

1

2 Escape of SARS-CoV-2 variants KP1.1, LB.1 and KP3.3 from approved monoclonal antibodies

3

4 Delphine Planas^{1,2}, Isabelle Staropoli¹, Cyril Planchais³, Emilie Yab⁴, Banuja Jeyarajah⁴, Yannis Rahou⁴,
5 Matthieu Prot⁵, Florence Guivel-Benhassine¹, Frederic Lemoine⁶, Vincent Enouf⁴, Etienne Simon-
6 Loriere^{5*}, Hugo Mouquet^{3*}, Marie-Anne Rameix-Welti^{4,7*}, Olivier Schwartz^{1,2*}.

7

8 ¹Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France.

9 ²Vaccine Research Institute, Créteil, France.

10 ³Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France.

11 ⁴National Reference Center for Respiratory Viruses, Molecular Mechanisms of Multiplication of
12 Pneumoviruses Unit, Institut Pasteur, Université Paris Cité, Paris, France.

13 ⁵G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France.

14 ⁶Bioinformatics and Biostatistics Hub, Paris, France.

15 ⁷Molecular Mechanisms of Multiplication of Pneumoviruses, Université Paris-Saclay, Université de
16 Versailles St. Quentin, UMR 1173 (2I), INSERM; Assistance Publique des Hôpitaux de Paris, 75015
17 Paris, France.

18

19

20

21 *co-last authors

22

23 ^{\$}**corresponding author:** olivier.schwartz@pasteur.fr

24

25 **ABSTRACT**

26
27 First-generation anti-SARS-CoV-2 monoclonal antibodies (mAbs) used for prophylaxis or therapeutic
28 purposes in immunocompromised patients have been withdrawn because of the emergence of
29 resistant Omicron variants. In 2024, two novel mAbs, Pemivibart and Sipavibart, have been approved
30 by health authorities, but their activity against contemporary JN.1 sublineages is poorly characterized.
31 We isolated authentic JN.1.1, KP1.1, LB.1 and KP3.3 viruses and evaluated their sensitivity to
32 neutralization by these mAbs in two target cell lines. Compared to ancestral strains, Pemivibart
33 remained moderately active against JN.1 sub-variants, with a strong increase of 50% Inhibitory
34 Concentration (IC50), reaching up to 3 to 15 µg/ml for KP3.3. Sipavibart neutralized JN.1.1 but lost
35 antiviral efficacy against KP1.1, LB.1 and KP3.3. Our results highlight the need for a close clinical
36 monitoring of Pemivibart and raise concerns about the clinical efficacy of Sipavibart.

37
38 **INTRODUCTION**

40 The JN.1 lineage arose in late 2023 and rapidly outcompeted previous SARS-CoV-2 variants¹. Since
41 then, JN.1 continued its evolution, with the appearance of sub-lineages carrying convergent mutations
42 in the Spike (S) protein, notably F456L or R346T, and more recently S31del^{2 3}. Sub-lineage specific
43 mutations also appeared, such as Q493E. As of August 2024, the KP.1, KP.2, LB.1 and KP.3 variants,
44 that carry various combinations of these substitutions, represented about 80 % of sequenced
45 circulating strains (Fig. 1A and Fig. S1-S2). These mutations are collectively responsible for increased
46 immune escape from previously infected and vaccinated populations^{2 3}.

47 The sensitivity of KP.1, LB.1 and KP.3 to monoclonal antibodies (mAbs) developed for clinical use is
48 poorly characterized. First-generation anti-S mAbs, previously approved by the Food and Drug
49 Administration (FDA), the European Medicines Agency (EMA) or other agencies, had their
50 authorization withdrawn after the emergence of Omicron variants, because of escape mutations in the
51 receptor binding domain (RBD) of S. In 2024, novel mAbs, efficient against Omicron variants, have been
52 tested in clinical trials or are available for clinical use in some countries⁴. These include AZD3152,
53 VYD222, and SA55 that belong to different anti-RBD antibody classes and target distinct epitopes.
54 AZD3152 (or SipavibartTM)⁵ was authorized in July 2024 by the EMA, for pre-exposure prophylaxis in
55 patients with immunocompromising conditions and at high risk of developing severe COVID-19⁶.
56 However, AZD3152-resistant viruses, carrying escape mutations at RBD positions 415, 456 and 458,
57 have been described in pre-JN.1 lineages⁵. VYD222/Pemivibart (or PemgardaTM) obtained an
58 emergency use authorization by the FDA in March 2024, for pre-exposure prophylaxis in patients who
59 are moderately to severely immunocompromised⁷. VYD222 preserved *in vitro* efficacy against pre-JN.1
60 strains carrying the F456L mutation⁷. SA55 was isolated from a SARS-CoV-1 infected, SARS-CoV-2
61 vaccinated individual and displays a broad sarbecovirus neutralization profile, including JN.1, when
62 used alone or in combination with another mAb (SA58)^{8 9}. SA55 has been tested in a clinical trial
63 initiated in 2023 in China, in patients with hematological disorders who are persistently positive for
64 SARS-CoV-2¹⁰.

65 Here, we isolated the main SARS-CoV-2 variants circulating in mid-2024 and tested their sensitivity
66 to neutralization by a panel of mAbs.

67
68 **METHODS**

69 **Virus isolation**

70 Viral strains were amplified through one or two passages on Vero E6 TMPRSS2 cells and one passage
71 on IGROV-1 cells. Cells were plated in T75 flasks and cultivated in culture media (Dulbecco's Modified
72 Eagle Medium (DMEM), 10% fetal calf serum, and 1% Penicillin/Streptomycin) at 37°C, 5% CO₂.
73 Supernatants were harvested two or three days after viral exposure. Viral supernatants were
74 sequenced directly from nasopharyngeal swabs and after isolation and amplification on IGROV-1 cells

75 to confirm identity, the presence of specific mutations in the spike protein, and the absence of cell
76 culture-derived mutations. The titration of viral stocks was performed on S-Fuse cells^{11 12 1}.
77 The D614G and JN.1 strains have been described^{13 1}. The KP.1.1 (hCoV-19/France/IDF-RELAB-
78 IPP05044/2024), LB.1 (hCoV-19/France/GES-RELAB-IPP04736/2024), and KP.3.3 strains (hCoV-
79 19/France/BFC-IPP06087/2024) were isolated and amplified by the National Reference Center for
80 Respiratory Viruses hosted by Institut Pasteur.
81

82 **Monoclonal antibodies**

83 Sotrovimab (S309) was previously described¹⁴. Codon-optimized synthetic DNA fragments coding for
84 the immunoglobulin variable domains of SA55 (BD55-5514)⁸, AZ3152/Sipavibart⁵ and
85 VYD222/Pemivibart were synthetized (GeneArt, Thermo Fisher Scientific), and cloned into human IgG1
86 expression vectors as previously described¹⁵. Recombinant IgG1 antibodies were produced by
87 transient co-transfection of Freestyle™ 293-F suspension cells (Thermo Fisher Scientific) using PEI-
88 precipitation method and purified from culture supernatants by affinity chromatography using Protein
89 G Sepharose® 4 Fast Flow (GE Healthcare) as previously described¹⁵.
90

91 **Cell lines**

92 IGROV-1 and S-Fuse (U2OS) cells were previously described^{1 11}. Cells were regularly tested negative for
93 mycoplasma.
94

95 **Virus titration for neutralizing assay**

96 Titration of viral stocks was performed on S-Fuse and IGROV-1 cells. Neutralization assays were
97 conducted using a multiplicity of infection sufficient to produce about 200 syncytia/well with S-Fuse
98 cells and achieve 40% of infected IGROV-1 cells.
99

100 **S-Fuse neutralization assay**

101 U2OS-ACE2 GFP1-10 and GFP11 cells, also termed S-Fuse cells, become GFP+ when they are
102 productively infected by SARS-CoV-2^{11,13}. Cells were mixed (ratio 1:1) and plated overnight at 12×10^3
103 per well in a μClear 96-well plate (Greiner Bio-One). The indicated SARS-CoV-2 strains were incubated
104 with serially diluted monoclonal antibodies (mAbs) for 15 min at room temperature and added to S-
105 Fuse cells. Eighteen hours later, cells were fixed with 2% PFA (Electron Microscopy Sciences, cat#
106 15714-S), washed, and stained with Hoechst (dilution of 1:1,000, Invitrogen, cat# H3570). Images were
107 acquired using an Opera Phenix high-content confocal microscope (PerkinElmer). The number of GFP
108 syncytia and the number of nuclei were quantified using Harmony software (PerkinElmer). The
109 percentage of neutralization was calculated using the number of syncytia with the following formula:
110 $100 \times (1 - (\text{value with mAb} - \text{value in 'non-infected'}}) / (\text{value in 'no mAb'} - \text{value in 'non-infected'}})$. For
111 each mAb, the half maximal inhibitory concentration (IC50) in ng/ml was calculated with a
112 reconstructed curve using the percentage of neutralization at each concentration.
113

114 **IGROV-1 neutralization assay**

115 Sixteen hours before infection, 30×10^3 cells per well were seeded in a μClear black 96-well plate
116 (Greiner Bio-One). The indicated SARS-CoV-2 strains were incubated with serially diluted monoclonal
117 antibodies (mAbs) for 15 min at room temperature and added to IGROV-1 cells. Twenty-four hours
118 later, cells were fixed with 2% PFA (Electron Microscopy Sciences, cat# 15714-S). The cells were then
119 intracellularly stained with anti-SARS-CoV-2 nucleoprotein (N) antibody NCP-1 (0.1 μg/mL) as
120 described¹. The staining was carried out in PBS with 0.05% saponin 1% BSA, and 0.05% sodium azide
121 for 1 h. Cells were then washed twice with PBS and stained with anti-IgG Alexa Fluor 488 (dilution
122 1:500, Invitrogen; cat# A11029) for 30 minutes before being washed twice with PBS. Hoechst 33342
123 (Invitrogen, cat# H3570) was added during the final PBS wash. Images were captured using an Opera
124 Phenix high-content confocal microscope (PerkinElmer). The N-positive area and the number of nuclei
125 were quantified using Harmony Software v4.9 (PerkinElmer). The percentage of neutralization was

126 calculated using the N-positive area with the following formula: $100 \times (1 - (\text{value with mAb} - \text{value in 'non-infected'}) / (\text{value in 'no mAb'} - \text{value in 'non-infected'}))$. For each mAb, the half maximal inhibitory concentration (IC50) in ng/ml was calculated with a reconstructed curve using the percentage of neutralization at each concentration.

130

131 **Statistical analysis**

132 Figures were generated using Prism 9 (GraphPad Software). Statistical analysis was conducted using
133 GraphPad Prism 9. Data are mean \pm SD of three independent experiments.

134

135 **Lineage monitoring**

136 To visualize the evolution of the frequency of SARS-CoV-2 lineages, we analyzed the viral genomic
137 surveillance data deposited in the GISAID database (<https://www.gisaid.org>; metadata downloaded on
138 July 7th, 2024)^{16 17}. The hierarchical relationships between lineages were retrieved from the pangolin
139 GitHub repository (<https://github.com/cov-lineages/pango-designation>). We analyzed SARS-CoV-2
140 data collected from January 1st, 2024, to August 4, 2024, using R 4.3 and ggplot 3.4.3. Mutations that
141 are common and specific to lineages of interest were computed using the outbreak.info R package
142 (<https://outbreak-info.github.io/R-outbreak-info>)¹⁸.

143

144 **Data availability**

145 All data supporting the findings of this study are available within the article or from the corresponding
146 author upon reasonable request without any restrictions. The sequencing data generated in this study
147 have been deposited in the GISAID EpiCoV database.

148

149 **RESULTS AND DISCUSSION**

150

151 We examined the sensitivity of SARS-CoV-2 variants JN.1.1, KP.1.1, LB.1 and KP.3.3 to
152 VYD222/Pemivibart, AZD3152/Sipavibart and SA55. We included the ancestral D614G strain as control.
153 We isolated KP.1.1 (which carries the same S as KP.1), LB.1 and KP.3.3 (which carries the same S as
154 KP.3) variants from nasal swabs of individuals with sequence-diagnosed infections. Sequences of
155 outgrown viruses confirmed the identity of the variants (Fig. 1A and Fig. S1-S2). The mAbs were not
156 commercially available for research purposes. Therefore, we retrieved their sequences from public
157 databases and produced biosimilar molecules. As additional control, we used SotrovimabTM that
158 neutralizes several Omicron strains but not JN.1, and is no longer approved¹.

159 We measured the sensitivity of the viral isolates to mAbs using first S-Fuse cells as targets¹². These
160 cells were engineered to express ACE2 and are thus sensitive to SARS-CoV-2^{1, 12}. The four mAbs
161 efficiently neutralized D614G (Fig. 1B), with EC50s of 18-39 ng/ml, corresponding to those described
162 in the literature. As expected, Sotrovimab lost any activity against the four JN.1-derived strains.
163 AZD3152/Sipavibart inhibited JN.1.1, with an EC50 of 198 ng/ml, but no longer neutralized KP.1.1, LB.1
164 and KP.3.3 (Fig. 1B). The F456L substitution present in the three variants likely mediates this resistance.
165 VYD222/Pemivibart was poorly active against JN.1.1 and displayed a decreased antiviral activity against
166 KP.1.1, LB.1 and KP.3.3 (Fig. 1B). The EC50s reached up to 16,000 ng/ml, corresponding to up to 888-
167 fold reduction of potency against the four variants compared to D614G. The antiviral activity of SA55
168 was preserved against the variants, with EC50s that remained remarkably low (7 to 23 ng/ml) (Fig. 1B).

169 We did not isolate a KP.2 variant, but its profile of resistance is likely similar to KP.1, since their S
170 only differ at position 1086, outside of the RBD (Fig. 1A).

171 We then sought to confirm these results using another cell line. We selected IGROV-1 cells, because
172 they naturally express ACE2 and are highly sensitive to SARS-CoV-2, including Omicron and JN.1
173 variants¹. The profile of neutralization of the five SARS-CoV-2 strains was similar in S-Fuse (Fig. 1B) and
174 IGROV-1 cells (Fig. 1C). The IC50 were also in the same range in the two cell types (Fig. 1D).

175 Altogether, our results indicate that AZD3152/Sipavibart totally lost antiviral activity against the
176 prevalent strains circulating in mid-2024, most likely because of the presence of the F456L substitution

177 in S. Pemivibart remains active against JN.1.1, KP.1.1, LB.1 and KP.3.3, with however a strong increase
178 in IC50. The loss of activity of Pemivibart has been recently reported in a preprint, using VSV-based
179 pseudotypes¹⁹. As of August 2024, the KP3.1.1 variant, that combines the F456L and Q493E mutations
180 found in KP.3 and KP.3.3, with the S31 deletion found in LB.1, has been on the rise¹⁹. Future work will
181 help assessing the sensitivity of the rapidly diversifying JN.1 family to these mAbs.

182 Our *in vitro* results may not directly translate into clinical efficacy, but raise concerns about the
183 medical use of Sipavibart, and warrant a close surveillance of Pemivibart, when most of the circulating
184 strains totally or partially escape neutralization by the two antibodies. The mAb SA55 represents a
185 promising alternative.

186

187 **ACKNOWLEDGEMENTS**

188 The authors thank Timothée Bruel for critical reading of the manuscript, members of the Virus and
189 Immunity Unit and other teams for discussion and help, Nathalie Aulner and the staff at the UtechS
190 Photonic Biolmaging (UPBI) core facility (Institut Pasteur), a member of the France Biolmaging
191 network, for image acquisition and analysis, the members of the National Reference Center for Viruses
192 of Respiratory Infections hosted at Institut Pasteur, the RELAB network and the Mutualized Platform
193 for Microbiology (P2M). This work has used the computational and storage services (Maestro cluster)
194 provided by the IT department at Institut Pasteur, Paris.

195 Work in OS lab is funded by Institut Pasteur, Urgence COVID-19 Fundraising Campaign of Institut
196 Pasteur, Fondation pour la Recherche Médicale (FRM), ANRS, the Vaccine Research Institute (VRI)
197 (ANR-10-LABX-77), Labex IBEID (ANR-10-LABX-62-IBEID), the HERA Project DURABLE (grant
198 101102733) and LEAPS, DP is supported by the VRI.

199

200 **AUTHOR CONTRIBUTIONS**

201 Experimental strategy design, experiments: DP, IS, CP, FG-B, ES-L, HM, M-ARW, OS.

202 Vital materials: CP, EY, BJ, YR, VE, HM, M-ARW.

203 Phylogenetic analysis: ES-L

204 Viral sequencing: EY, BJ, YR, VE, MP, FL, ES-L, M-ARW.

205 Manuscript writing and editing: DP, ES-L, HM, M-ARW, OS.

206

207

208 **POTENTIAL CONFLICT OF INTEREST**

209 CP, HM and OS have a patent application for anti-SARS-CoV-2 monoclonal antibodies not used in
210 the present study (PCT/FR2021/070522, WO 2022/228827A1), and HM is a scientific consultant for
211 SpikImm biotech. The remaining authors declare no competing interests.

212

213 **Figure 1 legend. Sequence of SARS-CoV-2 variants and neutralizing activity of mAbs.**

214 A. Spike mutations of SARS-CoV-2 variants relative to the spike domains of the BA.2.86.1 parental
215 strain. JN.1, KP.1.1, LB.1, and KP.3.3 were further studied. The mutations in KP.2, JN.1.18 and JN.1.16
216 are also indicated.

217 B. Neutralization curves of mAbs in S-Fuse cells. Dose-response analysis of neutralization of the
218 indicated variants by Sotrovimab, VYD222, AZD3152, and SA55. Data are presented as mean \pm standard
219 deviation of 2-3 independent experiments.

220 C. Neutralization curves of mAbs in IGROV-1 cells. Dose-response analysis of neutralization of the
221 indicated variants by Sotrovimab, VYD222, AZD3152, and SA55. Data are presented as mean \pm standard
222 deviation of 2-3 independent experiments.

223 D. EC50 values (in ng/ml) for each mAb against the indicated viral strains in the two cell lines. “-”: no
224 antiviral activity.

225

226 REFERENCES

227

228 1. Planas D, Staropoli I, Michel V, et al. Distinct evolution of SARS-CoV-2 Omicron XBB and
229 BA.2.86/JN.1 lineages combining increased fitness and antibody evasion. *Nature Communications*
230 2024; **15**(1): 2254.

231 2. Kaku Y, Yo MS, Tolentino JE, et al. Virological characteristics of the SARS-CoV-2 KP.3, LB.1, and
232 KP.2.3 variants. *The Lancet Infectious Diseases* 2024.

233 3. Kaku Y, Uriu K, Kosugi Y, et al. Virological characteristics of the SARS-CoV-2 KP.2 variant. *Lancet*
234 *Infect Dis* 2024; **24**(7): e416.

235 4. Focosi D, Franchini M, Casadevall A, Maggi F. An update on the anti-spike monoclonal antibody
236 pipeline for SARS-CoV-2. *Clinical Microbiology and Infection* 2024.

237 5. Cai Y, Diallo S, Rosenthal K, et al. AZD3152 neutralizes SARS-CoV-2 historical and contemporary
238 variants and is protective in hamsters and well tolerated in adults. *Sci Transl Med* 2024; **16**(753):
239 eado2817.

240 6. AstraZeneca. Press Release. <https://wwwastrazenecacom/media-centre/press-releases/2024/sipavibart-ema-regulatory-submission-accepted-under-accelerated-assessment-for-covid-19-preventionhtml> 2024.

241

242

243 7. Pemgarda. Fact sheet for healthcare providers: Emergency Use Authorization of Pemgarda
244 (pemivibart). Invivid; 2024. Accessed March 25, 2024.
245 <https://wwwfdagov/media/177067/download?attachment> 2024.

246 8. Cao Y, Jian F, Zhang Z, et al. Rational identification of potent and broad sarbecovirus-
247 neutralizing antibody cocktails from SARS convalescents. *Cell Reports* 2022; **41**(12): 111845.

248 9. Yang S, Yu Y, Xu Y, et al. Fast evolution of SARS-CoV-2 BA.2.86 to JN.1 under heavy immune
249 pressure. *The Lancet Infectious Diseases* 2024; **24**(2): e70-e2.

250 10. ClinicalTrial. <https://clinicaltrials.gov/study/NCT05675943>. 2023.

251 11. Buchrieser J, Dufloo J, Hubert M, et al. Syncytia formation by SARS-CoV-2-infected cells. *The*
252 *EMBO Journal* 2020; **39**(23): e106267.

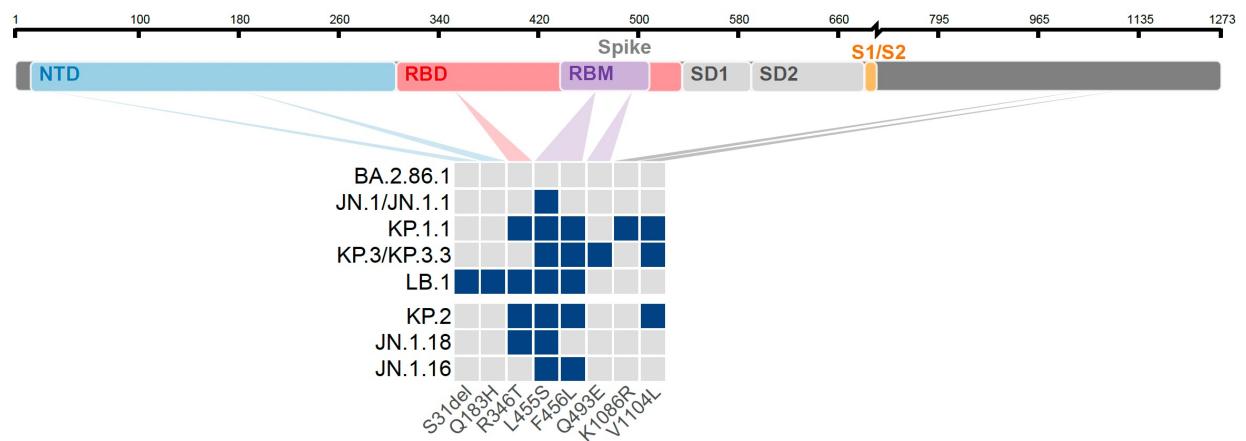
253 12. Planas D, Saunders N, Maes P, et al. Considerable escape of SARS-CoV-2 Omicron to antibody
254 neutralization. *Nature* 2022; **602**(7898): 671-5.

255 13. Planas D, Bruel T, Grzelak L, et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351
256 variants to neutralizing antibodies. *Nature Medicine* 2021; **27**(5): 917-24.

257 14. Bruel T, Hadjadj J, Maes P, et al. Serum neutralization of SARS-CoV-2 Omicron sublineages BA.1
258 and BA.2 in patients receiving monoclonal antibodies. *Nature Medicine* 2022; **28**(6): 1297-302.

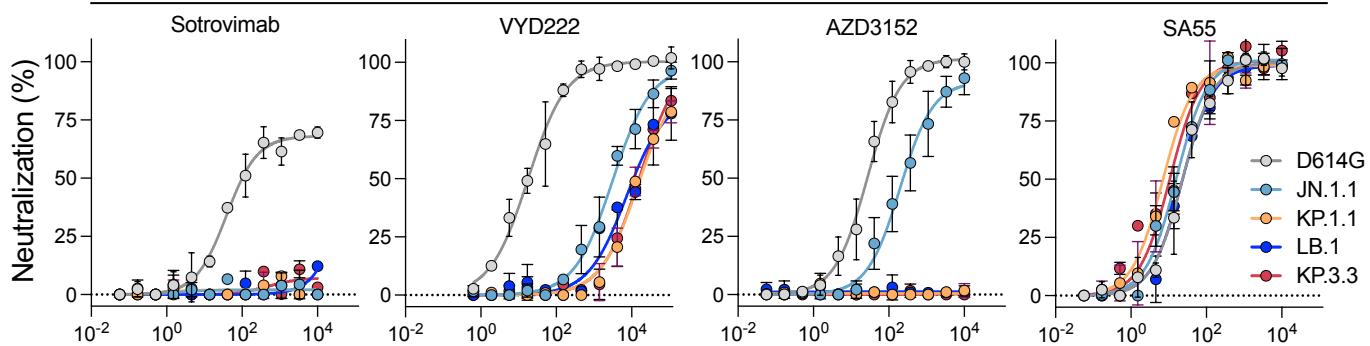
259 15. Planchais C, Fernandez I, Bruel T, et al. Potent human broadly SARS-CoV-2-neutralizing IgA and
260 IgG antibodies effective against Omicron BA.1 and BA.2. *J Exp Med* 2022; **219**(7).

261 16. Elbe S, Buckland-Merrett G. Data, disease and diplomacy: GISAID's innovative contribution to
262 global health. *Glob Chall* 2017; **1**(1): 33-46.

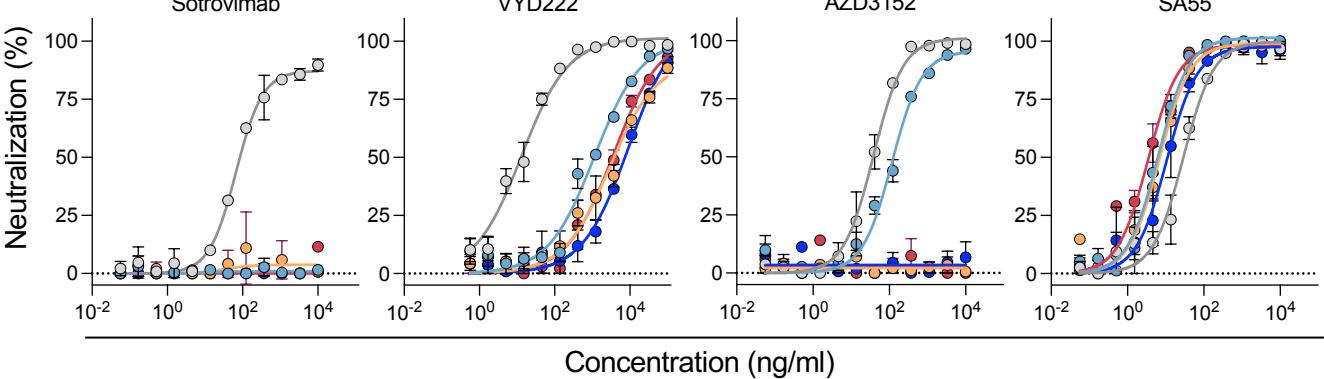

263 17. Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data – from vision to reality.
264 *Eurosurveillance* 2017; **22**(13): 30494.

265 18. Tsueng G, Mullen JL, Alkuzweny M, et al. Outbreak.info Research Library: a standardized,
266 searchable platform to discover and explore COVID-19 resources. *Nature Methods* 2023; **20**(4): 536-
267 40.

268 19. Wang Q, Guo Y, Ho J, Ho DD. Pemivibart is less active against recent SARS-CoV-2 JN.1
269 sublineages. *Biorxiv* 2024: 2024.08.12.607496.


270

A


B

Neutralization S-Fuse

C

Neutralization IGROV-1

D

	Sotrovimab		VYD222		AZD3152		SA55	
	S-Fuse	IGROV-1	S-Fuse	IGROV-1	S-Fuse	IGROV-1	S-Fuse	IGROV-1
D614G	39	26	18	13	27	38	23	29
JN.1.1	-	-	3114	1136	198	118	16	6
KP.1.1	-	-	7265	2950	-	-	7	7
LB.1	-	-	16387	9297	-	-	23	11
KP.3.3	-	-	14963	3668	-	-	11	3

IC50 (ng/ml)