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Entangled biphoton generation in myelin sheath
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Consciousness within the brain hinges on the synchronized activities of millions of neurons, but
the mechanism responsible for orchestrating such synchronization remains elusive. In this study, we
employ cavity quantum electrodynamics (cQED) to explore entangled biphoton generation through
cascade emission in the vibration spectrum of C-H bonds within the lipid molecules’ tails. The
results indicate that the cylindrical cavity formed by a myelin sheath can facilitate spontaneous
photon emission from the vibrational modes and generate a significant number of entangled photon
pairs. The abundance of C-H bond vibration units in neurons can therefore serve as a source of
quantum entanglement resources for the nervous system. The finding may offer insight into the
brain’s ability to leverage these resources for quantum information transfer, thereby elucidating a
potential source for the synchronized activity of neurons.

I. INTRODUCTION

Understanding the intricacies of the human brain and
its functions has perennially posed an intriguing and chal-
lenging puzzle. The synchronization of neurons within
the cerebral cortex serves as the foundation for diverse
neurobiological processes|[1], closely linked to anomalies
in brain function and brain diseases[2]. Notably, Parkin-
son’s disease manifests a loss of neural activity synchro-
nization in regions with damaged neurons[3]. Despite
these observations, the mechanisms underpinning precise
synchronization of neural activity remain unknown[4],
necessitating interdisciplinary research, particularly in
the realms of neuroscience and quantum physics.

In recent decades, quantum computing, harnessing the
unique features of quantum entanglement, has witnessed
remarkable success[5]. Experiments validating nonlo-
cal correlations in quantum entanglement[6] have en-
abled quantum computation to outpace classical coun-
terparts in tasks such as the Shor[7] and Grover[8] al-
gorithms. Quantum computing’s applicability to neu-
roscience was initially proposed by Penrose, who sug-
gested a role for microtubules in quantum computation
within the brain[4], and further explored for example, by
Fisher who proposed nuclear spins as mediators[9]. De-
spite experimental deviations from predictions of these
models[10, 11], the nonlocal correlations inherent in
quantum entanglement remain captivating.

Recent studies highlight the role of photon as a quan-
tum object not only in plants and bacteria but also
in animal life activities[12]. Examples include mid-
infrared (MIR) photons from ATP hydrolysis driving
DNA replication[13] and polaritons formed by visible
light coherently and resonantly coupled to the excitons of
chlorophyll molecules in chloroplasts facilitating efficient
energy transfer in photosynthesis[14]. Ultra-weak photon
emission (UPE) in living organisms, traditionally consid-
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ered as metabolic by-products, is now implicated in neu-
ronal function[15]. Moreover, MIR photons at 53.7 THz
modulate Kt ion channel activity, neuronal signaling,
and sensorimotor behavior[16]. Photons released during
the TCA cycle in neurons resonantly couple to C-H bond
vibrons in lipid molecules, altering possibly the dielectric
constant of the membrane to enhance action potential
conduction[17]. These findings, though each may require
further scrutiny, offer an alternative perspective on the
significance of light in neural activity.

Myelin sheath, a lipid membrane encasing the outer
side of a neuron’s axon, provides energy to axon, en-
hances action potential conduction, and acts as an insula-
tor in the nervous system[18]. Abnormal myelin function
or damage to the myelin structure is strongly associated
with neurodegenerative diseases such as multiple sclero-
sis and Alzheimer’s disease[19]. Myelin sheath is gener-
ally regarded only as an insulator. However, emerging
evidence suggests myelin’s plasticity, indicating its role
beyond insulation and its potential to promote neural
phase synchronization[20].

This study demonstrates that the vibrational spectrum
of C-H bonds in lipid molecule’s tails, within cylindrical
cavities formed by myelin sheath encasement, can gen-
erate quantum entangled photon pairs through cascade
radiation from the second excited state to the ground
state. In Sec.II, we establish the axon’s well-defined
cylindrical structure under the myelin sheath and dis-
cuss the quantization of the electromagnetic field within
the cylindrical cavity. We show that, within the infrared
region and under the dipole approximation, two-photon
processes in the vibrational spectrum are predominantly
governed by cascade radiation from dipole interactions
in Sec.III. Utilizing Schmidt analysis, we assess the de-
gree of quantum entanglement in biphoton systems and
exemplify the potential for generating quantum entan-
glement in neural systems using real structural data of
myelinated neuron from experiments in Sec.IV. Leverag-
ing the nonlocal correlation properties of quantum entan-
glement, one may speculate that quantum entanglement
will effectively synchronize neuronal activity throughout
the brain, shedding light on the ’synchronization’ puzzle
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in consciousness.

II. CYLINDRICAL CAVITY FORMED BY
MYELIN SHEATH

As shown in Figure.1(a), oligodendrocytes in the cen-
tral nervous system (CNS) form myelin sheaths by wrap-
ping lipid-rich membranes around axons, and because of
their high content of myelin, which is white in colour, ax-
ons surrounded by myelin sheaths in the CNS are called
white matter[21]. More than half of the human brain is
white matter, which supports the rapid and simultaneous
transmission of information between numerous grey mat-
ter areas of the CNS[20]. The formation of microcavities
is crucial in exciton-polaron mediated energy transfer in
the recent progress of explaining the mechanism of high
efficient energy transfer[14, 22]. The total reflection of
light satisfying the evanescent wave condition on the in-
ner wall of the cavity causes the confinement of photons
by the cavity. The myelin sheath, which generally con-
sists of 102 lipid bilayers (Figure.1(c)) wrapped around
the axon, serves mainly as an insulator in neurons and
can have a better confinement effect on photons due to
the formation of polaritons in the myelin sheath[17]. For
simplicity and without loss of generality, it is reasonable
to consider the outer wall of the myelin sheath as a per-
fect conductor wall, considering only that electromag-
netic fields do not leak outside the myelin sheath. Con-
centrically wrapped around the periphery of the axon,
myelin together with the axon forms a cylinder-like struc-
ture, and based on this fact, we consider myelinated neu-
ronal axons as cylinders (Figure.1(b)). The thickness of
the myelin sheath is generally in the range of 1~3 um
[23]. The ratio of the length between two neighbouring
nodes of Ranvier to the thickness of the myelin sheath is
~100 , and the width of the nodes of Ranvier is generally
in the range of 1~2 um|[24], so that we can ignore the
gaps caused by the nodes of Ranvier, and consider the
multiple myelin sheaths merged together as a whole. In
this way, we view the myelin-coated axonal portion of the
entire myelinated neuron as a conductor-walled cylinder,
as shown in Figure.1(b). The C-H bond dipole in the
lipid tail lies in between the inner and the outer radii a
and b.

The Hamiltonian of the quantised electromagnetic
fields and the electric field inside the cylindrical cavity
can be written respectively as[25]

ER.t) =) fulas(t) +al,(t)us(R), (1)

1
HR = Z ﬁwso (aiaaw + 2) 5 (2)

so

where u,, and ag, are respectively the vector mode func-

tions and annihilation operator and f,, = +/fiwss/(2€0).

s = (m, u,n) is the mode index and o = 0, 1 represents
polarization.

The vector mode functions us, (o = 0, 1) take the form

U1 =V XV X €91, (3)

Ugo = W2V X €295, (4)

where 151 and 14 have the form
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Xs1 = Xmp1 is the uth zero point of the first kind of
Bessel function J,, Xs2 = Xmpz2 is the pth zero of J',, (the
derivative of J,;,). ¢so is @ normalization constant, cg1 =
V2R?)[(Vaaxiiws), c2 = /(202)/(Vawpxws),
Here as1 = Omp1 = J§L+1(Xm,u1); U2 = Q2 =
J2 (Xmp2) — J2 11 (Xmp2)- L is the length of the cylindri-
cal cavity. The eigen modes of the cavity are determined
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III. RADIATIVE CASCADE WITHIN
THREE-LEVEL MORSE OSCILLATOR

In this section, we first introduce morse oscillator
which is extensively used for depicting the vibration of
chemical bonds. Then we discuss two-photon processes
via radiative cascade by dipole interaction. For obtain-
ing actual wave function of biphoton, we use the real size
data of myelinated neuron by experiments.

A. Chemical Bonds Described by Morse Oscillators

In contrast to the rotation of a chemical bond and its
electronic energy levels (Figure.2(b)), the transitions in
the vibrational energy spectrum are typically on the or-
der of 0.1 eV, placing them in the mid-infrared band.
This band lies in the range that has a significant influence
on neural activity. The vibrations of chemical bonds are
generally anharmonic oscillators, and the energy levels
are not equally spaced. In order to describe anharmonic
vibrations, we adopt Morse oscillators[26] to describe ac-
tual chemical bond vibrations as shown in Figure.2(b).
The advantage of using a Morse oscillator is that its de-
terminant Schrodinger equation has an analytical solu-
tion, which makes it very convenient for us to calculate
the dipole moment of the chemical bond. the potential
function of Morse oscillator can be written as[27]

V(r) = D, (e7200r) — g7t} ()
where 7, is bond length at equilibrium. D, and w repre-

sent the depth and the width of the potential well respec-
tively. Its stationary Schrodinger equation Hp |¥,) =
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FIG. 1. Cylindrical cavity formed by myelin sheath. (a) Axons of myelinated neuron have several segments of myelin sheaths
wrapped in lipid membranes of different oligodendrocytes. The gap between the two segments of the myelin sheath is called
node of Ranvier and is usually 1~2 pm in length, whereas each segment of the myelin sheath is typically around 100 pm in
length. The gap in the node of Ranvier is negligible for the whole axon. (b) Consider the entire myelin-coated axon as a
cylinder of length L, with the radius of the bare axon as a, the radius of the coated as b, and the central axis as the z-axis. (c)
Phospholipid molecules, as the major component of myelin, have tails consisting of a large number of C-H bonds.

E, |¥,) has an analytical solution, which is

,) = N, 22" 3¢ 22 L2270 (5 (9)
1 2
E’:—()\—u—2> (10)
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with variable substitutions z = 2X\e=*("~"¢) and E!, =
[(2m)/(w?h?)]E,. In the above, LA (z) is a gener-
alized Laguerre polynomial, [\ — %] represents the largest
integer not exceeding [A — 3], and the normalization con-
stant N, = /[n!(2X\ —2v — 1)]/[T (2A — v)] with T ()
being the gamma function.

The matrix elements of positional operators also have
the following analytical forms[28]
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B. Biphoton Wave Function via Cascade Radiation

The Hamiltonian of the interaction of matter with an
electromagnetic field is usually written as[29]

2
H=-Sp At A2 1he’s-B, (12
m 2m

where p and A are the momentum of the matter and vec-
tor potential of electromagnetic field, respectively, and
g°® is the gyromagnetic ratio of the particle. The last
two terms describe two-photon processes under strong
electromagnetic fields and strong interactions[29], respec-
tively, which should be ignored considering that strong
field environments are not usually existed in neurons.
Under the long-wave approximation (or dipole approxi-
mation), the first term can be written as —D-E, where D
and F are the dipole moment of the particle and electric
field respectively. The process of emitting two photons by
jumping from the first excited state to the ground state
under dipole interaction is forbidden, so we will consider
the process of emitting two photons from the second ex-
cited state to the ground state by cascade radiation[30],
as shown in Figure.2(c).

As the vibrational displacement of the chemical bond
is usually in the order of 10~! A, the orders of mag-
nitude of the coupling constants g, and g, below are
about 10 Hz. This is much smaller than ~ 10 Hz
from the vibrational levels themselves. Therefore a weak
coupling condition is generally satisfied and we can con-
sider the so-called rotational wave approximation (RWA)
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FIG. 2. Cascade emission from vibrational spectrum. (a) A skeletal formula of a phospholipid molecule, with the red part
representing the carbon chain in the tail, consisting of several methylene groups and two methyl groups. (b) Left: Schematic
diagram of molecular energy levels, with electronic energy levels indicated in purple, rotational energy levels in black, and
vibrational energy levels in red. Right: Vibrational energy levels are generally represented by Morse oscillators. The lowest
point of the potential energy corresponds to the equilibrium bond length of the chemical bond r., and the depth of the potential
energy characterizes the dissociation energy D.. (c¢) Cascade emission in three-level system. This figure represents a three-level
system returning to the ground state from the second excited state by emitting photons with frequencies ws, and wgro/. I1
and I'o are the transition rates(or the reciprocal of lifetime) between states.

under which the quickly oscillating terms in the Dirac in-
teracting picture are dropped. Keeping in mind though
there could be problems with RWA as the coupling gets
strong[31]. The approximation can serve as a starting
point in the current context for the cascade emissions of
interest arise mainly from slow oscillating processes that
conserve the total energy.

With RWA, the interacting Hamiltonian under the
Dirac picture can be written as[30]

H(t)=h) [gioil)asae"(“’“*‘””)t - h.c.]

o (13)
+ hz {g:,,ai)aszgzez(“}lo_w”)t + h.c.} ,
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where 05_1) = &) (¥], af) = |¥) (Yyl, and g, and g,
are states |¥:) to state |¥7) and state |¥;) to [¥p) state
transition coupling constant which take the form of
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Similarly to the Jaynes-Cummings model[32], we let
the total number of excitations between the atom and
the cavity mode be conserved, and let the vibrational
energy levels and the state vectors of the photons be of
the form

[T (t)) = co(t) [ W2, 0) + 1 (£) Y [P, wso)

so (16)
+ C2(t) Z |l—p0awsaaws’a’> .

Substituting Eq.(16) into the time-dependent
Schrédinger equation, we have three equations of
motion for the probability amplitudes

¢o = —i Zg:clei(“’”_“’“)t, (17)
SO
¢ = —igucoe! W W)t izgc*uczei(ww_ws'”/)t, (18)
s'o!
Gy = _igw,clei(wm—ws/a/)t, (19)

We begin by looking at the first two equations, and in
order to simplify the system of equations, we first inte-
grate Eq.(19) and substitute into Eq.(18) without con-



sidering ¢y to get

= > lgwl? /dt’ i w0y (1) (20)
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This is still an exact equation. Next we make some ap-
proximations. The dipole moment of the C-H bond in
the tail of the lipid molecule is overwhelmingly perpen-
dicular to the radial direction, and for the sake of compu-
tational convenience, we assume that the dipole moment
is only in the z-direction. It is obvious that us has no
z component from Eq.(4), and we only need to find out
the z component of us. By expanding Eq.(3) we get
Us1 = V(V : €z¢s1) - V2€z¢s1 = kglezwsl + V(@%l)
Then we have

2¢2x2) (xis) s
Vb2 glwsl m b L
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In the emission spectrum, the frequency of light associ-
ated with the emitted radiation is going to be centered
about the eigen vibration frequency wig. The quantity
w1 varies little around wg; = wig for which the time
integral in Eq.(24) is not negligible. We can then replace
wgr1 by wig and the lower limit in the wy/q integration by
—00. Then we have

/ dwgrpet@ro=ws )=t — ong5(t — ). (25)

— 00

Since the term \/w?,; — ¢?x?%,/b? in the denominator has

no physical meaning at less than 0, so that a step function
will be added to Eq.(24). The Eq.(24) becomes

300 2
10 Xs1 J2 /(XS’IR/b)

5?0 mz/: Qsr1/ 510 qu " (26)
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1(z > 0),0(z < 0) and

¢ =

where 19 = wipa/c, 0(x) =

e2| (| D|)| 2w}y

o _
10 3mhegc?

(27)

is the transition rate in free space. By using Eq.(4-12) in
[30], we have

él = ———~¢Cq, (28)

where I is the transition rate between |¥;) and |[¥)
in cavity. In this way the physical meaning of Eq.(26)

os? (115)

Now we have explicit form of the coupling constant
(n’ 7rz) ime
€ bl
L
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where dp; is the matrix element of the dipole moment D

In general the length of the myelin sheath is much
larger than the radius of the axon, at which point the
energy level gap of the cavity mode is very small, and we
can convert the summation into integral in Eq.(20), in
other words

dws’lws’l
lim — / . 23
L—)OOL; CT Jex, /l/b\/T/l/bz ( )
Now Eq.(20) becomes
oo t ei(wm*w,g'l)(t t")
/ dwsq / dt/ C1 (t/) (24)
X411 /b 0 Wiy — 2X3, /b

(

is clear: at &9 < Xo11, transition between |¥;) and
|@o) is forbidden. Using the same approach similar to
Weisskopf-Wigner approxiamation mentioned in [30], we
can transform the summation on the right-hand side of
Eq.(17) and Eq.(18) to be expressed in terms of transi-
tion rates and get

I:
éO = _%COu (29)
I
&1 = —igucoe’ W)t — —%62, (30)
by = Gurcpe’ @0t (31)

where I51 and I'jg are respectively
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We are only interested in the system of ¢ > I 2711, I“fol,
in this case ¢y (00) and ¢; (00) both tend to 0, and ¢5 (00)
is



Juwluw'
ca(00) = — (34)
(i (Wyror + Wso — wag) — L2 [i (wyror — wio) — 132 ]
[
Subsituting Eq.(34) into Eq.(16), we obtain the bipho-  ton state
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In order to obtain the specific biphoton wave function, i " Fi— }(0) iy
we need to first obtain the transition rates between the - %3 ‘ T 10 =
second excited state and the first excited state and be- 3l g ‘ [\ | ‘T ‘ &
tween the first excited state and the ground state. Then 2 ; AR ‘
we use data from [33]. And subsequently, by using the gz t . NN
relationship between N and the energy levels EE &% ' i s

9 m

E,—-Ey, w?h B ©

wip=——F———"=—(2N +3) =0.33eV, = | &
10 3 om (2N +3) = - | 1 1 | | 21

Ey — FE w?h - 2 Nt S B SN S
Woo = % = (2N +2) = 0.64eV, (36) % 05 1 15 2 25 3

E2 — E]_ wzh @t

== —=__(2N+1)=0.31eV

w21 h 2m ( + ) ey FIG. 3. Transition rates I51 and [9. The sharp peaks cor-

we can find N = 19.6, which in turn allows us to find the
coordinate operator matrix elements by using Eq.(11).
Then the dipole moments are dig = 0.16 eA and dy =
0.23 eA.

Experimental results show that the radius of axons in
the brain or CNS is generally 2~6 pm, and the thickness
of myelin sheaths is generally 1~3 pm[23, 24]. then let
the radius of exposed axons (inner radius of myelinated
neurons) be 2 pum, and the thickness ranges from 0 to 3
pm. Taking that the C-H bonds are widely distributed
in between the inner and the outer radii of the cylin-
der, we calculate the average of Bessel functions and cos
functions in Eq.(33) and Eq.(32)

nmz

b L
/ T2 (xo1 R/B)R, /O co?(")de. (37)

Then we can observe the variation of the transition
rates with myelin thickness as shown in Figure.3. Each
peak in the figure corresponds to a zero point of the
Bessel function Xy,,. When the cavity radius is less than
2.45 pm, I'5; and I are quite small, which is due to the
fact that the dipoles are all clustered at the axon bound-
aries R/b ~ 1, and so the coupling constant tends to 0.
The coupling between the electromagnetic field and the
vibrational modes is then negligible, and the vibrational
modes change without any relationship between the ex-
citation or non-excitation of the electromagnetic field.

The biphoton wave function can be calculated using
the transition rates and the coupling constants. Consid-

respond to having &19 or €21 equal to Xmu.

ering that the linewidth is much smaller than the vibra-
tional frequency, the allowed modes are almost all at res-
onance. So, for practical calculations, we will disregard
frequencies greater than 0.39 eV and less than 0.26 eV.
From the coefficient plots (Figure.4) of the normalised
biphoton wave functions it can be seen that the allowed
modes are all very close to resonance or at resonance,
and only a few modes are significantly allowed.

IV. EVALUATING ENTANGLEMENT
THROUGH SCHMIDT DECOMPOSTION

In the previous section we obtained the wave function
of biphoton system. We now evaluate the entanglement
degree of this system. In quantum mechanics, the pure
state of a bipartite system is described by a wave function
|Q(x1,22)), which 7 and xo represent any degrees of
freedom of the two particles: coordinates, momentum,
polarization, or frequency, etc[34]. In the discrete case,
the wave function can be written as Eq.(35). According
to Schmidt analysis[35], it can always be expanded with
two adjoint basis

) =3V lk1), ko),

(38)

where |ky), and |kz), are two adjoint Schmidt modes.
Representation of Eq.(38) is known as Schmidt decom-
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FIG. 4. The square of amplitudes which are given by the
coefficients in biphoton wave functions at different sizes of
cavity. X-axis and Y-axis are in unit of electron volts (eV).
The higher peaks in each case always map to the modes that
close to wip and w21. The values of von Neumann entropy are
respectively 0.000, 0.336 in the first, and 0.041, 0.194 in the
second row.

position. The expansion parameters v/, in Eq.(38) are
real and positive, and they obey the normalization con-
dition ), A, = 1. This decomposition is closely related
to the singular value decomposition (SVD)[36]. We can
consider the coefficients in Eq.(35) as a matrix C, and
then this matrix can always do SVD to obtain two uni-
tary matrices U and X and a diagonal matrix A. The
relation between them is

C =UAX. (39)

The squares of the diagonal elements of matrix A then
correspond to the expansion parameters A,. The dis-
tinguishing feature of the Schmidt decomposition is that
when a particle is measured to be in one of the Schmidt
modes |k1),,, then the other particle must be in the ad-
joint mode |kg), rather than the other mode, and the
probability of finding such a pair of particles is given by
An. When two particles are independent of each other,
they are not in entanglement. At this point, their wave
functions can simply be written as

12) = [k1),, [k2),, - (40)

We get only one pair of Schmidt modes corresponding to
the Schmidt decomposition of Eq.(38). When two parti-
cles are entangled, the Schmidt decomposition has more
than one term. We can use the expansion parameters
in Eq.(38) to define the von Neumann entropy to evalu-
ate the manitude of entanglement, and the von Neumann
entropy is defined as[35]

S==Y Anlogy(An). (41)

When the Schmidt number has only one term, the en-
tropy is 0, indicating that the system is not entangled.

As defined, the maximum value of entropy is related to
the number of states of the particle, and the maximum
value of von Neumann entropy is log, n when the parti-
cle has n states.For normalisation purposes, the entropy
involved in what follows is calculated in such a way that
the base of the logarithmic function is taken to be the
number of states n of the corresponding wave function.
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FIG. 5. von Neumann entropy at different sizes of the cavity.
(a) Colors from white to dark blue represent entropy values
from 0 to 0.65. Myelin thicknesses ranged from 0.45 to 3 um,
and lengths ranged from 200 to 500 um. (b) The relationship
between myelin thickness and the degree of entanglement can
be better seen by erasing the points in (a) with entropy values
below 0.5. Entanglement is substantial at thicknesses between
0.8 and 1.1 um, and it decays rapidly as the thickness becomes
smaller.

The axon is usually wrapped by myelin sheath sepa-
rated by several nodes of Raniver, each of which is usually
10~100 pm[18, 23]. In the actual calculations, we neglect
the total length of nodes of Raniver to be in the range
of 200~500 pm, which affects the denseness of electro-
magnetic modes in the microcavity. When the thickness
of the myelin sheath is less than 0.45 pm, the transition
rates I»; and Ig are extremely small due to the very
small coupling constant. We consider that no biphoton
state will be generated when the thickness of the myelin
sheath is in the range of 0~0.45 pm in the calculation.
Electromagnetic modes at (2,2,0) have energies exceed-
ing the eigen vibrational frequency wig, so modes exceed-
ing X221 are not considered here, and the results obtained



are shown in Figure.5(a).

Owing to the discrete energy levels within the myelin
cavity, instances where electromagnetic modes reside
on both sides of the vibrational frequencies wiy and
woi—and are in proximity—lead to significant entan-
glement. This arises from photons being indistinguish-
able particles, implying that measuring the frequency of
one photon imparts partial information about the other.
Conversely, when a discrete electromagnetic mode pre-
cisely corresponds to wig and wsy, it dominates, result-
ing in minimal entropy. The molecular coupling constant
in Eq.(22) are about an order of magnitude of 107, and
the transition rates (natural line width) is about an or-
der of magnitude of 10%, which is small and negligible
compared to the frequencies of the photon and vibra-
tional energy levels in the denominator, which are about
10'4. The discrete energy levels are solely determined
by myelin geometry, making the creation and availabil-
ity of entanglement entirely contingent on myelin size.
In contrast to cascade radiation of the vibrational spec-
trum in free space, characterized by extremely narrow
linewidths and continuous electromagnetic modes, pho-
ton cascade radiation within the myelin sheath has only
one mode—photons corresponding to frequencies wig and
wa1.-

V. DISCUSSIONS

To summarize, the results of the cascade photons
emission process by cQED and quantum optics indicate
that biphotons in quantum entanglement can be released
through cascade radiation on the vibrational spectrum of
C-H bonds in the tails of lipid molecules inside cylindri-
cal cavities encased by neural myelin. The presence of
discrete electromagnetic modes due to the cavity struc-
ture formed by the myelin sheath, distinguishing it from
the free-space continuous electromagnetic modes, results
in the frequent production of highly entangled photon
pairs permitted within the myelin cavity. Notably, due
to the presence of microcavities, the coupling can be sig-
nificantly enhanced compared to that in free space, indi-
cating a higher probability of emitting photons. It should
be noted that our model is very crude. The actual elec-
tromagnetic field should take into account the coupling
of photons to the vibron ensembles, i.e. polaritons, which
should be considered in future studies.

As shown in Figure.5(b), the degree of entanglement is
relatively high when the thickness of the myelin sheath

is between 0.8~1.1 um. Taking the radius of the axon as
2 pm, this corresponds to a ratio of the inner/outer radii
0.65~0.72, close to the literature value of 0.6~0.8[24, 37].
The entanglement decreases rapidly as the myelin thick-
ness decreases beyond this ratio. Clinical results show
that myelin becomes thinner with age and the likelihood
of neurodegenerative diseases increases[38, 39]. These ob-
servations may underline a further relationship between
the two phenomena.

Finally, as a nature of such research we may excise
some speculations at this stage. It was experimentally
shown that the mid-infrared light energy at 53.53 THz
has a modulating effect on the activity of K* ion chan-
nels. Furthermore, the activity is strong and not propor-
tional to the number of photons[16]. One explanation is
that the eight C=0 bonds in an ion channel may be in
a critical state of maximum superradiation. Such state
has the energy of three excited C=0 bonds whose value
equals roughly to that of photon energy released by a
single C-H bond. As the energy scales match up, it is
plausible that the entanglement of the photons can pass
on to the ion channels. Namely, entangled photon pairs
emitted through cascade radiation can link the KT ion
channels at different positions by entanglement. When
one channel is activated by neuron, it affects the state of
the other ones via quantum measurement, creating likely
non-local correlations among them.

Polaritons inside a myelin involves a large number of
vibronic states[17]. As a result the effect of thermal fluc-
tuations on the states of the polariton (i.e. photons) can
be negligible. In recent years similar systems such as
cold-atom ensembles[40] were used as quantum memo-
ries, which can protect quantum entanglement between
photons. When the local entanglement generated in each
neuron could spread over to a larger region through en-
tanglement swapping[6], the neurons in the brain be-
comes further correlated. In this way, the entanglement
can propagate out within the neuromedullary sheaths,
serving as a quantum communication resource in the ner-
vous system. It can possibly offer a mechanism of over-
distance synchronization.
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