummel, M. J. Smyth, K. C. Barry, *Nat Immunol* **2020**, 21, 835.

836 [14] O. Demaria, L. Gauthier, G. Debroas, E. Vivier, *Eur J Immunol* **2021**, 51, 1934.

837 [15] H. Salmon, K. Franciszkiewicz, D. Damotte, M.-C. Dieu-Nosjean, P. Validire, A.
838 Trautmann, F. Mami-Chouaib, E. Donnadieu, *J. Clin. Invest.* **2012**, 122, 899.

839 [16] S. Platonova, J. Cherfils-Vicini, D. Damotte, L. Crozet, V. Vieillard, P. Validire,
840 P. André, M.-C. Dieu-Nosjean, M. Alifano, J.-F. Régnard, W.-H. Fridman, C. Sautès-
841 Fridman, I. Cremer, *Cancer Research* **2011**, 71, 5412.

842 [17] N. E. Scharping, A. V. Menk, R. S. Moreci, R. D. Whetstone, R. E. Dadey, S. C.
843 Watkins, R. L. Ferris, G. M. Delgoffe, *Immunity* **2016**, 45, 374.

844 [18] A. R. Lim, W. K. Rathmell, J. C. Rathmell, *eLife* **2020**, 9, e55185.

845 [19] I. Dean, C. Y. C. Lee, Z. K. Tuong, Z. Li, C. A. Tibbitt, C. Willis, F. Gaspal, B. C.
846 Kennedy, V. Matei-Rascu, R. Fiancette, C. Nordenvall, U. Lindforss, S. M. Baker, C.
847 Stockmann, V. Sexl, S. A. Hammond, S. J. Dovedi, J. Mjösberg, M. R. Hepworth, G.
848 Carlesso, M. R. Clatworthy, D. R. Withers, *Nat Commun* **2024**, 15, 683.

849 [20] D. J. Slamon, B. Leyland-Jones, S. Shak, H. Fuchs, V. Paton, A. Bajamonde,
850 T. Fleming, W. Eiermann, J. Wolter, M. Pegram, J. Baselga, L. Norton, *N Engl J Med*
851 **2001**, 344, 783.

852 [21] F. S. Hodi, S. J. O'Day, D. F. McDermott, R. W. Weber, J. A. Sosman, J. B.
853 Haanen, R. Gonzalez, C. Robert, D. Schadendorf, J. C. Hassel, W. Akerley, A. J. M.
854 Van Den Eertwegh, J. Lutzky, P. Lorigan, J. M. Vaubel, G. P. Linette, D. Hogg, C. H.
855 Ottensmeier, C. Lebbé, C. Peschel, I. Quirt, J. I. Clark, J. D. Wolchok, J. S. Weber, J.
856 Tian, M. J. Yellin, G. M. Nichol, A. Hoos, W. J. Urba, *N Engl J Med* **2010**, 363, 711.

857 [22] F. Berner, D. Bomze, S. Diem, O. H. Ali, M. Fässler, S. Ring, R. Niederer, C. J.
858 Ackermann, P. Baumgaertner, N. Pikor, C. G. Cruz, W. Van De Veen, M. Akdis, S.
859 Nikolaev, H. Läubli, A. Zippelius, F. Hartmann, H.-W. Cheng, G. Hönger, M. Recher,
860 J. Goldman, A. Cozzio, M. Früh, J. Neefjes, C. Driessens, B. Ludewig, A. N. Hegazy,
861 W. Jochum, D. E. Speiser, L. Flatz, *JAMA Oncol* **2019**, 5, 1043.

862 [23] D. B. Johnson, J. M. Balko, M. L. Compton, S. Chalkias, J. Gorham, Y. Xu, M.
863 Hicks, I. Puzanov, M. R. Alexander, T. L. Bloomer, J. R. Becker, D. A. Slosky, E. J.
864 Phillips, M. A. Pilkinton, L. Craig-Owens, N. Kola, G. Plautz, D. S. Reshef, J. S.
865 Deutsch, R. P. Deering, B. A. Olenchock, A. H. Lichtman, D. M. Roden, C. E. Seidman,
866 I. J. Koralnik, J. G. Seidman, R. D. Hoffman, J. M. Taube, L. A. Diaz, R. A. Anders, J.
867 A. Sosman, J. J. Moslehi, *N Engl J Med* **2016**, 375, 1749.

868 [24] V. Mittelheisser, M. Banerjee, X. Pivot, L. J. Charbonnière, J. Goetz, A.
869 Detappe, *Adv. Therap.* **2020**, 3, 2000134.

870 [25] T. R. Fadel, M. Look, P. A. Staffier, G. L. Haller, L. D. Pfefferle, T. M. Fahmy,
871 *Langmuir* **2010**, 26, 5645.

872 [26] T. R. Fadel, F. A. Sharp, N. Vudattu, R. Ragheb, J. Garyu, D. Kim, E. Hong, N.
873 Li, G. L. Haller, L. D. Pfefferle, S. Justesen, K. C. Herold, T. M. Fahmy, *Nature
874 Nanotech* **2014**, 9, 639.

875 [27] D. Schmid, C. G. Park, C. A. Hartl, N. Subedi, A. N. Cartwright, R. B. Puerto, Y.
876 Zheng, J. Maiarana, G. J. Freeman, K. W. Wucherpfennig, D. J. Irvine, M. S. Goldberg,

877 *Nat Commun* **2017**, 8, 1747.

878 [28] T. T. Smith, S. B. Stephan, H. F. Moffett, L. E. McKnight, W. Ji, D. Reiman, E.

879 Bonagofski, M. E. Wohlfahrt, S. P. S. Pillai, M. T. Stephan, *Nature Nanotech* **2017**, 12,

880 813.

881 [29] N. N. Parayath, S. B. Stephan, A. L. Koehne, P. S. Nelson, M. T. Stephan, *Nat*

882 *Commun* **2020**, 11, 6080.

883 [30] L. Carmès, G. Bort, F. Lux, L. Seban, P. Rocchi, Z. Muradova, A. Hagège, L.

884 Heinrich-Balard, F. Delolme, V. Gueguen-Chaignon, C. Truillet, S. Crowley, E. Bello,

885 T. Doussineau, M. Dougan, O. Tillement, J. D. Schoenfeld, N. Brown, R. Berbeco,

886 *Nanoscale* **2024**, 16, 2347.

887 [31] A. Mignot, C. Truillet, F. Lux, L. Sancey, C. Louis, F. Denat, F. Boschetti, L.

888 Bocher, A. Gloter, O. Stéphan, R. Antoine, P. Dugourd, D. Luneau, G. Novitchi, L. C.

889 Figueiredo, P. C. de Moraes, L. Bonneviot, B. Albela, F. Ribot, L. Van Lokeren, I.

890 Déchamps-Olivier, F. Chuburu, G. Lemercier, C. Villiers, P. N. Marche, G. Le Duc, S.

891 Roux, O. Tillement, P. Perriat, *Chemistry A European J* **2013**, 19, 6122.

892 [32] V.-L. Tran, V. Thakare, F. Rossetti, A. Baudouin, G. Ramniceanu, B.-T. Doan,

893 N. Mignet, C. Comby-Zerbino, R. Antoine, P. Dugourd, F. Boschetti, F. Denat, C. Louis,

894 S. Roux, T. Doussineau, O. Tillement, F. Lux, *J. Mater. Chem. B* **2018**, 6, 4821.

895 [33] T. Lammers, *Advanced Materials* **2024**, 36, 2312169.

896 [34] B. Vis, R. E. Hewitt, T. P. Monie, C. Fairbairn, S. D. Turner, S. D. Kinrade, J. J.

897 Powell, *Proc. Natl. Acad. Sci. U.S.A.* **2020**, 117, 285.

898 [35] S. Weller, X. Li, L. R. Petersen, P. Kempen, G. Clergeaud, T. L. Andresen,

899 *International Immunopharmacology* **2024**, 129, 111643.

900 [36] M. Vitale, C. Bottino, S. Sivori, L. Sanseverino, R. Castriconi, E. Marcenaro, R.

901 Augugliaro, L. Moretta, A. Moretta, *The Journal of Experimental Medicine* **1998**, 187,

902 2065.

903 [37] O. Dufva, S. Gandolfi, J. Huuhtanen, O. Dashevsky, H. Duàn, K. Saeed, J.

904 Klievink, P. Nygren, J. Bouhlal, J. Lahtela, A. Näätänen, B. R. Ghimire, T. Hannunen,

905 P. Ellonen, H. Lähteenmäki, P. Rumm, J. Theodoropoulos, E. Laajala, J. Häkkinen, P.

906 Pölönen, M. Heinäniemi, M. Hollmén, S. Yamano, R. Shirasaki, D. A. Barbie, J. A.

907 Roth, R. Romee, M. Sheffer, H. Lähdesmäki, D. A. Lee, R. De Matos Simoes, M.

908 Kankainen, C. S. Mitsiades, S. Mustjoki, *Immunity* **2023**, 56, 2816.

909 [38] A. Pfefferle, B. Jacobs, H. Netskar, E. H. Ask, S. Lorenz, T. Clancy, J. P.

910 Goodridge, E. Sohlberg, K.-J. Malmberg, *Cell Reports* **2019**, 29, 2284.

911 [39] D. Urlaub, K. Höfer, M.-L. Müller, C. Watzl, *The Journal of Immunology* **2017**,

912 198, 1944.

913 [40] J. P. Böttcher, E. Bonavita, P. Chakravarty, H. Blees, M. Cabeza-Cabrero, S.

914 Sammicheli, N. C. Rogers, E. Sahai, S. Zelenay, C. Reis E Sousa, *Cell* **2018**, 172,

915 1022.

916 [41] T. D. Holmes, R. V. Pandey, E. Y. Helm, H. Schlums, H. Han, T. M. Campbell,

917 T. T. Drashansky, S. Chiang, C.-Y. Wu, C. Tao, M. Shoukier, E. Tolosa, S. Von

918 Hardenberg, M. Sun, C. Klemann, R. A. Marsh, C. M. Lau, Y. Lin, J. C. Sun, R.

919 Måansson, F. Cichocki, D. Avram, Y. T. Bryceson, *Sci. Immunol.* **2021**, 6, eabc9801.

920 [42] E. K. Santosa, H. Kim, T. Rückert, J.-B. Le Luduec, A. J. Abbasi, C. K. Wingert,

921 L. Peters, J. N. Frost, K. C. Hsu, C. Romagnani, J. C. Sun, *Nat Immunol* **2023**, 24,

922 1685.

923 [43] G. Min-Oo, N. A. Bezman, S. Madera, J. C. Sun, L. L. Lanier, *Journal of*

924 *Experimental Medicine* **2014**, 211, 1289.

925 [44] R. B. Mailliard, S. M. Alber, H. Shen, S. C. Watkins, J. M. Kirkwood, R. B.

926 Herberman, P. Kalinski, *The Journal of Experimental Medicine* **2005**, 202, 941.

927 [45] P. Lee, T. Yamada, C. S. Park, Y. Shen, M. Puppi, H. D. Lacorazza, *Immunol*
928 *Cell Biol* **2015**, 93, 605.

929 [46] P. A. Szabo, H. M. Levitin, M. Miron, M. E. Snyder, T. Senda, J. Yuan, Y. L.
930 Cheng, E. C. Bush, P. Dogra, P. Thapa, D. L. Farber, P. A. Sims, *Nat Commun* **2019**,
931 10, 4706.

932 [47] L. Loyal, S. Warth, K. Jürchott, F. Mölder, C. Nikolaou, N. Babel, M. Nienen, S.
933 Durlanik, R. Stark, B. Kruse, M. Frentsche, R. Sabat, K. Wolk, A. Thiel, *Nat Commun*
934 **2020**, 11, 6357.

935 [48] X.-Y. Li, D. Corvino, B. Nowlan, A. R. Aguilera, S. S. Ng, M. Braun, A. R. Cillo,
936 T. Bald, M. J. Smyth, C. R. Engwerda, *Cancer Immunology Research* **2022**, 10, 154.

937 [49] M. Kurachi, R. A. Barnitz, N. Yosef, P. M. Odorizzi, M. A. Dilorio, M. E. Lemieux,
938 K. Yates, J. Godec, M. G. Klatt, A. Regev, E. J. Wherry, W. N. Haining, *Nat Immunol*
939 **2014**, 15, 373.

940 [50] Z. Qiu, C. Khairallah, G. Romanov, B. S. Sheridan, *The Journal of Immunology*
941 **2020**, 205, 901.

942 [51] K. J. Oestreich, A. S. Weinmann, *Current Opinion in Immunology* **2012**, 24, 191.

943 [52] Y. Liu, R. Bockermann, M. Hadi, I. Safari, B. Carrion, M. Kveiborg, S. Issazadeh-
944 Navikas, *Cell Mol Immunol* **2021**, 18, 1904.

945 [53] U. Gubler, A. O. Chua, D. S. Schoenhaut, C. M. Dwyer, W. McComas, R.
946 Motyka, N. Nabavi, A. G. Wolitzky, P. M. Quinn, P. C. Familletti, *Proc. Natl. Acad. Sci.*
947 U.S.A.

948 **1991**, 88, 4143.

949 [54] G. S. Kelner, J. Kennedy, K. B. Bacon, S. Kleyensteuber, D. A. Largaespada,
950 N. A. Jenkins, N. G. Copeland, J. F. Bazan, K. W. Moore, T. J. Schall, A. Zlotnik,
951 *Science* **1994**, 266, 1395.

952 [55] A. J. Ozga, M. T. Chow, A. D. Luster, *Immunity* **2021**, 54, 859.

953 [56] R. Lachmann, M. Bajwa, S. Vita, H. Smith, E. Cheek, A. Akbar, F. Kern, *J Virol*
954 **2012**, 86, 1001.

955 [57] W. M. Schneider, M. D. Chevillotte, C. M. Rice, *Annu. Rev. Immunol.* **2014**, 32,
956 513.

957 [58] E. Cano-Gamez, B. Soskic, T. I. Roumeliotis, E. So, D. J. Smyth, M. Baldridge,
958 D. Willé, N. Nakic, J. Esparza-Gordillo, C. G. C. Larminie, P. G. Bronson, D. F. Tough,
959 W. C. Rowan, J. S. Choudhary, G. Trynka, *Nat Commun* **2020**, 11, 1801.

960 [59] A. L. Symonds, W. Zheng, T. Miao, H. Wang, T. Wang, R. Kiome, X. Hou, S. Li,
961 P. Wang, *Life Sci. Alliance* **2020**, 3, e202000766.

962 [60] A. L. J. Symonds, T. Miao, Z. Busharat, S. Li, P. Wang, *Cancer Immunol*
963 *Immunother* **2023**, 72, 1139.

964 [61] M. Binnewies, E. W. Roberts, K. Kersten, V. Chan, D. F. Fearon, M. Merad, L.
965 M. Coussens, D. I. Gabrilovich, S. Ostrand-Rosenberg, C. C. Hedrick, R. H.
966 Vonderheide, M. J. Pittet, R. K. Jain, W. Zou, T. K. Howcroft, E. C. Woodhouse, R. A.
967 Weinberg, M. F. Krummel, *Nat Med* **2018**, 24, 541.

968 [62] M. L. Holmes, N. D. Huntington, R. P. Thong, J. Brady, Y. Hayakawa, C. E.
969 Andoniou, P. Fleming, W. Shi, G. K. Smyth, M. A. Degli-Esposti, G. T. Belz, A. Kallies,
970 S. Carotta, M. J. Smyth, S. L. Nutt, *The EMBO Journal* **2014**, 33, 2721.

971 [63] E. Hegewisch-Solloa, S. Seo, B. L. Mundy-Bosse, A. Mishra, E. H. Waldman,
972 S. Maurrasse, E. Grunstein, T. J. Connors, A. G. Freud, E. M. Mace, *The Journal of*
973 *Immunology* **2021**, 207, 950.

974 [64] O. D'Orlando, F. Zhao, B. Kasper, Z. Orinska, J. Müller, I. Hermans-Borgmeyer,
975 G. M. Griffiths, U. Zur Stadt, S. Bulfone-Paus, *Eur J Immunol* **2013**, 43, 194.

976 [65] E. Le Dréan, F. Vély, L. Olcese, A. Cambiaggi, S. Guia, G. Krystal, N. Gervois,
A. Moretta, F. Jotereau, E. Vivier, *Eur. J. Immunol.* **1998**, 28, 264.

977 [66] R. Parameswaran, P. Ramakrishnan, S. A. Moreton, Z. Xia, Y. Hou, D. A. Lee,
978 K. Gupta, M. deLima, R. C. Beck, D. N. Wald, *Nat Commun* **2016**, 7, 11154.

979 [67] F. Cichocki, B. Valamehr, R. Bjordahl, B. Zhang, B. Rezner, P. Rogers, S.
980 Gaidarov, S. Moreno, K. Tuininga, P. Dougherty, V. McCullar, P. Howard, D. Sarhan,
981 E. Taras, H. Schlums, S. Abbot, D. Shoemaker, Y. T. Bryceson, B. R. Blazar, S.
982 Wolchko, S. Cooley, J. S. Miller, *Cancer Research* **2017**, 77, 5664.

983 [68] Y. Kashii, R. Giorda, R. B. Herberman, T. L. Whiteside, N. L. Vujanovic, *J
984 Immunol* **1999**, 163, 5358.

985 [69] G. Z. Tau, S. N. Cowan, J. Weisburg, N. S. Braunstein, P. B. Rothman, *The
986 Journal of Immunology* **2001**, 167, 5574.

987 [70] V. P. Patel, M. Moran, T. A. Low, M. C. Miceli, *The Journal of Immunology* **2001**,
988 166, 754.

989 [71] D. M. Desai, M. E. Newton, T. Kadlecak, A. Weiss, *Nature* **1990**, 348, 66.

990 [72] J. L. Pomerantz, E. M. Denny, D. Baltimore, *EMBO J* **2002**, 21, 5184.

991 [73] K. Chemin, A. Bohineust, S. Dogniaux, M. Tourret, S. Guégan, F. Miro, C.
992 Hivroz, *The Journal of Immunology* **2012**, 189, 2159.

993 [74] A. S. Zhovmer, A. Manning, C. Smith, A. Nguyen, O. Prince, P. J. Sáez, X. Ma,
994 D. Tsygankov, A. X. Cartagena-Rivera, N. A. Singh, R. K. Singh, E. D. Tabdanov, *Sci.
995 Adv.* **2024**, 10, eadi1788.

996 [75] A. Roumier, J. C. Olivo-Marin, M. Arpin, F. Michel, M. Martin, P. Mangeat, O.
997 Acuto, A. Dautry-Varsat, A. Alcover, *Immunity* **2001**, 15, 715.

998 [76] J. C. Nolz, T. S. Gomez, P. Zhu, S. Li, R. B. Medeiros, Y. Shimizu, J. K.
999 Burkhardt, B. D. Freedman, D. D. Billadeau, *Current Biology* **2006**, 16, 24.

1000 [77] T. S. Gomez, K. Kumar, R. B. Medeiros, Y. Shimizu, P. J. Leibson, D. D.
1001 Billadeau, *Immunity* **2007**, 26, 177.

1002 [78] B. P. Nicolet, A. Guislain, F. P. J. Van Alphen, R. Gomez-Eerland, T. N. M.
1003 Schumacher, M. Van Den Biggelaar, M. C. Wolkers, *Proc. Natl. Acad. Sci. U.S.A.*
1004 **2020**, 117, 6686.

1005 [79] B. P. Nicolet, A. Guislain, M. C. Wolkers, *The Journal of Immunology* **2021**, 207,
1006 2966.

1007 [80] Z. Wang, J. Shang, Y. Qiu, H. Cheng, M. Tao, E. Xie, X. Pei, W. Li, L. Zhang,
1008 A. Wu, G. Li, *Cell Reports* **2024**, 43, 113796.

1009 [81] M. Kurowska, N. Goudin, N. T. Nehme, M. Court, J. Garin, A. Fischer, G. De
1010 Saint Basile, G. Ménasché, *Blood* **2012**, 119, 3879.

1011 [82] V. Das, B. Nal, A. Dujeancourt, M.-I. Thoulouze, T. Galli, P. Roux, A. Dautry-
1012 Varsat, A. Alcover, *Immunity* **2004**, 20, 577.

1013 [83] M. R. Marshall, V. Pattu, M. Halimani, M. Maier-Peuschel, M.-L. Müller, U.
1014 Becherer, W. Hong, M. Hoth, T. Tscherneig, Y. T. Bryceson, J. Rettig, *Journal of Cell
1015 Biology* **2015**, 210, 135.

1016 [84] M. L. Dustin, *Cancer Immunology Research* **2014**, 2, 1023.

1017 [85] I. Gramaglia, A. D. Weinberg, M. Lemon, M. Croft, *J Immunol* **1998**, 161, 6510.

1018 [86] G. Verdeil, D. Puthier, C. Nguyen, A.-M. Schmitt-Verhulst, N. Auphan-Anezin,
1019 *The Journal of Immunology* **2006**, 176, 4834.

1020 [87] M. Pescatori, D. Bedognetti, E. Venturelli, C. Ménard-Moyon, C. Bernardini, E.
1021 Muresu, A. Piana, G. Maida, R. Manetti, F. Sgarrella, A. Bianco, L. G. Delogu,
1022 *Biomaterials* **2013**, 34, 4395.

1023 [88] N. Kumbhojkar, S. Prakash, T. Fukuta, K. Adu-Berchie, N. Kapate, R. An, S.
1024 Darko, V. Chandran Suja, K. S. Park, A. P. Gottlieb, M. G. Bibbey, M. Mukherji, L. L.-
1025 W. Wang, D. J. Mooney, S. Mitragotri, *Nat. Biomed. Eng* **2024**, 8, 579.

1026 [89] T. Walzer, M. Dalod, S. H. Robbins, L. Zitvogel, E. Vivier, *Blood* **2005**, 106,

1027 2252.

1028 [90] C. Verry, S. Dufort, B. Lemasson, S. Grand, J. Pietras, I. Troprès, Y. Crémillieux,
1029 F. Lux, S. Mériaux, B. Larrat, J. Balosso, G. Le Duc, E. L. Barbier, O. Tillement, *Sci.
1030 Adv.* **2020**, 6, eaay5279.

1031 [91] C. Verry, S. Dufort, J. Villa, M. Gavard, C. Iriart, S. Grand, J. Charles, B.
1032 Chovelon, J.-L. Cracowski, J.-L. Quesada, C. Mendoza, L. Sancey, A. Lehmann, F.
1033 Jover, J.-Y. Giraud, F. Lux, Y. Crémillieux, S. McMahon, P. J. Pauwels, D. Cagney, R.
1034 Berbeco, A. Aizer, E. Deutsch, M. Loeffler, G. Le Duc, O. Tillement, J. Balosso,
1035 *Radiotherapy and Oncology* **2021**, 160, 159.

1036 [92] M. E. Rodriguez-Ruiz, I. Vitale, K. J. Harrington, I. Melero, L. Galluzzi, *Nat
1037 Immunol* **2020**, 21, 120.

1038 [93] B. Diskin, S. Adam, M. F. Cassini, G. Sanchez, M. Liria, B. Aykut, C. Buttar, E.
1039 Li, B. Sundberg, R. D. Salas, R. Chen, J. Wang, M. Kim, M. S. Farooq, S. Nguy, C.
1040 Fedele, K. H. Tang, T. Chen, W. Wang, M. Hundeyin, J. A. K. Rossi, E. Kurz, M. I. U.
1041 Haq, J. Karlen, E. Kruger, Z. Sekendiz, D. Wu, S. A. A. Shadaloey, G. Baptiste, G.
1042 Werba, S. Selvaraj, C. Loomis, K.-K. Wong, J. Leinwand, G. Miller, *Nat Immunol* **2020**,
1043 21, 442.

1044 [94] W. Piao, L. Li, V. Saxena, J. Iyyathurai, R. Lakhani, Y. Zhang, I. T. Lape, C.
1045 Paluskievicz, K. L. Hippen, Y. Lee, E. Silverman, M. W. Shirkey, L. V. Riella, B. R.
1046 Blazar, J. S. Bromberg, *Nat Commun* **2022**, 13, 2176.

1047 [95] L. García-Hevia, R. Soltani, J. González, O. Chaloin, C. Ménard-Moyon, A.
1048 Bianco, M. L. Fanarraga, *Bioactive Materials* **2024**, 34, 237.

1049 [96] C. Charpentier, V. Cifliku, J. Goetz, A. Nonat, C. Cheignon, M. Cardoso Dos
1050 Santos, L. Francés-Soriano, K. Wong, L. J. Charbonnière, N. Hildebrandt, *Chemistry
1051 A European J* **2020**, 26, 14602.

1052 [97] L. Zhang, J. M. Chan, F. X. Gu, J.-W. Rhee, A. Z. Wang, A. F. Radovic-Moreno,
1053 F. Alexis, R. Langer, O. C. Farokhzad, *ACS Nano* **2008**, 2, 1696.

1054 [98] S. Andrews, “FastQC: a quality control tool for high throughput sequence data.,”
1055 can be found under <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>, **2010**.

1056 [99] A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut,
1057 M. Chaisson, T. R. Gingeras, *Bioinformatics* **2013**, 29, 15.

1058 [100] S. Anders, P. T. Pyl, W. Huber, *Bioinformatics* **2015**, 31, 166.

1059 [101] M. I. Love, W. Huber, S. Anders, *Genome Biol* **2014**, 15, 550.

1060 [102] R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S. Dudoit,
1061 B. Ellis, L. Gautier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus, R.
1062 Irizarry, F. Leisch, C. Li, M. Maechler, A. J. Rossini, G. Sawitzki, C. Smith, G. Smyth,
1063 L. Tierney, J. Y. Yang, J. Zhang, *Genome Biol* **2004**, 5, R80.

1064 [103] Y. Zhou, B. Zhou, L. Pache, M. Chang, A. H. Khodabakhshi, O. Tanaseichuk,
1065 C. Benner, S. K. Chanda, *Nat Commun* **2019**, 10, 1523.

1066 [104] C. S. Hughes, S. Moggridge, T. Müller, P. H. Sorensen, G. B. Morin, J.
1067 Krijgsveld, *Nat Protoc* **2019**, 14, 68.

1068 [105] D. Bouyssié, A.-M. Hesse, E. Mouton-Barbosa, M. Rompais, C. Macron, C.
1069 Carapito, A. Gonzalez De Peredo, Y. Couté, V. Dupierris, A. Burel, J.-P. Menetrey, A.
1070 Kalaitzakis, J. Poisat, A. Romdhani, O. Burlet-Schiltz, S. Cianfran, J. Garin, C.
1071 Bruley, *Bioinformatics* **2020**, 36, 3148.

1072 [106] S. Wieczorek, F. Combes, C. Lazar, Q. Giai Gianetto, L. Gatto, A. Dorffer, A.-
1073 M. Hesse, Y. Couté, M. Ferro, C. Bruley, T. Burger, *Bioinformatics* **2017**, 33, 135.

1074 [107] V. P. Sharma, B. Tang, Y. Wang, C. L. Duran, G. S. Karagiannis, E. A. Xue, D.
1075 Entenberg, L. Borriello, A. Coste, R. J. Eddy, G. Kim, X. Ye, J. G. Jones, E. Grunblatt,
1076 N. Agi, S. Roy, G. Bandyopadhyaya, E. Adler, C. R. Surve, D. Esposito, S. Goswami,

1077 J. E. Segall, W. Guo, J. S. Condeelis, L. M. Wakefield, M. H. Oktay, *Nat Commun*
 1078 **2021**, *12*, 7300.

1079 [108] Y. Perez-Riverol, J. Bai, C. Bandla, D. García-Seisdedos, S. Hewapathirana, S.
 1080 Kamatchinathan, D. J. Kundu, A. Prakash, A. Frericks-Zipper, M. Eisenacher, M.
 1081 Walzer, S. Wang, A. Brazma, J. A. Vizcaíno, *Nucleic Acids Research* **2022**, *50*, D543.
 1082

1083 **Figure legends**

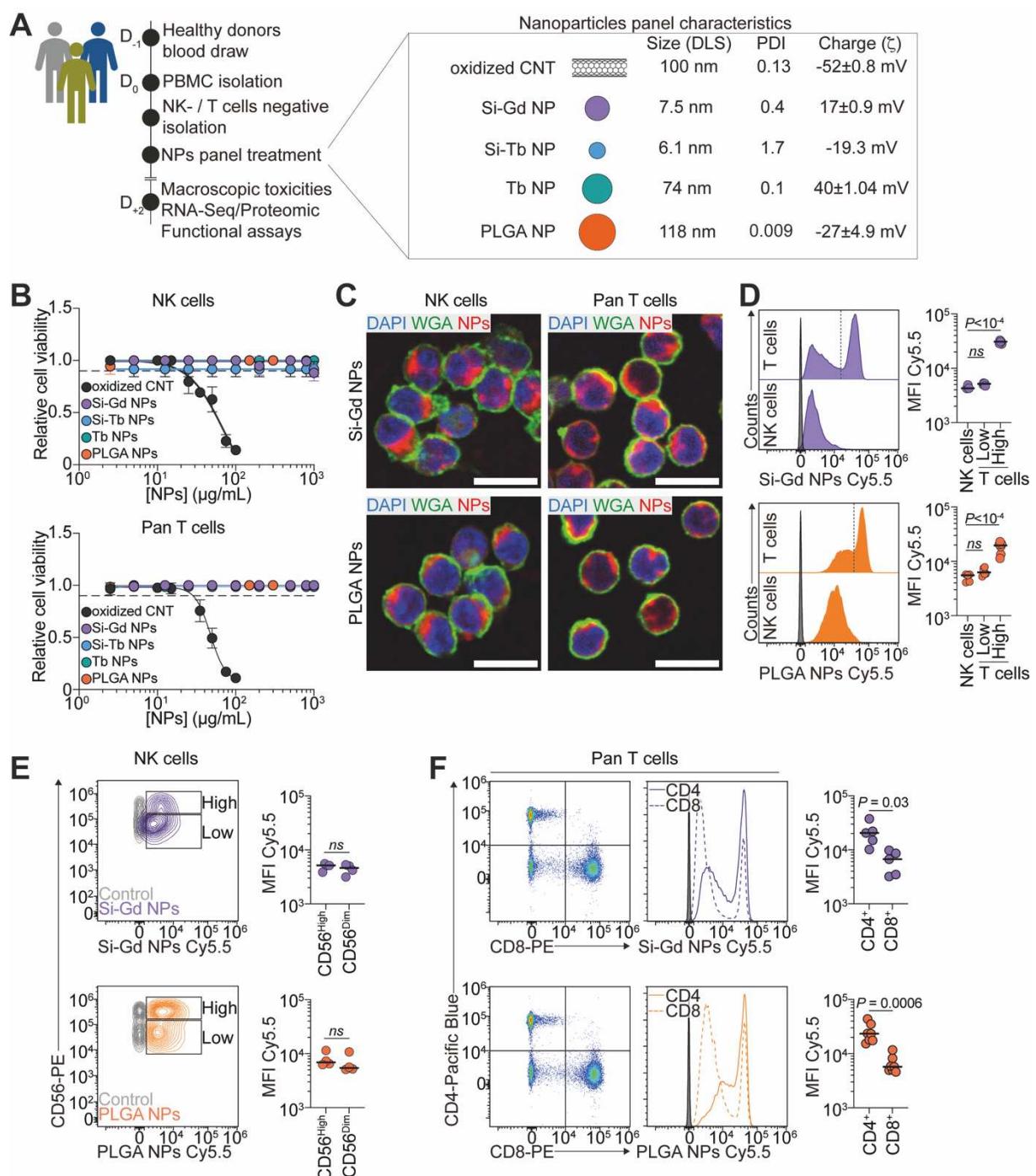
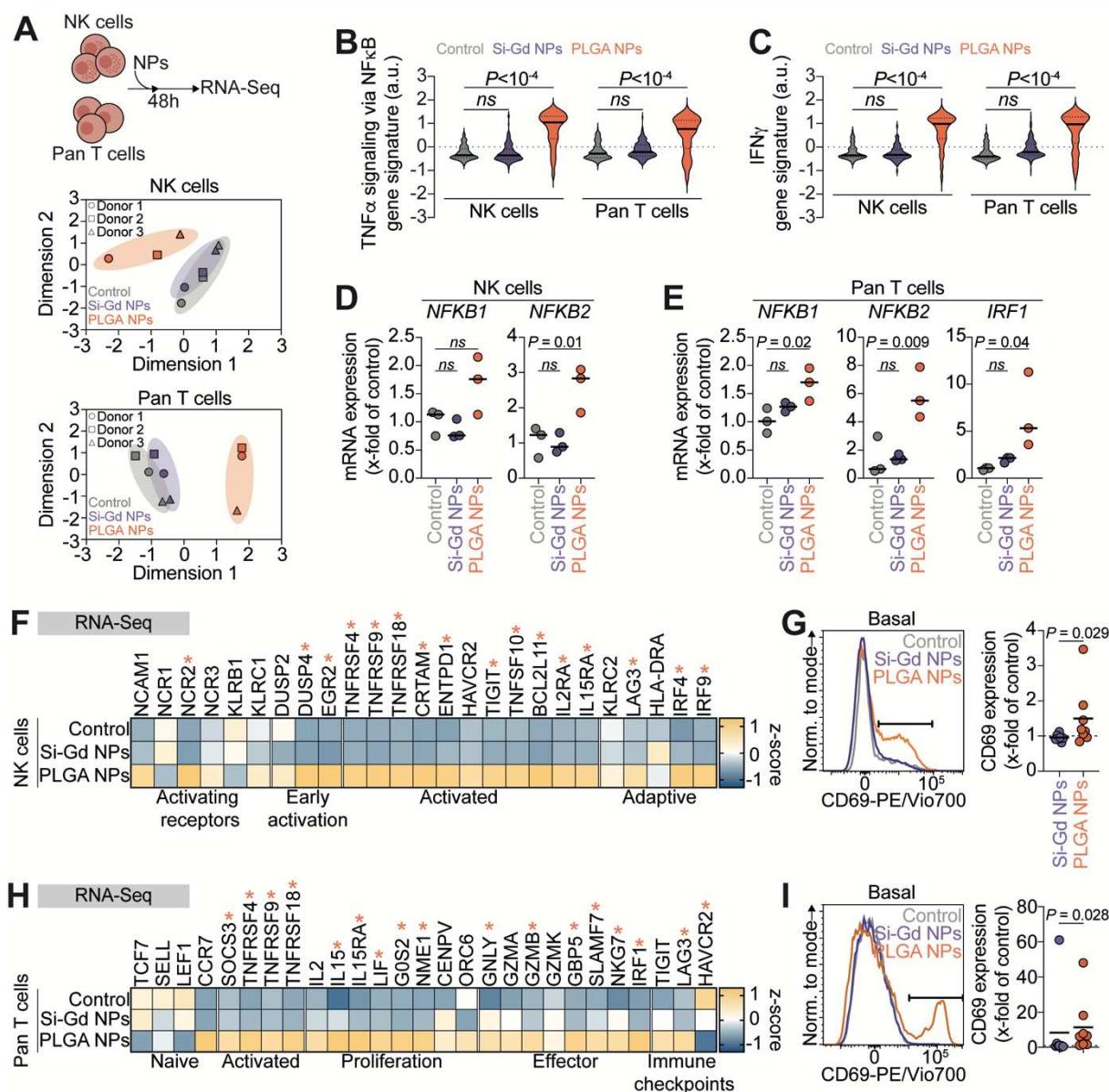


Figure 1 - Mittelheisser *et al.*


1084

1085 **Figure 1. Nanomaterials internalization vary across human NK cells and pan T**
1086 **cells.**

1087 **A.** Infographics illustrating the pipeline of the assessment of nanomaterial impact on
1088 primary human NK- and pan T cells. Nanomaterial physicochemical characteristics are
1089 displayed on the right. **B.** Nanomaterials impact on NK cells (upper panel) and pan T
1090 cells (lower panel) viability measured using CellTiterGlo assay. Data are representative
1091 of 3 independent experiments. Data are presented as mean \pm s.d. **C.** Representative
1092 confocal micrographs of NK cells and pan T cells showing internalized Si-Gd NPs and
1093 PLGA NPs after 4h co-incubation at 37°C. In green Wheat Germ Agglutinin (WGA), in
1094 red nanomaterial (Cyanine5.5-labelled), in blue nuclei (DAPI). Scale bar = 10 μ m. **D.**
1095 Flow-cytometry assessment of nanomaterials internalization in NK- and pan T cells
1096 after 48h co-incubation at 37°C. Left: Representative histograms of the relative
1097 internalization of Si-Gd NPs (upper panel) and PLGA NPs (lower panel). Grey
1098 histogram: untreated control. Right: Quantification of the mean fluorescent intensity
1099 signal of the Cyanine5.5-labelled nanomaterials. Data are representative of 3 to 6
1100 independent experiments and analyzed by a One-way ANOVA test with original FDR
1101 method of Benjamini-Hochberg after assessment of their gaussian distribution by
1102 Shapiro-Wilk test. **E.** Flow-cytometry assessment of nanomaterials internalization in
1103 CD56^{High} and CD56^{Low} NK cells after 48h co-incubation at 37°C. Left: Representative
1104 flow cytometry contour plots of the relative internalization of Si-Gd NPs (upper panel)
1105 and PLGA NPs (lower panel). Right: Quantification of the mean fluorescent intensity
1106 signal of the Cyanine5.5-labelled nanomaterials. Data are representative of 4
1107 independent experiments and analyzed by a Student's t-test (Si-Gd NPs) or Mann-
1108 Whitney test (PLGA NPs) after assessment of their gaussian distribution by Shapiro-
1109 Wilk test. **F.** Flow-cytometry assessment of nanomaterials internalization in CD4⁺ and
1110 CD8⁺ pan T cells after 48h co-incubation at 37°C. Left: Representative flow cytometry
1111 contour plots of the relative internalization of Si-Gd NPs (upper panel) and PLGA NPs
1112 (lower panel). Grey histogram: untreated control. Right: Quantification of the mean
1113 fluorescent intensity signal of the Cyanine5.5-labelled nanomaterials. Data are
1114 representative of 5 to 7 independent experiments and analyzed by a Student's t-test
1115 with Welch's correction (Si-Gd NPs) or Mann-Whitney test (PLGA NPs) after
1116 assessment of their gaussian distribution by Shapiro-Wilk test.

1117

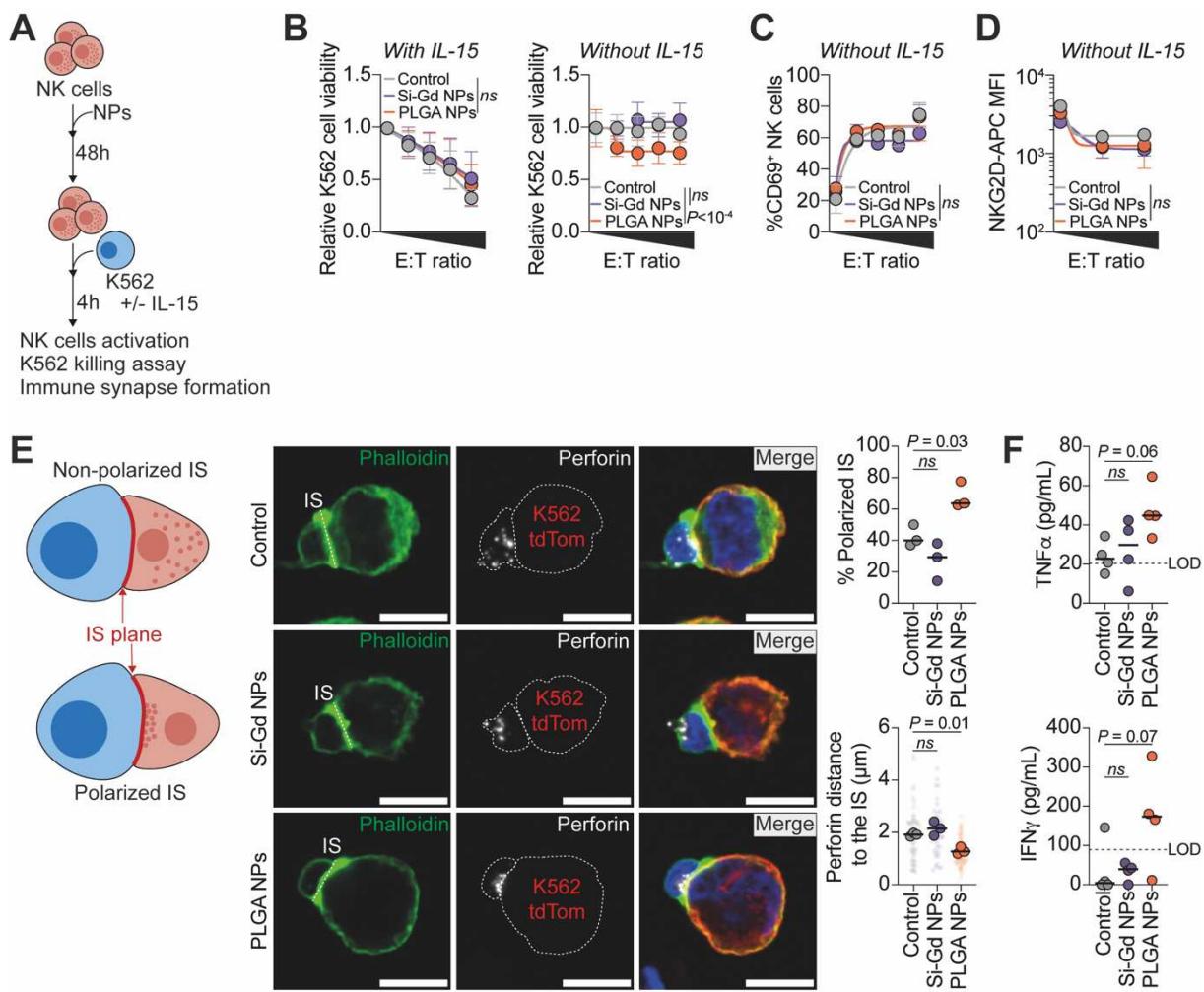
1118

Figure 2 - Mittelheisser et al.

1119

1120 **Figure 2. PLGA NPs transcriptionally prime immune cells activation.**

1121 **A. Transcriptomic impact of Si-Gd NPs and PLGA NPs treatment on immune cells.**
 1122 Upper panel: Schematic representation of the pipeline of the assessment of
 1123 nanomaterial impact on primary human NK- and pan T cells transcriptome. Lower
 1124 panel: Principal component analysis of the entire transcriptomic profile of NK cells and
 1125 pan T cells untreated and treated with Si-Gd NPs or PLGA NPs. Each point represents
 1126 one independent replicate. Axis labels represent the percent of variance as in the
 1127 respective principal components (dimension 1 and dimension 2). **B-C.** Violin plots
 1128 comparing aggregate expression distribution of genes related to TNF α signaling via
 1129 the NF κ B pathway (**B**) or related to IFN γ signaling (**C**) according to the MSigDB
 1130 Hallmark 2024 database. The solid line within each violin represents the median and


1131 dotted lines represent quartiles. Data are analyzed by a Kruskal-Wallis test with original
1132 FDR method of Benjamini-Hochberg after assessment of their gaussian distribution by
1133 Shapiro-Wilk test. **D.** NK cells expression of *NKFB1* and *NFKB2* mRNA expression as
1134 fold change relative to untreated control calculated using the $2^{-\Delta\Delta Ct}$ method
1135 (housekeeping: *GAPDH*). Data are representative of 3 independent experiments and
1136 analyzed by One-way ANOVA test with original FDR method of Benjamini-Hochberg
1137 after assessment of their gaussian distribution by Shapiro-Wilk test. **E.** Pan T cells
1138 expression of *NKFB1*, *NFKB2* and *IRF1* mRNA expression as fold change relative to
1139 untreated control calculated using the $2^{-\Delta\Delta Ct}$ method (housekeeping: *GAPDH*). Data
1140 are representative of 3 independent experiments and analyzed by One-way ANOVA
1141 test with original FDR method of Benjamini-Hochberg after assessment of their
1142 gaussian distribution by Shapiro-Wilk test. **F.** Heat-map showing Z-score values for
1143 RNA expression of NK cells activation and function associated genes. Gene names
1144 are represented on the top while associations are represented on the bottom. Stars
1145 represent significant statistical difference between untreated control NK cells and
1146 PLGA NPs-treated NK cells. **G.** Flow-cytometry analysis of NK cells activation. Left:
1147 Representative histograms of CD69 expression at the NK cells surface in the different
1148 treatment conditions. Right: Quantification of CD69 expression as fold change relative
1149 to untreated control. Data are representative of 7 to 8 independent experiments and
1150 analyzed by a Mann-Whitney test after assessment of their gaussian distribution by
1151 Shapiro-Wilk test. **H.** Heat-map showing Z-score values for RNA expression of pan T
1152 cells activation and function associated genes. Gene names are represented on the
1153 top while associations are represented on the bottom. Stars represent significant
1154 statistical difference between untreated control pan T cells and PLGA NPs-treated pan
1155 T cells. **G.** Flow-cytometry analysis of pan T cells activation. Left: Representative
1156 histograms of CD69 expression at the pan T cells surface in the different treatment
1157 conditions. Right: Quantification of CD69 expression as fold change relative to
1158 untreated control. Data are representative of 8 independent experiments and analyzed
1159 by a Mann-Whitney test after assessment of their gaussian distribution by Shapiro-
1160 Wilk test.

1161

1162

1163

1164

Figure 3 - Mittelheisser et al.

1165

1166 **Figure 3. PLGA NPs enhance anti-tumor functions of NK cells by promoting**
1167 **perforin polarization at the immune synapse.**

1168 **A.** Schematic representation of the pipeline of the assessment of Si-Gd NPs and PLGA
1169 NPs functional impact on primary human NK cells. **B.** Flow-cytometry assessment of
1170 K562 lysis induced by increasing nanomaterials-treated NK cells ratio (0.625:1; 1.25:1;
1171 2.5:1 and 5:1) after 4h of co-incubation with 10ng/mL of IL-15 (left) or without (right).
1172 Data are representative of 6 to 8 independent experiments and analyzed by a Two-
1173 way ANOVA corrected with original FDR method of Benjamini-Hochberg. **C.** 1174 Percentage of CD69-positive NK cells assessed after co-incubation with K562 cells for
1175 4h. Data are representative of 3 independent experiments and analyzed by a Two-way
1176 ANOVA corrected with original FDR method of Benjamini-Hochberg. **D.** Mean
1177 fluorescence intensity of NKG2D expressed at the NK cells surface after co-incubation
1178 with K562 cells for 4h. Data are representative of 3 independent experiments and
1179 analyzed by a two-way ANOVA corrected with original FDR method of Benjamini-

1180 Hochberg. **E.** Nanomaterials-treated NK cells immune synapse (IS) formation with
1181 K562. Left: Schematic representation of IS polarization and perforin distance
1182 evaluation. Center: Representative confocal micrographs of NK-K562 IS. In green
1183 Phalloidin-iFluor488, in white perforin dG9 (Alexa Fluor 647), in red K562
1184 palmitoylated-tdTomato and in blue nuclei (DAPI). Scale bar = 10 μ m. Right:
1185 Percentage of polarized IS (upper panel) and mean perforin distance to the IS (lower
1186 panel). Data are representative of 3 independent experiments and analyzed by a One-
1187 way ANOVA test with original FDR method of Benjamini-Hochberg after assessment
1188 of their gaussian distribution by Shapiro-Wilk test. **F.** Concentration of TNFa (upper
1189 panel) and IFNg (lower panel) released in the supernatant after 4h of NK cells co-
1190 incubation with K562 cells at a 2:1 ratio. Data are representative of 4 independent
1191 experiments and analyzed by a One-way ANOVA test with original FDR method of
1192 Benjamini-Hochberg (TNFa) or by a Kruskal-Wallis test (IFNg) after assessment of
1193 their gaussian distribution by Shapiro-Wilk test. LOD: limit of detection.

1194

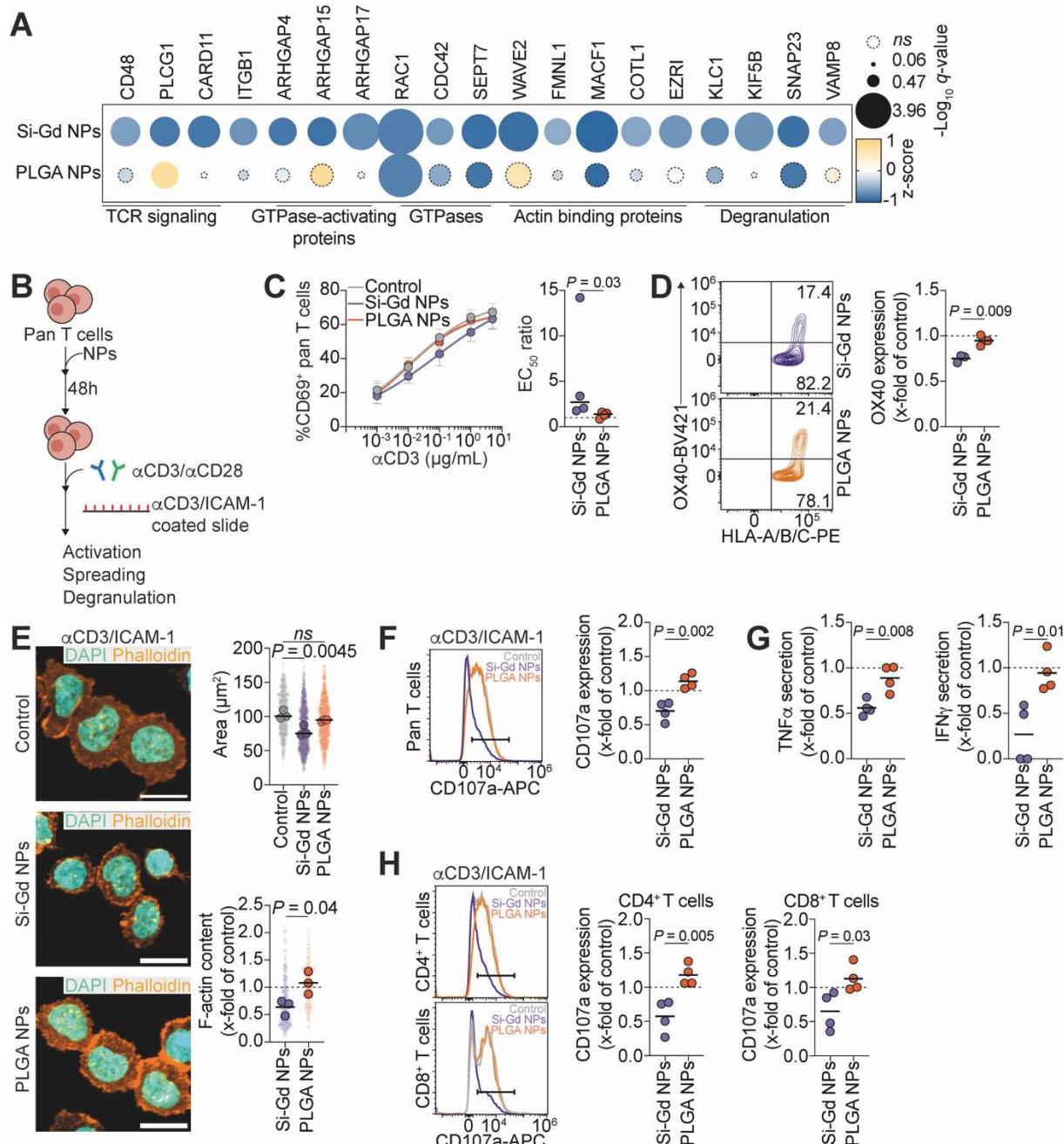
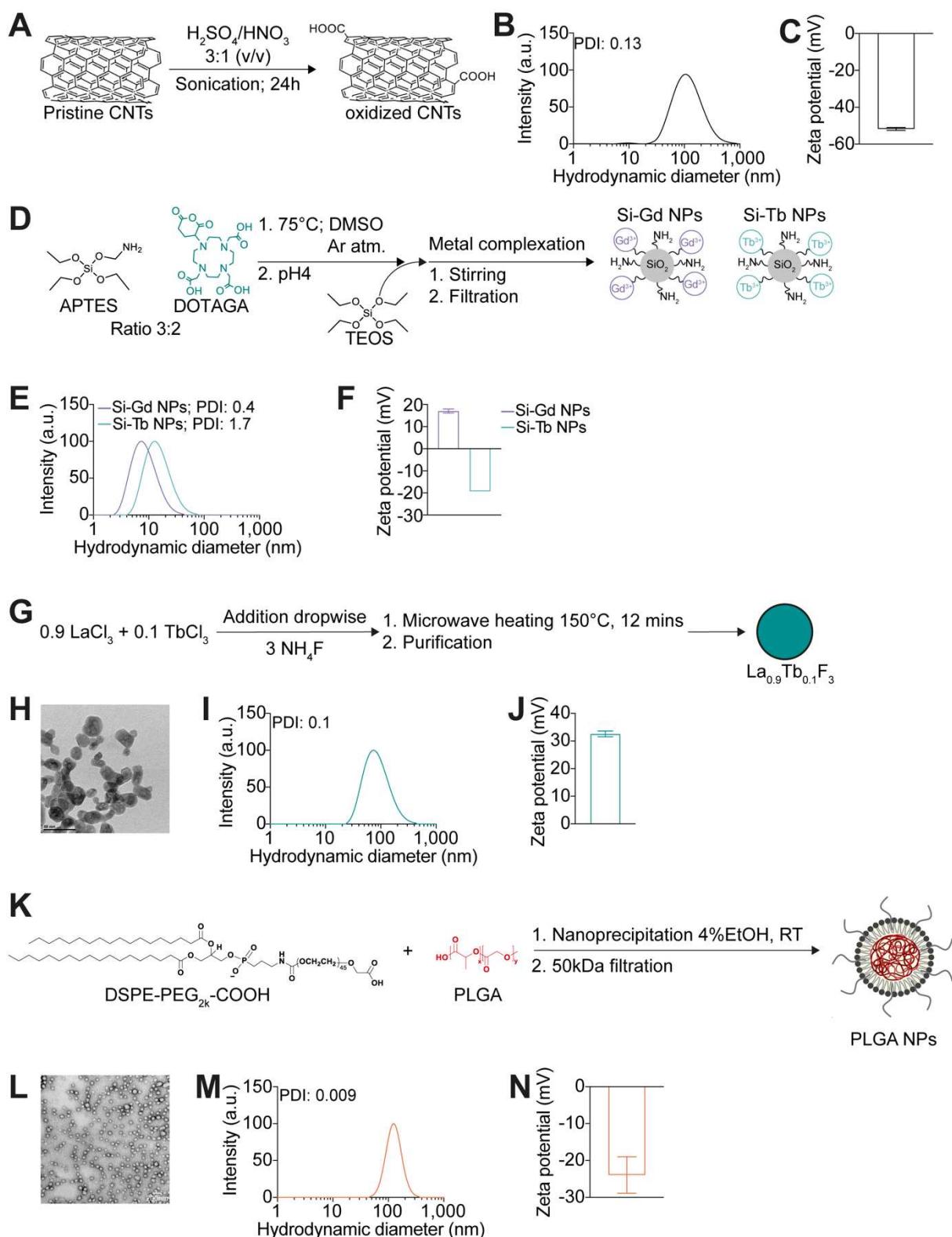


Figure 4 - Mittelheisser et al.

1195

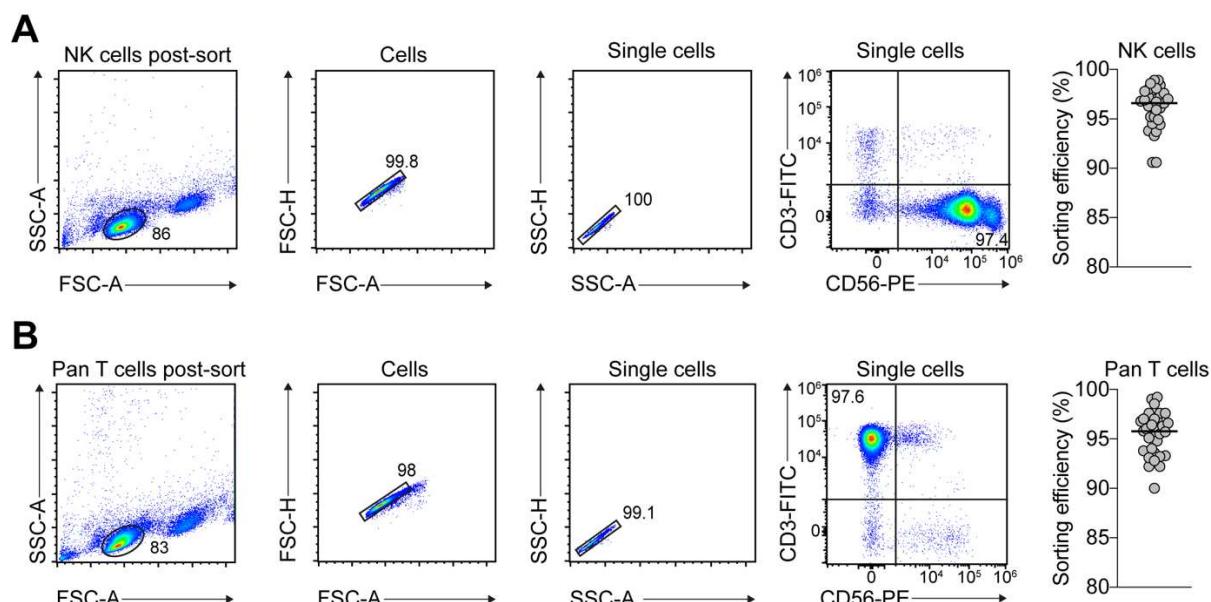

1196 **Figure 4. Silica-based gadolinium NPs treatment impairs pan T cells spreading**
1197 **and degranulation.**

1198 **A.** Bubble plot showing Z-score values for proteins expression associated with pan T
1199 cells functions. Protein names are represented on the top while associations are
1200 represented on the bottom. Bubble size represents $-\text{Log}_{10}(q\text{-value})$. Dashed lines
1201 bubbles correspond to non-significantly deregulated proteins. **B.** Schematic
1202 representation of the pipeline of the assessment of Si-Gd NPs and PLGA NPs
1203 functional impact on primary human pan T cells. **C.** Pan T cells sensibility to polyclonal

1204 activation. **Left:** Percentage of CD69-positive pan T cells assessed after culture on a
1205 culture plate coated with increasing concentration of anti-CD3 antibodies for 24h.
1206 **Right:** Half maximal effective concentration (EC_{50}) calculated from the dose-response
1207 curve in the left graph. Data are representative of 4 independent experiments and
1208 analyzed by a Mann-Whitney test after assessment of their gaussian distribution by
1209 Shapiro-Wilk test. **D.** Flow-cytometry assessment of OX-40 expression at the pan T
1210 cells surface after activation with 5 μ g/mL of anti-CD3 and 5 μ g/mL of anti-CD28
1211 antibodies for 24h. **Left:** Representative flow cytometry contour plots of the relative OX-
1212 40 expression in activated pan T cells previously treated for 48h with Si-Gd NPs (upper
1213 panel) or PLGA NPs (lower panel). **Right:** Quantification of OX-40 expression as fold
1214 change relative to untreated control. Data are representative of 3 independent
1215 experiments and analyzed by a Student's t-test after assessment of their gaussian
1216 distribution by Shapiro-Wilk test. **E.** Nanomaterials-treated pan T cells spreading on an
1217 antigen-presenting cells mimicking surface. **Left:** Representative confocal micrographs
1218 of pan T cells spreading. In orange Phalloidin-iFluor488, in cyan nuclei (DAPI). Scale
1219 bar = 10 μ m. **Right:** Pan T cells median spreading area. **Left:** Relative filamentous actin
1220 content in pan T cells as fold change relative to untreated control. Data are
1221 representative of 3 independent experiments and analyzed by a One-way ANOVA test
1222 with original FDR method of Benjamini-Hochberg (Spreading area) or a Student's t-
1223 test (F-actin content) after assessment of their gaussian distribution by Shapiro-Wilk
1224 test. **F.** Flow-cytometry analysis of pan T cells degranulation. **Left:** Representative
1225 histograms of CD107a (LAMP-1) expression at the pan T cells surface after activation
1226 with 5 μ g/mL of anti-CD3 and 5 μ g/mL of anti-CD28 antibodies for 4h. **Right:** Quantification
1227 of CD107a expression as fold change relative to untreated control. Data are representative
1228 of 4 independent experiments and analyzed by a Student's t-test
1229 after assessment of their gaussian distribution by Shapiro-Wilk test. **G.** TNFa (left
1230 panel) and IFNg (right panel) secretion in the supernatant after activation with 5 μ g/mL
1231 of anti-CD3 and 5 μ g/mL of anti-CD28 antibodies for 4h. Data are represented as fold
1232 change relative to untreated control. Data are representative of 4 independent
1233 experiments and analyzed by a Student's t-test after assessment of their gaussian
1234 distribution by Shapiro-Wilk test. **H.** Flow-cytometry analysis of CD4 $^{+}$ and CD8 $^{+}$ T cells
1235 degranulation. **Left:** Representative histograms of CD107a (LAMP-1) expression at the
1236 CD4 $^{+}$ T cells (upper panel) and CD8 $^{+}$ T cells (lower panel) surface after activation with
1237 5 μ g/mL of anti-CD3 and 5 μ g/mL of anti-CD28 antibodies for 4h. **Right:** Quantification

1238 of CD107a expression as fold change relative to untreated control. Data are
1239 representative of 4 independent experiments and analyzed by a Student's t-test after
1240 assessment of their gaussian distribution by Shapiro-Wilk test.

1241

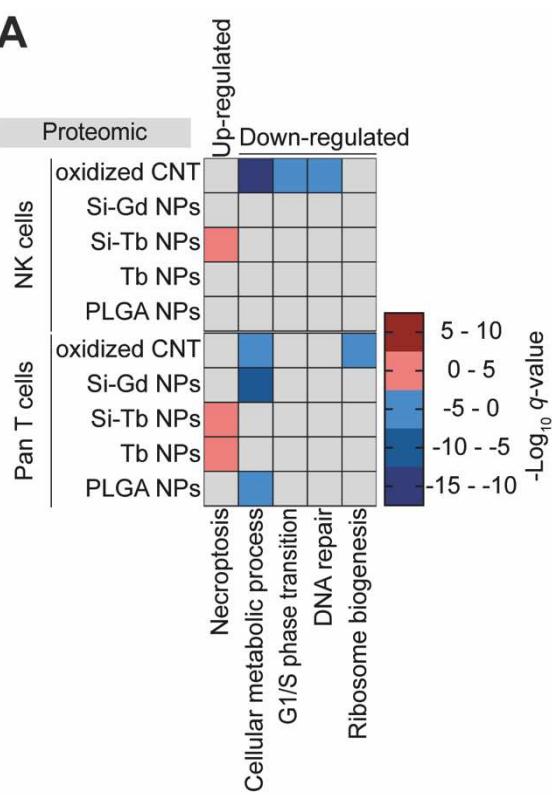

Figure S1 related to Fig.1 - Mittelheisser et al.

1242

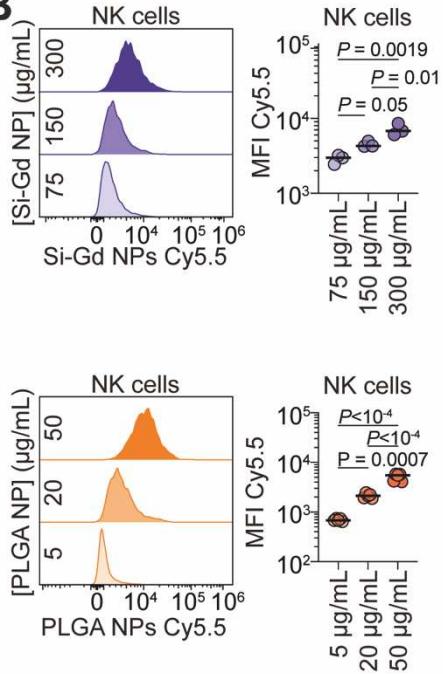
1243 **Supplementary Figure 1 related to Figure 1 – Nanomaterials synthesis and**
 1244 **characterization.** A. Prisitin CNTs were shortened under strong acid conditions
 1245 (H₂SO₄/HNO₃ 3:1) and sonication for 24h to generate a high amount of carboxylic

1246 groups. **B-C.** oxidated CNTs size and charge were measured by DLS. **D.** Ultrasmall
1247 polysiloxane-based gadolinium (Si-Gd) NPs were synthesized by a top-down method
1248 from core (gadolinium oxide) shell (polysiloxane) NPs whereas ultrasmall polysiloxane-
1249 based terbium (Si-Tb) NPs were synthesized with a bottom-up one pot synthesis. **E-F.**
1250 Si-Gd NPs and Si-Tb NPs size and charge were measured by DLS. **G.** Terbium fluoride
1251 (Tb) NPs were synthesized by dropwise addition of 0.9 LaCl₃ and 0.1 TbCl₃ to 3 NH₄F
1252 followed by heating at 150°C for 12 mins and purification. **G.** Transmission electron
1253 microscopy of Tb NPs. **I-J.** Tb NPs size and charge were measured by DLS. **K.** PLGA
1254 NPs were synthesized by self-assembly of DSPE-PEG_{2k}-COOH and PLGA through a
1255 one-step nanoprecipitation. **L.** Transmission electron microscopy of PLGA NPs. **M-N.**
1256 PLGA NPs size and charge were measured by DLS.

1257


1258

1259 **Supplementary Figure 2 related to Figure 1 – NK cells and pan T cells isolation.**
1260 NK cells and pan T cells immunophenotyping. **A.** Left: Gating strategy for assessment
1261 of NK cells sorting efficiency. Right: Percentage of pure CD3⁻ CD56⁺ NK cells after
1262 sorting. Data are representative of 31 independent experiments. Median of the data is
1263 presented. **B.** Left: Gating strategy for assessment of pan T cells sorting efficiency.
1264 Right: Percentage of pure CD3⁺ pan T cells after sorting. Data are representative of 30
1265 independent experiments. Median of the data is presented.

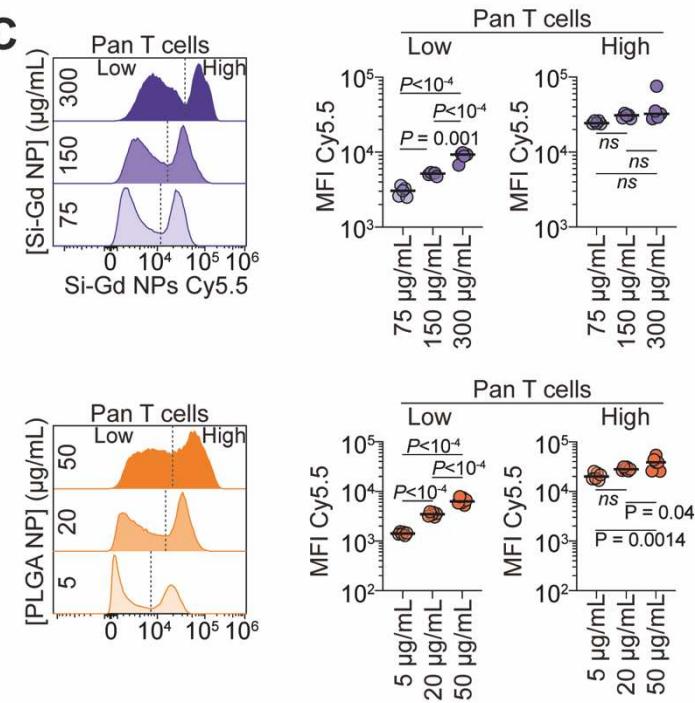

1266

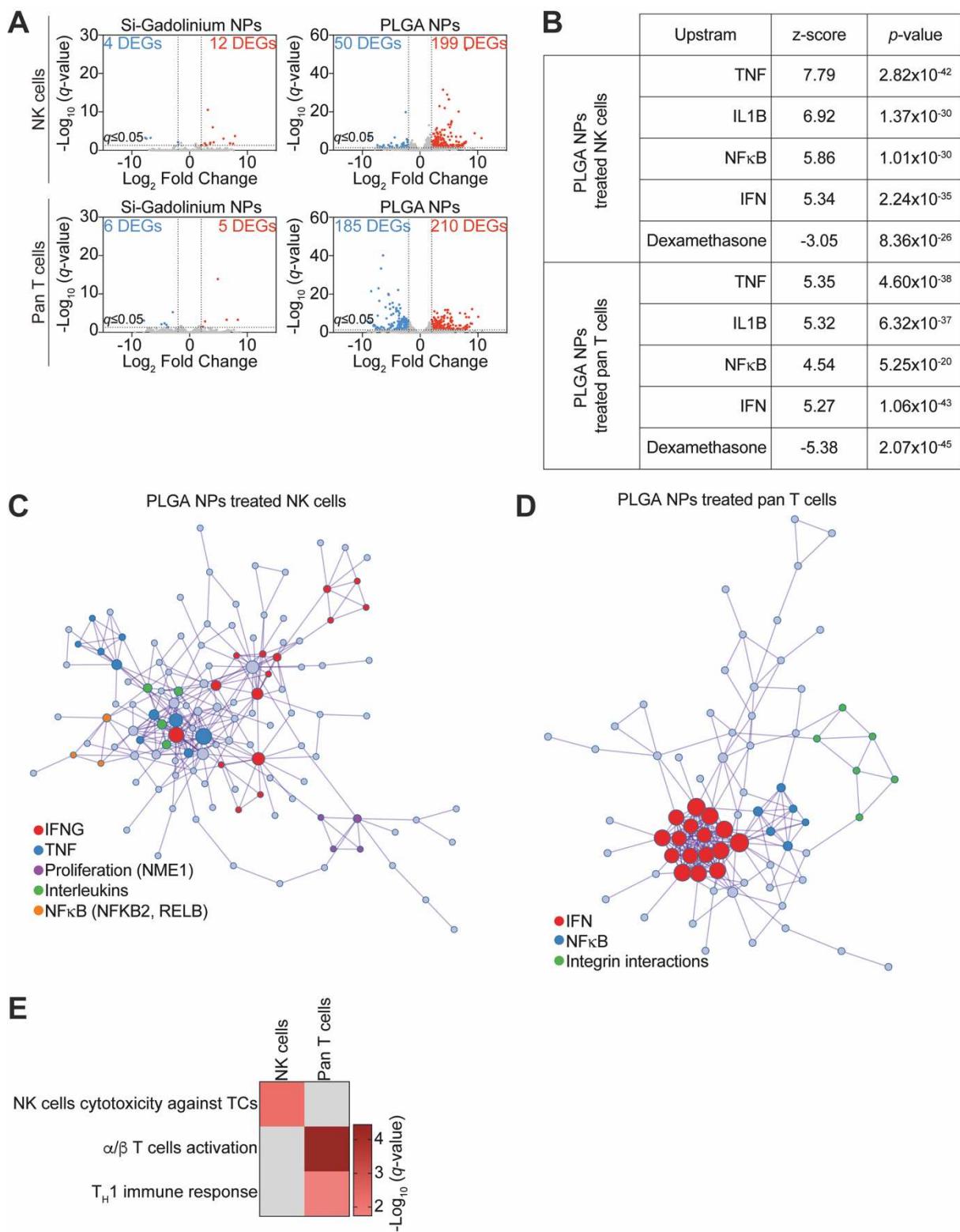
1267

A

B

C



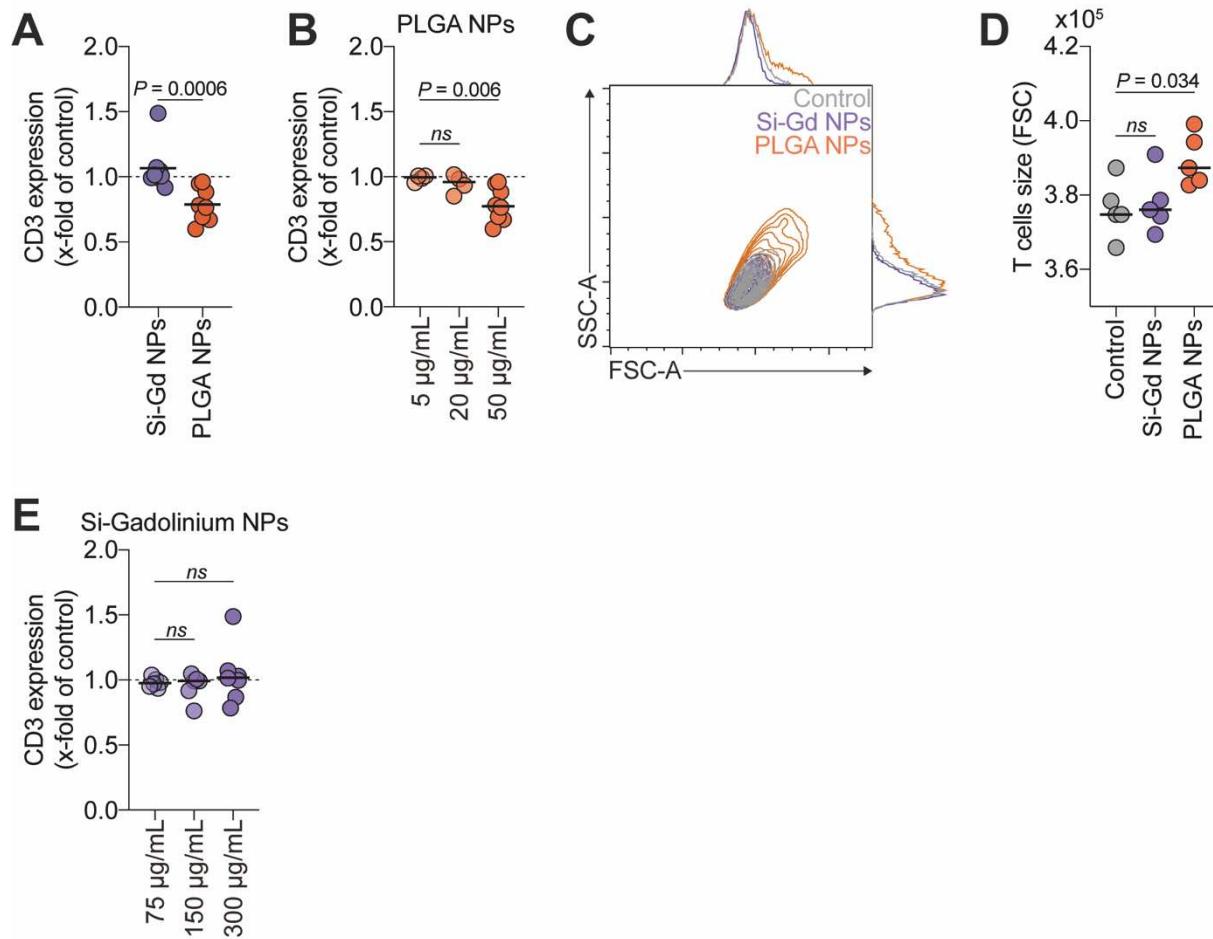

Figure S3 related to Fig.1 - Mittelheisser et al.

1268

1269 **Supplementary Figure 3 related to Figure 1. A.** Heat-map showing $-\text{Log}_{10}(q\text{-value})$ for up-regulated and down-regulated gene ontology terms in NK cells and pan T cells upon 48h treatment with different nanomaterials. **B.** Flow-cytometry assessment of nanomaterials internalization dose-dependency in NK cells after 48h co-incubation at 37°C. Left: Representative histograms of the relative internalization of Si-Gd NPs

1274 (upper panel) and PLGA NPs (lower panel). Right: Quantification of the mean
1275 fluorescent intensity signal of the Cyanine5.5-labelled nanomaterials. Data are
1276 representative of 3 to 6 independent experiments and analyzed by a One-way ANOVA
1277 test with original FDR method of Benjamini-Hochberg after assessment of their
1278 gaussian distribution by Shapiro-Wilk test. **C.** Flow-cytometry assessment of
1279 nanomaterials internalization dose-dependency in pan T cells after 48h co-incubation
1280 at 37°C. Left: Representative histograms of the relative internalization of Si-Gd NPs
1281 (upper panel) and PLGA NPs (lower panel). Right: Quantification of the mean
1282 fluorescent intensity signal of the Cyanine5.5-labelled nanomaterials in low and high
1283 internalizing population as gated on the histograms. Data are representative of 5 to 6
1284 independent experiments and analyzed by a One-way ANOVA test with original FDR
1285 method of Benjamini-Hochberg after assessment of their gaussian distribution by
1286 Shapiro-Wilk test.

1287

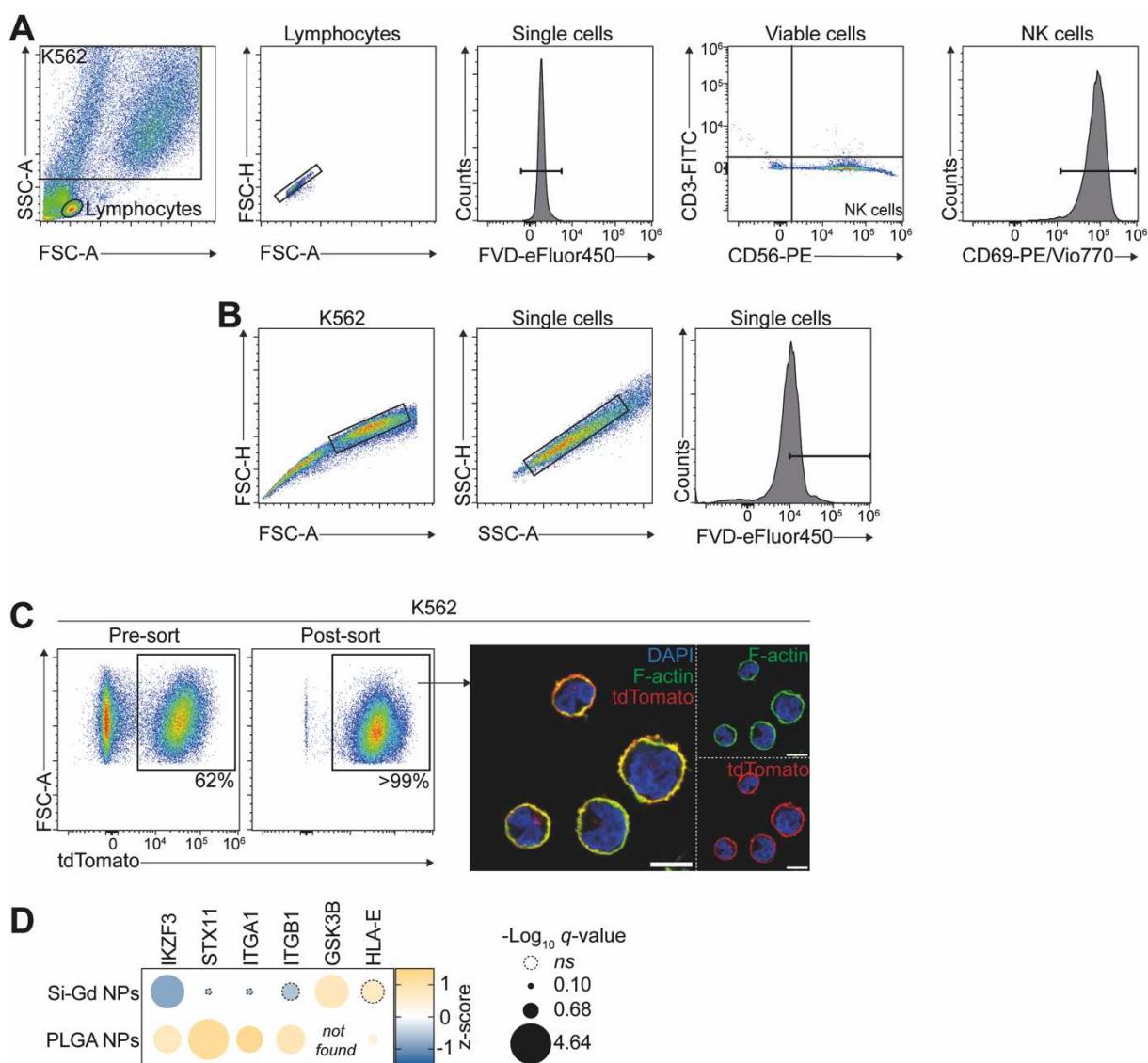

Figure S4 related to Fig.2 - Mittelheisser et al.

1288

1289 **Supplementary Figure 4 related to Figure 2. A.** Volcano plot display differentially
 1290 expressed genes between Si-Gd NPs- or PLGA NPs-treated NK cells (upper panel) or
 1291 pan T cells (lower panel). Threshold $-\text{Log}_{10}(q\text{-value}) \leq 1.3$ and fold-change > 2 . $q\text{-value}$ = adjusted $p\text{-value}$. **B.** Upstream analysis showing the top upstream molecules
 1292

1293 predicted to cause the observed gene expression changes. **C-D.** STRING predicted
1294 protein-protein interactions based on the upregulated genes in PLGA NPs-treated NK
1295 cells (**B**) and pan T cells (**C**) and their functional annotations. **E.** Heat-map showing -
1296 Log10 (*q*-value) of immune cells specific gene ontology terms assignment from
1297 upregulated genes by PLGA NPs treatment of NK cells and pan T cells.

1298



1299 **Figure S5 related to Fig.2 - Mittelheisser *et al.***

1300 **Supplementary Figure 5 related to Figure 2.** **A.** Quantification of CD3 expression at
1301 the surface of pan T cells after 48h of treatment with Si-Gd NPs or PLGA NPs. Data
1302 are represented as fold change relative to untreated control. Data are representative
1303 of 8 independent experiments and analyzed by a Mann-Whitney test after assessment
1304 of their gaussian distribution by Shapiro-Wilk test. **B.** Quantification of CD3 expression
1305 at the surface of pan T cells after 48h of treatment with increasing concentrations of
1306 PLGA NPs. Data are represented as fold change relative to untreated control. Data
1307 are representative of 4 to 8 independent experiments and analyzed by a Brown-
1308 Forsythe and Welch's ANOVA test with original FDR method of Benjamini-Hochberg

1309 after assessment of their gaussian distribution by Shapiro-Wilk test. **C.** Representative
1310 flow cytometry contour plots of the pan T cells size (FSC) and structure (SSC) obtained
1311 by flow cytometry after Si-Gd NPs and PLGA NPs treatment of 48h. **D.** Quantification
1312 of pan T cells size based on (**C**) flow cytometry experiments after 48h of treatment with
1313 increasing concentrations of PLGA NPs. Data are representative of 5 independent
1314 experiments and analyzed by a One-way ANOVA test with original FDR method of
1315 Benjamini-Hochberg after assessment of their gaussian distribution by Shapiro-Wilk
1316 test. **D.** Quantification of CD3 expression at the surface of pan T cells after 48h of
1317 treatment with increasing concentrations of Si-Gd NPs. Data are represented as fold
1318 change relative to untreated control. Data are representative of 6 to 8 independent
1319 experiments and analyzed by a Kruskal-Wallis test after assessment of their gaussian
1320 distribution by Shapiro-Wilk test.

1321

Figure S6 related to Fig.3 - Mittelheisser et al.

1322
1323 **Supplementary Figure 6 related to Figure 3. A.** Gating strategy for assessment of
1324 NK cells activation levels. **B.** Gating strategy for assessment of NK cells-induced K562
1325 lysis. **C.** Generation of a K562 transgenic cells expressing palmitoylated-tdTomato at
1326 their surface. Right: Representative pseudo-color flow cytometry plot before and after
1327 fluorescence-activated cells sorting for high tdTomato fluorescence. Left:
1328 Representative confocal micrographs of K562-tdTomato cells. In green Phalloidin-
1329 iFluor488, in red palmitoylated-tdTomato, in blue nuclei (DAPI). Scale bar = 10 μm. **D.**
1330 Bubble plot showing Z-score values for genes/proteins expression associated with NK
1331 cells functions. Bubble size represents -Log₁₀(q-value). Dashed lines bubbles
1332 correspond to non-significantly deregulated genes/proteins.