bioRxiv preprint doi: https://doi.org/10.1101/2024.09.16.613373; this version posted September 18, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Neurophysiological signatures of default mode network dysfunction and cognitive decline in Alzheimer’s
disease.
Recep A. Ozdemir'**, Brice Passera'?, Peter J. Fried"2, Daniel Press', Lynn W. Shaughnessy?, Stephanie

Buss'?", Mouhsin M. Shafi’**"

'Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess
Medical Center, Boston, MA, USA.

2Department of Neurology, Harvard Medical School, Boston, MA, USA.

Running title: Neurophysiology of Cortical Hyper-excitability and Network Dysconnectivity in AD.

Keywords: Transcranial Magnetic Stimulation, Cortical hyper-excitability, Network connectivity, Default
Mode Network, Alzheimer’s disease.

Corresponding authors:

Recep A. Ozdemir & Mouhsin Shafi
Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center,

Harvard Medical School, Boston, MA, USA
office +1-617-667-0326

mobile +1-832-921-5220

rozdemir @bidmc.harvard.edu

mshafi @bidmc.harvard.edu

* Senior Authors.

+ Corresponding Authors.


mailto:rozdemir@bidmc.harvard.edu
mailto:mshafi@bidmc.harvard.edu
https://doi.org/10.1101/2024.09.16.613373
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.16.613373; this version posted September 18, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Abstract: Neural hyper-excitability and network dysfunction are neurophysiological hallmarks of
Alzheimer’s disease (AD) in animal studies, but their presence and clinical relevance in humans remain poorly
understood. We introduce a novel perturbation-based approach combining transcranial magnetic stimulation and
electroencephalography (TMS-EEG), alongside resting-state EEG (rsEEG), to investigate neurophysiological
basis of default mode network (DMN) dysfunction in early AD. While rsEEG revealed global neural slowing and
disrupted synchrony, these measures reflected widespread changes in brain neurophysiology without network-
specific insights. In contrast, TMS-EEG identified network-specific local hyper-excitability in the parietal DMN
and disrupted connectivity with frontal DMN regions, which uniquely predicted distinct cognitive impairments
and mediated the link between structural brain integrity and cognition. Our findings provide mechanistic insights
into how network-specific neurophysiological disruptions contribute to AD-related cognitive dysfunction.
Perturbation-based assessments hold promise as novel markers of early detection, disease progression, and target

engagement for disease-modifying therapies aiming to restore abnormal neurophysiology in AD.
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Introduction.

Alzheimer's disease (AD) is marked by the early deposition of amyloid-beta-42 (ApB) plaques followed by
the rapid accumulation of phosphorylated tau (p-tau) in neurofibrillary tangles', and is associated with
significant neurophysiological changes before the onset of clinical symptoms*. In animal models, AB plaques
disrupt synaptic activity, causing an imbalance in inhibition and excitation, with neurons surrounding these
plaques becoming abnormally hyperactive®. P-tau independently suppresses neural activity®, leading to synaptic
loss, and significant cerebral atrophy’ in brain regions critical for memory function?. Advanced imaging methods
like positron emission tomography (PET) have transformed the monitoring of these pathological markers in AD
patients, enhancing our understanding of their relevance to disease progression. However, the neurophysiological
manifestations of AD pathology and their clinical significance, remain poorly understood in humans.

Neural activity and connectivity dynamics in AD have been largely investigated using resting-state
functional MRI (rsfMRI), with the default mode network (DMN) showing early and significant disruptions®”’.
Early rsfMRI studies reported decreased activity in the posterior cingulate cortex (PCC) and inferior parietal
lobule (IPL)!%!2, findings that align with PET studies showing increased amyloid deposition'® and reduced

metabolic activity in these regions!'*!?

. Recent research has identified the posterior DMN as the first region to
exhibit abnormal connectivity patterns that correlate with cognitive decline!® and neuropathology'” across the AD
spectrum. While this research has greatly advanced our understanding of the functional network organization in
AD pathology, rsfMRI primarily captures correlational changes in blood oxygenation across the brain, providing
indirect estimates of neuronal activity and network connectivity with limited capacity to detect synaptic
disruptions at the individual level'®!"”. High temporal resolution methods such as electroencephalography (EEG)
and magnetoencephalography (MEG) are therefore preferred for measuring synchronized synaptic activity across
large-scale brain networks. In AD patients, these neurophysiological modalities have consistently shown a global
slowing of spectral power dynamics, with increased power in slower and decreased power in faster neural
oscillations?®2°. MEG connectivity analyses generally show decreased alpha (8-12 Hz) over visual cortices and
increased delta-theta (1-7 Hz) neural synchrony across the cortex*”*3. One limitation of these resting state based
EEG/MEG measures is that they do not directly reflect AD-related neural hyper-excitability and network
dysconnectivity. Spontaneous neural oscillations may not be optimal for localizing network-specific
neurophysiological dynamics, as neural activity during the resting state arises from multiple sources® with a
diffuse and widespread distribution across overlapping networks’. Additionally, without external stimuli,
spectral power estimates can only serve as surrogates for cortical excitability.

Combining transcranial magnetic stimulation (TMS) with EEG offers a promising approach to address
some limitations of both rsfMRI and rsEEG. Single pulses of TMS (spTMS) initially excite the axonal terminals
of cortical pyramidal and interneurons?!, particularly at gyral crowns of the cortex, and evoke a series of high-
frequency synaptic activations that directly represent local cortical excitability at the site of stimulation®?3. These

early activations are followed by trans-synaptic network responses, reflecting the connectivity profile of the
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stimulated brain region®®. EEG effectively captures synchronous post-synaptic potentials in pyramidal and
interneurons with precise temporal resolution and has the highest sensitivity to neural activity at the superficial
layers of the cortex®’, making it an ideal neurophysiological modality to index the activity of neural populations
targeted by TMS. In AD, TMS can directly stimulate well-defined nodes of the DMN to assess local activation
and connectivity abnormalities. However, most TMS research in AD has focused on the motor cortex34 with
only a few recent studies examining other brain regions*’°. These recent TMS-EEG studies have typically
performed electrode-level analyses at local TMS sites, offering a limited understanding of the functional network
dynamics implicated in AD. Recently, we developed an MRI-guided TMS-EEG method that personalizes the
topography of fMRI-based functional networks on individual brains, identifies network-specific TMS targets, and
generates local activation and causal network connectivity maps at the individual level®!. Using this approach, we
demonstrated that EEG responses to TMS provide an accurate 'fingerprint' of individual brain activation

k53,54

patterns’, preferentially propagate through the structural connectivity of the stimulated networ , characterize

causal network connectivity dynamics with high reproducibility®>-°

, and identify brain-behavior relationships not
observable through resting-state recordings in healthy individuals®!.

In this study, we aimed to characterize the neurophysiological signatures of the DMN dysfunction in AD
by utilizing both TMS-EEG and rsEEG measures, and evaluated their relationships to cognition. Our study is the
first to comprehensively integrate rsEEG and TMS-EEG within the same cohort, offering a unique opportunity
to compare these modalities and uncover network-specific abnormalities in AD. Using spTMS, we targeted
individually defined regions within the left IPL (IPL-TMS), a DMN node particularly vulnerable to AD
pathology, in biomarker-confirmed AD patients (n=37) and age-matched cognitively normal controls (n=40).
Additionally, we stimulated the left primary motor cortex (M1-TMS) as a control site and included a sham TMS
condition (Sham-TMS). RSEEG was recorded for five minutes during an eyes-closed condition to assess
spontaneous neural dynamics. We further examined how these measures relate to specific cognitive impairments,
accounting for participant demographics (age, education) and structural brain integrity at TMS targeted brain
regions. While we expect spectral slowing and reduced alpha neural synchrony in AD patients, we hypothesize
that rsEEG measures will reflect global brain changes but will not be specific to the DMN. In contrast, TMS-EEG
measures would reveal DMN-specific dysfunction in AD, characterized by hyper-excitability in the IPL and
abnormal hyper- and hypo-connectivity patterns with non-stimulated DMN regions, providing insight into the
network-specific mechanisms underlying decline in distinct cognitive functions.

Results.

TMS of DMN evokes distinct spatial-temporal neural activation dynamics in AD.

We performed source space reconstruction using individual MRIs and digitized electrode locations to
measure TMS-evoked (perturbation-based) cortical excitability and network connectivity (Fig. 1). We generated
local cortical maps based on electric field (E-field) simulations of personalized TMS targets®’*%, where spTMS

would most likely to generate direct neural responses®!, to measure cortical excitability at each TMS target with
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high spatial accuracy (Fig. 1B). For network connectivity, we morphed canonical DMN maps>® onto individual
brains (Fig. 1C) and measure how much of the TMS evoked activity propagated from local (inferior parietal) to

non-stimulated DMN nodes (Fig. 1D).
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Fig. 1. TMS Targets and Overview of TMS-EEG Measure Extraction in Source Space. A: Individual TMS targets for AD
(upper) and HC (lower) groups projected on a common brain template for each stimulation site (M1: blue dots, IPL: red dots).
B: Individual E-field simulation maps (left panels) were thresholded at the highest % 0.01 to generate personalized local masks
(right panels) on cortical surface for each TMS site (upper panel for IPL and lower panel for M1). These local masks were used
to extract average regional EEG activity and measure cortical excitability at the site of stimulation. C: Canonical rsfMRI maps
derived from group-averaged fMRI connectivity analysis (left) were projected onto individual cortical surfaces and DMN mask
(middle panel) used as region of interests. TMS targeted DMN node (IPL) is highlighted within the squared region with the blue
dot representing TMS site (middle). This region is expanded on the right to show overlap between IPL-DMN (red) and E-field
based local map (orange). Lower panel shows distinct non-stimulated regions at frontal (blue), temporal (green) and precuneus
(brown) sites within the DMN mask. These masks are used to measure network connectivity. D: Representative example of
TMS-EEG measures. Upper panel shows individual cortical surface model with DMN mask (shaded red regions) and source
reconstructed EEG activity for IPL-TMS from a representative HC participant. Thresholded EEG activity (> %70) at 37ms
following TMS is localized over the stimulated region (Left-IPL) representing local cortical excitability (left), while EEG
activity at 79ms (right) is localized over frontal DMN representing network connectivity. Middle panel shows scalp TEPs used
for source reconstruction. Lower panel shows time series of normalized averaged EEG activity (in z-scores) extracted from local
masks for cortical excitability (orange) and non-stimulated DMN masks for network connectivity measures.

DMN

In a representative HC participant, IPL-TMS evoked an early response localized to the stimulation site,
with activity propagating to frontal brain regions around 110ms, aligning with the DMN map (Fig. 2A). In an AD
participant, IPL-TMS induced high-amplitude early responses localized to the stimulation site, with subsequent
activations confined to temporal and posterior regions with restricted propagation to frontal-DMN regions (Fig.
2A). These activation dynamics were specific to the stimulated region and significantly larger than those from

Sham-TMS (Fig. 2B).
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Local DMN hyper-excitability in AD.

We compared local IPL responses in the temporal domain using current density time series from individual
brain models (Fig. 2C). IPL-TMS evoked larger local responses between 15 and 65ms in the AD group (Fig. 2C,
left upper panel) with two distinct clusters: first from 15-to-22ms (t70)=2.12, p=0.039) and second from 42-to-
65ms (t(70=2.76, p=0.012) with permutations analyses revealed significance for the second cluster (Permutation
p = 0.034). We also observed a late cluster (t70=2.17, p=0.029) with larger AD responses starting at 285ms
following TMS (Permutation p=0.042), indicating extended IPL activation in AD. While no significant early
response differences were found between the two groups following M1-TMS, HC participants had significantly
larger responses that survived permutations (Permutation p=0.009) between 199-240ms (Fig. 2C). As early
response differences were confined to 15-65ms, we extracted average responses within this time window for each
individual for further cortical excitability analyses. Group average early activations were significantly higher in
the AD group compared to HC (t70)=2.24, p=0.028, d=0.51) for IPL stimulation. To further explore the spatial
characteristics of early response differences, we averaged whole-brain source activations at the individual level
and projected them to a common brain template (Montreal Neurological Institute “MNI”) to generate group-level
cortical activation maps (Fig. 2D). IPL-TMS revealed higher activation in the AD primarily centered in the left
parietal cortex, involving the inferior and superior parietal lobules, and extending into the postcentral and angular
gyri (Fig. 2D). Stimulation of M1 revealed lower activation in the AD group over a small portion of left inferior
precentral gyrus but this cluster did not survive permutation. To test the specificity of these results, we compared
early IPL responses (15-65ms) following M1 and Sham-TMS (Supplementary Fig. 1A and B). No significant IPL
response differences were found following M1 or Sham-TMS, suggesting that cortical hyper-excitability in the

AD group is specific to IPL stimulation.
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Fig. 2. Increased Early-Local DMN Excitability in AD. A: Illustration of TMS evoked potentials (TEPs) and their spatial-
temporal dynamics from one representative HC (left panels) and one AD participant (right panels). Upper panels show TEPs
of all EEG channels after preprocessing with red dotted vertical lines indicating TMS time points and following colored vertical
lines showing selected TEP peaks. Middle and lower panels show corresponding scalp topographies and source reconstructed
activations for the selected peaks. B: Average current density time series in the AD group showing site and condition specificity
of TEPs. Upper panel compares evoked responses derived from IPL (red) and M1 (blue) local masks following stimulation of
IPL while lower panel compares IPL responses following IPL (red) and Sham (blue) stimulation. Sham responses were
presented after removing auditory evoked potentials. Black vertical lines in each panel indicates TMS time points and brain
figures with colored masks show signal extraction and stimulation sites in each condition. C: Averaged evoked responses
following IPL-TMS (upper left) and M1-TMS (lower left) at the site of stimulation both for AD (red) and HC (Blue) groups.
Solid colored lines show group averaged current density time series (in z-scores) extracted from individualized e-field based
local masks for IPL (orange colored shared areas of the representative cortical surface in the upper panel) and M1 (light blue
shaded areas of the cortical surface in the lower panel). Shaded regions show inter-individual response variation with standard
error of measurements (SE). Green colored blocks at the bottom of each panel show significant time-points between AD and
HC groups that survived cluster permutations while black colored blocks indicate significant time points that did not survive
permutation tests. Violin plots on the right panels show average evoked current densities between 15-65ms following IPL-
TMS (designated with black dotted line and arrow on upper right panel) and M1 (lower right) for both groups. White dots in
violin plots represent median value and gray colored dots represent individual responses. Colored horizontal lines and gray
vertical bars represent grand average values and interquartile ranges, respectively. * in upper violin plot denotes statistical
significance at p<0.05 with corresponding effect size calculated using Cohens’ d. D: Cortical maps for grand averaged current
densities (in z-scores) between 15-65ms on MNI template following IPL-TMS (left) and M1-TMS (right) for AD (upper panels)
and HC (middle panels) groups. Lower panels show statistical results of thresholded cluster-based permutation t-tests (cluster
p<0.05) with hot colors indicating AD > HC and cold colors indicating AD < HC.
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Hyper-connectivity in Temporal DMN and Hypo-connectivity in Frontal DMN in AD.

We extracted average EEG activity from non-stimulated DMN regions following IPL-TMS to assess
differences in response propagation between the groups (Fig. 3). AD participants showed greater responses in the
left temporal-DMN between 60-85ms, with a significant cluster (t70=2.37, p=0.022) within the 64-78ms period
(Permutation p=0.026). However, AD participants exhibited smaller activations at the frontal-DMN at two
distinct time windows: first window ranging from 75-to-101ms and second ranging from 125-to-175ms.
Permutation analyses for these windows showed significant clusters in the 81-96ms (t70=-2.93, p=0.014,
Permutation p=0.021) and 147-165ms (tz0=-2.41, p=0.017, Permutation p=0.022) periods. Group average
activity in the temporal-DMN (#70=2.51, p=0.014) was higher in the AD group for 60-85ms window, but lower
in the frontal-DMN both for 75-101ms (#70)=-2.91, p=0.022) and 125-175ms windows (#(70=-3.23, p=0.010,
Supplementary Fig.2A), suggesting a selective increase in temporal-DMN connectivity but decreased
connectivity to frontal-DMN following IPL-TMS. No significant differences were found in the precuneus
following IPL-TMS (p > 0.05, data not shown). Group-level cortical activation maps (Fig. 3B) revealed higher
activity in AD primarily over the left temporal and inferior parietal cortices but lower activity over the premotor
dorsolateral prefrontal and superior frontal cortices. No significant group differences were observed for sham-

TMS (Supplementary Fig. 3).
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Fig. 3. Increased Temporal and Reduced Frontal DMN Connectivity in AD. A: Temporal dynamics of TMS evoked
responses at temporal (green colored brain regions on upper left panel) and frontal DMN (dark blue colored brain region on
lower left panel) following IPL stimulation. Solid colored lines show group averaged current density time series (in z-scores)
while shaded regions showed variation with SE of measurements. Green Colored blocks at the bottom of each panel show
significant cluster of time-points between AD and HC groups. Violin plots on the right panels show total amount of evoked
current densities between 60-85ms (upper panel) and 75-101ms (lower panel) following IPL-TMS for temporal and frontal
DMN, respectively. Violin plots for 125-175 time window is provided in Supplementary Fig. 2. B: Cortical maps of grand
averaged current densities (in z-scores) between 60-85ms (left) and 75-101ms (right) on a template brain model following IPL-
TMS for AD (upper panels) and HC (middle panels) groups. Lower panels show statistical results of thresholded cluster-based
permutation t-tests (cluster p<0.05) with hot colors indicating AD > HC and cold colors in indicating AD < HC. Cortical maps
for 125-175 time window is provided in Supplementary Fig. 2.
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Local hyper-excitability, increased parietal-temporal and reduced parietal-frontal connectivity

correlate to poor cognition in AD.

We explored how local cortical excitability and network connectivity abnormalities relate to global and
specific cognitive functions in the AD group (Fig. 4). We used the Alzheimer’s disease Assessment Scale-
Cognitive Subscale (ADAS-cog) for global cognition, the Rey Auditory Verbal Learning Test (RAVLT-Total)
for verbal memory, the Digit-Span Backward task for working memory, and the Animal Fluency test for semantic
memory and executive function assessments (Supplementary Table. 1). Bivariate correlations were run between
potential confounders (age, education, cortical thickness) and our variables of interest (cortical excitability,
network connectivity, ADAS-Cog, RAVLT-Total, Digit-Span, and Fluency) (Supplementary Table. 2). Cortical
thickness at IPL was moderately correlated with better working memory (Digit-Span: r=0.53, p=0.004), semantic
memory (Fluency: r=0.46, p=0.015), and global cognition (ADAS-Cog: r=-0.39, p=0.037). IPL cortical thickness
also correlated moderately with increased frontal-DMN connectivity at 75-101ms (r=0.47, p=0.010). Age was
moderately correlated with increased cortical excitability (r=0.36, p=0.03) and poor memory (RAVLT-Total: r=-

0.37, p=0.03), while education showed no meaningful correlations.

IPL cortical hyper-excitability was strongly correlated with poor global cognition (ADAS-Cog: r=0.70,
p<0.001), moderately with poor verbal memory (RAVLT-Total: r=-0.47, p=0.01) and executive functions
(Fluency: r=-0.41, p=0.01) (Fig. 4A). Hierarchical regression analyses controlling for age, education, and IPL
cortical-thickness showed that IPL hyper-excitability significantly predicted global cognition, explaining an
additional 34.3% of unique variance in ADAS-Cog scores ($=0.641, =4.061, AR>=0.34, p<0.001). When
controlling for cortical excitability, however, cortical thickness was no longer a significant predictor of ADAS-
Cog (p>0.05), suggesting that hyper-excitability may partially mediate this relationship (Supplementary Fig. 4A).
Notably, we noted a temporal specificity between IPL hyper-excitability and cognition such that only early
responses between 15-65ms period were strongly correlated with global cognition and moderately correlated with
memory functions (red scatter plots and regression lines in Fig. 4A left panels), while late responses between 75-
10Ims showed zero correlations. Correlations with local M1 responses following M1-TMS and local IPL
responses following Sham-TMS were not significant, suggesting site-specificity of these correlations
(Supplementary Fig. 5A). Similar patterns were seen for temporal and precuneus DMN, except for a selective
increase in the negative relationship between late temporal-DMN activity (75-101ms) and RAVLT suggesting

that hyper-connectivity in temporal-DMN is associated with poor verbal memory (Supplementary Fig. 6).

For frontal DMN connectivity, late responses at 75-101ms window were moderately correlated with better
working (Digit-Span Backward: r=0.54, p=0.01) and semantic memory executive (Fluency: r=0.47, p=0.01)
functions (Fig. 5A right panels). Hierarchical regression analyses controlling for age, education and IPL cortical-

thickness, showed that frontal-DMN connectivity significantly predicted better Digit-Span ($=0.405, 1=2.234,
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AR?=0.107, p=0.036) and Fluency ($=0.512, t=3.043, AR?=0.226, p=0.006) performance, explaining an additional
10% and 22% of unique variance, respectively. After controlling for frontal-DMN connectivity, IPL cortical-
thickness remained a significant predictor for Digit-Span (5=0.382, 1=2.084, AR?=0.903, p=0.048) but not for
Fluency (p>0.05, suggesting a mediation effect of network connectivity for the relationship between cortical-
thickness and fluency (Supplementary Fig. 4B). Similar relationship pattern was also observed for late responses
at 125-175ms window with frontal-DMN connectivity being significant predictor of better working and semantic
memory performance (Supplementary Fig.2C). Frontal-DMN and cognition correlations were specific to IPL
stimulation, as M1- and Sham-TMS frontal responses showed no significant correlations (Supplementary Fig.
5B). Finally, vertex-based correlation analyses using showed that increased early IPL excitability (15-65ms) was
significantly related to poorer global cognition and memory in the left parietal cortex for ADAS-Cog and angular
gyrus for RAVLT-Total (Fig. 4B). Increased signal propagation to frontal regions following IPL stimulation was

associated with better working and semantic memory functions (Fig. 4C).
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Fig. 4. Relationships between TMS-EEG measures of cortical excitability, network connectivity and cognitive functions
in AD participants. A: Scatter plots with regression lines showing bivariate correlations of cortical excitability (left panels)
and network connectivity (right panels) with cognitive function. Color codes refer different temporal windows with red showing
early (15-65ms) and blue showing late (75-101ms) activations. Correlation coefficients are provided for each regression line
with asterisks indicating statistically significant correlations (p<0.05). B: Cortical maps showing vertex-wise correlations of
early responses with ADAS-cog (upper left) and RAVLT (lower left) scores with hot colors indicating positive and cold colors
indicating negative correlations. Statistically thresholded cortical maps (p<0.05) on the right panel shows brain regions with
significant correlations. C: Cortical maps showing vertex-wise correlations of late responses with Digit-Span (Upper panels)
and Fluency (Lower panels).
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Resting state based neurophysiological abnormalities in AD are not network specific.

We performed source reconstruction of rsEEG data (Fig. 5) and computed spectral power density from 1-
50 Hz at each vertex across the cortex, defining neural slowing as the spectral power ratio (SPR) between alpha-
beta and delta-theta frequencies (Fig. SA). We also estimated vertex-wise neural synchrony between the TMS site
at [PL and the rest of the brain within Delta-Theta (1-7 Hz), Alpha (8-12 Hz), and Beta (13-29 Hz) frequency
bands by calculating power envelope correlations (PEC) in individual source space (Fig. 5B). To compare our
rsEEG measures of neural synchrony with TMS-EEG measures of network connectivity, we focused on the rsEEG

connectivity profile of the left IPL with the rest of the brain (Fig. 5B).

A rseeGS B .. 'sEEG Connectivity

e
)
(2]
~*
=
8
)
]
=
(1]
=

e Aperiodic Fit

SPR= L

10g10(x V3 Hz)*10

e —e—
5 10 15 20 25 30 35 40 45
Frequency

M Theta 6 M Alpha a MBeta B

< 8 % -, P

- V\:\"‘ B \\ l‘ N ‘} Lt
Sé‘i? P ”%' " \( A '0-3
b i ) " ‘l’ ‘7" ,,% J"h A "%\ 0.2

015 AL ') " > % ’
LW G
0.0 4 %f 0.0

Fig. 5. RsSEEG Measures. A: Current density time series (upper panel) were extracted from each vertex (n=15000)
to compute PSD from 1-to-50 Hz (middle panel). PSD exponent (red line in middle panel) is computed and removed
from PSD (black line in middle panel) and relative power at canonical EEG frequency bands were calculated at each
vertex on the individual cortical surface (lower panel). SPR is calculated as the ratio of delta + theta power (cyan
shaded region in middle panel) to the alpha + beta power (magenta shaded region in middle panel) for each vertex. B:
TMS coordinates (green circle in upper panels) for Left-IPL were used to determine seed vertex on the individual
cortical surface. The seed vertex is expanded over the cortical surface to define a seed region (blue shaded region in
the expanded upper panel). PEC were computed between each vertex within the seed region (black dots within the
blue shaded region) and rest of the brain to generate individual connectivity matrices at delta-theta (2-7 Hz), alpha (8-
12 Hz) and beta (13-29 Hz) bands (middle panels with color coded EEG time series). Connectivity matrices were
averaged and mapped on individual cortical surface to estimate rsEEG connectivity of the IPL with the rest of the
brain (lower panels showing cortical connectivity maps).

We computed SPR differences between HC and AD groups across entire cortical surface (global) and
within local masks of IPL, M1 and frontal DMN (Fig. 6A). We found reduced SPR in the AD group in global
(t(79/=-2.36, p=0.020, d=0.53), IPL (#(79)=-2.20, p=0.030, d=0.49) and M1 (t(79)=-2.51, p=0.014, d=0.56). Vertex-
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wise comparisons of spectral power and SPR from the template cortical surface showed increased delta power
over visual regions and increased theta power widespread across the cortex in the AD group. AD participants
demonstrated reduced alpha power over temporal and frontotemporal regions, reduced beta power over most of
the cortex, and reduced gamma power primarily over lateral-frontal cortices. SPR comparisons revealed
significant differences over temporal-parietal regions in the right hemisphere and lateral-frontal regions in the left

hemisphere (Fig. 6B).
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Fig. 2. Global slowing in resting state neural oscillations in AD. A: Cortical maps showing vertex-wise distribution of
spectral power in canonical frequency bands and (left upper panels) and SPR (lower left panels). Lower panels show statistical
results of thresholded cluster-based permutation t-tests (cluster p<0.05) with hot colors indicating AD < HC and cold colors in
indicating AD > HC. B: Violin plots showing spectral power ratio averaged across the entire cortical space (global), within
individualized masks of IPL, M1 and frontal node of the DMN both in healthy (blue) and AD (red) participants. * in upper
violin plot denotes statistical significance at p<0.05 with corresponding effect size calculated using Cohens’ d.

Neural synchrony analyses (Fig. 7A) showed significantly reduced alpha synchrony across all cortical
sites in the AD group (Global: t(79)=-2.70, p=0.008, d=0.62; IPL: t(79)=-3.03, p=0.003, d=0.68; Frontal: t(79)=-
2.53, p=0.013, d=0.59; M1: t(79)=-2.72, p=0.008, d=0.62). Similarly, beta band neural synchrony was reduced
across all comparison sites (Supplementary Fig. 7), indicating a global decrease in synchrony with no network-
or frequency-specific group differences. Group level vertex-wise analyses showed reduced alpha and beta band

synchrony primarily over visual, parietal, temporal, and frontal regions (Fig. 7B).
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Fig. 3. Resting-state neural synchronization differences between AD and HC participants are not network specific. A:
Violin plots showing alpha band neural synchrony averaged across the entire cortical space (global), within individualized
masks of IPL, M1 and frontal node of the DMN both in healthy (blue) and AD (red) participants. * in upper violin plot denotes
statistical significance at p<0.05 with corresponding effect size calculated using Cohens’ d. B: Cortical maps showing vertex-
wise distribution of neural synchrony in canonical frequency bands and (left panels). Right panels show statistical results of
thresholded cluster-based permutation t-tests (cluster p<0.05) with hot colors indicating AD < HC and cold colors in indicating
AD > HC.

Global deficits in oscillatory neural activity and neural synchrony correlate to poor cognition in AD.
We first examined relationships between potential confounding variables of ‘age’, ‘education’ and ‘cortical
thickness’ with RSEEG measures of SPR and neural synchrony in the alpha band (Supplementary Table. 3). IPL
cortical thickness was significantly related to increased SPR within the IPL-DMN (7=0.39, p=0.045). No other

significant correlations were found for age and education.

SPR within the IPL-DMN was moderate correlate of better global cognition (ADAS-Cog: r=-0.41,
p=0.006), verbal memory (RAVLT-Total: ¥=0.43, p=0.004) and semantic memory (Fluency: r=0.38, p=0.011),
but was not related to working memory function (Fig.8A). Controlling for age and cortical thickness, however,
hierarchical regression analyses showed that SPR within the IPL-DMN was not a significant predictor of any
cognitive function (p > 0.5), explaining an additional 3%, 9% and 3% of the unique variance in ADAS-Cog,
RAVLT-Total and Fluency scores, respectively. For the correlations between neural synchrony and cognition, we
found that increased alpha synchrony within IPL-DMN is a weak correlate of better global cognition and memory
with no significant relationships to any cognitive function (Fig.8A, right panels). Increased beta synchrony in the
IPL is a moderate correlate of better global and memory functions, and weak correlate of working memory in the
AD (Supplementary Fig.8). Finally, we examined network specificity of significant correlations between IPL SPR
and cognition and found almost identical correlation patterns with cognition using global SPR or SRP from the
frontal-DMN (black and blue colored scatters in Fig.8A and Supplementary Fig. 8), suggesting that rsEEG

measures may be a global signature of decline in global cognitive and memory functions with no distinct network
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specific relationships. Our vertex-wise correlations support such conclusions by showing a uniform correlation

pattern between SPR and cognitive functions across the cortical surface (Fig.8B).
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Fig. 4. Relationships between resting-state EEG measures of spectral power ratio, neural synchrony and cognitive
functions in AD participants. A: Scatter plots with regression lines showing bivariate correlations between rsEEG measures
of spectral power ratio (left panels) and neural synchrony (right panels) with cognitive function in AD participants. Color codes
refer different cortical regions with red showing rsEEG measures from IPL mask and blue showing from the frontal node of
the DMN and black showing the average measure computed across the entire cortex (global). Correlation coefficients are
provided for each regression line with asterisks indicating statistically significant correlations (p<0.05). B: Cortical maps
showing vertex-wise correlations of SPR with ADAS-cog (upper panels) and RAVLT (lower panels) scores with hot colors
indicating positive and cold colors indicating negative correlations. Statistically thresholded cortical maps (p<0.05) shows brain
regions with significant correlation
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Discussion

Increasing evidence suggests that Alzheimer's disease (AD) pathology is associated with both cortical
hypeexcitability and functional brain network failure, particularly involving early aberrant changes within the
DMN!16:60-64 ‘Degpite extensive research, our understanding of DMN dysfunction in AD has largely been limited
by the constraints of resting-state functional neuroimaging. Here, we developed a novel perturbation-based TMS-
EEG approach to characterize cortical excitability with high spatial precision at the site of stimulation and to
assess causal connectivity dynamics reflecting the integrity of multi-synaptic signaling within the DMN. We also
assessed spontaneous brain activity using commonly applied rsSEEG spectral and connectivity measures to
comprehensively examine the neurophysiology of AD in relation to cognitive function and structural brain
integrity. We found that source localization of TMS-evoked EEG responses revealed local hyper-excitability at
the stimulated parietal node with increased propagation to the ipsilateral mesial temporal lobe, along with a
breakdown of connectivity between parietal and frontal-DMN regions in AD participants. Most importantly, these
TMS-EEG measures were specific to DMN stimulation, served as independent predictors of distinct cognitive
functions with spatial and temporal specificity, explain a substantial portion of the variance in individual cognitive
function, and may mediate the link between structural brain integrity and cognitive decline in AD. In contrast,
although spontaneous neural slowing and disrupted neural synchrony were clearly evident in AD participants,
these rsEEG measures and their relationships to cognition were not specific to the DMN but instead reflected
global changes in brain neurophysiology. Overall, our results translate neurophysiological signatures of AD
observed in animal studies to humans and indicate that perturbation-based measures are sensitive to AD-related
alterations in functional brain networks and may serve as biomarkers of distinct cognitive symptoms.

Neurophysiological abnormalities in AD are characterized by a loss of synaptic density and disrupted
synaptic transmission®, leading to decreased neuronal activity in AD®. In mouse models of AD, Palop and
colleagues (2007) reported seizure activity in cortical and hippocampal neurons indicating an excitatory effects
of AB on neuronal function*. Subsequent research confirmed these findings, showing clusters of abnormally
hyperactive cortical neurons exclusively near A plaques’® and in hippocampal neurons even before the formation
of plaques, often driven by soluble AP oligomers, establishing neuronal hyper-excitability as a key
neurophysiological signature in the AD spectrum®’. However, the presence and relevance of cortical excitability
in human AD, particularly within brain networks involved in memory processes, have remained poorly
understood. While cortical hyper-excitability in the form of inter-ictal epileptiform discharges have been
identified in 20-45% of patients with early AD, where they have been associated with faster declines in global

cognition®®

, the majority of AD patients lack these findings despite extended monitoring, and network-specific
associations with cognition are difficult to establish. In our study, we leveraged the high spatial focality and causal
nature of TMS combined with the precise temporal resolution of EEG, alongside advanced simulation and inverse
algorithms, to map perturbation-based neurophysiology in the DMN and its links to cognitive functions and brain

structure in AD patients. We found that AD participants exhibited increased cortical excitability at the IPL-DMN
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up to 65ms post-TMS, which extended to left temporal DMN from 60-85ms. Conversely, starting at 75ms, frontal
DMN activity was markedly reduced in AD participants compared to controls, suggesting a pattern of hyper-
excitable posterior and temporal-DMN with disrupted connectivity to frontal DMN. These findings build on
existing evidence showing that parietal and temporal DMN regions are particularly vulnerable to early AD

1461 cortical atrophy”,

pathology'>7°. Recent neuroimaging studies have linked these areas to reduced metabolism
and aberrant DMN connectivity, including hypo-connectivity within medial parietal nodes and hyper-connectivity
between medial and lateral temporal-parietal nodes'®’2. Our results not only translate these imaging-based
findings into the cortical neurophysiology of DMN dysfunction but also highlight a novel finding of disrupted

posterior-frontal DMN connectivity in AD. The utility of TMS in detecting cortical excitability and connectivity

73,74 75-77

impairments has been well established in patients with stroke’”"* and spinal cord injury’>~"’, where motor evoked
potentials (MEPs) reflect decreased excitability in the affected hemisphere in stroke, and indicate disrupted signal
transmission in spinal cord injury indexing the integrity of the corticospinal tract. Our findings extend this utility
to cortical neurophysiology in AD, demonstrating that TMS-EEG can reveal hyper-excitability and disrupted
connectivity within the DMN.

Our control analyses using M1- and Sham-TMS data showed no significant differences between the
groups, confirming that the abnormally increased local cortical excitability is specific to DMN stimulation and
cannot be attributed to non-transcranial effects of TMS. While the lack of significant group differences in motor
cortex maps following M1-TMS contrasts with much of the previous literature showing increased cortical
excitability in the motor cortex using MEPs’®, we argue that our local cortical excitability results reflect the
severity of network-specific neurophysiological abnormalities in AD. Our supplementary analyses revealed that
resting motor threshold (RMT) is significantly lower in AD participants, resulting in weaker E-field strength for
both M1 and IPL stimulation (Supplementary Fig. 12). This aligns with a recent meta-analysis identifying RMT
as the most robust measure consistently lower in AD participants’®, whereas findings related to scalp measures of
TMS-EEG responses were highly inconsistent’’. To our knowledge, only one other study has used source
localization of TMS-EEG to describe cortical excitability and connectivity in the motor cortex in AD, but this
study provided source results only for visualization purposes without statistical analyses*®. Consistent with our
results, TMS of M1 in healthy subjects typically shows spatially distributed and temporally distinct network
activation patterns, propagating from premotor to motor and somatosensory cortices, reflecting the anatomical
connectivity of the motor cortex. In contrast, AD participants exhibited stronger, longer-lasting local activations
that remained mostly within the stimulated area, with poor propagation within the stimulated network*®. The fact
that spTMS elicited statistically similar neural responses at M1 but significantly higher activations at IPL, despite
weaker E-field strength and lower stimulation intensities in AD participants, reflects the network-specific severity
of neuropathological alterations across the spectrum of disease progression. Given that AD pathology first

manifests in the parietal brain regions!” and spreads to other cortical regions®’?, with the DMN being one of the

earliest and most affected networks, our findings of increased IPL and temporal DMN excitability in early AD
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participants align with this temporal progression. The significantly altered cortical excitability and connectivity
in DMN regions, but less pronounced abnormalities within the motor cortex, highlight the sensitivity of TMS-
EEG in detecting early network-specific changes in cortical excitability and connectivity.

Our analyses of TMS-EEG measures of cortical excitability and network connectivity in relation to
specific cognitive functions revealed several key findings. First, we observed strong correlations between
increased IPL excitability and global cognitive function, as measured by ADAS-Cog, as well as episodic memory
impairment, as measured by RAVLT. Conversely, connectivity between the IPL and frontal DMN nodes was
associated most strongly with working memory and executive functions, consistent with the role of the
dorsolateral prefrontal cortex (DLPFC) in these cognitive processes®’. These distinct correlations suggest that IPL
excitability is particularly sensitive to global cognitive and memory deficits, while frontal DMN connectivity is
more closely related to working memory and executive functions, demonstrating how different TMS-EEG
measures are specifically associated with different cognitive domains. Second, we found that early responses (15-
65ms) following IPL stimulation, where hyper-excitability was present, were significantly related to global
cognition and memory. In contrast, only late responses in the frontal-DMN node were associated with working
memory and fluency. This temporal specificity suggests that local excitatory activity, reflecting the immediate
neural effects of TMS, links localized disruptions in cortical excitability to global cognition and memory, both of
which are closely associated with parietal lobe functions®!. Later frontal DMN connectivity responses,
representing more integrative, trans-synaptic processing, likely reflect the integrity of long-range network
connectivity and better index cognitive processes relying on the coordinated activity of frontal and parietal
regions, such as working memory®>®3, Third, the absence of significant correlations with M1 stimulation and
sham-TMS demonstrates the specificity of these findings to DMN-related alterations in AD. Importantly,
hierarchical regression analyses indicated that IPL hyper-excitability is an independent predictor of global
cognitive decline, explaining a substantial portion of the variance in ADAS-Cog after controlling for cortical
thickness, age, and education. Cortical thinning in regions such as the medial temporal lobe, lateral parietal cortex,

and frontal areas is a well-documented hallmark of AD’!848>

, strongly associated with AD pathology and
severity®®. Our findings align with this literature, showing significantly reduced cortical thickness in AD
participants (Supplementary Fig. 12), which was also associated with poorer cognitive performance
(Supplementary Table 1). However, when cortical hyper-excitability was considered, the relationship between
cortical thickness and global cognition was no longer significant, suggesting that cortical hyper-excitability
maybe an underlying neurophysiological abnormality that links impairments in structural brain integrity to
cognitive decline. Moreover, the unique variance explained by frontal-DMN connectivity in working memory
and verbal fluency highlights the importance of intact network communication for preserving these cognitive
domains. Overall, these results emphasize the relevance of both temporal and spatial specificity in TMS-EEG

measures, highlighting their potential as sensitive biomarkers for AD-related neurophysiological alterations and

cognitive decline.
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In our study, we also assessed commonly used rsEEG measures to comprehensively characterize the
neurophysiological signatures of AD. We observed a global shift in spectral power dynamics, characterized by a
decrease in faster alpha-beta oscillations relative to slower delta-theta frequencies, a phenomenon known as

'neural slowing®”'

. This neural slowing was evident across the cortex, including regions such as the IPL, M1, and
frontal DMN. Additionally, we found decreased neural synchrony within the alpha and beta frequency bands,
particularly in the visual, parietal, and temporal-frontal regions, indicating widespread disruption in synchronized
neural activity in AD. Consistent with these neurophysiological alterations, our correlation analyses revealed that
lower SPR and reduced alpha synchrony were moderately associated with global cognitive decline and memory
impairments, although these relationships were not network-specific. These findings align with previous studies

that have reported similar patterns of neural slowing in AD?%

and have linked disrupted alpha and delta-theta
synchrony to AD pathology and cognitive decline?”%%. However, the global nature of rsEEG measures, which
reflect widespread changes in brain physiology, may explain why these metrics fail to capture localized alterations
critical for understanding functional network failures in AD. RSEEG is sensitive to diffuse, spontaneous neural
oscillations arising from multiple overlapping networks, making it less effective in isolating dysfunctions within
specific networks like the DMN. Moreover, the correlational nature of spontaneous oscillations does not directly
index key neurophysiological signatures of AD, such as cortical hyper-excitability and causal network
dysconnectivity. In contrast, our TMS-EEG approach, which allows for the targeted stimulation of specific brain
networks, revealed localized alterations in cortical excitability and captured abnormal causal connectivity
dynamics within the DMN. These TMS-EEG measures also demonstrated distinct correlation patterns with
different cognitive functions, suggesting that perturbation-based neurophysiological modalities provide a more
precise characterization of network-specific dysfunctions in AD, offering deeper insights into how these
dysfunctions relate to specific cognitive deficits.

While our findings provide important insights into the neurophysiological alterations associated with AD,
several limitations should be acknowledged. A key limitation is our inability to quantitatively relate our findings
to pathological markers such as regional AP and p-tau levels. Integrating these biomarkers could have offered a
more comprehensive understanding of the neurobiological mechanisms driving the observed changes in cortical
excitability and connectivity. Additionally, our study did not differentiate between AD subtypes, such as typical
amnestic AD, primary progressive aphasia, and posterior cortical atrophy, each of which exhibits distinct patterns
of cognitive impairment and neurodegeneration. This limits our ability to generalize our TMS-EEG findings
across the spectrum of AD presentations and suggests a need for future research to explore whether TMS-EEG
measures can differentiate between these subtypes. The cross-sectional design of our study also restricts our
ability to determine whether TMS-EEG measures are sensitive to tracking disease progression or responses to
treatment over time. Longitudinal studies are necessary to validate the utility of these measures as biomarkers for
monitoring disease progression and therapeutic efficacy. Despite these limitations, the robust correlations we

observed between TMS-EEG measures and cognitive function, which exceeded those typically reported in fMRI'®
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and MRI studies, suggest that TMS-EEG may offer a more sensitive approach than resting state neurophysiology
for detecting network-specific dysfunctions in AD, even with a limited sample size.

Taken together, our findings demonstrate that perturbation-based measures are powerful tools for
characterizing network-specific neurophysiological alterations in AD, offering insights that extend beyond
traditional resting-state and structural measures. By highlighting the role of cortical hyper-excitability and
disrupted connectivity within the DMN, our study provides a deeper understanding of the functional network
failures underlying cognitive decline in AD. Future research should focus on integrating these neurophysiological
measures with pathological markers and assessing their utility in tracking disease progression across different AD
subtypes in longitudinal cohorts. This approach could refine our understanding of AD pathophysiology and
potentially guide the development of targeted interventions.

Methods

Participants: Forty-two biomarker-positive early AD (18 female, Agemean=70.95% 7.63 years) and 40
healthy older adult control (HC) participants (19 female, Agemean=70.63 + 6.41 years) were included in this study.
Inclusion criteria for early AD participants were: aged 50-90 years old, on a stable dose of medications for
memory loss (e.g. donepezil, rivastigmine or memantine) as defined by 4 consecutive weeks of treatment at a
fixed dose, meeting the NINCDS-ADRDA criteria for probable AD, Mini Mental State Examination (MMSE) >
20 (to insure ability to give appropriate consent), positive AD biomarker status (as defined by CSF biomarkers or
florbetapir amyloid PET study) and clinician dementia rating (CDR) of 0.5-1.0. Inclusion criteria for HC
participants were: aged 50-80 years old, Normal neurologic exam, MMSE > 28 and CDR of 0-0.5 (CDR of 0.5
was allowed if the participant was found to have only subjective memory complaints by consensus discussion
between the study MD and neuropsychologist. Subjective memory complaints were defined as there being no
objective evidence of cognitive impairment or memory loss on cognitive testing or informant report. In this
sample, only one HC participant had CDR of 0.5, Supplementary Table. 1). Exclusion criteria included a diagnosis
of epilepsy, current or past history of any neurological disorder (other than dementia in the AD group); stroke;
intracranial brain lesions; history of previous neurosurgery; head trauma that resulted in residual neurologic
impairment; or substance use disorders within the past six months. An abnormal neurologic or cognitive exam
and use of medications that could alter cortical excitability, as determined by the investigators, were additional
exclusion criteria for HC participants only. Experimental protocols and voluntary participation procedures were
explained to all participants before they gave their written informed consent to the study which conformed to the
Declaration of Helsinki, and had been approved by the Institutional Review Board of the Beth Israel Deaconess
Medical Center. If an AD participant was interested in participating in the study but was determined to be unable
to consent by the study MD, a legally authorized representative provided informed consent. RSEEG data were
collected from all participants. TMS-EEG data were available in 37 AD participants. RSEEG data were collected
from all participants. TMS-EEG data were available in 37 AD participants.
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Data acquisition: A T1-weighted (T1w) anatomical MRI scan was obtained for all participants and used
for neuronavigation. MRI data were acquired on a 3T scanner (GE Healthcare, Ltd.) using a three-dimensional
spoiled gradient echo sequence: 166 axial-oriented slices for whole-brain coverage; 240-mm isotropic field-of-
view (FOV); 0.937-mm x 0.937-mm x 1-mm native resolution; flip angle = 15°; echo time (TE)/repetition time

(TR) > 2.9/6.9 ms; duration >432 s.

TMS was delivered using a figure-of-eight—shaped coil with dynamic fluid cooling (MagPro 75-mm Cool
B-65; MagVenture A/S) attached to a MagPro X-100 stimulator (MagVenture A/S). For single-pulse sham TMS
stimulation, a MagVenture Cool-B65 A/P coil was used with a 3 cm thick plastic spacer. Individual high-
resolution T1w images were imported into the Brainsight TMS Frameless Navigation system (Rogue Research
Inc.), and coregistered to digitized anatomical landmarks for online monitoring of coil positioning. Whole-scalp
64-channel EEG data were collected both for rsEEG and TMS-EEG recordings at a sampling rate of 5000 Hz
with a high frequency cut-off at 1350 Hz using a TMS-compatible amplifier system (actiCHamp system; Brain
Products GmbH) and labeled in accordance with the extended 10—-20 International System. EEG data were online-
referenced to AFz electrode. Electrode impedances were maintained below 5 kQ. EEG signals were digitized
using a Brainamp actiCHamp amplifier and linked to BrainVision Recorder software (version 1.21) for online
monitoring. Digitized EEG electrode locations on the scalp were also coregistered to individual MRI scans using
Brainsight TMS Frameless Navigation system. Motor-evoked potentials (MEPs) were recorded from the right
first dorsal interosseous (FDI) and the abductor pollicis brevis (APB) muscles following single pulse TMS of left
motor cortex. Ag—AgCl surface electrode pairs were placed on the belly and tendon of the muscles and a ground
was placed on the right ulnar styloid process.

TMS Targets: We used group-level functional parcellations and confidence maps on the Montreal
Neurological Institute (MNI) template brain to target the most consistent regions within the angular gyrus (Left-
IPL: -55.1, -70.5, 27.7) that had the highest likelihood of occurring in the DMN. A custom processing pipeline
was developed to take each subject’s anatomical MRI, create a non-linear transform from subject to MNI space
and then use the inverse of that transform to bring the coordinates back into subject space using FSL’s “FNIRT”
tool. The transformed coordinates along with individual high-resolution T1w images were then imported into the
Brainsight™ TMS Frameless Navigation system (Rogue Research Inc., Montreal, Canada), and co-registered
to digitized anatomical landmarks for online monitoring of coil positioning. Left motor cortex (L-M1) was
stimulated at the TMS motor hotspots for each individual as described in detail below.

Experimental Procedures: Throughout the session, participants were comfortably seated in an adjustable
chair. At the beginning of the TMS visit rsEEG recordings were performed first in eyes closed (EC) condition for
five minutes. Participants were instructed to remain awake throughout this period, and were intermittently
instructed to blink several times to help maintain alertness. Following rsEEG recordings, the motor hotspot for

eliciting MEPs in the right FDI muscle was determined by delivering single TMS pulses and moving the TMS
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coil in small incremental steps after two to three stimulations in each spot, over the hand region of left motor
cortex with 45° rotation in relation to the parasagittal plane (inducing posterior-to-anterior current in the
underlying cortex). The hotspot was defined as the region where single-pulse TMS elicits larger and more
consistent MEPs in the FDI muscle, as compared to the APB muscle, with the minimum stimulation intensity.
The FDI hotspot was digitized on each participant’s MRI image. Resting motor threshold (RMT) was determined
on the FDI hotspot as the minimum stimulation intensity eliciting at least five MEPs (=50 uV) out of 10 pulses
in the relaxed FDI using biphasic current waveforms. In compliance with the International Federation of Clinical
Neurophysiology safety recommendations®’, participants were asked to wear earplugs during hotspot and RMT
trials to protect their hearing, and to minimize external noise. TMS was administered with a thin layer of foam
placed under the coil to minimize somatosensory contamination of the TMS-evoked EEG potentials. To minimize
AEPs related to the TMS click, auditory white noise masking was used throughout the TMS stimulation. The
intensity of noise masking is determined as the highest noise level participants could tolerate below 90db.
Following determination of RMT, a total of 150 single TMS pulses were delivered to each stimulation target
(DMN node target in the left inferior parietal lobule IPL-TMS and motor hot spot in the left motor cortex M1-
TMS) at an intensity of 120% RMT with randomly jittered (3,000 to 5,000ms) interstimulus intervals. Sham-
TMS was administered on the motor hot spot of the FDI muscle over left M1. An active/sham TMS coil (Cool-
B65 A/P, MagVenture A/S, Farum, Denmark) was flipped to the placebo side and stimulation intensity was kept
identical to actual TMS, but with induced currents on the opposite vertical direction to the targeted gyri
(Supplementary Fig. 9). A 3D printed 3 cm spacer was attached to the placebo side (MagVenture A/S, Farum,
Denmark) of the coil to further ensure the elimination of residual currents on the placebo side of the coil. White
noise masking was presented through earplug-earbuds at the maximum volume comfortable for each participant.
Small current pulses between 2 and 4 mA and proportional to the intensity of actual TMS pulse were delivered
over the left forehead, over the frontalis muscle, using surface electrodes (Ambu Neuroline 715 12/Pouch) to
approximate somatosensory sensations arising from skin mechanoreceptors and scalp muscles during active-
TMS condition (Supplementary Fig.9). Operators continuously monitored participants during the TMS blocks for
their wakefulness, and prompted them to keep their eyes open and stay fully relaxed in case of visible signs of
drowsiness or tension.

EEG preprocessing: All EEG data pre-processing was performed offline using EEGLAB 22.1%°, and
customized scripts running in Matlab R2022b (Math-Works Inc., USA). rsEEG recordings were first low-pass
filtered at 100Hz using a forward-backward 4" order Butterworth filter and down sampled to 250 Hz. Visual
inspection was performed to identify and reject extremely noisy channels (1.88 + 1.36 channels were deleted on
average; range 0-5 out of 63). rsEEG data were then segmented into 3000 ms epochs and each epoch was tagged
based on voltage (>100 mV), kurtosis (>3), and joint probability (Single channel based threshold >3.5sd; All
channel-based threshold > 5sd) metrics to identify excessively noisy epochs. Visual inspection was performed on

the tagged epochs for the final decision for the removal of noisy epochs (6.75 + 8.23 epochs were deleted on
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average). RsSEEG data were then notch filtered between 57 and 63Hz, band pass filtered using a forward-backward
4™ order Butterworth filter from 1 to 100Hz, and referenced to global average. To avoid edge effects of the
Butterworth filter at individual epochs, each epoch was first replicated, inverted and then reflected back to both
ends of the signal for symmetrical extension of the original epoch before filtering. Original epochs were then

extracted back following the filtering process for further processing steps. A fast independent component

analysis (fICA) was performed to manually remove all remaining artifact components including eye
movement/blink, muscle noise (EMG), single electrode noise, and cardiac beats (EKG) (see Supplementary Fig.
10 for details of identifying ICA components). A semi-automated artifact detection algorithm “tesa_compselect”
incorporated into the open source TMS-EEG Signal Analyzer TESA v0.1.0-beta extension’! for EEGLAB was
used to visually inspect and manually remove artifactual resting-state EEG ICA components based on their
frequency, activity = power  spectrum, amplitude, scalp  topography, and time course
(http://nigelrogasch.github.io/TESA/). In average, 19.15 = 7.02 out of 63 ICA components were removed across
all data sets and visits. Rejected channels were interpolated using spherical interpolation. rsEEG data from one
HC participant were discarded from the analyses because of extreme EMG contamination across most of the
channels. Final sample size for rsEEG analyses consists of 42 AD and 39 HC participants.

TMS-EEG preprocessing: TMS-EEG data were segmented into 3000 ms epochs, each starting 1000 ms
before (pre-stimulus) and ending 2000 ms (post-stimulus) following TMS pulse, respectively. Baseline correction
was performed by subtracting the mean pre-stimulus (—500 to —100) signal amplitude from the rest of the epoch
in each channel. Following baseline correction, data were visually inspected to identify noisy channels
(2.26 + 1.38 channels were deleted on average; range 0—5 out of 63). Zero-padding between -2 ms and 10 ms time
range was then applied to remove the early TMS pulse artifact from the EEG data. All zero padded epochs were
then tagged based on voltage (=100 pV), kurtosis (>3), and joint probability (Single channel-based

threshold > 3.5sd; All channel-based threshold > 5sd) metrics to identify excessively noisy epochs. Visual
inspection was performed on the tagged epochs for the final decision for the removal of noisy epochs (7.89 + 8.59
epochs were deleted on average). Next, an initial round of fICA was performed using TESA v0.1.0-beta
extension”! to identify and remove components with early TMS evoked high amplitude electrode and EMG
artifacts (1 = 1 components were removed; range 03 out of 63). After the first round of fICA, the EEG data were
interpolated for previously zero-padded time window around TMS pulse (-2 ms—10 ms) using linear interpolation,
band pass filtered using a forward-backward 4th order butterworth filter from 1 to 100 Hz, notch filtered between
57 and 63 Hz, and referenced to global average. Missing/removed channels were interpolated using spherical
interpolation, and sham stimulation blocks were merged with IPL and M1 blocks separately. Subsequently, a
second round of fICA was run to manually remove all remaining artifact components including eye
movement/blink, muscle noise (EMG), single electrode noise, TMS evoked muscle, cardiac beats (EKG). We
performed a sham-informed ICA-based process for identifying and removing auditory evoked potentials in IPL

and M1 data sets as previously described”>. Briefly, ICA components that met the following criteria were
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classified as AEP components and removed. (1) The time-course has three peaks, P50-N100-P200, with the lowest
amplitude in the P50 compared with N100 and P200; (2) the scalp topography reflects left/right symmetry and a
central distribution anterior to Cz; and (3) the component is shared across both active stimulation sites and sham
stimulation. Details for identifying and validating AEP components are provided in Supplementary Fig.
11. TMS-EEG data from four AD participants and 1 HC participant were discarded from the analyses due to poor
data quality. Final sample size for TMS-EEG analyses consists of 33 AD and 39 HC participants.

EEG source reconstruction: Both rsEEG and TMS-EEG source reconstruction was performed using
Brainstorm software®®. First, individual cortical surface reconstruction was performed by running Freesurfer
“recon-all” command on T1-weighted anatomical MRI scans. Group-averaged functional cortical atlases (n =
1,000) consisting of seven resting-state networks were also morphed into the subject’s cortical surface using
surface-based registration in freesurfer (Fig. 1A). Next, digitized EEG channel locations and anatomical
landmarks of each subject were extracted from Brainsight™ (nasion ‘NAS’, left pre-auricular ‘LPA’, and right
pre-auricular ‘RPA’ points), and registered onto individual MRI scans in brainstorm. Continuous rsEEG and
epoched TMS-EEG, —500 ms—1000 ms with respect to TMS pulse for each TMS trial, were uploaded and forward
modeling of neuro electric fields was performed using the open MEEG symmetric boundary element method, all
with default parameter settings. For TMS-EEG, noise covariance was estimated from individual trials using the
pre TMS (=500 to 0) time window as baseline while the first 10 seconds of rsEEG data was used for noise
modelling of rsEEG data. The inverse modeling of the cortical sources was performed using the minimum norm

estimation (MNE) method with current density maps for rsEEG and with dynamic statistical parametric

mapping (dSPM) for TMS-EEG as the source estimation measures. We choose dSPM for TMS-EEG as it further
normalize current density maps to the baseline period (preTMS) with z-scores and provide a statistical map of
TMS evoked responses. Source dipoles for both measures were constrained to the individual cortical surface.
Generation of surface based masks: Currently, electric-field (E-field) modeling of TMS is considered
as the gold standard for estimating the extent of local cortical regions directly activated by TMS®*. Therefore, we
performed E-field simulations on individual brain models to identify TMS-activated local cortical regions and
generate local surface-based masks for measuring local cortical excitability at the source level (Fig. 1B, left upper
and middle panels). First, we performed E-field simulations in SimNIBS software’’ (version 4.1) using individual
brain models from FreeSurfer. We used the ‘MagVenture Cool-B65° TMS coil model from Drakaki et al., with
dl/dt values of the TMS machine set to 120% RMT (actual stimulation intensity) and with an 8 mm skin-to-coil
distance to account for the space of EEG electrodes on the scalp. The coil position in SiImNIBS was set to the 3D
world coordinates of each TMS site on the individual MRI model, derived from Brainsight. AD participants had
significantly lower peak E-field strength than HC participants (#70) = -2.68, p = 0.009, Supplementary Fig. 12).
To better understand significant E-field strength differences between the groups, we compared RMT and scalp-

to-cortex distances and found that while RMT was significantly lower in AD participants (¢70) =-2.15, p = 0.034),
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scalp-to-cortex distances were statistically similar between the groups (p > 0.5), indicating lower RMT as the
source of E-field differences between the groups (Supplementary Fig.12B).

After performing SimNIBS simulations, the E-field distribution for each TMS condition (Left-IPL and
M1) at individual volume space was projected onto the cortical surface model using FreeSurfer's® mri_vol2surf
function. Following projection, we employed the mri_binarize function to threshold the surface data, retaining
only values greater than 0.01% of the maximum value to identify local cortical regions most affected by TMS.
Subsequently, we generated surface masks from the binarized data using mri_cor2label, which converted the
thresholded surface data into label files representing local anatomical regions. These surface masks were further
refined and annotated with FreeSurfer's mri_label2label and mris_label2annot functions, enabling precise
delineation of each local cortical mask. Finally, annotation files for each site were uploaded to Brainstorm with
individual brain models from FreeSurfer and used as scouts for assessing local cortical excitability (Fig. 1B, right
upper and middle panels). These surface masks were also used to compute average cortical thickness (in mm)
within the defined regions using the mris_anatomical_stats function in FreeSurfer, allowing us to quantify the
local cortical structure in relation to TMS activation. In line with expectations, AD participants had significant
cortical thinning (¢(70) = -5.20, p = 0.000) at the parietal DMN regions (Supplementary Fig. 12B).

TMS-EEG measures: Using e-field-based local masks and fMRI-connectivity-based DMN masks, we
extracted average current density time-series (1500ms) representing a 500ms baseline period and a 1000ms post-
TMS activity period. These time series were rectified to obtain absolute values and converted into z-scores by
normalizing the source activity at each sample to the pre-TMS period (0-500ms baseline). For assessing local
cortical excitability, we utilized z-score EEG activity time series derived from e-field-based local masks. We first
performed sample-wise independent t-tests on the z-score EEG time-series to characterize cortical excitability
differences between the groups at millisecond temporal resolution (Fig. 2C, left panels). Initially, we focused on
identifying significant differences within the first 50ms following TMS, as this window often captures the earliest
TEPs at the site of stimulation. If significant sample clusters were detected within the first 50ms, we expanded
the analysis to define a broader time window that includes these clusters and extends to encompass the full range
where the average EEG activity time series showed visible differences between groups. For example, the dashed
black line in Fig. 2C (upper left panel), marks the 15-65ms window, is selected to capture both significant clusters
and adjacent time points where EEG activity differed between groups. This broader time window was then used
to compute the average z-score EEG activity for further analyses (illustrated by the violin plots on the right panel
of Fig. 2C, showing the distribution of average z-score EEG activity within this window across participants). By
defining this broader data-driven window for further analysis, we ensure a comprehensive evaluation of local
cortical excitability that incorporates both the statistically significant clusters and the broader range of group
differences observed in the time-series data. For whole brain analyses, we also used these windows to first

compute average activity across the entire surface and project average surface activity to MNI template for each

participant. For network connectivity measures, we searched for significant time windows after 50ms following
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TMS and applied the same procedures described above. We defined network connectivity as the average amount
of activity extracted from non-stimulated regions of the DMN, representing how much activity propagated from
the stimulated to other nodes of the network (Fig. 1B, lower panel, and Fig. 1C). This metric can be conceptualized
as a proxy for network connectivity, with higher values indicating increased connectivity between the stimulated
and non-stimulated nodes of the DMN.

rsEEG measures: For resting-state EEG (rsEEG) power measures, we first estimated the broadband (1-
50 Hz) spectral power density (PSD) of current density time series at each vertex (n = 15,000) using the Welch
method”®. We applied a 2000 ms Hamming window with a 50% overlap ratio for the PSD estimations (Fig. 5A).
Next, we parameterized the EEG power spectra at each vertex into periodic and aperiodic components using the
"Fitting Oscillations One Over F" (FOOOF) toolbox®’ (Fig. 5A, middle panel). After parameterization, we
removed the aperiodic component (exponent) from the spectra to focus solely on the periodic (oscillatory)
components. This approach helps prevent misinterpretation of oscillatory power changes that could result from
shifts in the aperiodic exponent rather than true oscillatory dynamics. By focusing on the periodic components,
we ensure that our analysis reflects actual oscillatory activity across canonical frequency bands without the
confounding influence of non-oscillatory background activity (Fig. SA lower panel). This methodological choice
aligns with recent advancements in neural signal analysis, which emphasize the importance of distinguishing
between periodic and aperiodic components to better understand neural dynamics and their alterations in clinical
populations such as those with Alzheimer's disease’’'%2. After removing the aperiodic slope (exponent) from
EEG power spectra, we computed relative spectral power at canonical frequency bands (A-delta: 1-3 Hz, 6-theta:
4-7 Hz, a-alpha: 8-12 Hz, B-beta: 13-29 Hz and y-gamma: 30-50 Hz) as the percentage (%) of the total absolute
power expressed (1-50Hz) at each vertex (Fig. 5A lower panel). Absolute power estimates were used to compute
the spectral power ratio (SPR), defined as the ratio of power in o and 3 to power in A and 6: (o+ B)/( A+ 6). Lower
SPR values indicates the degree of “neural slowing”. This approach is particularly useful for assessing alterations
in the spectral dynamics of EEG, capturing the global shift in the EEG power spectrum from higher to lower
frequencies, a pattern previously reported in AD?.

For rsEEG connectivity, we computed seed-based orthogonalized power envelope correlations'®* (PEC)
at individual source space using current density time series (Fig. 2B). The PEC approach has been introduced to
measure functional brain connectivity at distinct neural oscillations using MEG/EEG signals, is sensitive for
characterizing abnormal brain dynamics in several psychiatric and neurological conditions with correlated

99,104-106

changes in cognitive behavior , and is the most robust and reproducible connectivity metric compared to

phase, spectral coherence and auto-regressive based connectivity estimates!'®.

To characterize rsEEG
connectivity of the stimulated DMN node, we used individual TMS coordinates of Left-IPL to generate
connectivity seed regions for each participant. We first found the seed vertex on the individual cortical surface
that was closest to the TMS coil over the scalp, and expanded the seed vertex over the cortex in all directions to

the closest 40 vertices (roughly 3cm?) to define the seed region for each individual (Fig. 5B upper panels). We
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then iteratively computed PEC as the “neural synchrony” measure between each vertex within the seed region
and rest of the brain vertices at delta-theta (2-7 Hz), alpha (8-12 Hz) and beta (13-29 Hz) frequencies. Current
density time series were narrow-band pass filtered at each frequency band and Hilbert transformed to compute
analytical signals as previously described!®’ (Fig. 5B middle panels). Analytical signals, a complex valued time
series data containing momentary phase and amplitude information, within each vertex are orthogonalized with
respect to the seed vertices. Power envelopes were then extracted from each orthogonalized analytical signal and
seed vertices and transformed to natural logarithm to improve normality as described previously'®. Finally,
Pearson correlations were performed between log-transformed power envelopes within each seed vertex and the
rest of the brain to generate a PEC matrix for the seed-region. We then averaged the connectivity matrices to
estimate rsEEG connectivity of the left IPL with the rest of the brain. Finally, the averaged connectivity maps for
each frequency band were smoothed as commonly described in previous reports using a Gaussian kernel with a
width of 5 x 5 x 5 mm full width at half maximum (Fig. 5B lower panels). We used the same local and DMN
masks to extract average rSEEG measures. In addition, we computed global average across the cortex for each
rSEEG measure.

Cognitive measures: The Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-cog) was
administered to assess global cognitive function. The ADAS-cog, comprising 11 tasks assessing memory,
language, praxis, and orientation, was conducted in a quiet environment by trained examiners over a 45 to 60-
minute session. Tasks included word recall, object naming, command following, constructional praxis, ideational
praxis, orientation, word recognition, and language comprehension, scored to reflect cognitive impairment
severity. Total scores ranged from 0 to 70, with higher scores indicating greater impairment!®®, The Rey Auditory
Verbal Learning Test (RAVLT)!? was administered to assess verbal memory and three components of interest
were extracted: Immediate Recall, Delayed Recall, and Delayed Recognition. Participants were first given a list
of 15 words to learn (List A) over 5 trials each. A second, distractor list of 15 words (List B) was then presented
for the participants to learn. Immediate Recall of the initial list (List A) was then recorded as the number of words
spontaneously recalled (range: 0-15, higher scores indicate better performance). The Delayed Recall score
assesses the ability to recall the same list after a 20-minute delay without further exposure, evaluating long-term
memory retention (range: 0-15, higher scores indicate better performance). The Delayed Recognition score
involves presenting participants with a list of 30 words, including the original 15 words and 15 distractor words.
Participants are required to identify which words were from the original 15 words, testing their recognition
memory (range: 0-30, lower scores indicate worse recognition accuracy). The RAVLT total score is calculated
by summing the scores from all components of the task (range: 0-150) with higher total scores reflecting better
overall (global) verbal memory performance, indicating greater learning ability, retention, and recognition. Digit
Span Task!!” was administered to assess the working memory capacity of participants. The task included both
Digit Span Forward and Digit Span Backward components. For the Digit Span Forward task, sequences of digits

were read aloud at a rate of one digit per second, beginning with two digits and increasing incrementally by one
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digit per trial. Participants were required to repeat each sequence in the same order. This component primarily
assesses immediate memory span and the capacity to hold and process information in a linear order. In the Digit
Span Backward task, participants were asked to repeat the digit sequences in reverse order, following the same
incremental sequence length. This task evaluates more complex working memory functions, as it requires not
only retention of the information but also mental manipulation to reorder the digits. The tasks continued until the
participant failed two consecutive trials of a particular sequence length. Performance was scored by the total
number of trails completed, with higher scores indicating better performance (range: 0-16). The Animal Fluency
Test was administered to evaluate the semantic memory and verbal fluency of participants. The test involved
instructing participants to name as many animals as possible within 60 seconds. Participants were asked to name
as many animals as they could think of in one minute, and their responses were recorded verbatim. The total
number of unique animal names produced was counted, with repetitions, non-animal words, and proper nouns
excluded from the final score. The task was scored by the total count of unique, valid animal names produced
within the given time. This task is commonly used to assess executive control, lexical retrieval, and semantic
memory!'!!,

Statistical Analyses: We performed cluster-based permutation independent sample z-test statistics to
compare current density time series between AD and HC groups. First, we ran independent sample t-tests at each
sample to determine significant time points. We then computed the length of adjacent significant time points and
sum of t-scores for significant time points to determine (1) cluster size and (2) cluster magnitude in the main
analyses, respectively. Following main analyses, we performed permutation t-tests (n = 1000) by randomly
shuffling 50% of subjects across the groups (i.e., 50% of subjects shifted from AD to HC groups or vice versa)
and determined cluster size and magnitude of significant adjacent time points at each iteration. Finally, we re-
compute p-values of significant clusters in the main analyses by calculating the probability of their size and
magnitude in the permutation analyses. A cluster in the main analyses is considered to survive permutation, and
thus significant, only if both the size and magnitude of a given cluster is above 95% of all cluster sizes and
magnitudes derived from permutation tests. For current density time series, we reported statistics both for main
analyses as the average t-test scores and p values of the cluster and permutation analyses with the probability of
permutation (Permutation p). For comparing average EEG activity (Fig. 2C violin plots in right panels) we
performed independent sample t-test statistics.

For surface based analyses (Fig. 2D), we averaged current densities at time windows identified with
the time series analyses described above, project them to MNI template and performed cluster-based Monte-
Carlo permutations (n=1000) using the Field Trip “Fieldtrip function ft_sourcestatistics” implemented in
brainstorm software with two-tailed independent t-tests and Cluster Alpha at p <=0.05. These surface statistics
were performed as secondary analyses to get better insights on the spatial distribution of group differences.

To examine the relationships between EEG measures and cognitive function in the AD group, we

performed Pearson product-moment correlations. We also assess bivariate relationships between potential
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confounders (age, education level, and IPL cortical-thickness) and our variables of interest (cortical
excitability, network connectivity, and cognitive measures including ADAS-Cog, RAVLT-Total, Digit-Span
Backward, and Fluency). To interpret the strength of the correlations, we classified the Pearson correlation
coefficients as follows: correlations with absolute » < 0.1 were considered to indicate zero or no correlation,
r > 0.1 and < 0.3 were considered weak, r > 0.3 and < 0.7 were considered moderate, and r > 0.7 were
considered strong correlations. Following these preliminary analyses, we conducted hierarchical regression
analyses to account for the potential confounding effects of age, education level, and cortical thickness on
the relationships between EEG measures and cognitive outcomes. The hierarchical regression approach
allows for the sequential entry of variables into the regression model, enabling the assessment of the unique
contribution of EEG measures to cognitive outcomes after controlling for confounders. In the first step, we
entered age, education level, and cortical thickness as control variables into the regression model. In the
second step, we entered the EEG measure of interest (e.g., cortical excitability or DMN connectivity) into the
model to determine its unique contribution to the cognitive outcome after accounting for the confounders. The
change in R? (AR?) between Model 1 and Model 2 indicates the additional variance in the cognitive outcome that
is explained by the EEG measure beyond that explained by age, education, and cortical thickness. We reported
the standardized beta coefficients (B) for regression statistics. All statistical analyses, except surface based

statistics, were performed using SPSS software version 21.0 (IBM Corp., Armonk, New York, USA).
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