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Machine Learning-Assisted 3D Printing of Thermoelectric
Materials of Ultrahigh Performances at Room Temperature

Kaidong Song,* Guoyue Xu,* A. N. M. Tanvir,*® Ke Wang,® Md Omarsany Bappy,® Haijian Yang,*
Wenjie Shang,? Le Zhou,® Alexander Dowling,® Tengei Luo *? and Yanliang Zhang*?

Thermoelectric energy conversion is an attractive technology for generating electricity from waste heat and using electricity
for solid-state cooling. However, conventional manufacturing processes for thermoelectric devices are costly and limited to
simple device geometries. This work reports an extrusion printing method to fabricate high-performance thermoelectric
materials with complex 3D architectures. By integrating high-throughput experimentation and Bayesian optimization (BO),
our approach significantly accelerates the simultaneous search for the optimal ink formulation and printing parameters that
deliver high thermoelectric performances while maintaining desired shape fidelity. A Gaussian process regression (GPR)-
based machine learning model is employed to expeditiously predict thermoelectric power factor as a function of ink
formulation and printing parameters. The printed bismuth antimony telluride (BiSbTe)-based thermoelectric materials
under the optimized conditions exhibit an ultrahigh room temperature zT of 1.3, which is by far the highest in the printed
thermoelectric materials. The machine learning-guided ink-based printing strategy can be highly generalizable to a wide
range of functional materials and devices for broad technological applications.

Introduction

Thermoelectric devices (TEDs) are solid-state energy converters
that generate electricity when subjected to an external
temperature gradient or create a temperature difference and
act as solid-state coolers when provided with electric current.
The ability of TEDs to convert heat into electricity and vice versa
has sparked tremendous research interest in developing high-
efficiency devices for waste heat recovery and solid-state
cooling in the past two decades.~12 Two-thirds of the world's
energy consumption remains dissipated as waste heat, and
harnessing this wasted energy more efficiently can produce 15
terawatts of electrical power in the US alone.l* Meanwhile,
cooling and thermal management are essential to human
comfort in buildings and vehicles, as well as to the reliable
operation and longevity of electronic and medical devices. The
solid-state nature of thermoelectrics makes it an attractive
environmentally friendly technology for energy harvesting and
cooling because it does not require moving parts or
environmentally harmful refrigerants.14

The efficiency of thermoelectric materials is determined by the
dimensionless figure of merit zT = S20«1T, where S denotes the
Seebeck coefficient, o is the electrical conductivity, « is the
thermal conductivity, and T is the absolute temperature.1®
Achieving high zT requires improving the thermoelectric power

a-Department of Aerospace and Mechanical Engineering, University of Notre Dame,
Notre Dame, IN 46556, USA. E-mail: tluo@nd.edu; yzhang45@nd.edu

b-pepartment of Chemical and Biomolecular Engineering, University of Notre
Dame, Notre Dame, IN 46556, USA.

¢ Department of Mechanical Engineering, Marquette University, Milwaukee, WI
53233, USA.

¥ These authors contributed equally to this work

tElectronic Supplementary Information

DOI: 10.1039/x0xx00000x

(ESI) available. See

factor S20 while reducing the thermal conductivity.1516 Despite
recent progress in increasing the zT values, the reported high zT
materials still rely on conventional manufacturing methods,
including hot pressing, arc melting, zone melting, and spark
plasma sintering, which can only produce simple bulk structures
at relatively high cost.17-21 Moreover, the conventional methods
require additional lengthy and costly fabrication processes to
convert these bulk TE materials into useful devices. As a result,
state-of-the-art commercial bulk TEDs still suffer from high
performance and cost ratio,22 which are not competitive
enough compared with other energy conversion technologies.
The lack of scalable and cost-effective manufacturing methods
remains a long-standing challenge produce high-
performance TEDs with customizable shapes and form factors

to

for end-use applications, which presents a major barrier to
large-scale TED adoptions for energy harvesting and cooling.23
Three-dimensional (3D) printing technology has revolutionized
manufacturing by creating intricate 3D structures from diverse
materials, and it has recently been applied to thermoelectric
fields.24-3% A notable method in 3D printing is direct ink writing
(DIW) or extrusion printing, which is widely used for printing
concentrated viscoelastic inks into functional materials and
devices.3340 Despite recent progress in printing thermoelectrics,
printed thermoelectric materials still suffer from relatively low
zT.*1 Meticulous tuning and optimization of thermoelectric ink
formulation and printing parameters are required to achieve
high thermoelectric performances while maintaining high
printability and shape fidelity.
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The optimization of thermoelectric ink formulation and printing
parameters has traditionally relied on Edisonian methods such
as one-variable-at-a-time experimental sensitivity analyses.
These heuristic approaches require extensive expert knowledge
and time and resource-intensive experimentation. The recent
advancement of machine learning techniques presents
unprecedented opportunities to accelerate the discovery of
optimal material formulations and manufacturing processes,
especially when facing high-dimensional problems with
multiple input processing parameters and output properties of
interest.42-44 Machine learning methods such as Bayesian
Optimization (BO) and Gaussian process regression (GPR)42
have been successfully applied to optimize the sintering
processes and the compositions of thermoelectric composites
to achieve high thermoelectric power factors and zT.303145
These advancements highlight the role of machine learning in
the thermoelectric field to enable more efficient to develop
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new thermoelectric materials and innovate their manufacturing
processes.

This paper integrates extrusion printing of bismuth antimony
telluride (BiSbTe) based thermoelectric inks with constrained
BO and support vector machines (SVM) to discover the optimal
ink formulation and printing parameters. An innovative water-
based ink formulation is employed with a very small amount of
Xanthan gum (X-gum) as a rheological modifier to adjust the ink
viscosity and optimize viscoelastic behavior, which is crucial for
producing intricate 3D structures during extrusion printing. An
ultrahigh thermoelectric power factor of about 3000 uWm-1K-2
and zT of 1.3 at room temperature is demonstrated by extrusion
printing with these optimized inks, which is among the highest
in the printed thermoelectric materials (Fig. 1C). In addition,
intricate 3D structures are printed, demonstrating the potential
to produce devices with complex and customizable shapes that
are highly desired in practical applications where the heat
source surfaces are often irregular.
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Fig. 1 A) Workflow of the machine learning-assisted extrusion printing of thermoelectric inks, including the four input variables listed in box 1 and three out
properties of interests in box 4. B) The printability of water-based thermoelectric inks with and without X-gum rheological modifier. C) Room-temperature
thermoelectric figure of merit zT of our printed thermoelectric materials vs. best-reported values through printing in the literature.?®383941 (EP — extrusion

printing, SP —screen printing, AJP —aerosol jet printing).
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Experimental
Ink Preparation

It was established that incorporating a minor quantity of
tellurium particles (Sigma-Aldrich, Burlington, MA) into the
BiSbTe particle (Wuhan MCE Supply, Wuhan, China) mix could
enhance the sintering process and improve the connectivity of
the BiSbTe particles. During the sintering phase, these tellurium
particles would melt at temperatures exceeding their melting
point but still below that of BiSbTe. The thermoelectric powder
was carefully weighed and blended with a specific solvent
volume to prepare the ink. A rheological modifier, namely
Xanthan gum (Sigma-Aldrich, Burlington, MA), was added to the
DI water solvent. The amount of Xanthan gum added was
proportionate to the overall mixture. The mixture underwent
thorough mixing for homogenous ink consistency, first in a
planetary centrifugal mixer for 30 minutes and then in a vortex
mixer for an additional 10 minutes.

3D Printing and Sintering Process

The printing process was conducted using an in-house extrusion
printer adapted from a commercial FDM machine. For the
thermoelectric ink extrusion, we employed an 18-gauge nozzle
with a 1.54 mm inner diameter (EFD Nordson, Vilters,
Switzerland). The printer’s reception bed was maintained at 40
°C to ensure printing quality. Printing was performed at a
consistent tip travel speed of 2 mm s1.

A 51 um thick HN-Kapton substrate was used as the base for
printing the thermoelectric ink. Before printing, these Kapton
films were precisely cut to size and thoroughly cleaned with
methanol and isopropanol, aided by sonication. After printing,
the samples were left undisturbed for 30 minutes to set. They
were then subjected to a drying process at 200 °C for an hour in
an inert atmosphere, which helped remove any residual solvent
and rheological modifier. Post-drying, the samples were
densified using a uni-axial hydraulic press, applying pressure up
to 25 MPa. The final step involved sintering the samples at 450
°C for 90 minutes in a tube furnace under an inert atmosphere.
Regarding the printability analysis, all printing paths were
programmed using custom G-code scripts. For printing complex
3D structures, models were created using SolidWorks (Dassault
Systems SolidWorks Corp, Waltham, MA) software and
exported as STL files. These files were then processed using the
Slic3r tools integrated into the control software of the FDM
printer. G-code adjustments were made post-slicing, including
setting the speed multiplier using MATLAB programming.

Rheological Properties Characterization

The rheological properties of inks with and without Xanthan
gum modifier were measured through a hybrid rheometer (HR-
2 Discovery Hybrid Rheometer, TA Instruments, USA) with a 25
mm sandblasted (Ra = 4.75 um) parallel-plate measuring
geometry and a 1 mm gap was utilized to perform all rheology
measurements. Steady rate sweeps were conducted at a low

strain (1%) for a shear rate range from 0.1 s1 to 100 s'! to detect
the fluid viscosity and yield stress.

Materials Characterization

Crystal structures of the synthesized structures were evaluated
using Discover D8 XRD machine with a Cu Ka radiation with 1.54
Angstrom wavelength over a 2-theta range of 20-60.
Microstructures and  chemical the
thermoelectric samples were examined using a scanning

compositions  of

electron microscope (Helios G4 Ux Dual Beam) coupled with an
energy-dispersive X-ray spectrometer (Bruker). A custom-built
measurement setup following the Angstrom method is used for
thermal diffusivity measurement.3? Subsequently, the thermal
conductivity is determined using the formula k = apC,, wherein
a is the thermal diffusivity, and p is the density of the sample,
C, is the constant pressure-specific heat capacity. The heat
capacity was obtained from a previous publication.2® The
detailed implementation is described in Supporting Information
11.

Post-Printing Processing

For the cold uni-axial pressing process, the printed and dried
samples were densified using a hydraulic press, applying
pressure up to 25 MPa for 10 mins before pressureless
sintering.

For the hot isostatic pressing (HIP, AIP6-30H, American Isostatic
Presses, Inc.) process, pressureless sintered samples were
placed in a cylindrical
atmosphere, with the thermocouples positioned proximate to

molybdenum furnace under Ar

both the samples and the molybdenum heating elements. The
HIP temperature, pressure, and time were 480 °C, 200 MPa, and
2 hours, respectively. The heating and cooling rates were set at
10 °C/min and 7.5 °C/min, respectively.

Machine Learning and Optimization

In this work, the thermoelectric power factor is maximized
while simultaneously ensuring good printability for 3D printing.
As described in Fig. 1A, the manufacturing process contains four
input controllable parameters (or decision variables), TE particle
loading (x;), X-gum concentrations (x,), flament spacing (x3),
standoff distance ( x4 ), and three output variables,
thermoelectric power factor (y;), filament uniformity (y,), and
3D structure surface roughness coefficient (y3). Let the vectors
x; and y; represent the inputs and outputs for experiment i.
Here, we denoted the decision variables as X = [x4, ..., X,,] €
R™4, output variables as Y = [yy, ..., ¥,] € R™*3, and formed
the datasetas D = (X, Y).

GPR model is utilized to create a regression function f(x) that
maps the experimental conditions x; to the thermoelectric
power factor y; considering uncertainty (e.g.,
experimental variability). Two SVMs are introduced to learn

while

manufacturing constraints g(x;) by classifying acceptable and
unacceptable conditions. The acceptance threshold set for
filament (y,) is above 0.8, and for surface roughness (y3) is
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Please do not adjust margins

ARTICLE

below 0.05. Training data are assigned the labels 1 and -1 for
acceptable and unacceptable experiments, respectively.
Overall, the optimization problem can be formulated as:
argmax, f (x)
subjectto zs(x) = 0, z,(x) =0
The SVMs z¢(-) and z,.(+) are integrated with BO as constraints.
The Supporting Information 12 provides further details.

Results and discussion

Machine Learning-Assisted Optimization of Ink Formulation and
Printing Parameters
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parameters (i.e., filament spacing and standoff distance).
Thermoelectric power factor is chosen as the primary output
property to be maximized, while the uniformity of the printed
filament and the roughness of the printed structure are selected
as the constraints that need to meet certain thresholds. In stage
2, we trained the GPR and SVM models and integrated them
into constrained BO to determine the optimal ink formulation
and printing parameters. GPR and SVM models are well-suited
for small datasets (tens of datum). Moreover, GPRs explicitly
model noisy observations, e.g., random experimental error,
which is especially important for small datasets. The fact that
GPR predicts uncertainty is also beneficial for its combination
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Fig. 2 Room-temperature thermoelectric properties vs. experimental number (details of each experimental variable are summarized in Table S1). A) Electrical
conductivity and the Seebeck coefficient. B) Power factor. C) The GPR parity plot illustrates the accuracy of our model predictions. Each round is denoted by
a distinct color. Vertical error bars signify the model's predicted standard deviation, while horizontal error bars indicate the experimental standard deviation.
D) The printability metrics for filament and surface roughness and their respective acceptable regions.

To accelerate the co-optimization of ink formulation and
printing parameters, a method integrating high-throughput
experimentation with constrained BO was developed. Fig. 1A
shows a machine learning-assisted workflow organized into
multiple stages. In stage 1, an initial input experimental data set
was generated to train the machine learning model based on
expert intuition. We identified four key input variables that
significantly impact the outcomes of the printed materials,
including two ink formulation parameters (i.e., TE particle
loadings and X-gum

concentrations) and two printing

with BO. Other ML methods, e.g., deep learning networks,
require orders of magnitude more data and do not explicitly
consider experimental uncertainty. Stages 3 and 4 focus on
printing samples based on the predictions from stage 2 and the
characterization of their output properties (thermoelectric
properties and shape accuracy). These new experimental data
were fed back to the machine learning model to improve
prediction accuracy further. The optimum ink formulation and
printing parameters are identified after multiple iterations of
stages 2 to 4 until there is no significant improvement in
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thermoelectric properties. Finally, in stage 5, the optimized ink
formulation and printing parameters were employed to
produce the highest-performing thermoelectric materials
combined with high shape accuracy.

A significant challenge in extrusion printing thermoelectric
materials is developing inks with high particle loading that
exhibit suitable rheological properties and printability.3¢ These
properties are essential for achieving high thermoelectric
performances while ensuring smooth printing and maintaining
3D structures with good geometric accuracy. While there is
growing interest in using all-inorganic inks with inorganic
binders for their viscoelastic properties,32.33.46 the presence of a
high concentration of organic solvents in these inks can
introduce impurities and adversely affect the transport
properties of the printed materials.3” To address this issue, we
formulated water-based inks for extrusion printing using X-gum
as a rheological modifier to adjust the ink viscosity and optimize
viscoelastic behavior. As depicted in Fig. 1B, the incorporation
of X-gum transforms the ink’s behavior from a low-viscosity
liquid state to a printable medium with suitable viscosity for
constructing complex 3D structures via extrusion printing,
which significantly extends the ink's applicability and broadens
the range of potential applications. Figs. S1 and S2 in the
supporting information show detailed comparisons between
the unmodified and X-gum-enhanced inks, and a
comprehensive examination of their rheological behavior,
including analyses of viscosity and shear modulus. The X-gum-
enhanced thermoelectric inks exhibit shear-thinning and yield
stress properties, which drastically enhance the capabilities of
the aqueous thermoelectric inks for printing 3D structures and
maintaining structural integrity.

Achieving desired thermoelectric properties and geometries in
printed materials requires co-optimization of ink formulations
and printing parameters. Ink formulation—particularly TE
particle loading and X-gum concentration—and printing
parameters like filament spacing and standoff distance crucially
impact thermoelectric performance. Higher TE particle loading
enhances structural density and thermoelectric properties by
facilitating continuous pathways for charge carriers, thereby
improving electrical conductivity and ZT, supported by previous
studies.32:33.3637 However, excessive particle concentration
increases viscosity, potentially disrupting uniform deposition
and necessitating precise control of particle loading. Higher X-
gum concentrations increase porosity (Fig. S13), influencing
densification during sintering and affecting thermoelectric
properties.4’48 Tight filament spacing improves interface
quality and reduces voids, enhancing structural density and
performance, while excessive narrowing can lead to over-
deposition. Similarly, standoff distance affects deposition
accuracy. Larger distances produce discontinuous filaments,
whereas smaller distances improve structural detail and reduce
voids,*® which is essential for high-performance devices.
Optimizing these parameters via ML enhances the performance
of thermoelectric devices and shape fidelity.

The Experimental Section and Supporting Information 3 detail
the complete machine learning-assisted optimization process.
The thermoelectric power factor (continuous variable) is

treated as a primary objective to maximize, which is modeled
using a GPR model. The uniformity of the printed filament and
the roughness of the printed structures are treated as two
constraints that must meet a certain threshold, which are
described using the SVM classifier. The respective thresholds
are set to be 0.8 for the filament uniformity and 0.05 for the
surface roughness coefficient (surface roughness to filament
diameter ratio) based on our observation of ink printability.
Based on previous research, we adopted the thermoelectric
material composition of Big.4Sb1.eTes with 8 wt.% extra tellurium
and the optimized sintering conditions of 90 minutes at 450 °C
in a tube furnace with an inert gas environment. Our ink and
printing optimization process involved testing 24 unique sets of
decision variable values (ink formulations and printing
parameters) detailed in Table S1 in the supporting information.
The initial 15 data points were strategically chosen across a
diverse range of input parameters related to ink formulation
and printing parameters to effectively train the GPR model,
enhancing its ability to detect key trends and interactions. An
additional 9 data points were selected sequentially using BO to
develop a probabilistic model that predicts performance and
identifies optimal areas for improvement.

The machine learning-guided optimization leads to a notable
thermoelectric property improvement at room temperature, as
illustrated in Fig. 2A. The thermoelectric power factor shows
appreciable increases, exceeding 3000 uWm-K2 after four
rounds of optimization (Fig. 2B). The parity plot depicted in Fig.
2C shows the GPR model’s accuracy in predicting the
thermoelectric power factor of the printed samples in each
round. The error bars in the plot indicate the model’s
uncertainty and the inherent variability in experimental data. In
addition, filament uniformity (> 0.8) and surface roughness
coefficient (<0.05) of most experimental groups are within
acceptable regions in the last three rounds (Fig. 2D). Figs. S6
and S7 in the supporting information elaborate on the complex
interplay between different input and output parameters and
the candidate's selections and model uncertainty during
machine learning using heatmaps from sensitivity analyses.

Characterization of the Printed Thermoelectric Materials

The integration of high-throughput experimentation and
constrained BO yields the optimal ink formulation and printing
parameters: 83 wt.% particle loading, 0.5 wt.% X-gum using
water solvent, 1.0 mm standoff distance, and 1.4 mm filament
spacing. The temperature-dependent thermoelectric
properties of the printed samples under the optimized
conditions were measured in a temperature range of 20-200 °C.
As shown in Fig 3A, the electrical conductivity exhibits a
decreasing trend with increasing temperature, which is
consistent with the behavior of highly doped BiSbTe-based
materials.>9-52 The Seebeck coefficient shows a slight increase
as the temperature rises, achieving a maximum of ~259 uVK-1in
the 60 to 80 °C range. The printed sample shows a peak
thermoelectric power factor of ~3000 uWm-1K2 at room
temperature (Fig. 3B). The room-temperature thermal
conductivity is measured to be 0.68 W/mK using the Angstrom



method. A room-temperature zT of 1.3 is obtained for the
printed samples under the optimized conditions, which is

mostly distributed along the grain boundaries (Fig. 3E). XRD
patterns depicted in Fig. 3F indicate negligible variations among

among the highest in printed thermoelectric materials. samples printed with and without rheological modifiers,
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Fig. 3 A-B) Temperature-dependent electrical conductivity, Seebeck coefficient, and power factor. C-D) Scanning electron microscope (SEM) images of the
cross-section of samples printed using unoptimized and optimized inks (scale bar 10 um). E) Elemental analysis of the sample printed using the optimized ink
(scale bar 10 um). F) XRD of printed samples with and without X-gum rheological modifier.

Scanning electron microscopy (SEM), energy-dispersive X-ray
spectroscopy (EDS), and X-ray diffraction (XRD) were employed
to characterize the printed materials under the unoptimized (62
wt.% particle loading and 4 wt.% X-gum) and the optimized (83
wt.% particle loading and 0.5 wt.% X-gum) conditions in order
to understand the processing-structure-property correlations.
Figs. 3C-D show SEM/EDS images of polished cross-sections of
sintered samples printed from unoptimized and optimized inks.
The unoptimized samples exhibited higher porosity (11.81%)
compared with the optimized sample (5.43%), which was
generated during the drying and sintering process due to the
evaporation of the water solvent and X-gum rheological
modifier compared to the optimized samples. Furthermore, EDS
maps of optimized samples reveal that the excess tellurium is

indicating Bip4SbisTes as the predominant phase with pristine
tellurium as a secondary phase. This confirms that the drying
and sintering process effectively evaporates the water solvent
and eliminates the X-gum rheological modifier.

3D Printing of Optimized Thermoelectric Inks and Post-Printing
Processing

We printed 3D structures using the optimized ink formulation
and printing parameters to demonstrate the 3D printing
capability. First, the printing performance of the thermoelectric
inks was assessed by creating cubic structures (8 x 8 x 8 mm3),
as shown in Fig. 4A. The optimized ink with the rheological
modifiers yields relatively well-defined 3D cubic structures. One
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of the key advantages of 3D printing is its ability to tailor the
design of the printed structures, making it particularly suitable
for producing thermoelectric elements that can match the
surface of curved or irregular heat sources, such as exhaust
pipes. Leveraging our optimized ink, we printed 3D structures of
curved geometries, encompassing semi-circular and circular
profiles, inclined tubes with a 60-degree angle, and hexagonal
tubes (Fig. 4B). The successful printing of the inclined tubes
indicates that our inks possess adequate yield stress to produce
complex shapes for diverse applications.
Sintering plays a critical role in controlling the microstructures
and properties of printed materials. Three sintering methods
were investigated here: pressureless thermal sintering in a tube
furnace (no press), cold uni-axial pressing followed by
pressureless thermal sintering (cold press), and hot isostatic
A

Design No additives
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samples are similar to those of cold uni-axial pressing followed
by pressureless sintering.

Conclusions

In summary, the versatile ink-based printing method enables
facile fabrication of thermoelectric materials of designed 3D
shapes and competitive thermoelectric properties. The rapid
printing combined with BO and GPR models significantly
accelerates the discovery of optimized ink formulation and
printing parameters in producing thermoelectric materials with
enhanced thermoelectric performances. An ultrahigh
thermoelectric power factor of 3000 uWm-K-? and zT of 1.3 at
room temperature were achieved, which is significantly higher
than the performance of previously reported 3D-printed
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pressing (HIP). The microstructure of the printed and sintered
samples under no press, cold press, and HIP conditions have
been shown in Figs. 3D and S9 in the supporting information.
Comparative analysis of dimensional changes post-printing
processing, as illustrated in Fig. S10 in the supporting
information, reveals that HIP results in consistent shrinkage
across all three dimensions, thereby preserving the intricate
geometries of the printed structures. This is beneficial in
applications involving irregular heat source surfaces. As shown
in Figs. 4C and 4D, the thermoelectric properties of HIP-treated

thermoelectrics. The ink-based printing can directly transform
the starting thermoelectric particles into functional forms,
which not only reduces material waste and manufacturing costs
but also enables the fabrication of devices of desired shapes
that can be seamlessly integrated with various heat sources.
The machine learning-assisted ink-based printing framework is
highly generalizable and can be used to manufacture a broad
range of energy and electronic devices in a cost-effective and
customizable manner.
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