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ABSTRACT 

Venous tumour thrombus (VTT), where the primary tumour invades the renal vein and inferior 

vena cava, affects 10-15% of renal cell carcinoma (RCC) patients. Curative surgery for VTT 

is high-risk, but neoadjuvant therapy may improve outcomes. The NAXIVA trial demonstrated 

a 35% VTT response rate after 8 weeks of neoadjuvant axitinib, a VEGFR-directed therapy. 

However, understanding non-response is critical for better treatment. We conducted a 

multiparametric investigation of samples collected during NAXIVA using digital pathology, flow 

cytometry, plasma cytokine profiling and RNA sequencing. Responders had higher baseline 

microvessel density and increased induction of VEGF-A and PlGF during treatment. A multi-

modal machine learning model integrating features predicted response with an AUC of 0.868, 

improving to 0.945 when using features from week 3. Key predictive features included plasma 

CCL17 and IL-12. These findings may guide future treatment strategies for VTT, improving 

the clinical management of this challenging scenario.  

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 25, 2024. ; https://doi.org/10.1101/2024.10.22.619358doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.22.619358
http://creativecommons.org/licenses/by-nc-nd/4.0/


INTRODUCTION 

Venous tumour thrombus (VTT) occurs in 10-15% of patients with clear cell renal cell 

carcinoma (ccRCC), where the primary tumour invades the renal vein and inferior vena cava 

(IVC) and can reach the liver and heart1,2. Whilst these patients are technically curable, the 

surgery required is extensive and complex, requiring multiple teams and the possibility of 

cardiopulmonary bypass3,4. There is considerable morbidity and mortality associated with 

surgery (5-15%), which increases with the height of the VTT. If left untreated, RCC with VTT 

has a median survival of 5 months1,3.   

The NAXIVA trial (Study of Axitinib for Reducing Extent of Venous Tumour Thrombus in Renal 

Cancer with Venous Invasion, NCT03494816) was a phase II, single-arm, multi-centre study 

investigating the use of neoadjuvant axitinib, a vascular endothelial growth factor receptor 

(VEGFR)-directed tyrosine kinase inhibitor (TKI), to reduce the ccRCC VTT. Loss of the 

tumour suppressor Von Hippel–Lindau (VHL) in ccRCC tumours activates the hypoxia 

response pathway of the cell, leading to induction of VEGF-mediated angiogenesis5. VEGFR-

TKIs, either alone or in combination with immunotherapy, are used as first line therapy for 

advanced RCC and have proven efficacy in patients with metastatic disease6. In the NAXIVA 

trial, 35% of patients experienced a reduction in VTT length of >30% after axitinib treatment, 

leading to less invasive surgery7,8. The remaining patients did not benefit from the neoadjuvant 

treatment. Progress is needed in understanding the reasons for non-response, to improve 

treatments for these patients.  

Little is known about the mechanisms driving treatment response in the VTT.  There is 

evidence that the VTT arises as a rapid outgrowth of the primary tumour and has shared driver 

events9.  Studies have shown viable proliferating tumour cells10 and immune infiltrate11,12 in 

the VTT. At least one study is currently investigating combination treatment in the specific 

setting of ccRCC with VTT (NEOPAX, NCT05969496)13. However, no prospective study has 

examined the determinants of VTT response to systemic treatment.  
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In metastatic ccRCC, RNA-based signatures have been used to group patients according to 

the therapies most likely to benefit them14–16. A prospective study (BIONIKK, NCT02960906) 

classified patients into four transcriptome-based groups, finding that patients with an immune-

low tumour microenvironment (TME) had improved survival during combination of two 

immunotherapy drugs compared to patients with higher immune-infiltration and inflammatory 

markers17. DNA, protein and clinical markers have also been investigated for patient 

stratification18, but none have been widely adopted for use in metastatic cases, nor in 

neoadjuvant settings19–21. In wider oncology practice, the complexity of the TME and the 

disparate data generated from multiple sources complicates the development predictive 

signatures. In other tumour types, the use of machine learning (ML) approaches to integrate 

data streams has provided valuable insights22,23. 

To investigate predictive markers of VTT response to axitinib, we performed a comprehensive 

multiparametric assessment of the TME and peripheral blood for patients in the NAXIVA trial. 

An ML model was then used to identify biomarkers for VTT response. Identifying reliable 

predictors of VTT treatment response would allow a personalised approach to treatment 

selection, which would improve outcomes, avoid overtreatment, and inform the design of 

future studies for VTT management.   
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RESULTS 

Assessment of VTT length response on the NAXIVA Trial 

The design and clinical outcomes of the NAXIVA trial have been fully reported elsewhere7.  

Briefly, eligible patients underwent baseline tumour biopsy, then up to 8 weeks of axitinib 

treatment, followed by surgery to remove the primary tumour and VTT (Fig. 1a). Serial blood 

samples were collected during the study.  Extent of the VTT was assessed by MRI scan at 

baseline (week 1), week 3 and week 9. For the present study, we included the 20 evaluable 

patients that were assessed in the trial.  

In the main trial analysis, the primary endpoint was change in the Mayo level of VTT7. 

However, the Mayo level is a categorical classification based on anatomical landmarks8, and 

relatively small changes in the VTT dimensions may result in a change in Mayo level, or 

conversely a large change may not cross a Mayo level.  To investigate the TME biological 

response to therapy, we analysed against the continuous percentage change in the VTT 

length. 7/20 patients achieved a >30% reduction in VTT length by week 9, and we classified 

this group as responders for our analysis (Fig. 1b, S1a-b).  Considering the main clinical 

parameters, in keeping with the results reported in the clinical study7, axitinib dosing, sex and 

TNM status did not appear to affect the VTT length change after treatment (Fig. S1c-f).   

TME of untreated VTT resembles the primary RCC TME 

First, we assessed the microenvironment of untreated resected VTTs, outside of the NAXIVA 

trial, in comparison to the corresponding primary tumour. In keeping with previous studies, 

VTT consists mainly of Carbonic Anhydrase 9 (CA9) positive viable tumour cells which fill the 

vessel lumen (Fig. 1c). In some examples, the morphology of the VTT was very similar to the 

primary (such as the cystic structures seen in Fig. 1c). There are extensive microvascular 

structures within VTT, with CD31 positive vessels surrounded by alpha smooth muscle actin 

(SMA) positive pericytes, between the CA9 positive tumour cells (Fig. 1d).  There is immune 

infiltration of both CD3 positive T-cells and CD68 positive macrophages (Fig. 1e). We 

assessed the relationship between the VTT TME and corresponding primary tumour by 
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quantitative immunohistochemistry (IHC) for the following key markers in 10 paired cases: 

Ki67, CD8 and CD31 (Fig. S1g-i). The levels of Ki67, CD8 and CD31 were all significantly 

correlated between the VTT and primary tumour (CD8 p = 0.022, Ki67 p = 4 x 10-4, CD31 p = 

0.032, Fig S1g-i). These data demonstrate that the microenvironment of untreated VTT closely 

resembles that of its parent tumour, and so therapies that are effective against a primary 

should be effective against VTT. 

Higher microvessel density is associated with VTT response to axitinib  

To analyse the effect of axitinib on tumour vasculature, whole slide imaging (WSI) of NAXIVA 

patients’ baseline biopsy, and post-treatment VTT and primary tumour samples were analysed 

for microvessel density (MVD) by HALO image analysis (Fig. 2a). The baseline biopsy 

CD31+/CD34+ MVD in responders was significantly higher than in non-responders (p = 7.88 

x 10-4, Fig. 2b), and was followed by a significant MVD reduction in the VTT after treatment (p 

= 4.06 x 10-4).  In contrast, the MVD remained at a stable, low level in non-responders (Fig. 

2b). This effect was also seen when quantifying CD31+ and CD34+ mono-markers (Fig. S2a-

b). Upon assessment of SMA+ cancer associated fibroblast (CAF) area coverage, there was 

a non-significant trend towards a reduction in the SMA+ CAF in non-responders on treatment 

(p = 0.0867, Fig. S2c).  

Circulating angiogenic factors are differentially induced in responders and non-

responders  

Axitinib inhibits the signalling response of the VEGF receptors to their soluble ligands; 

therefore, we assessed the plasma levels of circulating angiogenesis markers during the trial. 

Absolute levels of VEGF-A were not different either before or during treatment in responders 

and non-responders (Fig. S3a). However, the fold change relative to each individual patient 

baseline showed circulating VEGF-A levels increased significantly by the end of treatment in 

responders compared to non-responders (p = 0.0118 at week 7, Fig. 2c). Absolute placental 

growth factor (PlGF) levels were low at baseline in both groups (Fig. S3b), followed by a strong 

induction in the responders at week 3 and a return to low levels after treatment ended and the 
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tumour was resected. In fact, there was an approximately 7-fold PlGF increase in responders 

by week 3 of treatment (p = 3.38 x 10-3, Fig. 2d). There were some differences in early levels 

of additional angiogenic markers (Fig. S3), with VEGF-C higher in non-responders at baseline 

(p = 0.0356) and soluble VEGFR1 (sVEGFR1) higher in responders (at week 3, p = 0.0445).  

These markers seemed relatively stable on treatment (Fig. S3).  

We then assessed the sources of the key identified angiogenesis markers in a published single 

cell RNA sequencing dataset of untreated RCC cases24, which revealed the primary source of 

VEGF-A to be the cancer cells; in contrast, PlGF is made by SMA+ myofibroblast subsets and 

pericytes in the TME (Fig. 2e).  

Non-responders have an immune shift toward CD8+ T cell immunity 

Immune features may predict treatment response in advanced RCC15–17, we therefore 

assessed the influence of tissue and blood immune components on VTT response, including 

the plasma levels of immune cytokines. Circulating IL-12p70 levels were significantly higher 

in non-responders at baseline (p = 0.0282, Fig. 2f). IL-7 levels were significantly higher in non-

responders after treatment (p = 0.0344, Fig. 2g). There was no difference in interferon gamma, 

or any other cytokines assessed pre- and post-treatment (Fig. S4). 

WSI of biopsy, VTT and primary tumour were analysed by HALO image analysis for T-cell 

subsets. Comparing responders with non-responders, no significant differences were 

observed in baseline biopsy CD8+ T-cell levels or CD8+ subsets, including in the CD8+/PD-

1+ compartment (Fig. 2h), and this remained stable during treatment in both groups (Fig. S5). 

No significant differences were seen in overall CD4+ T-cells, or CD4+/Foxp3+ T-regs, or 

CD68+ macrophages before or after treatment (Fig. S5).  

Peripheral blood T-cell subsets were assessed by flow cytometry (Fig. S6a).  There was a 

trend towards increased CD8+ T-cell levels in the peripheral blood of non-responders at 

baseline (p = 0.294, Fig. 2i), and a corresponding shift in the CD4+ to CD8+ T-cell ratio (Fig. 

S6a).  Levels of other CD8+ and CD4+ subsets were similar between groups (Fig. S6a), as 
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were levels of natural killer cells (Fig. S6b) and monocyte subsets (Fig. S6c).  There were no 

differences in B-cell subsets or plasmacytoid dendritic cells (Fig. S7).  

Responders and non-responders have distinct transcriptomic profiles 

RNA-seq was performed on pre-treatment biopsies to investigate transcriptomic predictors of 

response. Principal component analysis of baseline biopsies demonstrated clustering of 

responders and non-responders (Fig. 3a). Differential gene expression analysis identified 

some immune-related transcriptomic differences, such as IL12RB2 (IL-12 receptor beta 

subunit) and ARG2 (Arginase type II) (Fig. 3b). However, Gene Ontology (GO) analysis 

showed that the majority of the most differentially expressed genes are in metabolic pathways, 

examples including ALDOB (Aldolase B) and ACSBG1 (Acyl-CoA Synthetase, Bubblegum 

Family, member 1) (Fig. S8). Seven were solute carrier (SLC) family genes, four of which 

reached high significance (p < 0.001). ccRCC survival data from The Cancer Genome Atlas 

(26) suggests high expression of SLC6A19 (Sodium-dependent neutral amino acid transporter 

B(0)AT1), SLC22A12 (Solute carrier family 22 [organic anion/cation transporter], member 12) 

and SLCO2A1 (Solute carrier organic anion transporter family member 2A1 - a prostaglandin 

transporter) is associated with improved overall survival, as is ALDOB (Fig. S8).  

The most differentially expressed genes from NAXIVA were mapped onto publicly available 

data from a Phase III study, IMmotion151, which described seven distinct molecular clusters 

in advanced RCC16.  Genes highly expressed in NAXIVA responders were also highly 

expressed in IMmotion151 clusters C1 (angiogenesis/stromal) and C2 (angiogenesis), 

including the SLC family members. In contrast, patients in clusters C4 (T-effector/proliferative), 

C5 (proliferative) and C6 (stromal/proliferative) have lower expression of the genes highly 

expressed in NAXIVA responders, and higher expression of the genes highly expressed in 

NAXIVA non-responders (Fig. 3c).  

Published RNA-based predictive signatures of RCC treatment response to anti-angiogenic or 

immunotherapy from IMmotion151 and Javelin Renal 101, another large phase III clinical trial, 

were used to calculate scores for each patient in NAXIVA (Fig. 3d-e). NAXIVA responders 
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score higher in the Javelin Renal 101 “Angio” RNA signature15, on average. Three of the non-

responders score highly in the Javelin “Immuno” score, but the spread of the scores is broad 

(Fig. 3d).  The IMmotion151 molecular subset clusters used to differentiate patients in the 

ongoing Phase II OPTIC-RCC study16,25 – C1/2 angio/stromal, and C4/5 T-effector/proliferative 

– again showed correlation with the NAXIVA responder and non-responder groups, with non-

responders achieving a higher C4/5 score on average than responders (Fig. 3e). However, 

the C1/2 score is less able to differentiate between these patients.  

A machine learning model integrating multiple baseline features predicts treatment 

response  

Integrating multiple data strands into a predictive model may provide better insights into the 

drivers of response in oncology trials22,23. We developed an ML approach using baseline (week 

1) features to predict response outcome, considering a binary classification of response as 

above, where response is defined as a >30% reduction in VTT length compared to baseline. 

The input data consisted of 62 features measured for each of the 20 patients. To reduce 

overfitting of the model to the small dataset, highly correlated features were reduced as part 

of data pre-processing, and the first part of the model involves a dimensionality reduction step, 

which selects the features contributing most to response (Fig. 4a). In this model, three features 

of the 62 were selected. A logistic regression was then fitted to the reduced dataset. We used 

a leave-one-out cross-validation approach, whereby the feature selection and model training 

was repeated for each group of 19 patients, generating 20 models which each predicted the 

response of the remaining one patient. While the number of patients in the study is relatively 

low, this approach prioritises feature identification for further investigation and follow up in 

future studies.  

The scaled data input to the model are shown in Fig. 4b. With these baseline features, the 

model achieved an area under the receiver operating characteristic curve (AUC) of 0.868 (Fig. 

4c, Table 1). Three specific features were selected repeatedly in at least 8 of the 20 iterations 

of the model (Table 2). These were found to be plasma IL-12p70, CCL17, and microvessel 
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density. CCL17 was not identified in the univariate data analysis (Fig. S4) but had the highest 

selection frequency and relative weight assigned by the logistic regression. Responders were 

always low in circulating CCL17 and IL-12p70, and generally, but not exclusively, higher in 

tumour MVD (Fig. 4d). Published scRNA-seq data shows that CCL17 is not expressed by 

RCC cells but may be expressed by conventional dendritic cells in the TME (Fig. S9). The 

CCL17 receptor, CCR4, is expressed on CD4+ T-cells and highest on CD4+ T-reg cells. IL-

12 receptors are widely expressed on T-cell and NK populations (Fig S9).  

Adding early dynamic measure improves the performance of the machine learning 

model 

A challenge in biomarker development for all cancers is the inherent variability between 

patients, either due to tumour differences or their underlying physiology. Early markers of 

response after treatment has begun may be informative for clinical decision making. 

Therefore, we updated the model to include measurements of fold-changes in the plasma 

angiogenic factors after three weeks of axitinib treatment (Fig. S10). The model achieved a 

higher AUC of 0.945 (Fig. 4c), with high selection of CCL17 and IL-12p70, as before (Table 2, 

Fig. 4e). Interestingly, the week 3 fold-change in plasma sTie-2 and PlGF also showed 

potential for stratification. 

Comparing the longitudinal performance of the models, the dynamic model returns higher 

confidence in the responder classification, which we interpret as a higher probability of 

response, giving a score of >0.5 for all seven responders (and five of them >0.9). The baseline 

model gives six responders >0.5 (and three of them >0.9), with one misclassified as <0.1 (Fig. 

4f). The selected features correspond as expected to the molecular clusters in the 

IMmotion151 RNA-seq data (Fig. 4g). PlGF is much higher in the angio-stromal cluster, C1, 

in keeping with its stromal origin in the single cell analysis.   
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DISCUSSION 

Our study draws on a unique sample set from a phase II clinical trial, with tissue and serial 

blood samples taken before, during and after treatment. We conduct a multiparametric 

analysis including tissue factors by digital pathology and RNA-seq, and both cell-based and 

soluble-factor analysis of peripheral blood. Furthermore, we deploy ML approaches to 

prioritise and integrate the parameters. This allows us to gain new insights into determinants 

of response in ccRCC with VTT, a challenging clinical scenario.  

The highly organised nature of the VTT TME is striking, with an established microvessel 

network, stroma, and immune infiltrate as seen in primary ccRCC. High baseline MVD was 

predictive of response to neoadjuvant axitinib, particularly in the CD31/CD34+ subset of 

vessels. Good response was also associated with greater induction of angiogenic growth 

factors, particularly stroma-derived PlGF. Non-responders had an immune-high phenotype, 

with higher levels of IL-7 and IL-12, and trends to increased circulating CD8+ T-effectors in 

blood and CD8+/PD-1+ T-cells in the TME. Assessing transcriptomic data from baseline 

biopsies, several genes were associated with good response, notably in the solute carrier 

gene family. The ML model selected IL-12p70, CCL17 and biopsy MVD for response 

prediction, with model performance improvements seen after the inclusion of early response 

data, selecting for sTie-2 and PlGF induction. The identified features could be readily assayed 

in clinical practice.  

Our data supports previous reports that the VTT is closely related to the parent tumour and is 

essentially primary tumour existing within the lumen of the vessel10–12. Our finding that VTT 

axitinib responders have a pro-angiogenic, immune-low phenotype is in keeping with 

observations in the metastatic setting, where an angiogenesis-rich subgroup is proposed to 

benefit from VEGFR-TKI therapy14–17. Amongst circulating factors, PlGF has previously been 

described as a pharmacodynamic marker for TKI treatment26,27; however, it has not previously 

been found to be a predictive marker for therapy outcome as demonstrated here. IL-7 supports 
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lymphocyte proliferation28, IL-12 is critical for cytotoxic T-cell differentiation29, and there is 

evidence these cytokines may cooperate to enhance antitumour immunity30.  

Our study finds that highly upregulated genes in NAXIVA responders were also upregulated 

in C1/2 patients (angiogenic/angio-stromal) in publicly available IMmotion151 transcriptomic 

data, whereas the opposite was observed for C4/5/6 (T-effector/proliferative, proliferative and 

stromal/proliferative), which fitted better with the non-responding patients. When published 

RNA signatures were applied to the NAXIVA transcriptomic data, we found some correlation 

with outcome, particularly for the Javelin Renal 101 ‘Angio’ score. 

The RNA-seq data from the patient biopsies revealed an association between response to 

axitinib and a number of genes involved in several metabolic pathways, including genes in the 

solute carrier family, namely SLC6A19, SLC22A12, SLCO2A1 and SLC4A1. The concomitant 

increase in MVD and expression of genes related to solute metabolism and transport point 

towards a relationship between the metabolic pathways in the tumour and the induction of 

angiogenesis. For example, SLCO2A1 (a prostaglandin transporter) may regulate the 

endothelial response to prostaglandins31, influencing angiogenesis and potentially 

responsiveness to anti-angiogenic therapy. Three of the SLC family members identified in 

NAXIVA responders were associated with favourable prognosis in TCGA data, where they 

were also predictive of immune microenvironment and drug response32. Considering other 

upregulated metabolic genes, ALDOB has also been reported to have prognostic significance 

in RCC33. These genes are expressed by normal renal tubules, so they may mark well-

differentiated, less aggressive tumours. 

A further question in the treatment of metastatic ccRCC is the potential synergistic effect of 

combining immunotherapy with VEGFR-directed TKIs, where the TKI is proposed to boost the 

effect of immunotherapy. Pre-clinical data indicates that VEGFR-TKIs enhance immunity by a 

variety of effects, including the reduction of immune suppressive myeloid cells in the tumour 

microenvironment (TME)34–37. In our data, we did not find any clear evidence of axitinib altering 

the immune profile and the overall immune phenotype remained stable on treatment. This is 

consistent with a study of neoadjuvant pazopanib in localised RCC, which did not find any 
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change in immune signatures on treatment20. Axitinib has a narrow range of targets compared 

to other TKIs used in RCC38, so these observations do not rule out an immune modulatory 

effect of TKIs that target a wider range of receptors such as lenvatinib or cabozantanib.  

Induction of PlGF at week 3 was a key marker of good outcome in NAXIVA. Biological 

heterogeneity, both between patients and within tumours, is a challenge for the development 

of baseline predictive biomarkers, whose limited performance could be surpassed by dynamic 

measurement of blood markers such as PlGF. Early blood biomarker changes may have 

significant clinical utility as they are readily assayed in the clinic. In the scenario of VTT 

management, it may give confidence in continuing with neoadjuvant therapy against 

proceeding directly to surgery. Our data do not provide a mechanism for the PlGF induction; 

however, we hypothesise that in responders, the effective blockade of the VEGFR axis 

induces a hypoxic response with increased production of VEGF-A and PlGF as a 

compensatory mechanism. It is not clear whether the responders and non-responders are 

biologically distinct in this respect, or whether there is a spectrum of effects depending on the 

degree of VEGFR inhibition achieved. PlGF is reported to potentiate the effectiveness of 

VEGF signalling, and so it may be a mechanism to overcome blockade39, particularly important 

in pathological angiogenesis compared to physiological angiogenesis40. PlGF is an attractive 

marker for further exploration as there is an existing clinical assay used for pre-eclampsia, 

which might be re-purposed.  

A challenge in the analysis of small clinical trial datasets with extensive translational analysis 

is the large number of parameters assessed for predictive value in comparison to the number 

of patients enrolled in the study. ML approaches may enhance the analysis of similar datasets. 

The ML model based on baseline features achieved good performance for response prediction 

on an internal validation set. Performance is enhanced by data from week 3, again 

demonstrating the potential value of dynamic marker assessment. The models are limited by 

a small dataset and no current external validation data, but do provide an indication of putative 

response markers. The models selected a small number of factors based on plasma and 

tissue measurements which could be readily translated into the clinic. The result for CCL17 
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illustrates the utility of the ML approach, as this cytokine was assigned high priority by the ML 

models despite not being seen in our initial single parameter screens of the data. CCL17 is an 

important regulator of T cell immunity, acting on CCR4, and has been shown to be negatively 

prognostic in RCC41. The ML approach provided some insight into the interaction between the 

different features, particularly with responders being low in both IL-12p70 and CCL17. 

Changes in sTie-2 were also important in the dynamic model, which could be an alternative 

pathway for angiogenesis42; however, we interpret this finding with caution: although the fold 

change was consistent, the absolute changes in sTie-2 concentration in each patient were 

small. RNA-seq data was not included in our ML model due to the potential for noise 

amplification of adding several thousand differentially expressed genes to the other 

parameters. We observed differences in RNA and protein results; for instance, CCL17 was 

undetected in our RNA-seq and present at low levels in published single-cell datasets. This 

may suggest low transcript expression in tumours, making detection challenging, or indicate 

the importance of a non-tumour source, such as primary or secondary lymphoid tissue. 

The study is limited by the small size of the trial, with only 20 participants, and by the lack of 

an external validation set for the key parameters identified, due to the unique nature of the 

study.  We are restricted in both respects by the lower prevalence of VTT relative to all RCC 

cases; specific VTT management has been the subject of phase II trials to date, but a 

dedicated phase III VTT trial is likely unfeasible. Thus, we are limited to suggesting these 

markers as priorities for further work. Axitinib has been superseded by more active treatment 

combinations of TKIs and immunotherapy in the metastatic setting43–45, which is now being 

explored in pre-operative trials13; nonetheless, the TKI monotherapy in NAXIVA provides a 

useful comparator to any translational data arising from these IO-TKI studies. 

Beyond phase II trials of current treatments, newer agents such as more potent TKIs or 

bispecific immunotherapies may have application in improving oncologic outcomes for VTT 

patients. This must be balanced against risks of toxicity. Our investigations of the 

microenvironment and blood features have identified predictive biomarkers that might be 

validated in these studies, either alone or as a combined assay. It will be interesting to see 
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whether the key features identified by our study, which mainly divide the patients into ‘immune’ 

and ‘angiogenic’, are still valuable when combination treatment is used, or whether others 

emerge. It is critical that a range of translational analysis approaches, including tumour, blood, 

RNA and protein-based approaches linked to advanced cancer imaging, are built into future 

study designs to gain a full understanding of the mechanisms of tumour response and 

resistance.   
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MATERIALS & METHODS 

Participants  

NAXIVA was a single arm, single agent, phase II, open label, multicentre UK based study 

(NCT03494816, UK ethical approval REC reference: 17/EE/0240). Full study details including 

the trial protocol have been previously published7. Key inclusion criteria included: age >18, 

T3a, T3b or T3c, N0/N1, M0/1, biopsy proven clear cell RCC, suitable for immediate surgery. 

The baseline characteristics of the patients are summarised in the clinical publication7. 

Patients were treated with axitinib at a starting dose of 5mg BD, escalated to 7mg BD and 

then 10mg BD every 2 weeks. Drug was stopped a minimum of 36 hours and maximum of 7 

days before surgery.  The 20 evaluable patients in the intention to treat population in the main 

trial are included in the current study. Additional samples from ten untreated RCC patients 

with VTT were obtained from the ARTIST study (NCT04060537, UK ethical approval REC 

reference: 20/EE/0200). All patients were consented following GCP principles and the nature 

and possible consequences of the studies were explained. The studies were performed in 

accordance with the Declaration of Helsinki. 

Response evaluation  

The technique for measuring VTT length by MRI is detailed in the original clinical report7; 

summarised as follows: Calculate the sum of (i) length of RV thrombus; (ii) the length of IVC 

tumour thrombus above the renal vein (measured from midpoint of the ostium of RV + IVC to 

tip of tumour thrombus); (iii) the length of IVC tumour thrombus below the renal vein (measured 

from midpoint of the ostium of RV + IVC to the tip of tumour thrombus). The percentage change 

in length at each timepoint (LT) compared to the length at baseline (LB) was calculated as 

(LT-LB)/LB*100.  

Histology & Image Analysis 

Immunohistochemistry was performed on the Leica Bond III platform by standard automated 

procedure. The following antibodies were used: CD8 (4B11 Leica PA0183), CD31 (JC70A 
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Leica PA0414), Ki67 (MIB-1Dako M7240). For immunofluorescence, 3-micron formalin-fixed 

paraffin-embedded (FFPE) sections were dewaxed in xylene and rehydrated in graded 

alcohols. Heat Induced Epitope Retrieval was performed in in Tris-EDTA pH9. After blocking, 

slides were incubated with primary antibodies at 4 °C overnight. Antibodies used were as 

follows: CD31 (JC/70A, Abcam), CD34 (AF7227, R&D Systems), SMA (ab5694, Abcam), 

CD68 (KP1, Invitrogen), Ki67 (EPR3610, Abcam), CD8 (SP16, Invitrogen), Granzyme B (NCL-

L-GRAN-B, Leica), PD-1 (AF1086, R&D Systems), CD4 (EPR6855, Abcam), FOXP3 

(236A/E7, Abcam), CA9 (AF2188, R&D Systems), CD3 (D7A6E, Cell Signalling Technology). 

Samples were washed and incubated in fluorescently conjugated secondary antibodies. 

Nuclei were counterstained with DAPI. Whole slides were scanned at ×40 magnification on 

the Zeiss Axio Scan Z1 system.  

Image analysis was performed using HALO Software (Indica Labs). Tumour area was outlined 

manually for all slides. Slides with inadequate tissue quality for quantification were excluded 

from the analysis.  Pre-defined analysis settings were applied to all slides for objective 

quantification. Analysis algorithms as follows: HighPlex FL v3.1.0, Object Colocalization FL 

v1.0, Area Quantification FL v2.1.5, Area Quantification v2.4.3, Multiplex IHC v3.1.4.  

Flow cytometry  

PBMC samples collected during the trial were thawed and re-suspended in X-VIVO complete 

media (Lonza). Fc receptor block was used (Miltenyi). Cells were stained using standardised 

antibody panels (Supplementary Information). Viability was assessed by Zombie Aqua viability 

dye (Biolegend). Samples were run on a BD Symphony instrument. Appropriate single stain 

compensation bead controls were used. Data was analysed using FlowJo software.   

Cytokine arrays  

Cytokine arrays were run by the Core Biochemical Assay Laboratory at the Cambridge 

Biomedical Research Centre, according to manufacturer’s instructions. The following kits were 

used from MesoScale Discovery: Human 10-plex Cytokine Panel 1 K15050D, Human 10-plex 

ProInflammatory Cytokine K15049D-2, Human 10-plex Chemokine Panel 1 K15047D, V-
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PLEX Angiogenesis Panel 1 Human Kit, K15050D. Plates were analysed on an MSD s600 

instrument and results calculated by MSD Workbench software.  

Statistical analysis  

Statistical analysis was conducted using R’s ggpubr package. For two-way comparisons, 

unpaired two-tailed student t-test was used with Bonferroni multiplicity correction where 

appropriate. For multiple comparisons, one-way ANOVA was used with Tukey’s post-hoc test. 

Correlation was by simple linear regression. All boxplots: centre line, median; box limits, upper 

and lower quartiles; whiskers, largest / smallest value or 1.5X interquartile range.  

Data availability 

De-identified RNA-seq data will be made deposited in an appropriate repository on acceptance 

of the manuscript. De-identified imputed, normalised data set which was input to the machine 

learning models is available on request. Clinical data sharing will be shared where appropriate 

on correspondence with the author. 

Code availability 

Machine learning code will be made available on Github on acceptance of the manuscript. 

Single cell analysis  

To assess the expression of key genes in single cells derived from patients with RCC, we 

downloaded data from https://www.cell.com/cancer-cell/fulltext/S1535-6108(22)00548-7 via 

Mendeley Data: https://data.mendeley.com/datasets/g67bkbnhhg/1. To convert from.h5ad 

object to Seurat object we used sceasy (https://github.com/cellgeni/sceasy), prior to 

normalisation by mitochondrial content with SCTransform (from the R package Seurat_4.3.0). 

The average expression, and the percentage of cells that expressed the genes of interest was 

plotted. For clarity, we restricted cell types to endothelial, fibroblasts, and RCC cells as other 

cell types did not express the genes of interest (data not shown). 

To plot the relative prevalence of cell types within different tissue compartments, we used 

code developed in https://www.cell.com/cancer-cell/fulltext/S1535-6108(22)00548-7 and 
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documented in https://github.com/ruoyan-li/RCC-spatial-mapping. Briefly, we calculated the 

observed and expected number of cells of all cell types/subtype across different tissues. 

Adrenal metastasis and tumour thrombus were excluded from this analysis as they were only 

sampled in single patients. We also excluded blood cells as no endothelial, fibroblasts, and 

RCC cells were expected in this compartment.  

RNA-seq  

RNA extraction & sequencing:  RNA was extracted from formalin-fixed paraffin-embedded 

(FFPE) tissue using the ReliaPrep FFPE Total RNA kit, according to manufacturer’s 

instructions, and assessed by Qubit and Agilent RNA ScreenTape System and for quantity 

and quality. RNA library preparation was done using the Watchmaker Genomics RNA Library 

Prep Kit with Polaris Depletion, according to manufacturer’s instructions and running 18X PCR 

cycles for each sample. Indexing was done using the xGen™ Stubby Adaptor and UDI primers 

from Integrated DNA Technologies™, and sequencing via Illumina sequencing. The samples 

were run on an S4 flow cell on NovaSeq6000 with a read length of PE50. Manufacturer’s 

instructions followed for the run, including spike-in of 1% PhiX. 

RNA-seq processing and analysis: Reads were mapped using Salmon (v1.10.0) with 

GRCh38.p44 from Gencode. Samples were only included in analysis if the sequencing 

duplication rate was < 65%. Genes were included if the maximum count per biopsy was > 10 

and if more than 50% of the biopsies had counts > 0. Counts were normalised by variance-

stabilised transformation and the top 500 genes generated principal components for the PCA 

plot. DESeq2 was used to identify differential expression between responders and non-

responders, and between post- and pre-treatment samples. Genes satisfying Padj < 0.05 and 

absolute Log2 Fold Change > 2 were used in pathway analysis via GO in the Cluster Profiler 

R package (v4.12.0) and plotted using EnrichPlot (v1.24.0). The same genes, and the genes 

for the features identified in the ML models, were highlighted on the published RNA-seq 

differential expression analysis data from IMmotion15116 to generate Figs. 6E and 8G, 

respectively.  
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RNA signature scores: The genes used for the Javelin Renal 101 Angio signature15: NRARP, 

RAMP2, ARHGEF15, VIP, NRXN3, KDR, SMAD6, KCNAB1, CALCRL, NOTCH4, AQP1, 

RAMP3, TEK, FLT1, GATA2, CACNB2, ECSCR, GJA5, ENPP2, CASQ2, PTPRB, TBX2, 

ATP1A2, CD34, HEY2, EDNRB. The genes used for the Javelin Renal 101 Immuno signature: 

CD3G, CD3E, CD8B, THEMIS, TRAT1, GRAP2, CD247, CD2, CD96, PRF1, CD6, IL7R, ITK, 

GPR18, EOMES, SIT1, NLRC3, CD244, KLRD1, SH2D1A, CCL5, XCL2, CST7, GFI1, 

KCNA3, PSTPIP1. The genes used for IMmotion151 Angio (C1/C2) signature16: VEGFA, 

KDR, ESM1, PECAM1, ANGPTL4, CD34, FAP, FN1, COL5A1, COL5A2, POSTN, COL1A1, 

COL1A2, MMP2. The genes used for IMmotion151 Immuno (C4/C5) signature: CD8A, 

EOMES, PRF1, IFNG, CD274, CDK2, CDK4, CDK6, BUB1B, CCNE1, POLQ, AURKA, 

MKI67, CCNB2. The genes used for the NAXIVA Angio signature: PGF, TEK, PECAM1, 

CD34, VEGFA. The genes used for the NAXIVA Immuno signature: CCL17, IL12A, IL12B, 

IL7. The counts were normalised by variance stabilised transformation, and the mean and 

standard deviation were calculated for each gene. For each patient, the score per gene is 

(expression – mean expression) / standard deviation across all patients. The total signature 

score per patient is the mean of the scores for each gene.  

Machine learning models  

Training: We created a machine learning framework to predict response to axitinib. We used 

leave-one-out cross validation (LOOCV) on NAXIVA’s 20 patients to train and optimise the 

models. We used an increasing number of features, starting with baseline biopsy and blood 

features (62 features, Fig. 4a); then adding growth factor fold-change features at Week 3 of 

axitinib treatment (69 features, Fig. S10). For each combination we retrained the framework 

and derived a new model. The full list of features can be found in Supplementary Information. 

The models included recursive feature elimination using a logistic regression estimator, and 

the predictions were done by logistic regression with stochastic gradient descent, all coded in 

Python using scikit-learn version 1.4. Before entering the machine learning algorithm, all data 

underwent three pre-processing steps: iterative imputation, min-max standardisation and 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 25, 2024. ; https://doi.org/10.1101/2024.10.22.619358doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.22.619358
http://creativecommons.org/licenses/by-nc-nd/4.0/


collinearity reduction. The estimator used for the iterative imputation was Bayesian Ridge. 

Collinearity reduction removed all features with a Spearman’s Rank correlation above 0.75, 

retaining one feature at random from the collinear group. The Spearman’s correlation between 

all features is visualised in Fig. S10. We used a five-fold cross validation setup to optimise 

model hyperparameters in the LOOCV training set, covering the hyperparameter ranges 

shown in Supplementary Information. The optimisation was based on a grid search in the 

hyperparameter space to optimise the area under the receiver operating characteristic curve. 

Once the optimal hyperparameters were found (Supplementary Information), we determined 

model parameters by re-fitting the model to the training set. To increase the robustness of the 

model with this dataset, LOOCV was done in 20 iterations, leaving one of the NAXIVA patients 

out at a time. The prediction for each left-out patient was done according to the model trained 

on the remaining 19 patients.  

Feature importance: We evaluated feature importance in two different steps. First, we 

computed the frequency with which features were selected after the recursive feature 

elimination. We repeated the process for each of the LOOCV iterations, which means that 

features could be selected between 0 and a maximum of 20 times. Fig. 4e displays only 

features that were chosen at least eight out of twenty times in each cross-validation loop. 

Second, we computed the importance (i.e. weight) of each individual feature within the logistic 

regression algorithm. The weights were averaged across the iterations in which they were 

picked.   
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Figure 1. Multiparametric investigation of VTT response in the NAXIVA trial.  
a, Patients received up to 8 weeks of axitinib treatment. VTT response was evaluated by MRI at 
baseline, week 3 and week 9. Tissue was collected at baseline biopsy, and at surgery from the 
VTT and primary tumour. Serial blood samples were taken before, during and after treatment. 
Research samples were assessed by a range of techniques to identify markers of response. 
Baseline and week 3 parameters were combined in a machine learning model for treatment 
response. b, Patients reaching 30% reduction in VTT length by the end of the treatment course 
are classed as responders in the NAXIVA trial. 7 of 20 patients were classed as responders. c, 
Whole slide scan of VTT and paired primary tumour, CA9+ viable tumour fills the lumen of the 
renal vein. d, CD31+ microvessels surrounded by SMA+ pericytes are abundant within the VTT 
TME. e, CD3+ T cells and CD68+ macrophages are present within the VTT TME.   

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 25, 2024. ; https://doi.org/10.1101/2024.10.22.619358doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.22.619358
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 2. Responder and non-responder phenotypes 
a, Representative image of HALO analysis markup of microvessels on multiplex 
immunofluorescence slides. b, Responders have higher CD31+/CD34+ microvessel density pre-
treatment than non-responders (one-way ANOVA with Tukey’s post-hoc test). c-d, Fold change 
in plasma VEGF-A (c) and PlGF (d) relative to pre-treatment baseline (thin lines, individuals; bold 
lines, mean and SEM; unpaired Student’s T-test). e, Single cell RNA sequencing analysis of 12 
untreated clear cell RCC showing expression of key angiogenesis genes by cell subset. f-g, 
Responders have lower levels of IL-12p70 and IL-7 pre-treatment than non-responders (one-way 
ANOVA with Tukey’s post-hoc test). h-i, Non-responders trend towards higher immune markers 
in the blood and tissue (one-way ANOVA with Tukey’s post-hoc test). [ns: p>0.05, *: p≤0.05, **: 
p≤0.01, ***:p ≤0.001].   
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Figure 3. RNA-seq analysis of baseline biopsies. 
a, PCA plot of RNA-seq data for pre-treatment biopsies of responder and non-responder 
tumours. b, RNA-seq results comparing responder to non-responder biopsies via DESeq2. 
Labelled points are p < 0.01. c, Most differentially expressed genes (p < 0.05) plotted on the 
IMmotion151 RNA-seq clusters [16]. d, RNA signature scores for the NAXIVA patients in the 
transcriptomic signature identified in the Javelin Renal 101 study [15]. e, RNA signature scores 
for the NAXIVA patients in the transcriptomic signature identified in the IMmotion151 study [16].  
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Figure 4. Machine learning model predicts response to axitinib. 
a, Machine learning model workflow. b, Pre-processed data description and model-predicted  
scores for each patient. c, Receiver operating characteristic curve. d, Selection frequency for 
selected features (the number of times the feature was selected across the leave-one-out cross-
validation iterations divided by the total number of iterations) and mean relative weight of 
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features selected in more than 40% of the iterations. e, Density plots of scaled values of two 
features with highest selection frequency for responders and non-responders. f, Prediction of 
response increases in accuracy and confidence when Week 3 measurements are included in the 
analysis. g, Signature from NAXIVA blood data displayed on IMmotion151 RNA-seq data [16]. 
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