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Thermoelectric energy conversion is an attractive technology for generating electricity from waste heat and using electricity 

for solid-state cooling. However, conventional manufacturing processes for thermoelectric devices are costly and limited to 

simple device geometries. This work reports an extrusion printing method to fabricate high-performance thermoelectric 

materials with complex 3D architectures. By integrating high-throughput experimentation and Bayesian optimization (BO), 

our approach significantly accelerates the simultaneous search for the optimal ink formulation and printing parameters that 

deliver high thermoelectric performances while maintaining desired shape fidelity. A Gaussian process regression (GPR)-

based machine learning model is employed to expeditiously predict thermoelectric power factor as a function of ink 

formulation and printing parameters. The printed bismuth antimony telluride (BiSbTe)-based thermoelectric materials 

under the optimized conditions exhibit an ultrahigh room temperature zT of 1.3, which is by far the highest in the printed 

thermoelectric materials. The machine learning-guided ink-based printing strategy can be highly generalizable to a wide 

range of functional materials and devices for broad technological applications.

Introduction 

Thermoelectric devices (TEDs) are solid-state energy converters 

that generate electricity when subjected to an external 

temperature gradient or create a temperature difference and 

act as solid-state coolers when provided with electric current. 

The ability of TEDs to convert heat into electricity and vice versa 

has sparked tremendous research interest in developing high-

efficiency devices for waste heat recovery and solid-state 

cooling in the past two decades.1–12 Two-thirds of the world's 

energy consumption remains dissipated as waste heat, and 

harnessing this wasted energy more efficiently can produce 15 

terawatts of electrical power in the US alone.13 Meanwhile, 

cooling and thermal management are essential to human 

comfort in buildings and vehicles, as well as to the reliable 

operation and longevity of electronic and medical devices. The 

solid-state nature of thermoelectrics makes it an attractive 

environmentally friendly technology for energy harvesting and 

cooling because it does not require moving parts or 

environmentally harmful refrigerants.14 

The efficiency of thermoelectric materials is determined by the 

dimensionless figure of merit zT = S2σκ-1T, where S denotes the 

Seebeck coefficient, σ is the electrical conductivity, κ is the 

thermal conductivity, and T is the absolute temperature.15 

Achieving high zT requires improving the thermoelectric power 

factor S2σ while reducing the thermal conductivity.15,16 Despite 

recent progress in increasing the zT values, the reported high zT 

materials still rely on conventional manufacturing methods, 

including hot pressing, arc melting, zone melting, and spark 

plasma sintering, which can only produce simple bulk structures 

at relatively high cost.17–21 Moreover, the conventional methods 

require additional lengthy and costly fabrication processes to 

convert these bulk TE materials into useful devices. As a result, 

state-of-the-art commercial bulk TEDs still suffer from high 

performance and cost ratio,22 which are not competitive 

enough compared with other energy conversion technologies. 

The lack of scalable and cost-effective manufacturing methods 

remains a long-standing challenge to produce high-

performance TEDs with customizable shapes and form factors 

for end-use applications, which presents a major barrier to 

large-scale TED adoptions for energy harvesting and cooling.23 

Three-dimensional (3D) printing technology has revolutionized 

manufacturing by creating intricate 3D structures from diverse 

materials, and it has recently been applied to thermoelectric 

fields.24–39 A notable method in 3D printing is direct ink writing 

(DIW) or extrusion printing, which is widely used for printing 

concentrated viscoelastic inks into functional materials and 

devices.33,40 Despite recent progress in printing thermoelectrics, 

printed thermoelectric materials still suffer from relatively low 
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The optimization of thermoelectric ink formulation and printing 

parameters has traditionally relied on Edisonian methods such 

as one-variable-at-a-time experimental sensitivity analyses. 

These heuristic approaches require extensive expert knowledge 

and time and resource-intensive experimentation. The recent 

advancement of machine learning techniques presents 

unprecedented opportunities to accelerate the discovery of 

optimal material formulations and manufacturing processes, 

especially when facing high-dimensional problems with 

multiple input processing parameters and output properties of 

interest.42–44 Machine learning methods such as Bayesian 

Optimization (BO) and Gaussian process regression (GPR)42 

have been successfully applied to optimize the sintering 

processes and the compositions of thermoelectric composites 

to achieve high thermoelectric power factors and zT.30,31,45 

These advancements highlight the role of machine learning in 

the thermoelectric field to enable more efficient to develop 

new thermoelectric materials and innovate their manufacturing 

processes. 

This paper integrates extrusion printing of bismuth antimony 

telluride (BiSbTe) based thermoelectric inks with constrained 

BO and support vector machines (SVM) to discover the optimal 

ink formulation and printing parameters. An innovative water-

based ink formulation is employed with a very small amount of 

Xanthan gum (X-gum) as a rheological modifier to adjust the ink 

viscosity and optimize viscoelastic behavior, which is crucial for 

producing intricate 3D structures during extrusion printing. An 

ultrahigh thermoelectric power factor of about 3000 µWm-1K-2 

and zT of 1.3 at room temperature is demonstrated by extrusion 

printing with these optimized inks, which is among the highest 

in the printed thermoelectric materials (Fig. 1C). In addition, 

intricate 3D structures are printed, demonstrating the potential 

to produce devices with complex and customizable shapes that 

are highly desired in practical applications where the heat 

source surfaces are often irregular. 

Fig. 1 A) Workflow of the machine learning-assisted extrusion printing of thermoelectric inks, including the four input variables listed in box 1 and three out 

properties of interests in box 4. B) The printability of water-based thermoelectric inks with and without X-gum rheological modifier. C) Room-temperature 

thermoelectric figure of merit zT of our printed thermoelectric materials vs. best-reported values through printing in the literature.29,38,39,41 (EP – extrusion 

printing, SP – screen printing, AJP – aerosol jet printing). 
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Experimental 

Ink Preparation 

It was established that incorporating a minor quantity of 

tellurium particles (Sigma-Aldrich, Burlington, MA) into the 

BiSbTe particle (Wuhan MCE Supply, Wuhan, China) mix could 

enhance the sintering process and improve the connectivity of 

the BiSbTe particles. During the sintering phase, these tellurium 

particles would melt at temperatures exceeding their melting 

point but still below that of BiSbTe. The thermoelectric powder 

was carefully weighed and blended with a specific solvent 

volume to prepare the ink. A rheological modifier, namely 

Xanthan gum (Sigma-Aldrich, Burlington, MA), was added to the 

DI water solvent. The amount of Xanthan gum added was 

proportionate to the overall mixture. The mixture underwent 

thorough mixing for homogenous ink consistency, first in a 

planetary centrifugal mixer for 30 minutes and then in a vortex 

mixer for an additional 10 minutes. 

 

3D Printing and Sintering Process 

The printing process was conducted using an in-house extrusion 

printer adapted from a commercial FDM machine. For the 

thermoelectric ink extrusion, we employed an 18-gauge nozzle 

with a 1.54 mm inner diameter (EFD Nordson, Vilters, 

Switzerland). The printer’s reception bed was maintained at 40 

°C to ensure printing quality. Printing was performed at a 

consistent tip travel speed of 2 mm s-1. 

A 51 µm thick HN-Kapton substrate was used as the base for 

printing the thermoelectric ink. Before printing, these Kapton 

films were precisely cut to size and thoroughly cleaned with 

methanol and isopropanol, aided by sonication. After printing, 

the samples were left undisturbed for 30 minutes to set. They 

were then subjected to a drying process at 200 °C for an hour in 

an inert atmosphere, which helped remove any residual solvent 

and rheological modifier. Post-drying, the samples were 

densified using a uni-axial hydraulic press, applying pressure up 

to 25 MPa. The final step involved sintering the samples at 450 

°C for 90 minutes in a tube furnace under an inert atmosphere. 

Regarding the printability analysis, all printing paths were 

programmed using custom G-code scripts. For printing complex 

3D structures, models were created using SolidWorks (Dassault 

Systems SolidWorks Corp, Waltham, MA) software and 

exported as STL files. These files were then processed using the 

Slic3r tools integrated into the control software of the FDM 

printer. G-code adjustments were made post-slicing, including 

setting the speed multiplier using MATLAB programming. 

 

Rheological Properties Characterization 

The rheological properties of inks with and without Xanthan 

gum modifier were measured through a hybrid rheometer (HR-

2 Discovery Hybrid Rheometer, TA Instruments, USA) with a 25 

mm sandblasted (Ra = 4.75 µm) parallel-plate measuring 

geometry and a 1 mm gap was utilized to perform all rheology 

measurements. Steady rate sweeps were conducted at a low 

strain (1%) for a shear rate range from 0.1 s-1 to 100 s-1 to detect 

the fluid viscosity and yield stress. 

 

Materials Characterization 

Crystal structures of the synthesized structures were evaluated 

using Discover D8 XRD machine with a Cu Kα radiation with 1.54 

Angstrom wavelength over a 2-theta range of 20–60. 

Microstructures and chemical compositions of the 

thermoelectric samples were examined using a scanning 

electron microscope (Helios G4 Ux Dual Beam) coupled with an 

energy-dispersive X-ray spectrometer (Bruker). A custom-built 

measurement setup following the Angstrom method is used for 

thermal diffusivity measurement.30 Subsequently, the thermal 

conductivity is determined using the formula κ = αρCp, wherein 

α is the thermal diffusivity, and ρ is the density of the sample, 

Cp is the constant pressure-specific heat capacity. The heat 

capacity was obtained from a previous publication.29 The 

detailed implementation is described in Supporting Information 

11. 

 

Post-Printing Processing 

For the cold uni-axial pressing process, the printed and dried 

samples were densified using a hydraulic press, applying 

pressure up to 25 MPa for 10 mins before pressureless 

sintering. 

For the hot isostatic pressing (HIP, AIP6-30H, American Isostatic 

Presses, Inc.) process, pressureless sintered samples were 

placed in a cylindrical molybdenum furnace under Ar 

atmosphere, with the thermocouples positioned proximate to 

both the samples and the molybdenum heating elements. The 

HIP temperature, pressure, and time were 480 !, 200 MPa, and 

2 hours, respectively. The heating and cooling rates were set at 

10 !/min and 7.5 !/min, respectively. 

 

Machine Learning and Optimization 

In this work, the thermoelectric power factor is maximized 

while simultaneously ensuring good printability for 3D printing. 

As described in Fig. 1A, the manufacturing process contains four 

input controllable parameters (or decision variables), TE particle 

loading ("!), X-gum concentrations (""), filament spacing ("#), 

standoff distance ( "$ ), and three output variables, 

thermoelectric power factor (#!), filament uniformity (#"), and 

3D structure surface roughness coefficient (##).  Let the vectors 

$%  and %%  represent the inputs and outputs for experiment i. 

Here, we denoted the decision variables as & ' ($&) * ) $'+ ,

-()$, output variables as . ' (%&) * ) %'+ , -()#, and formed 

the dataset as / ' (X, Y).  

GPR model is utilized to create a regression function 01"23that 

maps the experimental conditions $%  to the thermoelectric 

power factor #!  while considering uncertainty (e.g., 

experimental variability). Two SVMs are introduced to learn 

manufacturing constraints 41$%2 by classifying acceptable and 

unacceptable conditions. The acceptance threshold set for 

filament (#" ) is above 0.8, and for surface roughness (## ) is 

https://www.sciencedirect.com/topics/engineering/viscosity
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below 0.05. Training data are assigned the labels 1 and -1 for 

acceptable and unacceptable experiments, respectively. 

Overall, the optimization problem can be formulated as: 

567859*01$2 

subject to :+1$2 ; <, :,1$2 3; < 

The SVMs :+1=2 and :,1=2 are integrated with BO as constraints. 

The Supporting Information 12 provides further details. 

Results and discussion 

Machine Learning-Assisted Optimization of Ink Formulation and 

Printing Parameters 

To accelerate the co-optimization of ink formulation and 

printing parameters, a method integrating high-throughput 

experimentation with constrained BO was developed. Fig. 1A 

shows a machine learning-assisted workflow organized into 

multiple stages. In stage 1, an initial input experimental data set 

was generated to train the machine learning model based on 

expert intuition. We identified four key input variables that 

significantly impact the outcomes of the printed materials, 

including two ink formulation parameters (i.e., TE particle 

loadings and X-gum concentrations) and two printing 

parameters (i.e., filament spacing and standoff distance). 

Thermoelectric power factor is chosen as the primary output 

property to be maximized, while the uniformity of the printed 

filament and the roughness of the printed structure are selected 

as the constraints that need to meet certain thresholds. In stage 

2, we trained the GPR and SVM models and integrated them 

into constrained BO to determine the optimal ink formulation 

and printing parameters. GPR and SVM models are well-suited 

for small datasets (tens of datum). Moreover, GPRs explicitly 

model noisy observations, e.g., random experimental error, 

which is especially important for small datasets. The fact that 

GPR predicts uncertainty is also beneficial for its combination 

with BO. Other ML methods, e.g., deep learning networks, 

require orders of magnitude more data and do not explicitly 

consider experimental uncertainty. Stages 3 and 4 focus on 

printing samples based on the predictions from stage 2 and the 

characterization of their output properties (thermoelectric 

properties and shape accuracy). These new experimental data 

were fed back to the machine learning model to improve 

prediction accuracy further. The optimum ink formulation and 

printing parameters are identified after multiple iterations of 

stages 2 to 4 until there is no significant improvement in 

Fig. 2 Room-temperature thermoelectric properties vs. experimental number (details of each experimental variable are summarized in Table S1). A) Electrical 

conductivity and the Seebeck coefficient. B) Power factor. C) The GPR parity plot illustrates the accuracy of our model predictions. Each round is denoted by 

a distinct color. Vertical error bars signify the model's predicted standard deviation, while horizontal error bars indicate the experimental standard deviation. 

D) The printability metrics for filament and surface roughness and their respective acceptable regions.
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thermoelectric properties. Finally, in stage 5, the optimized ink 

formulation and printing parameters were employed to 

produce the highest-performing thermoelectric materials 

combined with high shape accuracy. 

A significant challenge in extrusion printing thermoelectric 

materials is developing inks with high particle loading that 

exhibit suitable rheological properties and printability.36 These 

properties are essential for achieving high thermoelectric 

performances while ensuring smooth printing and maintaining 

3D structures with good geometric accuracy. While there is 

growing interest in using all-inorganic inks with inorganic 

binders for their viscoelastic properties,32,33,46 the presence of a 

high concentration of organic solvents in these inks can 

introduce impurities and adversely affect the transport 

properties of the printed materials.37 To address this issue, we 

formulated water-based inks for extrusion printing using X-gum 

as a rheological modifier to adjust the ink viscosity and optimize 

viscoelastic behavior. As depicted in Fig. 1B, the incorporation 

of X-gum transforms the ink’s behavior from a low-viscosity 

liquid state to a printable medium with suitable viscosity for 

constructing complex 3D structures via extrusion printing, 

which significantly extends the ink's applicability and broadens 

the range of potential applications. Figs. S1 and S2 in the 

supporting information show detailed comparisons between 

the unmodified and X-gum-enhanced inks, and a 

comprehensive examination of their rheological behavior, 

including analyses of viscosity and shear modulus. The X-gum-

enhanced thermoelectric inks exhibit shear-thinning and yield 

stress properties, which drastically enhance the capabilities of 

the aqueous thermoelectric inks for printing 3D structures and 

maintaining structural integrity.  

Achieving desired thermoelectric properties and geometries in 

printed materials requires co-optimization of ink formulations 

and printing parameters. Ink formulation—particularly TE 

particle loading and X-gum concentration—and printing 

parameters like filament spacing and standoff distance crucially 

impact thermoelectric performance. Higher TE particle loading 

enhances structural density and thermoelectric properties by 

facilitating continuous pathways for charge carriers, thereby 

improving electrical conductivity and ZT, supported by previous 

studies.32,33,36,37 However, excessive particle concentration 

increases viscosity, potentially disrupting uniform deposition 

and necessitating precise control of particle loading. Higher X-

gum concentrations increase porosity (Fig. S13), influencing 

densification during sintering and affecting thermoelectric 

properties.47,48 Tight filament spacing improves interface 

quality and reduces voids, enhancing structural density and 

performance, while excessive narrowing can lead to over-

deposition. Similarly, standoff distance affects deposition 

accuracy. Larger distances produce discontinuous filaments, 

whereas smaller distances improve structural detail and reduce 

voids,49 which is essential for high-performance devices. 

Optimizing these parameters via ML enhances the performance 

of thermoelectric devices and shape fidelity. 

The Experimental Section and Supporting Information 3 detail 

the complete machine learning-assisted optimization process. 

The thermoelectric power factor (continuous variable) is 

treated as a primary objective to maximize, which is modeled 

using a GPR model. The uniformity of the printed filament and 

the roughness of the printed structures are treated as two 

constraints that must meet a certain threshold, which are 

described using the SVM classifier. The respective thresholds 

are set to be 0.8 for the filament uniformity and 0.05 for the 

surface roughness coefficient (surface roughness to filament 

diameter ratio) based on our observation of ink printability. 

Based on previous research, we adopted the thermoelectric 

material composition of Bi0.4Sb1.6Te3 with 8 wt.% extra tellurium 

and the optimized sintering conditions of 90 minutes at 450 ⁰C 

in a tube furnace with an inert gas environment. Our ink and 

printing optimization process involved testing 24 unique sets of 

decision variable values (ink formulations and printing 

parameters) detailed in Table S1 in the supporting information. 

The initial 15 data points were strategically chosen across a 

diverse range of input parameters related to ink formulation 

and printing parameters to effectively train the GPR model, 

enhancing its ability to detect key trends and interactions. An 

additional 9 data points were selected sequentially using BO to 

develop a probabilistic model that predicts performance and 

identifies optimal areas for improvement. 

The machine learning-guided optimization leads to a notable 

thermoelectric property improvement at room temperature, as 

illustrated in Fig. 2A. The thermoelectric power factor shows 

appreciable increases, exceeding 3000 µWm-1K-2 after four 

rounds of optimization (Fig. 2B). The parity plot depicted in Fig. 

2C shows the GPR model’s accuracy in predicting the 

thermoelectric power factor of the printed samples in each 

round. The error bars in the plot indicate the model’s 

uncertainty and the inherent variability in experimental data. In 

addition, filament uniformity (> 0.8) and surface roughness 

coefficient (<0.05) of most experimental groups are within 

acceptable regions in the last three rounds (Fig. 2D). Figs. S6 

and S7 in the supporting information elaborate on the complex 

interplay between different input and output parameters and 

the candidate's selections and model uncertainty during 

machine learning using heatmaps from sensitivity analyses. 

 

Characterization of the Printed Thermoelectric Materials 

The integration of high-throughput experimentation and 

constrained BO yields the optimal ink formulation and printing 

parameters: 83 wt.% particle loading, 0.5 wt.% X-gum using 

water solvent, 1.0 mm standoff distance, and 1.4 mm filament 

spacing. The temperature-dependent thermoelectric 

properties of the printed samples under the optimized 

conditions were measured in a temperature range of 20-200 !. 

As shown in Fig 3A, the electrical conductivity exhibits a 

decreasing trend with increasing temperature, which is 

consistent with the behavior of highly doped BiSbTe-based 

materials.50–52 The Seebeck coefficient shows a slight increase 

as the temperature rises, achieving a maximum of ~259 µVK-1 in 

the 60 to 80 °C range. The printed sample shows a peak 

thermoelectric power factor of ~3000 µWm-1K-2 at room 

temperature (Fig. 3B). The room-temperature thermal 

conductivity is measured to be 0.68 W/mK using the Angstrom 
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method. A room-temperature zT of 1.3 is obtained for the 

printed samples under the optimized conditions, which is 

among the highest in printed thermoelectric materials.  

Scanning electron microscopy (SEM), energy-dispersive X-ray 

spectroscopy (EDS), and X-ray diffraction (XRD) were employed 

to characterize the printed materials under the unoptimized (62 

wt.% particle loading and 4 wt.% X-gum) and the optimized (83 

wt.% particle loading and 0.5 wt.% X-gum) conditions in order 

to understand the processing-structure-property correlations. 

Figs. 3C-D show SEM/EDS images of polished cross-sections of 

sintered samples printed from unoptimized and optimized inks. 

The unoptimized samples exhibited higher porosity (11.81%) 

compared with the optimized sample (5.43%), which was 

generated during the drying and sintering process due to the 

evaporation of the water solvent and X-gum rheological 

modifier compared to the optimized samples. Furthermore, EDS 

maps of optimized samples reveal that the excess tellurium is 

mostly distributed along the grain boundaries (Fig. 3E). XRD 

patterns depicted in Fig. 3F indicate negligible variations among 

samples printed with and without rheological modifiers, 

indicating Bi0.4Sb1.6Te3 as the predominant phase with pristine 

tellurium as a secondary phase. This confirms that the drying 

and sintering process effectively evaporates the water solvent 

and eliminates the X-gum rheological modifier. 

 

3D Printing of Optimized Thermoelectric Inks and Post-Printing 

Processing 

We printed 3D structures using the optimized ink formulation 

and printing parameters to demonstrate the 3D printing 

capability. First, the printing performance of the thermoelectric 

inks was assessed by creating cubic structures (8 ´ 8 ´ 8 mm3), 

as shown in Fig. 4A. The optimized ink with the rheological 

modifiers yields relatively well-defined 3D cubic structures. One 

Fig. 3 A-B) Temperature-dependent electrical conductivity, Seebeck coefficient, and power factor. C-D) Scanning electron microscope (SEM) images of the 

cross-section of samples printed using unoptimized and optimized inks (scale bar 10 µm). E) Elemental analysis of the sample printed using the optimized ink 

(scale bar 10 µm). F) XRD of printed samples with and without X-gum rheological modifier.
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of the key advantages of 3D printing is its ability to tailor the 

design of the printed structures, making it particularly suitable 

for producing thermoelectric elements that can match the 

surface of curved or irregular heat sources, such as exhaust 

pipes. Leveraging our optimized ink, we printed 3D structures of 

curved geometries, encompassing semi-circular and circular 

profiles, inclined tubes with a 60-degree angle, and hexagonal 

tubes (Fig. 4B). The successful printing of the inclined tubes 

indicates that our inks possess adequate yield stress to produce 

complex shapes for diverse applications.  

Sintering plays a critical role in controlling the microstructures 

and properties of printed materials. Three sintering methods 

were investigated here: pressureless thermal sintering in a tube 

furnace (no press), cold uni-axial pressing followed by 

pressureless thermal sintering (cold press), and hot isostatic 

pressing (HIP). The microstructure of the printed and sintered 

samples under no press, cold press, and HIP conditions have 

been shown in Figs. 3D and S9 in the supporting information. 

Comparative analysis of dimensional changes post-printing 

processing, as illustrated in Fig. S10 in the supporting 

information, reveals that HIP results in consistent shrinkage 

across all three dimensions, thereby preserving the intricate 

geometries of the printed structures. This is beneficial in 

applications involving irregular heat source surfaces. As shown 

in Figs. 4C and 4D, the thermoelectric properties of HIP-treated 

samples are similar to those of cold uni-axial pressing followed 

by pressureless sintering. 

Conclusions 

In summary, the versatile ink-based printing method enables 

facile fabrication of thermoelectric materials of designed 3D 

shapes and competitive thermoelectric properties. The rapid 

printing combined with BO and GPR models significantly 

accelerates the discovery of optimized ink formulation and 

printing parameters in producing thermoelectric materials with 

enhanced thermoelectric performances. An ultrahigh 

thermoelectric power factor of 3000 µWm-1K-² and zT of 1.3 at 

room temperature were achieved, which is significantly higher 

than the performance of previously reported 3D-printed 

thermoelectrics. The ink-based printing can directly transform 

the starting thermoelectric particles into functional forms, 

which not only reduces material waste and manufacturing costs 

but also enables the fabrication of devices of desired shapes 

that can be seamlessly integrated with various heat sources. 

The machine learning-assisted ink-based printing framework is 

highly generalizable and can be used to manufacture a broad 

range of energy and electronic devices in a cost-effective and 

customizable manner. 

Fig. 4 Printed 3D complex structures. A) Before and after optimization. (scale bar 4 mm) B) Complex 3D structures. (scale bar 4 mm) Comparison of samples 

C) electrical conductivity, the Seebeck coefficient, and D) power factor from corresponding post-printing processing methods.
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