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Abstract

A core computational challenge in the analysis of mass spectrometry data is the de novo sequencing
problem, in which the generating amino acid sequence is inferred directly from an observed fragmentation
spectrum without the use of a sequence database. Recently, deep learning models have made significant
advances in de novo sequencing by learning from massive datasets of high-confidence labeled mass spec-
tra. However, these methods are primarily designed for data-dependent acquisition (DDA) experiments.
Over the past decade, the field of mass spectrometry has been moving toward using data-independent
acquisition (DIA) protocols for the analysis of complex proteomic samples due to their superior speci-
ficity and reproducibility. Hence, we present a new de novo sequencing model called Cascadia, which
uses a transformer architecture to handle the more complex data generated by DIA protocols. In com-
parisons with existing approaches for de novo sequencing of DIA data, Cascadia achieves state-of-the-art
performance across a range of instruments and experimental protocols. Additionally, we demonstrate
Cascadia’s ability to accurately discover de novo coding variants and peptides from the variable region
of antibodies.

1 Introduction

In proteomics applications of tandem mass spectrometry, one of the core analysis challenges is the de novo
sequencing problem: given an observed fragmentation spectrum, can we infer the amino acid sequence of the
peptide responsible for generating that spectrum? Recently, significant advances have been made in de novo
sequencing by training machine learning models that learn from a training set of labeled spectra [1]. Many of
these methods [2–10] employ a type of deep neural network architecture known as a transformer [11], which
was initially developed in the field of natural language processing. Accordingly, transformer models treat the
de novo sequencing problem as a sequence-to-sequence translation task, where the spectrum is represented
as a sequence of peaks and the output is a sequence of amino acids.

Over the past decade, the field of mass spectrometry has been gradually migrating to an alternative type
of data generation scheme that is not compatible with most existing de novo sequencing tools. Traditional
proteomics mass spectrometry data is collected using a data-dependent acquisition (DDA) protocol, in which
each observed fragmentation spectrum nominally corresponds to a single, generating peptide sequence. This
correspondence makes it relatively straightforward to frame the de novo sequencing problem as a spectrum-to-
peptide translation task. In contrast, the alternative mass spectrometry protocol, known as data-independent
acquisition (DIA) [12], yields data in which the signal associated with a single peptide sequence is distributed
across multiple temporally adjacent mass spectra. Hence, rather than mapping from a single spectrum to
a single peptide, in the DIA setting we are required to map from a series of spectra to a single peptide.
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Furthermore, in the DIA setting we must also take into account patterns in two different types of spectra:
precursor (MS1) spectra as well as fragmentation (MS2) spectra.

Several existing methods are capable of carrying out de novo sequencing from DIA data. The first
method involves extracting from the DIA data “pseudospectra” that resemble the MS2 spectra typically
generated by a DDA protocol. The tool DIA-Umpire can be used for this extraction [13], and the resulting
pseudospectra can then be fed into any existing DDA de novo sequencing tool [14, 15]. A significant drawback
to this approach, however, is that a pseudospectrum is only created if a peptide generates detectable signal
in the MS1 data. As a result, a significant portion of low abundance peptides are not detectable via this
approach. Furthermore, due to the differences between the two protocols in how analytes are isolated and
fragmented, DIA MS/MS spectra may look qualitatively different than spectra from the DDA experiments
these models were trained on. The second method is a deep neural network, DeepNovo-DIA [16], that was
specifically designed to operate on DIA data. It includes two convolutional neural networks and a long
short-term memory network, which respectively capture 3D shapes in the MS2 spectra, correlations between
MS1 and MS2 spectra, and peptide sequence patterns. A subsequent method, Transformer-DIA, adopts
DeepNovo-DIA’s approach but swaps out the convolutional layers in the spectrum encoder with transformer
self-attention layers [10].

In this work, we describe an alternative model, Cascadia, for de novo sequencing from DIA data. For-
mulating this model required solving two problems. First, we describe how to systematically extract small
but complex data objects, called “augmented spectra,” that aim to capture all of the signal associated
with a single peptide. Second, we describe how we modified the Casanovo transformer model [2] to take
as input these augmented spectra. We train Cascadia from a large collection of annotated DIA data, and
we demonstrate that the resulting model outperforms existing methods, including DeepNovo-DIA as well
as Casanovo applied to DIA-Umpire pseudospectra. Tested on datasets collected on various instruments
with different isolation window sizes, Cascadia consistently makes more than three times as many correct
detections compared to other methods. Additionally, we verify variant peptides predicted by Cascadia using
exome sequencing, and find that the highest confidence de novo peptides predicted by Cascadia show very
high specificity.

2 Results

2.1 Cascadia operates on augmented DIA spectra

To perform de novo sequencing, Cascadia employs a transformer encoder-decoder architecture, similar to that
of Casanovo [2] (Figure 1b). In this approach, the encoder first processes an observed spectrum, producing
a latent representation of each peak. A transformer decoder layer than uses this spectrum representation,
along with a learned embedding for each amino acid in the current peptide sequence, to autoregressively
predict the next amino acid. However, generalizing this approach to work with DIA requires addressing two
significant challenges.

The first challenge is that, in a DIA experiment, the signal corresponding to a single peptide is not
captured in a single MS2 spectrum. This is because a DIA experiment measures every peptide species
multiple times. The DIA setting involves isolating and co-fragmenting peptides in a pre-specified series of
m/z ranges. The instrument fill time, the sizes of the pre-specified m/z ranges, and the chromatography
settings are selected to ensure that each peptide is observed multiple times. For example, if the instrument
carries out MS2 scans at a rate of 10 Hz, and if the DIA run is set up to iteratively sample a collection
of 40 precursor windows, then the instrument will resample each precursor window once every ∼4 s. If a
typical peptide species elutes from the liquid chromatography column for 15-30 s, then the instrument will
observe that peptide 3–7 times. In addition, an MS1 scan is typically collected at the start of each cycle,
and multiple successive MS1 scans contain characteristic isotope distributions for a given peptide. Thus,
attempting to predict a peptide sequence from a single DIA MS2 spectrum would ignore valuable information
from adjacent MS2 scans and from the corresponding MS1 scans.

One solution to this problem is to use a precursor detection algorithm to identify precursor isotope
distributions that are observed in multiple successive MS1 scans and then construct an MS2 pseudospectrum
for each identified MS1 feature. The pseudospectrum incorporates an accurate precursor m/z inferred from
the peptide isotope distribution, and it aggregates information from multiple successive MS2 scans.
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Figure 1: Cascadia schematic (a) The figure illustrates an augmented DIA MS2 spectrum. Horizontal lines in the
MS1 data correspond to the precursor m/z windows used in the DIA experiment. The matrix of MS2 data on the
bottom consists of spectra collected from a single precursor m/z window, one spectrum per cycle. A selected MS2
spectrum (green vertical line) induces a series of fragmentation ladders over time as well as a corresponding series
of isotope peaks over time (horizontal red lines). The augmented spectrum (dotted boxes) is designed to capture
both of these patterns. (b) The figure gives an overview of the Cascadia workflow. Peaks in the augmented spectra
are filtered, normalized, and encoded using m/z, retention time, intensity, and MS level embeddings. These peak
representations are encoded by a series of transformer encoder layers and then passed, along with a sequence of
learned embeddings for the previous amino acids in the peptide, to a transformer decoder layer to predict the next
amino acid. A separate linear layer predicts, for each peak, whether that peak matches a b or y ion for the peptide.
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However, the pseudospectrum approach significantly reduces the potential sensitivity of a de novo method
on DIA data because, in practice, many peptides can be detected in the MS2 signal despite not having a
clear isotope distribution in the MS1 [17, 18]. In fact, in our data the proportion of peptides detected at a
1% FDR by the peptide-centric search tool DIA-NN which have a corresponding MS1 feature selected by
DIA-Umpire is as low as 71.4% for our wide window test set collected on a Orbitrap Lumos and 47.2% for
our narrow window test set collected on the Orbitrap Astral. In such cases, existing de novo sequencing
methods will necessarily fail to detect the desired peptide, because no pseudospectrum for that peptide was
ever constructed and passed to the model as input. This loss of sensitivity is why most database search tools
for DIA analysis have moved away from using a pseudospectrum pre-processing step.

Cascadia takes an alternative approach to de novo sequencing of DIA data by expanding the inputs of the
model to include all evidence for a given peptide, creating what we call an “augmented spectrum” (Figure 1a).
To do so, we begin with a spectrum S that we hypothesize contains peaks associated with some generating
peptide p, and we augment S with additional, nearby data that may also contain signals associated with p.
The user specifies an augmentation width w, and the MS2 component of the augmented spectrum consists
of spectrum S as well as the w spectra that precede it and the w spectra that follow it, within the same
precursor window. In a similar fashion, the augmented spectrum captures isotope distributions in the MS1
data by incorporating MS1 peaks from the set of 2w + 1 MS1 scans that were captured just prior to each
of the 2w + 1 MS2 scans. Furthermore, because the MS2 scans correspond to a specified precursor window,
the augmented spectrum only contains MS1 peaks whose m/z values fall within this window (augmented by
2 m/z on either side in case the isotope distribution crosses the edge of the window).

In practical terms, this process of spectrum augmentation amounts to adding additional peaks to a given
MS2 spectrum. A single MS2 spectrum S can be represented as a bag of n peaks (m1, I1), . . . , (mn, In),
where each peak has an associated m/z value mi and intensity Ii. In the DIA setting, we expand this peak
representation to include two additional pieces of information: a Boolean bi indicating whether the peak is
from an MS1 (bi = 0) or MS2 (bi = 1) spectrum, and a time offset ti indicating when the spectrum was
measured relative to the central MS2 scan in the spectrum. Thus, we change our peak representations from
(mi, Ii) to (mi, Ii, ti, bi), allowing the augmented version of spectrum S to be represented as a bag of 4-tuple
peaks.

The second major challenge that we face in generalizing our transformer model to the DIA setting
is the lack of accurate precursor information. During decoding, most DDA de novo sequencing methods
condition the peptide prediction on a known mass and charge from the single precursor that was isolated for
fragmentation. This information significantly narrows down the search space of potential peptide sequences.
In contrast, in a DIA setting all analytes within the isolation window are isolated and co-fragmented, so the
only available information about any given peptide is that its m/z value falls somewhere within a relatively
wide range of values. DeepNovo-DIA solves this problem by inferring accurate precursor m/z values from
the MS1 data, but at a significant cost in potential sensitivity.

In contrast, Cascadia skips the precursor detection step and instead passes the MS1 and MS2 peaks
into the model directly. This approach gives Cascadia the flexibility to detect peptides without signal in
the MS1 data while still capturing information from a precursor isotope distribution if one is present. At
inference time, Cascadia processes all possible augmented spectra from a given mass spectrometry run, as
opposed to just those with an identified precursor feature. Note that this strategy would not be feasible for
the DeepNovo-DIA model, because extracting the peaks corresponding to theoretical fragment ions to pass
as features to the Ion-CNN component of DeepNovo-DIA requires knowing the precursor mass a priori.

Another challenge we encounter when working with DIA data is that the spectra have a much lower
signal-to-noise ratio and are are far more chimeric than DDA data, making the training signal for de novo
sequencing much weaker. Unlike DeepNovo-DIA, which at each step only extracts potential fragment ions
associated with the 20 possible amino acids, Cascadia considers all peaks in the mass spectrum at each
step. Although this approach enables Cascadia to deal with missing fragment ion peaks, it also means
that the model needs to learn the patterns of peptide fragmentation completely from scratch. Thus, we
adopt two strategies to improve the learning process on noisier DIA data. First, we pre-train Cascadia’s
spectrum encoder on high-quality DDA data from the MassIVE-KB repository, allowing it to learn the basic
relationship between peptide sequences and fragmentation spectra before fine-tuning on the more complex
DIA data. Second, we add an auxiliary classification loss term, where the model must predict whether
each peak in the spectrum matches to a b or y fragment ion for the correct peptide. The motivation for
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Figure 2: Comparison of de novo DIA tools on wide-window DIA data. (a) Precision-coverage curves
showing the number of human peptides discovered by Cascadia, Casanovo, and DeepNovo-DIA on a single held out
DIA mass spectrometry run from CPTAC. (b) A comparison between PSM level Cascadia confidence scores an
local paptide precision, estimated using a sliding window of 500 PSMs. Cascadia scores appear to be relatively well
calibrated across the range of confidences. (c) A scatter plot comparing the observed retention time for peptides
predicted by Cascadia to the predicted retention time from AutoRT. (d) A histogram comparing peptide abundances
between Cascadia de novo peptides and those that match to the reference.

this additional task, which is similar to the machine learning setup in the Spectralis de novo post-processor
[19], is to provide a stronger training signal by explicitly indicating to the model which peaks in the mass
spectrum are useful for predicting the correct peptide.

2.2 Cascadia outperforms state-of-the-art methods on wide-window DIA data

We hypothesized that Cascadia’s use of augmented spectra and a transformer architecture would yield
substantially improved performance relative to DeepNovo-DIA. To test this hypothesis, we trained Cascadia
on a collection of ∼5 million high-confidence peptide detections derived from 372 wide-window DIA mass
spectrometry runs generated as part of the CPTAC consortium [20]. We generate training examples by
searching the data with MSFragger-DIA and constructing one augmented spectrum for each peptide detected
at a 1% FDR threshold. We then evaluate the model by performing inference on an entire held-out run.

One open question is how best to evaluate de novo sequencing tools on DIA data. In the DDA setting,
precision and recall at the amino acid and peptide levels are commonly used as metrics to evaluate model
performance [21]. This approach makes sense because the one-to-one correspondence between peptides and
spectra means that a good de novo sequencing model is one that assigns the correct peptide label to as
many spectra as possible. However, in the DIA setting, where evidence for each peptide is distributed across
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many spectra, this one-to-one correspondence is lost. To circumvent this problem, DeepNovo-DIA calculates
precision and recall at the precursor level rather than the peptide level, which gives an indication of the
fraction of the identified MS1 features that are successfully assigned a correct peptide sequence. However,
results from this approach are confounded by the sensitivity of the precursor detection step and are not
applicable to a method like Cascadia which makes predictions for all spectra at inference time.

As an alternative, we propose to evaluate DIA de novo sequencing methods at the peptide level by
matching predicted peptides to a proteome database. To do so, we run each method on an entire unseen
mass spectrometry run and take the maximum score assigned to each peptide sequence, after removing
PTMs. At a given score threshold, we then obtain a lower bound on the peptide-level precision by using
the protein database as a gold standard: each peptide prediction is marked as correct if it appears in the
proteome for the species being analyzed. To reduce the likelihood of predictions randomly matching to
the proteome, we restrict this analysis to peptides of length 8 or longer. This database matching approach
allows us to directly compare the number of true discoveries made by each method at each estimated precision
level. Furthermore, using a peptide-level procedure better reflects the primary metric of interest to most
mass spectrometry practitioners, which is the total number of peptides detected in a given run, not the
proportion of spectra or precursors that can be identified.

Using this evaluation protocol, we find that Cascadia discovers substantially more peptides across all es-
timated precision values than are found by DeepNovo-DIA (Figure 2a). For example, at a precision of 90%,
Cascadia accurately predicts 2,371 distinct peptides, whereas DeepNovo-DIA only predicts 529. Further-
more, among the 2,371 high-precision Cascadia predictions, we find that 1,944 (82%) have a corresponding
pseudospectrum. Hence, 427 of the additional high-confidence discoveries made by Cascadia are on analytes
which lack a a clear MS1 signal and hence are not considered by DeepNovo-DIA.

To understand to what extent different training data contributes to this difference in performance between
Cascadia and DeepNovo-DIA, we train a version of DeepNovo-DIA on the same CPTAC training set used
by Cascadia. We find that although the resulting model predicts more total human peptides on the CPTAC
test set, its confidence score is less well calibrated, resulting in fewer high-precision predictions (77 peptides
at 90% precision).

Several publications have suggested that existing DDA de novo sequencing tools can be applied out-of-
the-box to pseudospectra derived from DIA data [14, 15]. Thus, as a baseline, we applied Casanovo v4.1.0
to the pseudospectra as well as to the original MS2 spectra in our test set. As expected, using the original
MS2 spectra yields very poor performance (29 peptides at 90% precision). Using DIA-Umpire extracted
pseudospectra improves Casanovo performance somewhat (64 peptides at 90% precision) but is still far
below the DIA-specific methods. These results are not surprising, as we would expect the wide-window DIA
data used here to be significantly out-of-distribution for a model trained on DDA data.

To better understand the relative performance of Cascadia and DeepNovo-DIA, we also carried out a
comparison using the plasma test set employed in the original DeepNovo-DIA paper [16]. To make a fair
comparison, we provide Cascadia with augmented spectra that correspond to the precursor features used
by DeepNovo-DIA. Note, however, that Cascadia does not have access to the inferred accurate precursor
m/z values that are provided to DeepNovo-DIA. Despite this discrepancy, we observe that Cascadia again
outperforms DeepNovo-DIA, as measured using spectrum-level precision and recall (Supplementary Figure
S1). This result suggests that, in cases where there is a clear precursor isotope distribution, Cascadia is able
to successfully infer it from the MS1 signal.

Next, to validate the set of de novo peptides from Cascadia that did not map to the reference, we
compare the observed retention time for each detected peptide to the predicted retention time for that same
peptide sequence from AutoRT [22] (Figure 2c). The 10,000 highest confidence detections from a standard
database search with DIA-NN performed on the same run were used to fine-tune run-specific retention time
predictions. Despite not taking as input the absolute retention time for each augmented spectrum, we see
that the predicted and observed retention times are highly concordant for the majority of de novo peptides
from Cascadia.

Finally, we compare the distributions of peptide abundances, as measured by DIA-NN, between the de
novo peptides predicted by Cascadia and the database peptides detected by database search with DIA-NN
(Figure 2d). Reassuringly, we see that the abundances for de novo peptides spans the same dynamic range
as those detected by database search. Overall, the distribution for de novo peptides skews somewhat towards
higher abundances, which likely reflects the greater level of evidence for a given peptide that is required to
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Figure 3: Comparison of de novo DIA tools on narrow window DIA data. (a) Precision-coverage curves
showing the number of human peptides discovered by Cascadia, Casanovo, and DeepNovo-DIA on a single held-out
Astral DIA mass spectrometry run. (b) An upset plot comparing the sets of high-confidence reference and de novo
peptides discovered by Cascadia, Casanovo, and DeepNovo-DIA that are validated by a database search using DIA-
NN. Predicted peptides are segregated into those that match exactly to the human proteome (red) or not (blue).

successfully de novo sequence compared with detecting that same peptide in a database search. In spite of
this, Cascadia is still able to detect many analytes towards the low end of the abundance distribution.

2.3 Cascadia performs well on narrow window DIA data from the Orbitrap

Astral

Advances in instrumentation continue to increase the resolution and acquisition speed of mass spectrometry
experiments, allowing for the collection of DIA data at a faster throughput using smaller isolation windows.
As instruments evolve, it is important that computational methods evolve with them. Accordingly, we
evaluated the performance of Cascadia on DIA data generated by the recently released Orbitrap Astral.
We train the model on 878,217 augmented spectra derived from 77 mouse plasma samples enriched for
extracellular vescicles with the Mag-Net protocol [23]. We then evaluate the model on a held-out run
generated from human plasma. For comparison, we also analyzed the human plasma data using DeepNovo-
DIA and Casanovo.

The results of this evaluation again show that Cascadia provides a substantial boost in performance
relative to DeepNovo-DIA (Figure 3a). At 90% precision, we observe an increase in the number of detected
peptides from 2,137 to 6,224. On the other hand, naively applying Casanovo to DIA-Umpire pseudo-spectra
performs much better on the Astral data than it does on the CPTAC data. This is likely because the
isolation windows for the Astral dataset are much smaller than for the CPTAC data (4 m/z versus 16 m/z,
respectively), and the resulting MS2 spectra therefore more closely resemble DDA spectra. Nonetheless,
Cascadia still benefits from being able to see adjacent MS2 scans along with the full set of precursor peaks
from the MS1.

We also find that Cascadia scores are remarkably well calibrated as probabilities (Figure 2b), indicating
that the model has learned an accurate representation of the conditional distribution of peptide sequences
given observed spectra. This property makes it feasible to select a set of high-confidence discoveries by
thresholding the Cascadia score. To better understand the sets of discoveries made by each of the three
tools, we threshold predictions at the score threshold corresponding to 90% precision in Figure 3a for both
Cascadia and DeepNovo-DIA, and we compare the predictions from each de novo sequencing algorithm
to those found by the DIA database search tool DIA-NN [24]. To do so, we create a hybrid database
containing the human reference proteome combined with the de novo predictions from both Cascadia and
DeepNovo-DIA. In this experiment, we find that DIA-NN supports the majority of the Cascadia detections:
of the 604 de novo peptides from Cascadia, DIA-NN also detects 316 (52%). On the other hand, of the 188
high confidence de novo peptides from DeepNovo-DIA, only 50 (26.6%) are supported by database search.
Furthermore, comparing the sets of peptides (both de novo and reference) that are detected by each of the
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Figure 4: Ablation experiments A series of precision-coverage curves showing how ablating various aspects of the
Cascadia architecture affects performance.

three methods and then validated by database search, we see that Cascadia both predicts the most total
peptides and has the most overlap with the other two tools (Figure 3b).

2.4 Ablation experiments

To understand the effect of each of our model design decisions, we perform a series of four ablation experi-
ments. Each of the first three models is pre-trained for the same number of epochs on the same MassIVE-KB
DDA training set, and then all four are fine-tuned until validation loss converges on the CPTAC DIA dataset.
The performance of each model is evaluated based on the number of human peptides correctly detected on
a held-out CPTAC run.

The first two ablations involve removing components of the augmented spectrum: either eliminating MS1
peaks or eliminating peaks from adjacent MS2 scans. As expected, both of these modifications significantly
hurt Cascadia’s performance, although removing flanking MS2 information appears to be much more harmful
than removing MS1 information (Figure 4). We hypothesize that in many cases the model is able to infer
the precursor information from just the fragment ions and the center of the isolation window, reducing
the impact of not seeing MS1 peaks. On the other hand, we observed that, because the model without
MS2 augmentation is unable to see the full elution profile, it frequently predicts the same peptide for many
successive scans as opposed to only once at the center of the peak. Empirically, we observe that on average
the MS2-deficient model predicts the same peptide in an average of 2.77 successive scans for a given precursor
window, whereas the full Cascadia model predicts each peptide only 1.31 times in a row. The result of this
redundancy is an overall decrease in the number of correctly predicted peptides.

The third ablation skips the DDA pre-training step. In this setting, the model training fails to converge
on the much noisier DIA data and gives very poor performance.

The fourth ablation removes from Cascadia’s loss function the fragment peak prediction term, in which
the model predicts which peaks correspond to b and y fragment ions. This change leads to a small drop
in performance, but more strikingly increases the number of training iterations until convergence by 42%.
We hypothesize that the additional task speeds up model training by providing a stronger counterfactual
explanation for a given training example: rather than simply indicating the desired peptide sequence, the
loss now also directly indicates which fragment ions might have been used to infer that sequence. Especially
early in training, when the majority of model predictions are incorrect, this approach can help the model
learn to deconvolve the relevant signal from the noisier and highly chimeric DIA spectra.
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2.5 Cascadia discovers de novo coding variants from DIA data

To demonstrate Cascadia’s ability to discover de novo peptides, we test it in a setting where ground truth
labels are available through an orthogonal sequencing modality. We generated three DIA runs on human
skin samples derived from three different individuals. Targeted exome sequencing was then performed on 549
genes in these same individuals, yielding lists of 357, 368, and 595 ground truth single-nucleotide variants
(SNVs) in each sample. Finally, we used Cascadia to de novo sequence the DIA data, and we used the
Cascadia results to generate a list of candidate SNVs by searching for de novo peptides with exactly one
mismatch to the human reference proteome and a confidence score above 90%.

The results of this analysis suggest that Cascadia can detect a subset of the SNVs, and that the Cascadia
score accurately discriminates between correct from incorrect variants. In particular, of the 159 Cascadia
predicted SNVs, 21 are confirmed by exome sequencing (9, 5, and 7 from the three samples, respectively).
Furthermore, a receiver operating characteristic (ROC) curve, produced by ranking these SNVs by their
Cascadia score and labeling them based on the exome sequencing, has an area of 0.92 (Figure 5a). Vi-
sualizing top-scoring Cascadia prediction both as an annotated spectrum (Figure 5b) and as an extracted
ion chromatogram (Figure 5c), we see clear support for the variant peptide predicted by Cascadia, with
numerous fragment ions supporting the variant sequence over the reference (20 additional examples in Sup-
plementary Figures S2–S4). These observations provides evidence for the accuracy of the high-confidence
de novo peptides predicted by Cascadia and suggest that de novo sequencing of DIA data may facilitate
making additional discoveries that are missed by standard database search procedures.

We also note that Cascadia’s performance on these data, as measured by finding exact matches to the
human reference proteome, is comparable to that on the CPTAC test set, indicating that Cascadia generalizes
well to data from a different sample type, collected in a different lab, using a different isolation window size,
and collected on a different instrument than the data it was trained on (Supplementary Figure S5).

2.6 Cascadia discovers de novo antibody sequences from human plasma

To further test Cascadia’s ability to discover de novo peptides from DIA experiments, we perform inference
on a single Astral run from a human plasma sample enriched for extracellular vesicles [26]. Plotting the
precision-coverage curve for this experiment, Cascadia’s performance initially looks significantly worse than
for prior experiments, with a large number of high confidence peptides not present in the human reference
(Figure 6b). However, searching these predictions against the reference we see that a large number of
them match closely to immunoglobulin, with 3305 Cascadia peptides aligning to immunoglobulin reference
sequences with 3 mismatches or fewer. Antibodies exhibit extremely high levels of sequence variation due to
the processes of V(D)J recombination, junctional diversification, and somatic hypermutation [27]. Thus, we
hypothesize that many of these non-matching predictions from Cascadia represent true antibody peptides
rather than incorrect predictions.

To test this hypothesis, we append the list of putative antibody peptides to the reference fasta and perform
a traditional database search with DIA-NN. We reasoned that if DIA-NN also detects the same peptide with
high confidence (<1% FDR), then this provides compelling evidence that the Cascadia predicted variant is
correct. Of the 3305 candidate antibody peptides detected by Cascadia, 1577 (47.7%) are also detected by
DIA-NN when included in the database (Figure 6a). Adding these validated peptides to the reference, the
precision-coverage curve on this dataset improves significantly, showing similar performance to that seen on
the other test sets (Figure 6b). Overall, this analysis demonstrates the ability of Cascadia to produce novel
findings from existing DIA datasets and generate hypotheses that warrant further investigation.

3 Discussion

Cascadia is a transformer-based de novo sequencing model for DIA mass spectrometry data. Unlike existing
DIA methods, Cascadia does not rely on an initial feature extraction step, instead operating on the raw
MS/MS signal and extracting all relevant features directly. Benchmarking Cascadia on a diverse collection
of data sets generated with different instruments and protocols, we find that Cascadia consistently offers
state-of-the-art de novo sequencing performance on DIA data.
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Figure 5: Variant prediction with Cascadia. (a) An ROC curve showing the ability of the Cascadia confidence
score to separate correct and incorrect SNVs predicted with scores >90%. Cascadia was used to generate candidate
SNVs for three individuals based on predicted peptides with exactly one mismatch to the reference proteome. The
Cascadia confidence scores accurately discriminate between variants that are confirmed by exome sequencing and
those that are not. (b) The Skyline extracted ion chromatogram for the most confident variant peptide predicted by
Cascadia, HGSGLGHSSSHSQHGSGSGR, showing a clear peak. (c) A mirror plot comparing the MS2 spectrum at
the peak retention time to the predicted spectral intensity from AlphaPeptDeep [25] for this same peptide. The site
of the Gly-to-Ser variant is highlighted in yellow. Multiple fragment ions confirm the variant sequence.
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immunoglobulin

reference

Cascadia

peptides

Confirmed by

database search

1 1029 791 (76.9%)
2 899 382 (42.5%)
3 1377 404 (29.3%)

Figure 6: Discovering novel antibody peptides with Cascadia (a) A table showing the number of candidate
antibody peptides predicted by Cascadia that are validated by a database search with DIA-NN. (b) Precision-
coverage curves showing the number of Cascadia detections before and after including the DIA-NN supported antibody
sequences in the reference.

To evaluate de novo sequencing results for DIA, we adopt a new validation scheme that counts the
number of distinct peptide sequences predicted by a given method that match to a reference proteome. In
contrast to the spectrum-level metrics traditionally used to evaluate DDA de novo models, this peptide-level
approach is in line with the way standard database search tools are evaluated for DIA data. Furthermore, it
is worth noting that current approaches for evaluating de novo sequencing performance in the DDA setting
are inherently biased, in the sense that they rely only on spectra that can be identified using a search engine.
This approach makes the apparent de novo sequencing performance highly sensitive to the power of the
underlying search: a less sensitive search is likely to include only high quality spectra which are easy to both
identify and to de novo sequence. Additionally, the database search approach lends a bias in favor of models
whose training data were generated with similar search parameters to the validation set, leading to unfair
benchmarks when comparing different tools. Here, we avoid this bias by obtaining ground truth labels based
on peptides mapping to the reference proteome rather than those from a database search. An important
caveat to this approach is that it offers only a lower bound on the performance of each method. Thus, to
both improve method evaluation and promote the adoption of de novo tools by the community, there is an
ongoing need for rigorous false discovery rate control for de novo sequencing methods.

To further demonstrate Cascadia’s effectiveness, we test its ability to discover de novo peptides in two
applications: variant prediction and detecting immunoglobulin variable region peptides from plasma. In both
experiments, orthogonal evidence supports the validity of the most confident de novo discoveries made by
Cascadia. Although the overall sensitivity of de novo sequencing is low compared to database search for DIA
data, the specificity among top-ranking predictions is very high. This observation suggests that Cascadia is a
potentially valuable tool for generating new discoveries in applications such as immunopeptidomics, forensic
proteomics, and antibody sequencing. Furthermore, Cascadia may be a powerful complement to database
search in settings where reference databases are either incomplete or intractably large, including proteomics
experiments on understudied organisms, environmental and microbiome samples, and paleoproteomics.

We anticipate a number of future directions for work to further improve Cascadia on DIA data. First,
Cascadia can be specifically fine-tuned for specific applications of interest, for example by training on a
dataset of MHC bound peptides to improve immunoproteomics analysis [28] or non-tryptic data to ameliorate
the tryptic bias of the model [29]. Furthermore, there are many successful ideas proposed by de novo methods
in the DDA setting which may also be beneficial in the DIA setting, including the addition of additional
auxiliary training tasks [4, 9], alternate decoding strategies [6, 15], and post-processing algorithms to refine
predictions [19, 30]. Finally, future work may benefit from incorporating additional important features of the
data which Cascadia currently does not include, such as the retention time, collision energy, and injection
time for each scan.

The open source Cascadia software and associated model weights are available with an Apache license
at https://github.com/Noble-Lab/cascadia. In addition to the commonly used mzTab fromat, Cascadia
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can also export predictions to the “.tss” format, which can be loaded into Skyline as a spectral library,
allowing for the easy visualization of results [31]. As such, Cascadia can be directly incorporated into a
standard DIA protomics workflow either in place of or alongside a traditional search engine.
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4 Methods

4.1 Cascadia architechture

Before describing the model architecture for Cascadia, we begin with a brief overview of the Casanovo model
that it builds upon. Casanovo uses a transformer encoder-decoder architecture to perform sequence-to-
sequence translation, taking as input a sequence of peaks from an acquired MS2 spectrum, and predicting
as output the sequence of amino acids for the generating peptide. This architecture gives Casanovo the
flexibility to take in with spectra with variable numbers of peaks as input and predict peptides of variable
length as output. Each peak is encoded with a positional m/z embedding and a learned intensity embedding,
which are summed and passed as input into the transformer encoder. The self-attention mechanism in the
encoder learns to capture the context between pairs of peaks in the spectrum, yielding a contextualized
representation for the spectrum as a whole. This spectrum representation is then used as input to the
transformer decoder. Decoding in Casanovo is autoregressive: at each step the model predicts the next
amino acid in the sequence, conditioned on the previous amino acids, precursor information, and spectrum
representation.. Decoding proceeds until a special stop token is predicted or the current peptide exceeds the
precursor mass.

The primary difference between Casanovo and Cascadia lies in the spectrum encoder architecture. The
first challenge is that, whereas the peaks in an MS2 spectrum can be naturally ordered by their m/z values,
the peaks in an augmented spectrum occupy a two dimensional m/z -by-time space. This change is analogous
to the difference between a transformer for language modeling, where words need to be embedded to capture
their 1D position in the sentence, and vision transformers for images (ViTs), where embeddings must capture
the 2D position of image patches. Thus, we take a similar approach to Dosovitskiy et al. [32] and encode
peaks using a two-dimensional positional encoder which jointly assigns orthogonal embeddings to peaks along
the m/z and time dimensions.

A second challenge is modifying the architecture to handle four-tuples rather than two-tuples. This
is straightforward: the peak m/z and measurement time ti are encoded using the 2D sinusoidal positional
embedding function, and the remaining two values (bi, Ii) are encoded via a learned linear layer. These three
encoded vectors are concatenated, passed through a linear projection, and then input to the transformer.

The final change required to adapt the Casanovo architecture to DIA data is to remove the dependence on
an accurate precursor. Unlike DDA data, where a precursor of known m/z and charge is detected in the MS1
and isolated for fragmentation, in DIA data all analytes within a relatively wide m/z window are subject to
MS/MS. Accordingly, the only precursor mass information we provide to Cascadia is the center of the m/z
isolation window for a given scan. In this way, we force Cascadia to infer accurate mass information, if any
is available, directly from the MS1 input. This approach gives Cascadia the flexibility to detect peptides
without signal in the MS1 while still capturing information from a precursor isotope distribution if one is
present.

4.2 Training setup

Cascadia is trained in two stages. We start by pre-training Cascadia on a dataset of 28 million high-confidence
DDA PSMs from MassIVE-KB. This training step allows the model to learn a useful initial representation
for spectra and peptide sequences, including learning about patterns generated by peptide fragmentation on
a clean dataset. During pre-training, we treat each DDA spectrum as an augmented spectrum with width
w = 0. In addition to the single MS2 scan, we calculate a hypothetical isotope distribution for the peptide
label using brainpy [33], and we include the top three most intense peaks in the MS1. Finally, we add uniform
noise sampled from [−10, 10] to the precursor m/z to simulate the wide isolation windows encountered in
DIA data.

Following DDA pre-training, we fine-tune Cascadia on DIA spectra. To ensure high quality training data,
we train only on augmented spectra that contain evidence for at least 25% of the theoretical charge +1 and
+2 b- and y-ions for the identified peptide. This setup ensures that we only train the model on spectra
with a sufficient portion of the fragmentation ladder present to make de novo sequencing feasible. Although
peptide-centric database search engines are often able to obtain high-confidence peptide detections based
on a handful of transitions and an accurate precursor m/z value, many MS2 spectra do not provide enough
evidence for successful de novo sequencing. By filtering for high quality spectra, we restrict model training
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to the setting where the desired task is possible, increasing the strength of the loss signal and speeding up
convergence.

To further strengthen the training signal during fine-tuning on DIA data, we add an auxiliary fragment
ion prediction task to the loss function. For each peak embedding obtained from the spectrum encoder, we
use a linear layer followed by sigmoid activation to predict whether that peak corresponds to an expected b,
y, or precursor ion for the labelled peptide. Binary cross-entropy loss is calculated for each peak, re-weighted
to balance positive and negative classes (because the vast majority of observed peaks are not fragment ions),
and added to the final de novo sequencing loss.

For both pre-training and fine-tuning, the data is split into train and validation sets containing 80% and
20% of the data, respectively, while ensuring that there are no shared peptides across datasets. Training
proceeds until loss on the validation set does not decrease for 100,000 batches, which occurred after 2 epochs
during pre-training and 7 epochs during fine-tuning. The peak learning rate is set to 1 × 10−4 for pre-
training and 1 × 10−5 for fine tuning, with 100k batches of linear warm-up followed by a cosine shaped
decay. A batch size of 16 is used for both pre-training and fine-tuning. Our final model consists of nine
transformer layers in each of the encoder and decoder, an embedding size 512, and eight attention heads,
yielding a total of 49 million trainable parameters. When not otherwise indicated, we use an augmentation
width of 2, a maximum precursor charge of 4, and retain only the top 150 most intense peaks per individual
(unaugmented) spectrum.

4.3 Testing setup

At test time, Cascadia is applied to every possible augmented spectrum from a given DIA run. This means
that one augmented spectrum is constructed centered on each MS2 scan for each possible precursor charge
allowed by the model (2, 3 and 4 by default). Decoding in Cascadia is identical to Casanovo: the model
auto-regressively predicts a peptide sequence one amino acid at a time, at each step choosing the most likely
next amino acid given the current predicted prefix until a special stop token is predicted. The default amino
acid vocabulary for Cascadia includes the 20 canonical amino acids (with a fixed carbamidomethylation on
cysteine), as well as four common post-translational modifications (oxidation, deamidation, acetylation, and
carbamylation).

Similar to Casanovo, Cascadia includes a post-decoding filter that penalizes predicted peptides (by sub-
tracting 1 from their score) whose masses lie outside a user-specified range of the precursor mass (Supple-
mentary Figure S6). For this filter, Cascadia uses the entire isolation window (typically, 2–16 m/z ).

4.4 Datasets

4.4.1 MSKB DDA data

We pre-train Cascadia on the same dataset that was used to train Casanovo: 28M high quality DDA spectra
from more than 1M distinct peptides derived from the MassIVE knowledge base (MassIVE-KB; v.2018-06-
15) [34], a library of over 669 million HCD spectra compiled from 227 public human proteomics datasets. A
database search identified ∼30 million of these spectra as high confidence PSMs by applying an extremely
strict (∼ 0%) PSM-level FDR filter. These PSMs were randomly split at the peptide level into training,
validation and test sets containing 28, 1 and 1 million PSMs, respectively.

4.4.2 Wide-window DIA data

To fine-tune Cascadia for wide-window DIA data, we use a dataset of 4.8 million labeled augmented spectra
derived from 373 runs in human kidney and pancreas, which are publicly available as part of the CPTAC
consortium (PDC ID: PDC000341 and PDC000200). These data were collected on an Orbitrap Fusion Lumos
instrument with a variable width isolation window, which was adjusted dynamically over the course of each
run from a minimum width of 16 Th. The raw files were searched using MSFragger-DIA version 21.1 with
the standard DIA Speclib Quant workflow and default settings [35]. For each detected peptide, we go back
to the raw data to construct a corresponding augmented spectrum at the same m/z and retention time. To
extract a list of precursor features for DeepNovo-DIA, we run DIA-Umpire within MSFragger [13], again
using default parameters, and construct one test example for each extracted feature.
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4.4.3 Narrow-window DIA data

For our experiments with narrow-window DIA data, we use a training dataset of 878,217 labeled augmented
spectra derived from 77 mouse plasma DIA mass spectrometry runs with 4 Th isolation window collected
on the Orbitrap Astral (release pending). Samples were prepared with the Mag-Net protocol for enrichment
of extracellular vesicles [23]. Peptide detections for training were generated using the DIA Speclib Quant
workflow in MSFragger-DIA, and precursor features for DeepNovo-DIA and Casanovo were selected using
DIA-Umpire.

As a test set, we use a single Astral run with 4 Th isolation window collected from HeLa cell lysates.
For our experiments predicting de novo immunoglobulin peptides, we use another 4 Th Astral run analyzing
human cell plasma enriched for extracellular vesicles. Both of these datasets are available at https://

panoramaweb.org/AstralBenchmarking.url released with ProteomeXchange ID PXD042704 [26].

4.4.4 DeepNovo-DIA data

We also evaluate Cascadia on the Plasma validation dataset used by DeepNovo-DIA, available through the
MassIVE repository with accession MSV000082368. To ensure a direct comparison on the same set of metrics
reported by DeepNovo-DIA, rather than running standard Cascadia inference on all augmented spectra in
each dataset, we restrict our analysis to only the list of precursor features originally used by DeepNovo-DIA.

4.5 Evaluation metrics

To evaluate different de novo sequencing tools we use exact matches to the relevent proteome database to
obtain a lower bound on model performance. For the human data in this study, we use the UniProt Homo
sapiens reference proteome UP000005640, downloaded on 2/15/24. For the mouse experiments, we use the
Mus Musculus reference UP000000589, downloaded on 4/29/24. To avoid matches arising purely by chance,
we restrict analysis to only peptides of length eight or more. To plot a precision-coverage curve, we sort
predictions by the confidence score assigned to each peptide. For a given score threshold α, we then calculate

the precision as
Nmatch

α

N
preds
α

and coverage as
Npreds

α

Npreds , where Nmatch
α is the number of predicted peptides with score

greater than α that match to the human proteome, Npreds
α is the total number of peptides with score

greater than α, and Npreds is the total number of peptides predicted by the model. With this approach, the
evaluation does not depend on a database search engine as a gold standard. However, for consistency with
prior work we also perform a comparison to DeepNovo-DIA using the same precursor level precision-coverage
evaluation used by Tran et al..

4.6 Benchmarking

We benchmark Cascadia against the existing DIA de novo sequencing model DeepNovo-DIA, as well as to
the performance of naively applying the DDA de novo sequencing model Casanovo directly to DIA data.
Each method is run against an entire held-out mass spectrometry run and evaluated based on the estimated
precision-coverage curve.

The DeepNovo-DIA code and model weights are downloaded directly from GitHub (https://github.
com/nh2tran/DeepNovo-DIA). Because the feature selection algorithm originally used in DeepNovo-DIA
is not publicly available, we use DIA-Umpire to generate a list of precursor features for inference. For
evaluation on the the Plasma dataset that was originally used for benchmarking by Tran et al., we directly
use the model predictions published by the authors in the MassIVE repository MSV000082368.

We also compare to the simple baseline of treating the DIA data as if it were DDA, and using Casanovo
for inference. For this analysis, we use Casanovo 4.1.0 with its pre-computed model weights, and we leave all
parameters as default. To make predictions on DIA data with Casanovo, we test two different approaches.
For the first, we run Casanovo on only the central MS2 scan for each augmented spectrum used as input to
Cascadia, providing only the center of the isolation window as a precursor. For the second, we run Casanovo
on the Pseudospectra constructed by DIA-Umpire for each of the DIA-Umpire precursor features considered
by DeepNovo-DIA.
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4.7 Variant peptide prediction

To demonstrate the ability of Cascadia to predict novel de novo peptide sequences, we evaluate the model’s
ability to detect novel coding single nucleotide variants (SNVs) from human proteomics data. We use a paired
dataset of three DIA runs and corresponding exome sequences collected from three different donors (release
pending). Targeted exome sequencing was performed on a shortlist of genomic co-ordinates corresponding
to 549 genes, selected based on the the set of high-abundance proteins detected from the samples by an
initial mass spectrometry run. For each mass spectrometry run, we perform inference with Cascadia and
filter predictions at a 90% confidence score threshold. We then search the predicted peptides against the
human reference proteome using pepmap version 2.0.0 (https://github.com/wenbostar/pepmap), allowing
for up to one mismatch per peptide. The set of alignments with exactly one mismatch to one of the 549
genes targeted by the exome sequencing yields a set of candidate SNVs from the model. For each candidate
SNV, we refer back to the paired exome sequencing data to obtain a ground truth label for whether the
proposed variant is present in the donor. We then sort our list of candidate SNVs by Cascadia score, and
we use the ground truth labels to plot an ROC curve, indicating how well Cascadia’s confidence scores are
able to separate correct and incorrect variant peptides.

Data availability The MassIVE-KB DDA data used for pre-training is available at https://noble.

gs.washington.edu/~melih/mskb_casanovo_splits.zip The wide-window DIA data from the CPTAC
consortium used for training Cascadia is available through Proteomic Data Commons with study identifiers
PDC000341 and PDC000200. The original DIA test set used by DeepNovo-DIA is available on MassIVE
repository with accession MSV000082368. The Astral mouse training data will be available on Panorama
Web (release pending), and the HeLa and human plasma EV astral test sets are available at https://

panoramaweb.org/AstralBenchmarking.url with ProteomeXchange ID PXD042704. The data used in our
variant prediction experiments will be published on Panorama Web (release pending).

Code availability Cascadia’s source code and trained model weights are available under the Apache 2.0
license at https://github.com/Noble-Lab/cascadia.
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