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Abstract: The landscape of medical treatments is undergoing a transformative shift. Precision

medicine has ushered in a revolutionary era in healthcare by individualizing diagnostics and treat-

ments according to each patient’s uniquely evolving health status. This groundbreaking method of

tailoring disease prevention and treatment considers individual variations in genes, environments,

and lifestyles. The goal of precision medicine is to target the “five rights”: the right patient, the right

drug, the right time, the right dose, and the right route. In this pursuit, in silico techniques have

emerged as an anchor, driving precision medicine forward and making this a realistic and promising

avenue for personalized therapies. With the advancements in high-throughput DNA sequencing

technologies, genomic data, including genetic variants and their interactions with each other and

the environment, can be incorporated into clinical decision-making. Pharmacometrics, gathering

pharmacokinetic (PK) and pharmacodynamic (PD) data, and mathematical models further contribute

to drug optimization, drug behavior prediction, and drug–drug interaction identification. Digital

health, wearables, and computational tools offer continuous monitoring and real-time data collection,

enabling treatment adjustments. Furthermore, the incorporation of extensive datasets in computa-

tional tools, such as electronic health records (EHRs) and omics data, is also another pathway to

acquire meaningful information in this field. Although they are fairly new, machine learning (ML)

algorithms and artificial intelligence (AI) techniques are also resources researchers use to analyze big

data and develop predictive models. This review explores the interplay of these multiple in silico

approaches in advancing precision medicine and fostering individual healthcare. Despite intrinsic

challenges, such as ethical considerations, data protection, and the need for more comprehensive

research, this marks a new era of patient-centered healthcare. Innovative in silico techniques hold the

potential to reshape the future of medicine for generations to come.

Keywords: precision medicine; in silico; clinical pharmacology; computational tools; patient-

centered healthcare
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1. Introduction

The concept of tailoring medical treatments to a patient’s characteristics based on
modern tools is relatively recent. About three decades ago, many scientists thought such an
idea was utopian [1,2]. Historically, clinical decision-making relied on clinical experience
and pathophysiology knowledge, following a “one size fits all” approach [1,3]. The Human
Genome Project accelerated this paradigm shift, as the rapid development of affordable
DNA sequencing methods facilitated targeted therapies, revolutionizing healthcare [2–5].

Modern medicine now integrates several technologies for precise identification and
treatment The framework for successful clinical outcomes revolves around the “five rights”:
administration of the right drug to the right patient at the right time, in the right dose,
and through the right route of administration [6]. This approach, considering the patient’s
medical history, genes, environment, and lifestyle, defines precision medicine. In 2011,
the United States National Research Council’s Toward Precision Medicine defined precision
medicine as the “tailoring of medical treatment to the individual characteristics of each
patient (. . .) to classify individuals into subpopulations that differ in their susceptibility
to a particular disease or their response to a specific treatment” [7]. This trending field
is based on a healthcare model grounded on data, analytics, and information, yet it is
often confused with personalized medicine due to their similar meanings. Personalized
medicine, an older concept, considers the patient’s genetic makeup, beliefs, preferences,
knowledge, and social context. However, the term “personalized” could be misinterpreted
as implying the development of treatments uniquely tailored to each individual [8], leading
to the preference for the term “precision medicine” by the US National Research Council.
Many authors still question this definition, and it remains a subject of ongoing debate.

Therefore, precision medicine addresses the growing need for precise and effective treat-
ments, aligning with the cornerstones of the clinical medicine model, the four Ps: predictive,
preventive, personalized, and participative [9]. This shift toward a patient-centered clinical
decision-making system marks a transition from reactive medicine based on gold standards
to patient-specific diagnostics and therapeutics [4]. In pursuit of robust precision medicine, in
silico approaches have gained prominence, using computational methods to tailor therapies
to individual patient characteristics (Figure 1). In this article, we aimed to present an updated
review of in silico approaches, highlighting their impact on advancing precision medicine
while spotlighting notable gaps and challenges within this field.
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Figure 1. Key elements of in silico approaches in precision medicine. Created with Biorender.com.

Available online: http://biorender.com/ (accessed on 12 October 2023).
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2. OMICS in Advancing Clinical Decision-Making

Advances in omics technologies since the discovery of the DNA structure have trans-
formed precision medicine, offering unprecedented insights into the complex biological
systems that underpin human health and disease. Omics, an umbrella term encompassing
a set of biological fields such as genomics, proteomics, metabolomics, and other omics,
which analyze the “omes” (the suffix comes from “chromosome”), refers to the collective
technologies used to explore the roles, relationships, and actions of various molecules
in an organism’s cells, significantly improving clinical decision-making, as they provide
comprehensive insights into patient-specific molecular profiles, opening up new avenues
for more precise prevention, diagnosis, and treatments [10–12]. While standard methods
to study molecular mechanisms are time-consuming and proven to be inefficient, omics
are structured on high-throughput analytical methods and have proven records of greater
efficiency [13].

Drawing from our current understanding, precision medicine strives to deliver treat-
ment to patients according to their own molecular characteristics (individual level) but
also considers data related to the remaining population [14]. Its focus is on combining
individualized data from patient-specific multi-omics with collective data in order to target
the most suitable therapeutic strategy and founding structure for precision medicine in
diverse populations [15]. Factors beyond genetic makeup, such as environmental influences
and lifestyle, can also contribute to the complexity of predicting drug responses accurately.

The decision-making process related to precision medicine is usually driven by
biomarkers as they may serve as indicators of a disease or a certain physiological state. In
fact, research development of biomarkers is a current trend for pharmaceutical industries.
As an example, the proteomics study of cancer is capable of revealing crucial information
about the growth of the tumor and metastasis, leading to the identification of biomarkers
and therapeutic targets [16]. The omics-based personalized medicine approach aims to
discover biomarkers that provide highly detailed information about the pathology of the
disease and therefore contribute to the decision-making process [17].

Considering the above, it means that clinicians should know how to interpret genomic
data and biomarker results and apply them in current practice. Computer-based decision
support (CBDDS) tools are able to offer support by listing the latest research and guidance
and are required in order to aid clinicians through this process [18]. However, not all
health care systems or clinicians are ready for this. A commitment to train personnel and
to change the healthcare structure should be put in place to encourage precision medicine.

Indeed, there is a high hope within the scientific community regarding precision
medicine and its power to improve the effectiveness of treatment and tolerability. However,
before being applied in clinical practice, these studies typically undergo a complex process
known as multi-omics. For example, the progression of a study involving multi-omics
in metabolic diseases is usually followed by: (1) genomics for determining an individ-
ual’s complete genome and developing biomarkers; (2) pharmacogenomics to predict the
treatment efficacy by analyzing genetic variants; (3) transcriptomics, studying external
factors that influence gene expression and affect the patient’s phenotype; (4) epigenomics,
to examine mechanisms that regulate gene expression; (5) proteomics, which focuses on
studying protein function; (6) pharmacoproteomics, applying proteomics to pharmacology;
(7) metabolomics, to identify metabolism variants; (8) pharmacometabolomics, apply-
ing metabolomics to pharmacology in order to support the development of personalized
medicine by measuring metabolic phenotypes and drug metabolism; and finally, (9) in-
tegrating multi-omics, the integration and interpretation of the diverse omics, a complex
exercise to apply in clinical routine [19].

2.1. Pharmacogenomics: Tailoring Treatment to Genetic Profiles

Pharmacogenomics stands at the forefront of precision medicine, integrating phar-
macology and genomics to align medical treatments with the unique genetic makeup of
each individual. The promise of pharmacogenomics lies in its potential to optimize drug
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therapy, minimize adverse drug reactions, and enhance treatment efficacy. By understand-
ing the genetic variations that influence drug metabolism, transport, and mechanisms of
action, healthcare providers can select medications and dosages that are best suited to an
individual’s genetic profile [20]. Some examples include treatments for viral infections [21],
oncology [22], and the choice of antidepressants [23] and heart disease medications [24].
For instance, pharmacogenomic testing for the HLA-B*5701 allele aids in identifying in-
dividuals at risk of hypersensitivity reactions to abacavir, improving treatment efficacy
and safety [25]. In cancer patients, the testing for the thymidine synthase (TS) gene can
help identify patients who may experience diarrhoea as a side effect of 5-fluorouracil (5-
FU) chemotherapy. By adjusting the treatment plan based on the pharmacogenomic test
results, healthcare providers can improve patient outcomes and reduce the risk of adverse
effects [26].

Some common medications that require pharmacogenomic testing include: warfarin,
because genes such as CYP2C9 and VKORC1 can help determine the most effective and
safe dosage for an individual, reducing bleeding risks [27]; carbamazepine, because genetic
testing for the HLA-B*1502 allele identifies those at higher risk of severe skin reactions, such
as Stevens–Johnson syndrome [28]; and tamoxifen, because testing for the CYP2D6 gene
can help identify individuals who may have a reduced ability to metabolize tamoxifen into
its active form, allowing for personalized treatment plans to improve efficacy [29]. These
examples illustrate how pharmacogenomic testing has been integrated into clinical decision-
making to personalize medication choices and dosing, ultimately improving patient care
and safety. As the field of pharmacogenomics continues to advance, it is expected that
more medications and health conditions will benefit from personalized care guided by
genetic testing.

Pharmacogenomics is an emerging and challenging field with limited clinical utility
and applicability currently, but its impact is growing rapidly, with US Food and Drug Ad-
ministration (FDA) approvals of personalized therapeutics involving biomarkers. Nonethe-
less, the clinical application of pharmacogenomics encounters substantial hurdles such as
unknown validity across ethnic groups, underlying bias in healthcare, and real-world vali-
dation. Recent developments in the implementation of pharmacogenomics in personalized
care include the Pharmacogenomic Clinical Decision Support System (PGx-CDS), which
has been crucial in minimizing complexity and enabling clinicians to make informed medi-
cation decisions based on patients’ genetic profiles. There is a growing emphasis on the
clinical implementation of pharmacogenomics, with proposed drug–gene pairs for imple-
mentation and the development of guidelines to integrate pharmacogenomic information
into electronic health records (EHRs) and clinical decision support (CDS) systems.

2.2. Challenges and Considerations in Integrating OMICS: Navigating the Road to
Precision Medicine

Progress in laboratory-based protocols, data storage, and bioinformatic capabilities
has enabled the efficient generation of huge amounts of omics data in terms of both cost
and time. This has been exemplified by the extensive COVID-19 research data generated
within a few months [14]. However, omics methods, though widely employed in biomed-
ical research, with several scientific studies being published in recent years, are still far
from clinical reality. There are still many obstacles preventing translational-omics, a term
that refers to the utilization of these new technologies in the clinical decision-making pro-
cess [18]. Among these, maybe due to a lack of clinicians’ knowledge on this topic, there is a
willingness of physicians to accept findings that primarily convey probabilities, such as the
likelihood of disease presence or prognosis [14,30,31]. Furthermore, the large amounts of
acquired data raise complex challenges, including the lack of technical knowledge to collect,
handle, store, and transport samples, and limitations regarding multi-omics integration
techniques. New creative approaches have been applied in this field. Machine learning
(ML) and big data have been integrated with omics, leading to an improvement in the
rapid and efficient collection, processing, and integration of vast amounts of data [30].
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However, not all regions and healthcare settings have access to these advanced testing and
interpretation tools.

Furthermore, the integration of pharmacogenomics and omics raises regulatory chal-
lenges, including standardization of testing methodologies and ensuring ethical use of
genetic information. Navigating these regulatory landscapes is crucial for widespread adop-
tion. Addressing these challenges requires ongoing research, technological advancements,
and collaboration among researchers, clinicians, and policymakers.

The complexity of genomic medicine requires the development of guidelines and
strategies for the integration of genomics into precision medicine. A structured clinical
decision support system, combining clinical data and bioinformatics, is fundamental for
this purpose [32]. Although CDS tools were created to guide clinicians to better integrate,
use, and interpret genomic data, a recent study has shown that is still not clear what would
be the best strategy [33]. Not only it is important to bring standard guidelines and strategies
that can provide consistency in order to better train clinicians, but it is also important to
promote an environment among different stakeholders (academics, clinicians, patients,
government) to raise scientific awareness of the need and importance of creating more
knowledge in precision medicine. Clinicians must be able to interpret this data for strong
and effective decision-making; patients must be aware and well-informed to accept the
treatment regimen they are prescribed; and the government must restructure the healthcare
system, providing the necessary tools for this to become a reality in clinical practice. In fact,
some of these measures are already implemented by regulatory agencies.

Until now, there has been a proven record that reflects the advances of omics in
precision medicine which contributed to relevant discoveries. Several FDA-approved
treatments now target individual characteristics of patients [34,35]. Among these, most are
for the treatment of cancer (47%), rare diseases (37%), and other diseases (16%). The table
below outlines some of the approved treatments for these therapeutic indications (Table 1).

Table 1. Some new therapeutic molecular personalized medicines approved by the FDA [34,35].

Products

Therapeutic Indication

Cancer

Abecma (multiple myeloma)
Exkivity (lung cancer)
Lumakras (lung cancer)
Jemperli (endometrial cancer)
Rybrevant (lung cancer)
Scemblix (myeloid leukaemia)
Tepmetko (lung cancer)
Truseltiq (cholangiocarcinoma)

Rare Diseases

Amondys (muscular dystrophy)
Evkeeza (homozygous familial hypercholesterolaemia)
Nexviazyme (Pompe disease)
Nulibry (molybdenum cofactor deficiency)
Vyvgart (Myasthenia Gravis)
Welireg (von Hippel–Lindau)

Other Diseases

Bylvay (progressive familial intrahepatic cholestasis)
Cabenuva (HIV-1)
Leqvio (hypercholesterolaemia)

According to the FDA, effective precision medicines require efficient tests able to aid
diagnosis and a suitable treatment. These tests, or companion diagnostics, are named next
generation sequencing (NGS) and are able to identify or sequence huge sections of patients’
genomes; therefore, they are considered a key advanced tool to be used in clinical prac-
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tice [36]. The International Consortium for Personalized Medicine (ICPerMed) is another
important international initiative to support precision medicine research [37]. Launched
in 2016, it involves the European Commission and around 30 European and international
members, including funders and policy-making organizations. ICPerMed, by conducting
workshops and debates and providing reports on precision medicine implementation, aims
to position Europe as a global leader in precision medicine research, actively promoting the
science and demonstrating its societal benefits.

While omics technologies have significantly advanced the field of pharmacometrics,
their contribution to precision medicine is not direct, but rather via the identification
of relevant biomarkers. The high-throughput nature of omics technologies enables the
fast discovery of candidate biomarkers, but their clinical validation and integration into
precision medicine approaches require careful consideration of analytical development,
computational modeling of the predictor, and clinical utility assessment.

3. Biomarkers and Molecular Diagnostics

Having explored the transformative role of omics in advancing clinical decision-
making, a pivotal component in this journey is the identification and utilization of biomark-
ers through molecular diagnostics. Biomarkers are biological observations, such as small
molecules or clinical points, which are applied in drug discovery and used extensively in
medical practice for screening, diagnosing, and characterizing diseases, as well as inform-
ing prognosis or therapy effects [38]. Biomarker analysis has started the shift toward an
individualized treatment for each patient, and, as such, biomarker discovery is of high
importance in this approach (Figure 2). New methods and techniques for efficient and
quick analysis of biomarkers, surpassing the need for conventional monitoring, usually
involve blood draws for imaging techniques [39].

ffi
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Figure 2. Biomarker integration in precision medicine and in silico approaches. Created with

Biorender.com. Available online: http://biorender.com (accessed on 16 October 2023).

The use of biomarkers in physiologically based pharmacokinetic (PBPK) modeling
has shown promising potential in predicting drug responses and optimizing therapeutic
strategies across diverse populations. These biomarkers offer valuable information about
drug absorption, distribution, metabolism, and elimination (ADME) within an individual’s
body, allowing for more precise drug exposure and response modeling. Additionally,
biomarkers can help identify patient subgroups that are more likely to respond positively
to drug therapy or those at higher risk of experiencing adverse events [40]. Incorporating
pharmacokinetic (PK) biomarkers, such as drug concentrations, into research can enhance
the accuracy and efficacy of drug development and personalized medicine.

http://biorender.com
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Biomarkers are categorized based on their research and clinical practice roles. Genetic
biomarkers, identifying genetic variations, play a crucial role in assessing disease risk and
predicting treatment responses [41,42]. Protein biomarkers, such as enzymes, receptors,
and cytokines, can indicate organ damage or dysfunction, abnormal cellular processes,
or inflammation processes [43–46]. Metabolic biomarkers, derived from the analysis of
metabolites and small molecules in various biological samples, provide valuable insights
into metabolic pathways and can be used to identify markers of disease progression or
treatment response [47]. Epigenetic markers, in turn, analyze alterations in DNA methyla-
tion, non-coding RNAs, or histone modifications, and samples can be obtained through
either noninvasive or minimally invasive procedures, making these markers accessible,
stable, and frequently chosen. They have been found to be very useful for cancer, as there
are known epigenetic changes in the shift from somatic to cancerous cells [48]. One such
example is the panel of promoter hypermethylation of the RASSF1A, RARβ2, and APC
genes in serum and urine, which has a 94% specificity and sensitivity in detecting renal cell
carcinoma [49].

The analysis of these biomarkers can be performed through molecular diagnostics,
which encompasses several technologies that allow the study of genomic and proteomic
biomarkers [50]. Essential assays include sequencing-based and non-sequencing methods,
like immunohistochemistry (IHC), microsatellite instability testing (MSI), and chromosomal
microarray analysis (CMA). Beyond those important tools for molecular diagnostics and
biomarker analysis, they also include polymerase chain reaction (PCR), Sanger and NGS,
and emerging techniques like liquid biopsies, RNA sequencing, and long-read sequenc-
ing [51].

Human PK investigations and clinical trials are the mainstays of conventional drug
development procedures. However, these traditional methods frequently fall short of
accurately portraying the wide variety of patient groups found in real-world situations. This
restriction is particularly important since drug reactions might differ significantly between
people due to their specific demographic, genetic, and environmental characteristics [52].
Generalized pharmacometric modeling (GPM) stands out as an effective remedy to these
problems by integrating ML approaches with sizable, diverse datasets into the renowned
framework of pharmacometrics methods, improving our understanding of drug disposition
and its effects across a wide range of distinct patient groups. GPM might revolutionize
the individualization of drug therapy by finding instructive and pertinent patient-specific
variables, with a strong focus on biomarkers that affect drug dynamics [53]. Treatment plans
that are customized for certain patient populations may result in safer and more efficient
drug regimens [54]. GPM makes use of the capabilities of ML algorithms, particularly
random forest regression [55] and Bayesian networks [56], to handle and comprehend
vast and complex datasets, which traditional models sometimes find difficult to process,
and unveil intricate connections and interactions between variables that could not have
been seen otherwise. The biological and therapeutic significance of the GPM-identified
biomarkers is an important topic for debate. Surprisingly, GPM occasionally reveals
unanticipated biomarkers that appear to have no connection to drug dynamics but that
are strongly grounded in the current scientific literature and can actually affect certain
dynamics. The identification of biomarkers influencing the inter-individual variability in
drug pharmacokinetics/pharmacodynamics (PK/PD) may be made easier with the use of
this new knowledge, which will eventually lead to the development of more individualized
and successful pharmacological regimens [53].

3.1. Harnessing Biomarkers for Precision Drug Development and Treatment Optimization

Biomarkers can be used for the development of in silico PKPD models of enzymatic
activity. For example, a study aimed to assess the induction or inhibition of the cytochrome
P450 (CYP450) enzyme CYP3A4 by using the biomarker 4β-hydroxycholesterol (4βHC) [57],
which is directly associated with CYP3A4 activity [58]. The researchers applied a Bayesian
technique for parameter estimation to develop the PKPD model [59,60], which predicts
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a differential impact of rifampin and ketoconazole on 4βHC and midazolam (MDZ), the
industry standard CYP3A4 inhibitor detectors. Despite limitations, the PKPD model holds
promise for precision medicine, allowing tailored prescription regimens, predicting drug–
drug interactions (DDIs), and reducing negative consequences through early identification
of CYP3A4-related dynamics [57].

The study of biomarkers using ML can allow benefit–risk analysis of drugs in various
patient subgroups, enabling predictions of efficacy and adverse effects [61]. A study
exemplified this approach by utilizing the random forest algorithm to analyze clinical trial
results of acute melanoma patients treated with nivolumab to establish a relation between
nivolumab clearance and several cytokines [62]. The researchers were able to establish a
panel of biomarkers using the 16 top inflammatory cytokines that, even without the use of
the drug, could be related with clinical benefit. Moreover, these biomarkers were able to
predict nivolumab clearance, which is related to overall survival (OS) [63]. Effectively, this
algorithm could predict OS by the clearance, in which patients with high clearance have
decreased OS. This allows the stratification of patients in high and low clearance groups,
enabling the prediction of treatment outcomes and an informed choice of treatment [64].

New biomarkers can also be discovered using in silico techniques. Radiomics col-
lects digital medical images from magnetic resonance (MR), computed tomography (CT),
positron emission tomography (PET), and other imaging techniques and transforms them
into mineable data that can be quantitatively linked with pathophysiology. This effectively
creates new imaging biomarkers that, when combined with patient characteristics and
even genomic data, can help inform diagnostics, prognosis, and response to therapy, the
basis of precision medicine [64]. Radiomics information can fundamentally reshape the
development of pharmacometrics models, particularly in understanding the dynamics of
tumor size. These cutting-edge pharmacometrics models shed light on the complicated
interplay within a tumor ecosystem by accounting for the numerous characteristics of
tumor heterogeneity both within and between lesions, and an example of such a model
is the classification clustering of individual lesions (CICIL) methodology [65]. Still in
the oncologic area, by drawing conclusions from radiomic data, this method can also
be useful in understanding resistance mechanisms and identifying new biomarkers for
drug resistance [66]. In a recent study, pharmacometric models were employed to explore
the potential of biomarkers in predicting the efficacy of brazikumab, an anti-interleukin
23 monoclonal antibody [67], in the treatment of Crohn’s disease (CD). Two predictive
biomarkers emerged from this study, baseline IL-22 (BIL22) and baseline C-reactive pro-
tein (BCRP), whose higher baseline levels represent a notably enhanced response to the
drug [68]. Moreover, the study unveiled a strong negative correlation between the placebo
effect and the baseline Crohn’s Disease Activity Index (BCDAI) [69], serving as a prognos-
tic biomarker. Recognizing that the impact of the placebo effect is vital for interpreting
clinical trial results accurately and refining treatment strategies accordingly, a correlation
between high BCDAI and low clinical response to drugs has been found previously in the
literature [70]. The pharmacometrics analysis also established quantitative cutoff values
for BIL22 and BCRP, offering precise thresholds for patient stratification, a significant
departure from traditional median-based cutoffs. Such precision in patient selection can
pave the way for more effective clinical trial designs and enhance the likelihood of success
in future studies. Furthermore, the study highlighted the superiority of pharmacometrics
modeling over conventional statistical analysis. Its capacity to integrate longitudinal data
while considering various sources of variability, including drug PK and placebo effects,
proved to be a powerful tool for elucidating biomarker-dependent responses in biologic
therapies [68].

3.2. Challenges in Implementing Biomarkers and Molecular Diagnostics in Precision Medicine

Thus, biomarkers and molecular diagnostics offer significant promise in healthcare,
enabling early disease detection and personalized treatment. However, their effective
implementation faces challenges that warrant attention. These include ensuring the accu-



Pharmaceutics 2024, 16, 332 9 of 39

racy and reliability of biomarker tests, which often require complex validation processes;
standardization, as variations in measurement and interpretation can lead to inconsistent re-
sults across different laboratories; time related to regulatory approval; and ethical concerns
surrounding informed consent, data privacy, and genetic discrimination, which require
careful consideration. Clear guidelines for interpretation, addressing limited biomarkers,
and integrating data effectively are crucial.

There have been some collaborations between academia, industry, and regulatory bod-
ies to accelerate biomarker discovery and establish standardized approaches for biomarker
validation for precision medicine. The European Medicines Agency (EMA) emphasizes
early engagement with biomarker developers through various platforms like the Innovation
Task Force, the Qualification of Novel Methodologies procedure, and the Scientific Advice
procedure [71]. The EMA’s Regulatory Science Strategy includes measures to facilitate
regulatory qualification for biomarkers. The FDA has a Biomarker Qualification Program
(BQP), which is a voluntary process that allows biomarker developers to submit their data
and information for FDA review and qualification as drug development or regulatory
tools. The FDA also collaborates with other stakeholders through consortia, such as the
Biomarkers Consortium and the Critical Path Institute [72].

The Innovative Medicines Initiative (IMI), a public–private partnership between the
European Union and the European Federation of Pharmaceutical Industries and Associ-
ations (EFPIA), supports several projects such as PRECISESADS, AETIONOMY, RHAP-
SODY, and CANCER-ID [73], focusing on biomarker discovery, molecular mechanisms of
non-response to treatments, and the development of tools, standards, and approaches to
address unmet medical needs for effective disease-modifying treatments.

4. Pharmacometrics Tools: Significance and Challenges in Precision Medicine

Pharmacometrics is a critical tool in the field of clinical pharmacology, providing a
quantitative framework for understanding, characterizing, and predicting drug exposure
and response. The integration of omics and biomarkers is fundamental to pharmacomet-
rics, providing vital quantitative data for characterizing and predicting drug behavior,
ultimately enabling the optimization of therapeutic strategies and the development of pre-
cision medicine approaches. Therefore, drug development and optimization have become
increasingly challenging over the years due to the diversity of compounds and therapeu-
tic targets, the inherent variability in patient responses, and the evolving landscape of
regulatory agencies in the drug approval process. Pharmacometrics has emerged as a
multidisciplinary scientific discipline to address all these challenges, employing advanced
mathematical and statistical methods based on biology, pharmacology, and physiology to
quantify the interaction between the drug and the patient [74–78].

The introduction of the concept of pharmacometrics dates back to the 1960s, with the
quantification of PK data in laboratory experiments and the development of methods to
connect to pharmacodynamics (PD) [79–81]. Sheiner and Stuart Beal are the pioneers in this
field, having created the Nonlinear Mixed Effects Modeling (NONMEM) software system
in the 1970s, particularly well-known for its applications in population pharmacokinetic
(popPK) studies [82], allowing the characterization of individual PK profiles and sources
of variability in a population. From 1980 onwards, drug regulatory authorities, namely,
the FDA, began to endorse the practice of pharmacometrics and, since then, this area has
had a high impact on decisions related to clinical trial design, drug development, approval,
and therapeutic regimen optimization [83]. Indeed, the pharmacometrics resources enable
tailoring the therapeutic plan—the most appropriate drug dose and dosing schedule—
for an individual patient based on factors such as genetics, age, weight, and underlying
health conditions. In the preclinical phase, modeling and simulating the drug’s behavior in
different patient populations allow for the design of clinical trials more efficiently, reducing
costs and the time required in the drug development process [83]. Pharmacometrics
tools also empower the prediction of different patient responses to a drug based on their
unique characteristics, thus enabling the identification of biomarkers and patient subgroups
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that may benefit more or less from a specific drug [84–86]. Consequently, this allows for
quicker decision-making regarding safety and efficacy, streamlining the evaluation and
approval process of new drugs. Additionally, therapeutic regimen optimization also relies
on modeling. This field has been supported by increasingly complex mathematical models,
assuming a pivotal role in the era of precision medicine [87,88].

Initially met with skepticism, pharmacometrics faced challenges in integrating diverse
data types for precision medicine research, slow adoption due to limited understand-
ing, regulatory hurdles aligning with FDA requirements, and computational challenges
in developing advanced models. Overcoming these required collaboration among clini-
cians, researchers, bioinformatics specialists, and biostatisticians. As the field has evolved,
researchers, regulatory authorities, and funding bodies have recognized the power of
pharmacometric analyses in improving pharmacotherapeutic use, drug development, and
regulatory decisions. As the field continues to advance, it is essential to address these
challenges and solidify pharmacometrics’ role in the era of precision medicine.

4.1. A Triad of Precision: PKPD, PBPK, and Population PK Models in Pharmacological Insights

PK and PD modelling, PBPK modelling, and popPK modelling are all tools used
in pharmacometrics to understand drug behavior and optimize therapeutic strategies.
PKPD modelling interrelates PK (ADME) and PD (effect on patients). PD models focus on
concentration–effect relationships and are often integrated with PK modelling to optimize
drug efficacy and minimize adverse effects [89,90].

The primary basis for PD models is concentration–effect relationships [91]. To our
knowledge, there is a limited body of research exclusively focused on PD modelling,
although some approaches may be outlined: simple direct effect models, biophase dis-
tribution, indirect response models, signal transduction models, and irreversible effect
models [92,93]. Typically, these techniques are integrated with PK modelling, allowing
for the characterization of the dose–exposure–response relationship, which is a crucial
step in optimizing the drug efficacy and minimizing adverse effects, ultimately leading to
improved therapeutic outcomes. Lin et al. [94] developed a population-based PKPD model
for carfilzomib in adult patients with relapsed/refractory diffuse large B-cell lymphoma
using the NONMEM® software (version 7.4.1). Such studies contribute to ongoing research
aiming to identify characteristics of patients who benefit from this specific treatment. Ad-
ditionally, the relevance of PKPD model integration in drug development has also been
stated. For instance, Palmer et al. [95] reviewed the implementation of PK and PD studies
in antimicrobial drug development. Derendorf et al. [96] have also demonstrated that
corticosteroids represent a class of drugs suitable for PKPD modelling studies, allowing
the prediction of the systemic activity of novel corticosteroids based on their PK profiles.
According to Zou et al. [89], this model technique also finds extensive application in drug
delivery systems and the modification of large molecules, both in preclinical and clinical
trials, providing essential insights for animal-to-human translation and facilitating the
selection of therapeutic regimens. Even at the initial stages, during the discovery of novel
compounds phase, these strategies can be effectively implemented [97]. PKPD model-
based analysis enables a faster in vitro to in vivo translation, reduces the number of animal
studies, and improves bench-to-bed translation. As evident, PKPD models offer a broad
spectrum of applications, spanning from preclinical drug assessment to drug optimization,
maximizing the patient’s therapeutic response.

PK itself represents a powerful tool to characterize the kinetic profile of several drugs.
To explore the effects of the human body on a drug, specifically, to analyse its PK data,
there are two common approaches: compartmental PK analysis and noncompartmental
PK analysis (NCA) [98–101]. In the first method, the human body is conceptualized as a
finite number of interconnected and kinetically homogenous compartments (representing
various parts of the body, such as blood, organs, and other tissues), assuming that the rate
of transfer between compartments and the rate of drug elimination from compartments
follow first-order or linear kinetics. In turn, NCA is a simpler method that does not rely
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on specific compartmental models. Instead, it estimates PK parameters directly from the
observed concentration–time data through algebraic equations. These analytical approaches
have proved specific utility in advancing the development of complex drug delivery
systems, namely, nanoparticles. Recently, Osipova et al. [102] compared two nanoparticle
formulations using both NCA and compartmental analysis. Their findings underscored the
potential of compartmental analysis to provide valuable insights into a crucial step in drug
development, such as drug delivery.

Among the various PK modeling approaches, the most common mathematical models
are popPK models and PBPK models. They are complementary techniques that scientists
often use and are instrumental in the era of precision medicine [81]. There are a variety of
software packages available to analyze, model, and simulate pharmacological data, includ-
ing NONMEM®, Phoenix® WinNonlin®, Simcyp, MATLAB®, GastroPlus, and Monolix.
Most of these programs are user-friendly for scientists from diverse disciplines, but they are
mainly used by experts in the field [103]. Based on evidence that concentrations of chemical
substances within target tissues hold greater predictability for biological responses than
external doses, the pre-eminence of PBPK modelling has increased significantly [104,105].
The concept of employing multicompartmental models that incorporate biological and
physiological components to simulate PK data was originally introduced by Teorell in the
1930s [106]. Over subsequent decades, the number of publications involving PBPK models
has increased significantly, demonstrating the growing interest in the implementation of
this approach in the pharmaceutical industry, from the drug discovery and development
process to post-market drug optimization [107,108].

PBPK models, which mechanistically describe drug disposition within the body by
simulating ADME processes, have a huge focus on DDI. In a study conducted by Ume-
hara et al. [109], the efficacy of a robust PBPK model in accurately predicting DDI was
demonstrated. It can help reduce the number of DDI clinical trials. Previously, we have
also highlighted the valuable utility of this tool within this field [110]. Specifically, we
have developed a PBPK model of salbutamol and fluvoxamine to simulate the interaction
between both drugs in different regimens and under diverse patient profiles.

Furthermore, the prediction of drug behavior in different populations and under vary-
ing physiological conditions, namely, age, ethnicity, or disease status, is easily conducted
with PBPK models. Zamir et al. [111] assessed the PK of metoprolol in distinct cohorts
comprising healthy, chronic kidney disease (CKD), and acute myocardial infarction (AMI)
patients through PBPK modelling. Their findings led to the recommendation of metoprolol
dosage adjustments at various CKD stages, along with the elucidations of PK differences
in this β-blocker between the different subgroups. PBPK modelling can also predict drug
disposition during pregnancy. For instance, Amaeze et al. [112] developed a PBPK model
to evaluate N-acetyltransferase 2 phenotype-specific effects of pregnancy on isoniazid dis-
position. Hence, tailoring dosage strategies for vulnerable groups is increasingly becoming
a reality.

PopPK modelling involves examining PK on a broader scale, where data from all indi-
viduals in a population are simultaneously analyzed using a NONMEM. The development
of a popPK model encompasses five key elements: the data, structural model, statistical
model, covariate model, and modeling software. Mould et al. detail all these aspects [113].
Similar to all the aforementioned approaches, popPK models have wide applicability in
the pharmaceutical industry, and an increasing number of studies are being conducted. In
particular, the optimization of therapeutic regimens along with the identification of patient
characteristics (also referred to as covariates) with an impact on drug kinetics has been
the core of this area. There has been a growing use of popPK models to study various
diseases across diverse areas. Researchers are now employing retrospective studies using
real-world data to examine relationships between covariates and drug PK parameters [114].
Other studies are being developed within clinical trials. For instance, a study used PK data
from an open-label, randomized, two-treatment, two-period, two-sequence, single oral
dose, crossover, bioequivalence study to develop a popPK model for simulating various
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doses of a recently produced drug for acute lymphoblastic leukemia (ALL), aiding in
selecting the bioequivalence dose. Some authors also focus on addressing significant gaps
in clinical knowledge. For example, the impact of renal function on amisulpride PK was
examined using popPK modeling by Li et al. [114]. A popPK model of dasatinib developed
by He et al. [115] evidenced that low doses should be recommended for Chinese patients.

Currently, researchers have at their disposal a modelling continuum, ranging from
popPK to quantitative systems pharmacology (QSP) models. QSP models integrate com-
plex biological pathways and drug interactions to predict responses to drug interventions.
For example, a QSP model might be used to understand the impact of a new cancer drug
on various signalling pathways involved in tumor growth. A recent study aimed to assess
if targeting regulatory T cells (Treg) could enhance the efficacy of a checkpoint inhibitor
(anti-PD1) in inhibiting tumor growth. Mice experiments alone were insufficient in pro-
viding insights into longitudinal changes in biomarkers. QSP modelling was employed
to elucidate the mechanistic interplay of anti-PD1 and anti-Treg on Treg and effector T
cell (Teff) longitudinal changes. The QSP model focused on essential components char-
acterizing major pathways in the immune system. It represented the dynamics through
Teff (cytotoxic effector T cells), Treg, and PD1/PDL1, linking these components to tumor
growth modulation. The findings suggest that Teff profiles may be more predictive of
pharmacological responses than Treg profiles, which provides valuable insights for drug
development decisions in immuno-oncology [116].

The decision of which modeling approach to use should be based on the specific goals of
the research or application, considering factors like data availability and system complexity.

4.2. Challenges of Quantitative Drug Modeling

Pharmacometrics mainly relies on data, and the quality and quantity of available
data can vary significantly. Poor quality data collection compromises model development
and validation, leading to less accurate predictions. For example, popPK models may not
be well supported by commonly used sparse sampling because of the slow absorption
and long half-life of some drugs [117]. In fact, scientists with training and expertise in
quantitative drug modelling may face some concerns when it comes to collecting PK data.
While PK data is typically gathered during early clinical trials, the number of data points
collected per subject is quite limited in phase II and III studies due to ethical and medical
considerations, resulting in sparse PK sampling [118]. This constraint also applies to
pediatric studies, where efforts are made to minimize the volume of blood sampled. In
addition, data collection often lacks accurate time information, leading to measurement
errors (ME). Choi et al. [119] have highlighted that time ME can lead to bias in parameter
estimators since the time variable used in PK modelling differs from the actual collection
time. To address this, the authors have proposed two methods for correcting time ME: in
cases where the PK profile exhibits minor curvature, conventional population PK modeling
can be employed; however, in scenarios where the curvature is moderate or large, the most
reliable approach is the transform both sides (TBS) model, which preserves a nonlinear
relationship between response and structural variables such as time, ensuring that PK
parameters maintain their original interpretation. Another innovative approach involves
the use of dried blood samples through wearable automatic sampling systems rather
than conventional blood sampling techniques. In a study conducted using blood samples
from Beagle dogs [120], these novel systems demonstrated the capability to yield a higher
number of samples, allowing the collection of more PK data, representing a promising
alternative to established methods.

Traditionally, parameter estimation in PK modelling relied heavily on mathematical
equations and assumptions about physiological processes. However, these classical meth-
ods often struggled to capture the complexities and inter-individual variations in drug PK.
Data-driven approaches offer a paradigm shift by leveraging vast datasets, advanced com-
putational techniques, and ML algorithms to improve parameter estimation. Traditional
parameter estimation methods in PK can include the standard two-stage (STS) approach,
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which involves fitting a PK model to individual data, estimating individual PK separately
for each individual, and then combining the individual parameter estimates [121]. The
naive pooled data (NPD) approach involves fitting all individuals’ data together as though
there were no individual kinetic differences [122]. Furthermore, the Bayesian estimation
method provides a powerful approach to individualizing dosing regimens. It incorporates
elements of variability in previously known population estimates and variability in the PK
parameters and known errors intrinsic to the assay method used to estimate the blood fluid
drug concentrations [123]. However, these traditional methods have some limitations. They
often require distributional assumptions and model linearization. They may encounter
issues with local minima and underdetermined problems [124]. They are based solely on
the plasma concentrations obtained from individual patients and applied directly to PK
equations [123].

In addition, model evaluation represents a significant hurdle in pharmacometrics.
Generally, models can be evaluated internally or externally [125]. Internal evaluation
involves basic methods such as analyzing goodness-of-fit (GOF) graphs to detect potential
biases or problems in the structural model, as well as the evaluation of the accuracy
of parameter estimates from standard errors or confidence intervals. Advanced methods
include data splitting, resampling techniques, or Monte Carlo simulations (visual predictive
check). External evaluation, which is not very common, involves comparing a validated
dataset with the predictions obtained from the built model. For this reason, ensuring an
accurate predictive model is challenging.

Nonetheless, we also face ethical issues since dose-finding PK studies may not provide
direct participant benefit, posing the dilemma of balancing individual research-associated
burdens with intended long-term benefits [126,127]. There are also difficulties in recruiting
peer-reviewers with appropriate modelling expertise and experience, lack of confidence in
PBPK models for which no tissue/plasma concentration data exist for model evaluation,
lack of transferability across modelling platforms, poor in vitro–in vivo correlations, and
knowledge gaps in system parameters [128,129].

5. Data Integration and Analytics: Data-Driven Approaches in
Pharmacokinetic Modeling

The demand for precision dosing of established medications post-approval has become
routine in the evolving healthcare landscape. As aforementioned, mathematical modelling
is a valuable tool that extends its utility beyond late-stage clinical development [130,131].
Healthcare professionals, including clinicians and providers, increasingly recognize the
significance of patient-specific responses to standardized dosing protocols [132,133]. This
awareness holds particular importance in the context of diseases such as cancer [134],
human immunodeficiency virus (HIV) [135], and tuberculosis (TB) [136], where drug PK
variability can profoundly influence treatment outcomes.

5.1. Unraveling Complexity: Data-Driven Pharmacokinetic Modeling in Combination Therapy

In the context of data integration and analytics, these diseases benefit from the ability
to gather and analyze vast amounts of data. When modelling monotherapy, the focus is
primarily on understanding the PK and PD of a single drug to predict its behavior and
efficacy. In contrast, modelling combination therapy involves the complex interplay of
multiple drugs, each with its own PK properties, mechanisms of action, and potential for
DDIs. Data integration and analytics became crucial for assessing how these drugs work
together. In data-driven PL modelling for combination therapy, researchers and healthcare
professionals need to consider the additional layers of complexity introduced by multiple
drugs. This complexity underscores the importance of data integration and analytics in
tailoring treatment regimens to individual patients effectively. The goal is to achieve the
best possible therapeutic outcomes while addressing the unique challenges posed by these
complex interactions (Figure 3).
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Figure 3. Key characteristics of data-driven approaches.

Access to a growing volume of patient-specific digital health data and an expand-
ing pharmacological and disease-specific pathophysiological knowledge presents new
opportunities. This data, often beyond the scope of traditional clinical trials, can be used
to create models that support clinical decision-making, leading to enhanced patient care
and improved treatment outcomes [137]. As previously stated, precision medicine relies
on integrating and analyzing diverse datasets to understand individual patient profiles,
identify biomarkers, and tailor treatments. This step involves merging datasets from
various sources, including EHRs, genomic data, proteomic data, and other “omics” data
(e.g., metabolomics), to derive meaningful insights that guide personalized healthcare
decisions. The integration of omics and EHR data is particularly important, as it allows
for a more comprehensive understanding of a patient’s health status and treatment history.
For example, EHR data can provide information on a patient’s medical history, medication
use, and clinical outcomes, while omics data can provide information on genetic variations,
protein expression, and metabolic profiles. Nevertheless, standardized data formats and
interoperability between different data sources (as EHR data is often stored in different
formats and systems) and privacy concerns and regulatory requirements represent some
of the challenges encountered. Despite this, the integration of omics and EHR data holds
great promise for advancing precision medicine [138,139].

Advanced analytics methodologies, including ML and artificial intelligence (AI),
are pivotal in making sense of integrated datasets [140]. These technologies can identify
patterns, correlations, and predictive insights that might be challenging to uncover through
traditional methods. Predictive models can be developed to forecast disease risk, treatment
response, and patient outcomes [141]. ML algorithms can adapt and improve these models
as new data becomes available. As previously discussed, data integration and analytics
help discover biomarkers that can guide the development of targeted therapies [142,143].
Precision medicine acknowledges the heterogeneity in patient populations [3], and data-
driven methods can account for this variability by estimating inter-individual differences
in drug disposition, enabling tailored dosing regimens for diverse patient groups and
helping to identify relevant biomarkers or patient characteristics significantly impacting
drug PK [144,145].

Integrated data empowers CDS systems, aiding healthcare providers in personalized
treatment decisions based on individual patient data and the latest research [146]. This ap-
proach enhances early disease detection, tailors treatments, and deepens the understanding
of factors influencing health. In PK modeling, data-driven approaches utilize observed data,
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often from clinical trials or real-world settings, to estimate model parameters governing
drug behavior [146]. Unlike theory-driven methods, these approaches prioritize empirical
relationships and statistical methods, enabling pharmacometricians to capture complex
interactions between drug concentrations and patient-specific factors for more accurate pa-
rameter estimates [147]. Nevertheless, there is a symbiotic relationship among data-driven,
theory-driven, and hypothesis-driven strategies in scientific research. Data-driven methods
offer the advantage of uncovering unexpected insights and patterns that might not be
apparent through preconceived theories. Theory-driven approaches provide a theoretical
framework that guides research design and interpretation. Hypothesis-driven strategies, in
turn, enable researchers to test specific predictions and refine theories. An integrated use of
these methodologies enhances the rigor and depth of scientific investigations.

Optimizing clinical trial designs by identifying relevant covariates that influence drug
PK streamlines trial enrollment, ensuring the inclusion of precisely the right patients [148],
and enhances the accuracy and efficiency of clinical investigations, allowing advances in
accurate parameter estimation for drug safety and efficacy [149]. Data-driven methods
excel in predicting adverse events, guiding dose adjustments, and minimizing side effects.
Rigorous validation and refinement using real-world data reinforces their applicability
across diverse clinical settings and patient populations. Their adaptability to changing
patient data aligns with the dynamic nature of precision medicine applications [150],
optimizing treatment plans and clinical trial designs and leading to cost savings in drug
development and healthcare services.

Data-driven approaches involve statistical and computational techniques to collect,
analyze, and interpret data, prioritizing the identification of patterns, correlations, trends,
and relationships [151]. They are well-suited for handling large datasets, making them
valuable in ML, AI, and big data analytics. They can adapt to changing data and evolving
insights, allowing dynamic decision-making and the extraction of complex patterns and
relationships within PK data. Their strength lies in multivariate analysis, effectively con-
sidering numerous variables simultaneously to uncover hidden correlations that classical
methods might miss. One real-life example of a hidden correlation that data-driven ap-
proaches can identify is the relationship between certain genetic markers and drug efficacy.
Classical methods might not detect this correlation due to the complex interplay of genetic
factors. These examples illustrate how data-driven approaches can reveal insights that are
not immediately obvious, leading to a deeper understanding of complex phenomena and
informing more effective decision-making.

By considering individual patient characteristics, data-driven approaches enable the
tailoring of drug dosages to maximize therapeutic benefits while minimizing side ef-
fects [152,153]. In contrast to traditional approaches, which often require extensive trial-
and-error adjustments to find optimal dosages [154,155], these methods accelerate this
process, reducing costs and risks, and can be used in early drug development stages to
predict PK parameters, facilitating decision-making and dose selection [156,157]. These
approaches support adaptive dosing strategies that can be modified in real time based on a
patient’s response and changing clinical conditions [158,159].

5.2. Challenges and Regulatory Considerations in Data-Driven Pharmacokinetic Modeling

While data-driven approaches offer substantial advantages, they face challenges, such
as ensuring data quality, addressing bias in datasets, and interpreting complex ML models.
Strategies to mitigate these concerns include: (a) Data preprocessing, which involves clean-
ing, normalizing, and handling missing values to ensure consistency and quality, removing
outliers, addressing imbalanced classes, and ensuring data representativeness; (b) Feature
selection, identifying the most relevant features for the model using techniques such as
principal component analysis or correlation analysis to reduce the impact of noise and
improve the model’s performance; (c) Model evaluation, employing appropriate metrics,
such as accuracy, precision, recall, and F1-score to assess the performance of the model
on a validation set or cross-validation techniques, preventing overfitting and ensuring
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effectiveness on unseen data; (d) Hyperparameter tuning, optimizing the hyperparameters
of the ML models through techniques like grid searching or random searching to find the
best combination of hyperparameters for optimal performance; (e) Ensemble methods,
combining multiple ML models to make predictions by aggregating their individual pre-
dictions, which can help to reduce the impact of any single model’s errors and improve the
overall accuracy; (f) Regulatory guidelines, adhering to regulatory guidelines, such as those
set by the FDA, to ensure responsible and compliant use of AI and ML in PK modelling.

The current state of regulatory guidelines for incorporating data-driven models into
drug development and clinical practice is still evolving. Regulatory agencies like the FDA
have released guidance documents on the use of AI and ML in drug and biological prod-
uct development, providing recommendations on data quality, algorithm development,
and validation. The use of ML/AI-based modeling approaches in PBPK modeling can
help support dose selection for future clinical trials or guide drug development strategies.
Collaborations between researchers, regulatory agencies, and industry partners can help
to advance the understanding of AI and ML applications in PK modelling and address
the challenges associated with their implementation. Key challenges and opportunities
include: (1) Ensuring data quality and diversity for robust ML model training; (2) Ad-
dressing model interpretability to understand the underlying mechanisms and reasoning
behind the model’s outputs, especially in the context of drug development and clinical
practice; (3) Securing regulatory acceptance by transparently communicating the model’s
performance, data quality, and potential limitations; (4) Integrating traditional pharma-
cometric methods into data-driven models, such as popPK and PD models, to improve
overall model performance.

6. Artificial Intelligence: Integration of Machine Learning in Pharmacometrics

The introduction of AI to healthcare coincided with the emergence of PK modelling
and simulation techniques [160,161]. Since then, AI has played a crucial role in the medical
field, particularly in the analysis and processing of complex and diverse healthcare data,
such as EHRs. Within AI, ML is a subgroup that has contributed to advancing mathematical
and statistical algorithms capable of effectively learning from data to generate predictions
and insights [162].

Pharmacometrics and ML are distinct yet complementary approaches to enhance
drug therapy and disease management. As previously stated, pharmacometrics utilizes
mathematical models to describe the behavior of drugs in the body, the effects of drugs
over time, and the variability among individuals and to optimize and predict dosing
and outcomes. ML, in turn, is a subset of artificial intelligence that focuses on building
systems that learn from data, identify patterns, and make decisions with minimal human
intervention. In healthcare, ML algorithms analyzes large datasets to predict disease
progression, identify potential drug targets, and personalize treatment plans based on
patient characteristics. Pharmacometrics quantitatively describe and predict drug and
disease behavior, enabling the optimization of therapeutic strategies. In contrast, ML
prioritizes the accuracy of outcome predictions [163]. As Poweleit et al. note, popPK
modelling differs from ML in the kinds of models it uses, despite being considered a subset
of ML. To ensure the physiological and pharmacological relevance of parameter estimations,
popPK modeling depends on structurally grounded models founded in pharmacokinetic
and pharmacodynamic concepts [164]. On the other hand, ML is focused on minimizing
prediction errors by selecting the most appropriate model from a range of possibilities.

The convergence of pharmacometrics and AI approaches, rooted in the 1990s, when
neural networks were first applied to PK/PD analyses [165,166], is gaining momentum.
However, the success of both pharmacometrics and ML fundamentally depends on the
quality of analysis datasets, which, in turn, hinges on the calibre of reference data sources
and the meticulousness of data preparation processes [162]. Pharmacometrics datasets,
frequently developed for specific analysis, face challenges in review and exchange due to
their unique construction and lack of standardization [167]. By serving as a computational
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link and enabling the integration of massive data sources into pharmacometrics analysis,
ML can overcome these problems.

Integrating ML into pharmacometrics enhances precision dosing for precision medicine,
emphasizing synergy rather than the replacement of conventional methods. ML-driven
PBPK/popPK models, considering genetics and patient-specific data, enable precise dosing
regimens tailored to individual physiology. Thus, this approach improves drug exposure,
efficacy, and disease control, improving therapeutic success [168]. ML’s impact on drug
development includes predicting metabolism, identifying safety concerns, and reducing
side effects [169]. Tailored dosing considering patient variability ensures individualized
treatment recommendations, crucial in diverse populations [170]. Personalized models
improve the allocation of healthcare resources [132], reduce overmedication risks, and cut
costs. These models can also aid in the early stages of drug development by identifying
patient subgroups that may benefit most from a new drug. Again, this can streamline
clinical trials, improve patient recruitment, and increase the chances of successful drug de-
velopment [171]. Ultimately, personalized dosing and treatment regimens are aligned with
the goal of patient-centered care, fostering satisfaction and adherence to therapies [172].

Traditional PBPK and popPK models often rely on static datasets that may not reflect
the latest patient information or trends in health data. ML-driven dynamic data integration
enables the continuous flow of real-time patient data into these models. This ensures
that the models remain up-to-date and relevant, reflecting changes in patient health sta-
tus, treatment responses, and demographics as they occur. This timeliness is crucial for
optimizing treatment decisions [147,173]. This influx of data can lead to more accurate
and comprehensive models and identify subtle patterns and associations that may not
be apparent in smaller or less diverse datasets. As a result, ML-driven PBPK and popPK
models can be continuously validated against real-world patient data [174]. This validation
process ensures that the models are not only accurate in controlled clinical settings but
also in the messy and complex environment of real-world healthcare, which enhances
confidence in model predictions and their utility in clinical practice [169].

Additionally, ML-based models support adaptive CDS systems, providing real-time
recommendations for drug dosing, treatment adjustments, and monitoring based on the
latest patient data. The real-time integration of data sources also benefits research and drug
development. Researchers can access a wealth of real-world data to study drug responses,
patient outcomes, and the impact of treatments on diverse populations. ML-driven data
integration can also reduce the administrative burden on healthcare providers due to the
automated data processing and model updates [175].

Additionally, ML-driven PBPK models offer a cost-effective alternative to traditional
drug development, which involves a substantial amount of experimentation and data
collection to understand a drug’s PK [176,177]. They significantly reduce the need for
expensive and time-consuming experiments, especially in the early stages. This cost-saving
aspect is highly advantageous for pharmaceutical companies and researchers. ML-driven
models can uncover complex relationships between drug PK and patient characteristics,
such as genetics, demographics, and comorbidities [178]. Moreover, traditional methods for
selecting relevant covariates in popPK models often involve manual and time-consuming
processes, with pharmacometricians performing stepwise covariate modelling, which en-
tails sequentially testing and adding covariates, leading to an iterative and time-intensive
procedure [177]. ML frameworks, on the other hand, can automate and expedite this
procedure by simultaneously analyzing a broad range of potential covariates. This not only
reduces the time required for model development and refinement, but also handles large
datasets and a multitude of potential covariates more comprehensively than manual meth-
ods [168]. In fact, this comprehensive exploration increases the likelihood of identifying
important covariates that may have been overlooked in a manual approach, since manual
stepwise covariate modelling can introduce bias due to the subjective decisions made
by modelers during the process [178]. ML frameworks, in contrast, rely on data-driven
algorithms that are less prone to these types of biases, resulting in more objective and
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data-supported covariate selection. Moreover, they can capture nonlinear associations and
synergistic effects that may be challenging to detect manually. This enhanced predictive
accuracy can lead to better individualized dosing recommendations and improved clinical
outcomes. For example, Zhu et al. [179] discuss how ML serves as a rapid screening tool
for covariates in popPK models.

ML-driven PBPK models offer a versatile solution to address the variability in clinical
practice, demonstrating robust performance across diverse patient populations and medical
conditions. As these models learn effectively from extensive patient data, they provide
reliable predictions for various groups, from pediatrics to geriatrics, and across different
demographics. In addition, the ability to adapt predictions according to new PK data [169]
due to changes in physiology and organ function resulting from different diseases and
medical conditions is crucial for optimizing drug therapy in patients with various medical
conditions, including chronic diseases or infections.

ML-driven PBPK models can account for demographic factors, which are essential
for individualizing drug dosages based on patient-specific characteristics, highlighting
robust performance across various patient subgroups [180]. This consistent accuracy in
predictions for different populations and clinical scenarios, ensuring generalization across
diverse contexts, enhances trust and acceptance among healthcare providers and regulators.
Therefore, the fact that decision-making on treatment strategies may be supported by this
type of model also enables questions related to complex medical cases or rare diseases to
be addressed [85], where available clinical data is limited [181].

ML-PBPK/popPK models can also predict drug toxicity and safety profiles more
accurately, aiding in the early identification of potential adverse effects during drug devel-
opment [182,183]. Pharmaceutical companies can decide whether to continue development,
modify the drug’s formulation, or explore alternative compounds. Once more, this early
detection can save substantial time and resources that might have been invested in less
promising candidates, and avoiding late-stage safety issues can significantly reduce the
costs of drug development [184]. Identifying safety concerns early can prevent costly clini-
cal trial failures or regulatory setbacks, leading to extensive delays and financial losses [185].
Regulatory agencies, such as the FDA, require thorough safety assessments during drug
approval processes [186,187], and ML-PBPK/popPK models can provide valuable insights
and data to support these assessments, helping pharmaceutical companies meet regulatory
requirements more effectively. The following table (Table 2) summarizes the integration
points of ML and phamacometrics.

Table 2. Integration points between ML and pharmacometrics.

Integration Points Details

Data analysis
ML processes big data efficiently, improving patient outcomes in drug
therapy. It identifies salient variables and delineates their
interdependencies.

Predictive capabilities
ML algorithms excel in predictive capabilities, aiding pharmacometrics in
understanding dose–exposure relationships (pharmacokinetics) and
exposure marker effects (pharmacodynamics).

Complementing pharmacometric modelling
ML acts as a computational bridge, leveraging its flexibility to
complement the complexity of principled pharmacometric modelling,
resulting in synergistic effects in pharmacological applications.

Robustness of datasets
ML implementation in pharmacometrics requires robust datasets for
training and testing, capturing the distribution of intrinsic and extrinsic
factors of interest.

Overfitting
Evaluation data should not be used for training to prevent overfitting,
ensuring the model generalizes well to unseen observations and doesn’t
fit the training data perfectly.
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6.1. Examples of ML Approaches That Can Address Unique Challenges and Opportunities within
Pharmacometrics

ML empowers PBPK and popPK models with notable benefits. Pioneering work
by Woillard et al. utilized extreme gradient boosting (XGBoost) models to predict the
exposure of drugs like tacrolimus and mycophenolic acid [188–190]. ML algorithms,
including classification and regression trees, excel in optimizing doses, especially for
drugs with a narrow therapeutic index like vancomycin [191,192]. Applications extend to
predicting optimal doses for medications like lamotrigine and warfarin, demonstrating
moderate to good accuracy and target attainment rates [193,194]. ML’s pivotal role in
enhancing Bayesian approaches within model-informed precision dosing (MIPD) systems
is noteworthy.

Gill et al. used regression-based ML to predict drug exposure changes due to interac-
tions [195]. The model, with 78% accuracy within twofold observed changes, highlighted
early drug-discovery features for risk assessment. Despite potential biases, it showcased
ML’s power in capturing relationships, aiding decision-making in drug discovery [195].
Song et al. focused on DDI prediction using similarity-based ML, achieving an AUROC
exceeding 0.97 [196]. Additionally, Minerali et al. compared ML algorithms, with the best
Bayesian model, achieving a ROC of 0.814, illustrating ML’s effectiveness in predicting DILI
and identifying potential issues in clinical compounds and FDA-approved drugs. These
studies collectively demonstrate ML’s versatility and efficacy in pharmacology, advancing
early risk assessment and safety evaluation in drug development.

A study developed an ML model predicting methicillin-resistant Staphyloccocus aureus
(MRSA) infection likelihood in community-acquired pneumonia (CAP) patients within
72 h [197]. Using classification tree analysis, the model achieved high accuracy (ROC
area: 0.775), aiding risk stratification for targeted interventions. Despite promising results,
limitations include a small sample, lack of external validation, and interpretability concerns
due to the “black box” nature of ML models. Further validation is crucial for real-world
reliability and practicality.

Finally, Harun et al.’s study focuses on methodological considerations in ML-based
exposure–response analysis [190]. The study underscores the importance of following
proposed ML workflow practices, including SHAP analysis, hyperparameter tuning,
and model reliability checks. Failure to adhere to these practices can lead to errors and
confidence interval issues. The study showcases XGBoost’s potential in accurately estimat-
ing exposure–response relationships. Exposure–response analysis in pharmacometrics is
vital for drug development, optimizing therapeutic outcomes, and ensuring patient safety.
Liu et al.’s study evaluates ML-based techniques in this type of analysis, highlighting their
potential in handling complex datasets and identifying confounding factors [196,198]. The
combination of ML and PK approaches has demonstrated reduced mean percentage errors
and prediction errors compared to using only the maximum a posteriori method. ML
frameworks have also facilitated efficient covariate modelling in popPK models, enabling
faster and more streamlined selection of relevant covariates while maintaining computa-
tional efficiency. In supporting EHR systems and data collection, ML has proven useful in
automating data extraction, processing, and preparation for PK analyses. ML-based sys-
tems have been developed to extract structured and unstructured EHR data, reducing the
time and effort required for popPK analysis. These systems have efficiently formatted data
for analysis using PK software like NONMEM. With the increasing availability of big data,
there is a growing interest in leveraging ML (and AI) to enhance patient outcomes in drug
therapy. Indeed, ML and AI are essential bridges between big data and pharmacometrics,
facilitating efficient analysis and interpretation of vast information.

PBPK models are on the verge of expanding their capabilities to manage population-
level data and create population-specific PBPK models routinely. Similarly, there are
expectations for some level of automation in system pharmacology models. ML is expected
to be central in bringing these subfields together, fostering smooth collaboration and
integration. This paradigm shift in pharmacometrics reverberates across the broader
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pharmaceutical industry. Professionals in this sector are poised to transition into the
role of model interpreters as ML algorithms progressively shoulder the computational
workload [199]. Looking forward, the role of ML in this field is set for significant evolution.
Prominent voices in the field have alluded to the transformation awaiting the landscape of
pharmacometrics [200,201]. ML techniques are set to automate various facets of the process,
such as popPK models, driven by methods like genetic algorithms [202,203]. However, it
is imperative that a fundamental understanding of these algorithms and their limitations
is retained. Interestingly, Kolluri et al. emphasize the importance of recognizing that the
scientific method is not obsolete when making inferences about data and that informed
decision-making on the optimal use of AI/ML in drug development is necessary [157]. A
landscape analysis of regulatory submissions to the FDA reveals a rapid increase in AI
and ML applications since 2016, with a particularly significant rise in 2021. This trend
emphasizes the need for standards and best practices to guide and ensure the proper
implementation of AI and ML applications in healthcare [204]. The International Coalition
of Medicines Regulatory Authorities (ICMRA) has also published recommendations for
stakeholders regarding the uses and challenges of AI in drug development, which the
European Medicines Agency has endorsed [204]. As new applications and approaches
emerge, the guidelines for AI and ML in healthcare will continue to evolve to address the
specific needs and challenges of the field. However, limitations and challenges remain
(Table 3).

Table 3. ML approaches that can address unique challenges and opportunities within pharmacomet-

rics [157].

Opportunities How to Address Them?

PKPD model personalization

Developing ML techniques for efficient personalization of
PK/PD models to individual patients using sparse data.

• Integrating patient-specific data, such as genetics,
biomarkers, and historical treatment responses to improve
model predictions and treatment optimization

• Predicting the probability of a drug’s success and
identifying patient subgroups for maximum therapeutic
benefit.

Challenges: Determining appropriate endpoints and predicting
success in pivotal trials. Unsupervised learning can be used for
patient clustering to optimize clinical development.

Data integration for rare events

Designing models that integrate information from various
sources (EHRs, social media, and wearable devices) to predict
and manage rare adverse events not well-captured by
traditional pharmacometrics models.
Challenges: Scarcity of labeled data since rare events occur
infrequently.

Adaptive clinical trials that can
dynamically adjust treatment regimens based on real-time
data analysis

Using ML as an assisted tool for clinical trial oversight,
providing efficient ways to protect patient safety, reduce trial
duration, and lower costs in clinical trial oversight.
Challenges: Ensuring data quality and integrity when
incorporating data from multiple sources.

Real-world evidence analysis

Using real-world evidence data to refine pharmacometrics
models, accounting for patient heterogeneity, treatment
variability, and long-term outcomes not adequately captured in
controlled clinical trials.
Challenges: Ensuring data quality and consistency.
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Table 3. Cont.

Opportunities How to Address Them?

Interpretable AI for decision
Support

Developing interpretable ML models for transparent clinical
decision-making.
Challenges: Balancing model complexity and transparency;
difficult interpretation potentially hindering their acceptance in
clinical settings.

Uncertainty quantification

Enhancing pharmacometric models by incorporating
uncertainty estimation techniques from ML, providing
clinicians with confidence intervals for predictions and allowing
for better risk assessment.

Multi-modal data fusion

Investigating methods to effectively fuse data from diverse
modalities, such as genomics, proteomics, and imaging data, to
create comprehensive patient profiles that can better inform
treatment decisions. Breakdown of the multi-modal data fusion
process: (1) data collection; (2) data preprocessing; (3) feature
extraction and selection; (4) data fusion; (5) model development;
(6) model validation; (7) clinical application; and (8) continuous
learning (as new data becomes available, the models can be
updated and refined, embodying the principles of continuous
learning and improvement).

Longitudinal data analysis
Developing models for analyzing longitudinal data over
extended periods to capture changes in patient response
to treatments.

Ethical and regulatory
Considerations

Addressing ethical implications and regulatory challenges of
incorporating ML into pharmacometrics, including issues
related to data privacy, bias, and validation.

Optimization of drug combination
Exploring ML algorithms to optimize drug combinations by
predicting synergistic effects, potential adverse interactions, and
tailoring treatments for individual patients.

6.2. Challenges and Future Directions

Navigating the intricate landscape of integrating ML with PBPK (ML-PBPK) and
popPK (ML-PopPK) models presents many complex challenges and opportunities in phar-
maceutical research and precision medicine. Concerning data integration and quality,
pharmaceutical research relies on data from various sources, including clinical trials, EHRs,
wearable devices, and omics data [205]. Each source may have different formats, standards,
and levels of quality. Combining them into a cohesive dataset for ML modeling can be
challenging. Thus, standardized data integration pipelines are required, addressing for-
mats and maintaining compatibility. Implementing standard data formats, such as the
CDISC (Clinical Data Interchange Standards Consortium), can facilitate this standardization
process [206].

The accuracy and reliability of ML-driven models heavily depend on high-quality
input data. To ensure this, preprocessing techniques are usually employed, particularly
outlier detection, missing data imputations, and cleaning [207], as well as regular audits and
validation checks to identify and rectify data quality issues without neglecting metadata
management [208]. Establishing a robust metadata management system helps in tracking
the lineage of data and assessing its reliability for modeling purposes.

Integrating data from various sources may involve sensitive patient information.
Maintaining data privacy and complying with regulations like the General Data Protection
Regulation (GDPR) and Health Insurance Portability and Accountability Act (HIPA) is
essential. Anonymization and de-identification techniques can be employed to protect
patient privacy while integrating data [205,209].
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In addition to standardization, harmonizing data is a crucial step, particularly when
dealing with patient-specific information. This involves reconciling differences in termi-
nologies, units of measurement, and data collection methods to ensure the comparability
and effective utilization of data. To ensure that different systems and platforms can interact
and share data seamlessly, the development of application programming interfaces (APIs)
and data exchange standards can facilitate interoperability [210]. Establishing clear data
governance policies and practices is essential for managing data integration and quality.
This includes defining roles and responsibilities, data stewardship, and data lifecycle man-
agement to maintain its integrity over time. ML models are dynamic and evolve with new
data. Implementing data versioning protocols ensures that changes in data sources and
quality are tracked and model updates can be managed effectively. For this reason, collabo-
ration between data scientists, domain experts, clinicians, and information technology (IT)
professionals is necessary to effectively address data integration challenges [211].

Moreover, patient data must be handled with utmost privacy and security. However,
diversity, equity, and inclusion (DEI) and concern for bias are also critical considerations
in the integration and analysis of diverse datasets in precision medicine. Biases can derail
any attempt to improve the culture of DEI, and this is particularly relevant in healthcare.
Human beings have inherent biases, and these biases can manifest in the collection, analysis,
and interpretation of data, potentially culminating in disparities in healthcare access, treat-
ment, and outcomes, particularly for underrepresented minority populations. Therefore,
it is essential to consider DEI and bias in the integration and analysis of diverse datasets
in precision medicine and to implement strategies to mitigate them, such as using diverse
study populations, validating biomarkers across diverse populations, and using rigorous
statistical methods to analyze data. Diversifying the composition of healthcare providers
and research teams is one strategy to address DEI in precision medicine. Studies have
demonstrated that underrepresented minority physicians and women are more likely to
provide care to underserved populations and to address health disparities. Additionally,
community engagement and education programs can help increase diversity in clinical
trials and improve representation of underrepresented groups in research [212]. ML models
can inadvertently perpetuate biases present in the training data. Mitigating bias and ensur-
ing fairness in predictions, especially in healthcare decisions, is an ethical imperative [213].
For instance, Lee et al. demonstrated the significance of integrating ML techniques with
robust de-identification methods to safeguard sensitive healthcare information. Advanced
models can play a pivotal role in verifying the accurate application of de-identification
techniques, thereby promoting both data confidentiality and usability while aligning with
ethical and regulatory standards [214].

The opacity of ML models, that is, the fact that they are often considered “black
boxes”, can hinder their adoption in clinical practice [215]. Physicians and healthcare
professionals need to understand the rationale behind a model’s predictions to make
informed decisions regarding patient care, and for this reason, a lack of interpretability
can result in mistrust and reluctance to use ML-driven recommendations [216]. Therefore,
transparent explanations for model predictions must be provided to solidify trust and
empower patients to participate in their own care decisions [217,218]. Implementing model
interpretability techniques like SHAP analysis can provide insights into model decision-
making [219,220].

Patient-specific predictions should be actionable in a clinical setting, and this requires
developing robust models [221,222] that align with clinical workflows and provide practical
guidance to healthcare providers [223]. However, this exercise is quite complex due to sub-
stantial variability in response to drugs. Failing to account for such heterogeneity may lead
to suboptimal treatment outcomes for specific patient groups, affecting its generalizability.
Thus, ensuring that the model can handle healthy and diseased populations is essential
for its clinical relevance [224,225]. One solution could be to continuously validate models
across various patient subgroups and update them as needed.
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Validation should encompass diverse datasets, including independent datasets not
used during model training [226], to verify the reliability and robustness of ML-enhanced
PBPK/popPK models. Models should be evaluated for their long-term predictive perfor-
mance. This is particularly relevant in chronic diseases where treatment effects may evolve
over time because it is crucial to ensure that the model remains accurate over extended
periods. Therefore, rigorous validation approaches, including external validation using
independent datasets can be helpful.

In addition, ML algorithms can be computationally demanding, particularly when
dealing with large datasets or complex models. Efficient algorithm design, parallel comput-
ing, and graphics processing unit (GPU) acceleration can optimize resource usage [227].
ML models should be designed to scale with growing data volumes and computational
demands, and therefore cloud computing resources are usually employed, which offer
scalability and cost-effectiveness, especially for resource-intensive tasks like deep learn-
ing [228].

ML algorithms often require large sample sizes, which may exceed what is typically
needed for the clinical application of AI and ML. Collaborative efforts are essential to de-
velop comprehensive databases and enhance data quality. AI and ML should complement,
not replace, traditional pharmacometrics. Ongoing advancements and collaborations are
expected to drive the evolution of precision medicine, with a focus on research, validation,
and integration into clinical practice. The future of ML-PBPK/popPK integration holds
promise in various strategic directions:

• Expanded applications of PBPK models, informing clinical study design and predicting
drug interactions.

• Pediatric dosing regimen prediction to ensure safer and more effective treatments for
pediatric patients.

• Utilization of PBPK models for predicting drug exposure in patients with organ
impairment.

• Estimation of maternal–fetal drug disposition during pregnancy.
• Prediction of pH-mediated drug interactions using PBPK models.
• Improved predictive performance of popPK models by focusing on data adequacy.
• Integration of generic PBPK models for extrapolations and continuous updates.

7. Digital Health and Wearable Technologies

As technology advances, digital health and wearable technologies have increasingly
become integrated into patient care. Digital health has gained significant momentum due
to several key factors and, besides improving access to healthcare, this discipline also
mitigates any inefficiencies in the healthcare system, improves the quality of care, reduces
the costs associated with healthcare, and offers more individualized care tailored to patients’
needs [229].

Digital health, a term that refers to the application of information and communication
technologies in the medical field and other health professions, plays a major role in precision
medicine. It provides the essential tools and technologies for the collection, analysis, and
effective application of individualized patient data. This field is constantly developing and
has a broad scope, making use of digital technologies such as wearable devices, mobile
health, telehealth, health information technology, telemedicine, apps, sensors, data analysis,
and other digital solutions to improve the delivery of healthcare services, raise the quality
of patient care, and optimize healthcare management [230,231]. For example, the use of
digital devices such as smartphones not only facilitates communication but also provides a
wide range of applications capable of monitoring blood pressure, recording blood glucose
levels, ensuring adherence to drug treatment, and tracking levels of physical activity [231].
These capabilities demonstrate that the adoption of digital medicine enables patients to
monitor their health and well-being more precisely, collecting real-time data and making
it an essential pillar in contemporary medical practice [232,233]. Another goal of digital
health is improving the experience of each patient, as well as the experience of the doctor
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and other non-medical providers. The final objective is to address health disparities and
improve them with an individualized view of each patient [234,235].

Remote sensing and wearables, telemedicine and health information, data analytics
and intelligence, predictive modeling, health and wellness behavior modification tools,
bioinformatics tools (-omics), medical social media, digitized health record platforms,
physician–patient portals, do-it-yourself (DIY) diagnostics, compliance and treatments,
decision support systems, and imaging are included in the categories of products and
services that digital health has to offer [229].

The continuous collection of individual biomedical data, such as genomics, proteomics,
mobile health data, and EHRs, is fundamental. This data is essential for understanding
a patient’s unique characteristics and genetic predisposition to disease. This database
may be then subjected to advanced analysis using techniques such as ML and AI to
identify patterns, trends, and associations in large volumes of patient data, which can be
used to personalize treatments [236,237]. A notable example of this process is genomic
medicine. Digital health makes it possible to sequence a patient’s genome more affordably
and efficiently. This means that doctors can analyze a patient’s DNA to identify genetic
variations that can influence the response to specific drugs and treatments [236]. Based on
the data collected and the genetic information, doctors can then tailor treatments according
to each patient’s specific needs, including the choice of drugs, dosages, and treatment
strategies. In addition, digital health may be used to predict individual disease risks based
on these data, allowing doctors to develop targeted prevention strategies. To keep a close
eye on a patient’s progress, such devices, including wearables and medical sensors, enable
continuous health monitoring. This not only helps with current treatment but also with
the early identification of health problems. Patients are involved in their own care through
health apps and online platforms, allowing them to monitor their progress and make
informed decisions [236].

Moreover, digital communication technologies facilitate the exchange of information
between clinicians and patients, enabling more effective communication and the sharing
of relevant data. This reduces the occurrence of unwanted side effects and leads to better
prevention and a more comprehensive approach to patient well-being [234].

The EHR is a digital system that stores medical information and patient health infor-
mation (e.g., medical history, test results, prescriptions, allergy information) in electronic
format (Table 4).

Table 4. The uses and benefits of EHRs. Adapted from [168].

EHR Benefits Integration of EHR in Healthcare

Information access and sharing
EHRs facilitate quick and secure access to patients’ medical information, allowing
healthcare professionals to make informed decisions and order care.

Better care management
EHRs help you better manage the care of chronic patients by enabling continuous
monitoring and adjustment of treatment plans based on real-time data.

Integration and coordination
The integration of RSE (remote sensing and earth observation) into healthcare
systems allows for more efficient coordination between different healthcare
providers, improving continuity of care.

Clinical research

RSE data can be used in clinical research to identify health trends, evaluate the
effectiveness of treatments, and improve evidence-based medicine. Furthermore,
omics data, which encompasses genomic, transcriptomic, proteomic, and
metabolomic information, plays a crucial role in precision medicine. This data
enables the personalization of treatments based on the genetics and individual
characteristics of each patient, improving the effectiveness of care. Omics data
analysis also helps identify genetic markers of diseases, enabling early prevention
and diagnosis.

Taken together, the incorporation of EHRs and omics data into digital health enables
a more personalized, evidence-based approach to healthcare, improving the diagnosis,
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treatment, and prevention of disease. This convergence represents a significant advance in
the ability to use digital information to improve people’s health and well-being.

Further, wearable devices play a fundamental role in digital health, offering a variety
of functions that help monitor the health and well-being of individuals (Table 5).

Table 5. Wearable devices used in digital health and their uses. Adapted from [168].

Wearable Devices Properties, Capabilities, and Applications

Smartwatches
Monitor heart rate, measure blood pressure, track physical
activity, count steps, monitor sleep quality, and send reminders
to move, drink water or perform exercises

Fitness trackers
Monitor steps, distance traveled, calories burned, heart rate,
and even track specific exercises like running and swimming

Glucose-monitoring devices

For people with diabetes, devices such as continuous glucose
monitors (CGM) offer the ability to monitor blood glucose levels
in real-time. They can send alerts when glucose levels are out of
ideal range

Portable electrocardiogram (ECG) devices
Some smartwatches can perform ECGs. They can detect
abnormal heart rhythms, such as atrial fibrillation

Sleep-monitoring devices
These devices record sleep patterns, duration, and quality. They
provide insights into improving sleep habits

Breath-monitoring devices
Can monitor respiratory rate and blood oxygen saturation. This
is useful for monitoring breathing problems such as sleep apnea

Virtual and augmented reality (VR/AR) Devices
In rehabilitation areas and therapy, VR and AR devices create
virtual environments for therapeutic purposes, such as
rehabilitation after injuries or strokes

Smart glasses
These are used in medical settings for access to clinical
information, real-time documentation, and telehealth

Physiological activity-monitoring devices
In addition to the most well-known devices, some wearables
monitor specific physiological activities, such as body
temperature, exposure to UV light, hydration, and much more

Wearable sensors for clinical research

In clinical research, wearable sensors are used to collect
objective and accurate data about the health of patients in
clinical studies, enabling a deeper understanding of different
medical conditions

Augmented reality glasses for surgery
In medicine, augmented reality glasses are used by surgeons to
provide real-time information during surgical procedures,
making them more accurate and safer

These examples illustrate the diversity of wearable devices in the area of digital health.
Each of these devices is designed to meet specific health monitoring and care needs, and
many of them are constantly evolving as technology advances. These devices play an
important role in collecting real-time data, supporting medical diagnoses, promoting a
healthy lifestyle, and improving healthcare [171]. In the context of wearable devices, the
variability in sensors and inconsistency in data collection pose challenges in coordinating
and assessing quality. User-related issues significantly impact the reliability of digital health
data. These include digital health service accessibility, accuracy of the data, consistency
of data input by users, and contextual validity of data to relevant aspects. Addressing
these issues is crucial for improving the quality, usability, and acceptability of digital health
interventions [56].

Furthermore, precision medicine, driven by the collection and analysis of this data,
promotes innovation and collaboration in digital health technologies. The idea of multidis-
ciplinarity continues to be essential. Facilitating the integration of personalized biomedical
data collection and precision medicine into society requires public education, training
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for healthcare professionals, collaboration between experts in different areas, clear reg-
ulations, financial incentives, academic partnerships to drive innovation and develop
patient-friendly technologies, and universal access and respect of ethical principles.

It is also important to ensure data security, privacy, and interoperability for effective
integration into precision medicine workflows. This involves implementing robust security
measures, appropriate regulation, and informed consent from patients for the use of their
data. By doing so, we can harness the potential of digital health technologies and wearable
devices to improve the quality of healthcare and promote a more personalized, evidence-
based approach to medical treatment [238].

8. Clinical Trials and Study Design

The design of clinical trials has experienced a profound transformation in response to
the medical paradigm shift, which recognizes that traditional one-size-fits-all treatments
are often ineffective or produce negative effects in patients [239,240]. Hence, the next
generation of trials must be a symbiosis between patient-centered strategies, where the
therapeutic interventions are tailored to patient-specific biomarkers, and conventional
drug-centered strategies, focused on evaluating the efficacy, safety, and pharmacological
properties of the drug under study.

In fact, driven by fast advancements in omics, recent biomarker-based clinical trials
have emerged as a very promising approach in this new era. In addition, advanced
computational tools have revolutionized the way clinical trial data is analyzed. There is a
wide variety of in silico methods that allow accurate data processing.

As patient-centered trial designs, master protocols have arisen, classified into basket
trials, umbrella trials, and platform trials (Figure 4) [241–244]. They have been increasingly
implemented, particularly in the field of oncology. According to Park et al. [241], at the time
of publication (2019), there has been a rapid increase in the number of master protocols. Bas-
ket trials consist of evaluating a targeted therapy against multiple diseases sharing common
molecular alterations. Umbrella trials, on the other hand, involve multiple interventions
for a single disease stratified into subgroups according to molecular alteration. In turn,
platform trials evaluate several treatments against a common control group [240,245–247].
Another innovative approach is adaptative design, which enables the dynamic evolution
of studies [159]. This method allows for the early discontinuation of ineffective treatment
arms while increasing randomization to more promising therapies. Nevertheless, some
limitations associated with the early elimination of treatment may be listed, including the
lack of consistent data on safety.

Although less common, home-based clinical trials are being conducted [248], especially
in patients with cancer and limiting diseases. This site-less clinical trial design simplifies
patient recruitment, enables the inclusion of more diverse populations, and increases
participants’ enrolment rates. However, these trials also pose some challenges and risks
in terms of data reliability. The quality of data collected from home-based clinical trials
depends on the validity and reliability of the instruments used for data collection, such
as questionnaires, diaries, sensors, or devices. These instruments need to be designed
carefully to ensure that they capture the relevant aspects of the patient’s situation and
outcomes and that they are easy to understand and complete by the patients. They also
need to be tested for accuracy, completeness, consistency, and contextual validity before
being used in clinical trials. The security of data collected from home-based clinical trials
is crucial to protect the privacy and confidentiality of the patients. Researchers need to
work with information technology professionals to ensure that data collection is safe and
secure while maintaining patient privacy during decentralized trials. This may involve
using encryption, authentication, authorization, backup, and recovery methods [249].
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Figure 4. Representation of basket trials, umbrella trials, and platform trials. Created with SMART—

Servier Medical ART. Available online: https://smart.servier.com (accessed on 22 September 2023).

Another emerging trend in the clinical trial landscape involves the integration of
digital health technologies, such as mobile devices, mobile apps, and remote monitoring
devices, directly into the study’s framework. These innovative studies are often referred to
as virtual clinical trials (VCTs), as they leverage digital tools to remotely gather data from
participants instead of requiring in-person visits to research facilities. There are several
digital tools currently available: eConsent, a digital method of obtaining informed consent
from participants; electronic patient-reported outcomes (ePRO), which represent health-
related outcomes (symptoms, adverse effects) directly reported by the patient and collected
electronically; and sensors and wearable devices [250]. The most evident advantage of these
studies is the increased participant adherence, as they participate from the convenience
of their home. Moreover, data collected through digital devices may enable continuous
real-time data acquisition rather than periodic data collection during in-person visits.

The ease of digital data collection has led to a huge amount of information, requiring
complex and time-intensive analysis [240]. The analysis of real-world data using advanced
computer methods provides real-world evidence. This is where AI and ML algorithms
can be used to address this challenge and rapidly discover new therapies. Interestingly,
real-world data has already practical uses, since the FDA has approved at least two cancer
drugs developed using it [251,252]. Also, real-world data holds particular significance
in assessing drug efficacy and safety in patient populations frequently excluded from
randomized clinical trials, such as patients with limited performance status, older patients,
patients with serious comorbidities, or underserved populations who may not be able to
travel to an academic centre for a clinical trial [240].

In summary, these clinical trials offer great potential for improving treatment outcomes
and reducing adverse effects, ultimately leading to a transformative era of personalized
healthcare. There are still, however, opportunities for further evolution.

https://smart.servier.com
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9. Future Perspectives: Integration of In Silico Tools in Hospital Settings

Expectation arising from the application of computational methods, such as ML, deep
neural networks, and multi-modal biomedical AI, has been the reinvigoration of clinical
research, including drug discovery, image interpretation, streamlining EHRs, improving
workflow, and, over time, advancing public health [239]. Therapeutic monitoring and
clinical decision-making constitute a multifaceted process in today’s hospital settings.
Healthcare professionals employ clinical assessments, interacting with patients to collect
vital information about their medical history and current symptoms, guiding subsequent
steps. We believe that we are moving towards a reality in which all these technologies will
be applied in the context of clinical practice. However, before that, there are issues that
must be overcome.

Collaborative care teams, comprising various healthcare professionals, including
doctors, nurses, pharmacists, and specialists, collaborate on patient care plans to leverage
collective expertise for more informed clinical decisions. Since patient engagement is
a fundamental aspect of modern healthcare, hospitals need to actively involve patients
in their care by providing information, discussing treatment options, and considering
individual preferences during decision-making.

Despite exponential growth in acquiring healthcare data, the capacity to integrate such
data to improve health outcomes presently fails to meet technological advances. These chal-
lenges can be overcome with the use of AI and other computing technologies in health services
workflows. Genomic sequencing, providing detailed information about an individual’s ge-
netic makeup, has particularly benefited oncology and genetics, especially because of the
several approvals for biomarker-based targeted therapies and immunotherapy [229,253,254].
Omics-based assays can be used to study the complex interactions in severe diseases, facilitat-
ing early-stage intervention and the selection of the most fit treatment.

EHRs streamline the management of health data by providing a centralized, com-
prehensive, and up-to-date repository of patient information [255,256]. This potentially
eliminates the need for paper-based records, reducing errors associated with manual data
entry and retrieval. Therefore, EHRs contribute to the creation of medical knowledge in
two ways: (a) they enable the aggregation and analysis of large volumes of patient data
for research, epidemiological studies, and the discovery of patterns and trends that inform
medical practices; (b) CDS provides evidence-based guidelines and alerts to clinicians,
contributing to better health outcomes. As such, EHRs are fundamental to the advancement
of precision medicine. Key advantages in this context include genomic integration with
clinical data and facilitation of personalized treatment plans by providing a comprehensive
view of a patient’s medical history, lab results, and other data. This enables healthcare
providers to select treatments that are most likely to be effective for a specific patient.

Interoperability is critical for EHRs to fulfill their potential and ensure continuity of
care. Patients can receive consistent care even if they change healthcare providers or facili-
ties once their records can be accessed and updated from different systems. Unfortunately,
non-interoperability is currently one of the biggest limitations on the exchange of data
between different systems.

Alongside the uniformization of EHRs, the integration of CDS systems in hospitals’
workflows is crucial in precision medicine. The healthcare providers need real-time, data-
driven recommendations based on patients’ specificities, including genomic data, risk
assessment and predictive modelling, DDI alerts, clinical guideline adherence, continuous
learning and improvement, and patient engagement. However, besides an infrastructural
challenge, the use of CDS systems also demands training staff to accurately introduce and
interpret information; keeping CDS systems up-to-date with evolving medical knowledge
and technology can be resource-intensive, and evaluating the actual impact of CDS systems
on patient outcomes can be challenging.

Therapeutic drug monitoring (TDM) is particularly important for medication man-
agement, involving regular assessments of drug levels in the bloodstream to optimize
dosages and ensure safe and effective treatment. For example, in the case of a patient taking
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anticoagulant medication, regular TDM may be conducted to ensure the medication is
within the therapeutic range and effectively prevent blood clots. In this context, pharma-
cometrics is a powerful tool. Besides this, the integration of pharmacogenomic data with
pharmacometric models allows for even more precise dosing recommendations based on a
patient’s genetic profile.

All stakeholders must be involved in change. Healthcare providers need to develop
trust in the information generated by AI applications (and other computational methods)
and to face AI and advanced robotic systems as professional partners; legislators must
speed up regulatory policies that clarify boundaries and guarantee patient safety and
privacy; IT departments are critical to ensure robust IT infrastructure to support data
transfer, integration, and analysis as well as to integrate CDS systems into EHR systems
for seamless use in clinical workflows. Nowadays, clinical workflows do not consider big
data-driven approaches. Consequently, the main priorities for the integration of in silico
tools in hospital settings are the development of IT infrastructure capable of aligning big
data with clinical practice, standardized protocols and boundary-setting, and the design of
comprehensive training programs for healthcare professionals.

10. Conclusions

The integration of omics, biomarkers, pharmacometrics, ML, and digital wearables
into healthcare presents a transformative potential for precision medicine and patient care.
These methods offer numerous advantages, such as improved diagnostic accuracy, tailored
treatment plans, and enhanced patient monitoring.

Among these methods, in silico approaches, which involve computer simulations and
modeling, are gaining traction, reducing the need for costly and time-consuming physical
examination, speeding up drug development, and enhancing disease understanding. They
also hold promise for conducting virtual clinical trials, which can streamline the evaluation
of medical interventions. User-friendly, seamless integration with existing healthcare
systems and clear insights are crucial for broad adoption.

The education of clinicians and patients in the interpretation of genomic data and the
use of wearable technologies is crucial for the successful implementation of these meth-
ods. Specialized training modules, integration with EHRs, and informative informatic
systems can play a key role. These systems, accessible anytime and anywhere, can include
interactive elements, making them cost-effective alternatives to traditional courses. Collab-
oration with healthcare professionals, educators, and technology experts will be essential
to developing systems that meet the needs of both clinicians and patients.

Ethical considerations, funding, and legislative changes are indeed significant factors
that could influence the adoption of these healthcare technologies. Ethical challenges
include ensuring patient privacy, data protection, and equitable access to these technologies.
Adequate funding is necessary to support the development and implementation of these
methods, while legislative changes may be required to address regulatory and compliance
issues. It is essential for stakeholders to work collaboratively to navigate these challenges
and create an environment that supports innovation while safeguarding ethical principles
and patient rights.
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