

1 **Specific pre-plasma cell states and local proliferation at the dark zone – medulla**  
2 **interface characterize germinal center-derived plasma cell differentiation in**  
3 **lymph node**

4  
5 Laurine Binet<sup>1</sup>, Chuang Dong<sup>1</sup>, Noudjoud Attaf<sup>1</sup>, Laurine Gil<sup>1</sup>, Matthieu Fallet<sup>1</sup>, Thomas Boudier<sup>2</sup>, Bertrand  
6 Escalière<sup>1</sup>, Lionel Chasson<sup>1</sup>, Carole Siret<sup>1</sup>, Serge A. van de Pavert<sup>1</sup>, Jean-Marc Navarro<sup>1</sup>, Pierre Milpied<sup>1,‡</sup>

7  
8 <sup>1</sup> Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France

9 <sup>2</sup> Turing Center for Living Systems, CENTURI, Aix Marseille Université, Marseille, France.

10 <sup>‡</sup> Corresponding author: Pierre Milpied (milpied@ciml.univ-mrs.fr)

11

12 **ABSTRACT**

13 High affinity antibody-producing plasma cell (PC) production in germinal centers (GC) is crucial for antibody-  
14 mediated immune protection after vaccination or infection. The selection of high affinity B cells in the GC light  
15 zone instructs PC differentiation in a subset of cells, but the phenotype, differentiation trajectory and spatial  
16 localization of those prePC intermediates remain to be characterized. Here, we have used a mouse model  
17 to track GC-derived B cells with integrative single-cell and spatial analyses in draining lymph node after  
18 immunization. We first identified putative prePC in scRNA-seq datasets, then enriched those cells through  
19 their specific surface phenotype for further analysis of their gene expression trajectories and BCR repertoire.  
20 We found a continuum of actively proliferating transitional states bridging selected LZ GC B cells and recently  
21 exported PCs, with gradually increasing levels of endoplasmic reticulum stress-associated genes and  
22 immunoglobulin transcripts. Spatial analyses revealed that recently differentiated PC continued their  
23 maturation and proliferation at the interface between the DZ and extensions of the lymph node medulla. Our  
24 results provide insights into the intermediate stages and microenvironmental factors involved in the  
25 differentiation of GC B cells into PC, with implications for vaccine development and understanding antibody  
26 responses.

27

28 **KEYWORDS**

29 Germinal center, plasma cell, lymph node, differentiation trajectory, localization, transitional states

30

31 **SHORT RUNNING TITLE**

32 Mapping GC to PC differentiation

## 33 INTRODUCTION

34 B cell immune responses are important for long term protection against pathogens, after natural infection or  
35 vaccination. Germinal Centers (GCs), micro-anatomical structures that form within B cell follicles in  
36 secondary lymphoid organs after T cell-dependent B cell activation, play a crucial part for long term antibody-  
37 based immunity. In GCs, the affinity maturation cyclic process enables the diversification and overall gain in  
38 affinity of antigen-specific antibodies expressed as surface B cell receptors (BCR) by GC B cells. In a  
39 maturation cycle, B cells first undergo cell division and somatic hypermutation (SHM) in the dark zone (DZ)  
40 in order to diversify their BCR before migrating to the light zone (LZ) and being selected based on the affinity  
41 of their B-cell receptor (BCR). Most studies have shown that selection broadly follows the affinity-dependent  
42 selection model<sup>1</sup>. In this model, B cells which cannot bind antigen die by apoptosis, the low affinity ones  
43 differentiate in memory B cells (MBC), the intermediate affinity ones recycle in the DZ and the high affinity  
44 ones differentiate in PC<sup>1-4</sup>.

45 The differentiation of GC-derived MBC and plasma cells (PC) results in diversified and affinity-enhanced  
46 antibody specificities being expressed in long-lived cell types for long-term immune protection. In that regard,  
47 GC-derived PC have been shown to be the primary source of long-lived high-affinity antibody producing cells  
48 that home to the bone marrow<sup>5</sup>. The differentiation of GC B cells into long-lived PC results from the induction  
49 of gene expression modifications through different signals. First, GC B cells have to internalize the antigen  
50 contained in immune complexes at the follicular dendritic cell (FDC) membrane before they present it to T  
51 follicular helper cells (T<sub>FH</sub>) on MHC class II molecules and receive co-stimulatory signals. The BCR signal  
52 also plays an important role by repressing *Bcl6* transcription<sup>6,7</sup> and inducing *Irf4* expression<sup>8,9</sup>. BCR affinity  
53 allows to be more competitive and to extract more antigen at the FDC surface, which has been correlated  
54 with a better help from T<sub>FH</sub> cells<sup>10-13</sup>. T<sub>FH</sub> cells allow the selection of GC B cells through a competitive access  
55 to co-stimulatory signals such as CD40L and IL21. CD40 signaling reinforces BCR signaling through the  
56 blockade of *Bcl6* expression and the induction of *Irf4* in a dose-dependent manner<sup>14-16</sup>. Finally, IL21 was  
57 described to have a dual role in the GC. It induces the expression of *Bcl6*, but when it synergizes with the  
58 BCR signal and the CD40 signal, it allows the expression of *Irf4* and Blimp1 (encoded by *Prdm1*), two markers  
59 important for terminal PC differentiation<sup>17-20</sup>.

60 The precise mapping of stepwise processes for PC differentiation has been mostly studied in *ex vivo*  
61 differentiation assays starting from naïve B cells of MBC. Although the situation may differ for the GC to PC  
62 differentiation *in vivo*, those assays have generated important findings at the genetic level. Notably, because  
63 some GC markers such as *Bcl6* or *Pax5* repress the PC phenotype<sup>6,21</sup>, it is then mandatory for B cells to  
64 downregulate the expression of the GC profile in order to differentiate in GC-derived PC<sup>9,22</sup>. Once B cells  
65 have switched their gene expression profile towards a PC profile, they undergo several rounds of cell division  
66 that allow the hypomethylation of the chromatin parts encoding the proteins responsible for the PC profile in  
67 an irreversible way<sup>23</sup>. Thus, PC differentiation goes through a remodeling at the epigenetic, transcriptomic  
68 and phenotypic profile. These changes allow the functional remodeling of activated and proliferating GC B  
69 cells to antibody-secreting PC.

70 Several studies have tried to identify intermediate states bridging GC B cells to PC *in vivo*. Indeed, cells  
71 intermediate in their transcriptomic profile<sup>24</sup>, or LZ GC B cells with PC features such as high expression of  
72 *Irf4* in mice<sup>16,25</sup>, have been described in recent years. In humans, transcriptomic studies also highlighted  
73 intermediate states expressing PC and cell cycle markers<sup>26,27</sup>. Unfortunately, the scarcity of these states in  
74 lymphoid organs have most often precluded their in-depth study and the differentiation trajectory between  
75 selected GC B cells and differentiated antibody-producing cells remains uncharted. *In silico* modeling  
76 experiments have suggested that PC exit the GC from the DZ, but *in vivo* evidence is lacking<sup>28</sup>. Several  
77 signals appear to be implicated in PC egress from GC (GPR183 signaling, S1P1 and CXCL12 gradients),  
78 but no final mechanism has been identified<sup>29,30</sup>. During early T-dependent responses, plasmablasts  
79 accumulate at the GC-T zone interface (GTI)<sup>31</sup>, but whether this also occurs for GC-derived PC is not known.  
80 PC that are found in the LN medulla, further away from the GC DZ, express less proliferation markers (Ki67<sup>+</sup>)  
81 than those that are closer to the DZ, indicating a possible spatio-temporal axis of GC to PC differentiation<sup>32</sup>.  
82 In addition, it was recently shown that post-selection PC expand clonally without further SHM<sup>33</sup>, but whether  
83 this expansion occurs inside or outside of the GC, or where in the dLN, is still unknown.

84 Here, we identified GC-to-PC intermediate differentiation states in mouse draining LN after model antigen  
85 immunization, that we characterized through integrative analyses of phenotypes, transcriptomes, BCR  
86 repertoires, and microanatomic localization. We show that GC-derived PC differentiation implies local  
87 proliferation at the interface between the GC DZ and the LN medulla.

88 **RESULTS**

89 *Tracking GC B cells and recent GC emigrants after model immunization*

90 We used a GC B cell fate mapping mouse model, *Aicda-Cre-ERT2* x *Rosa26-lox-STOP-lox-eYFP*<sup>34</sup>, to track  
91 GC B cells and their recent progeny in draining lymph nodes after subcutaneous immunization. After  
92 immunization with the T-dependent model antigen 4-hydroxy-3-nitrophenylacetyl-conjugated keyhole lympet  
93 hemocyanin (NP-KLH) in Sigma Adjuvant System adjuvant, we gavaged the mice once with tamoxifen to  
94 induce eYFP expression in *Aicda* expressing cells, and analyzed cells in draining lymph nodes (dLN) by flow  
95 cytometry at day 13 after immunization, 2 to 6 days after tamoxifen gavage (**Figure 1a**). In that model,  
96 gavaging with tamoxifen after day 6 ensures that eYFP expression is triggered almost exclusively in GC B  
97 cells. Thus, among activated IgD<sup>neg</sup> B cells, we detected eYFP expression in CD138<sup>+</sup> PC (**Figure 1b**),  
98 GL7<sup>+</sup>CD38<sup>-</sup> GC B cells, and CD38<sup>+</sup>GL7<sup>-</sup> memory B cells (MBC) (**Figure 1c**). While tamoxifen-induced labeling  
99 was already maximal 2 days after gavage in GC B cells, GC-emigrant eYFP<sup>+</sup> MBC and PC were barely  
100 detectable at that time, but increased gradually after 4 to 5 days (**Figure 1d**). We then assessed the  
101 proportion of NP-binding cells among IgD<sup>neg</sup> B cell subsets in dLN at day 14 after NP-KLH immunization and  
102 4 days after tamoxifen gavage (**Figure 1e-f**). Total GC B cells and PC included on average 20% and 30%  
103 NP-PE<sup>+</sup> cells, respectively, while MBC included less than 5% NP-binding cells (**Figure 1e**). Restricting the  
104 analysis to eYFP<sup>+</sup> cells resulted in higher proportions of NP-binding cells in all subsets, including MBC where  
105 15% on average were NP-PE<sup>+</sup> (**Figure 1f**), indicating that PC and MBC exported from the GC from day 10  
106 to day 14 were enriched in cells that could detectably bind antigen. Thus, the *Aicda-Cre-ERT2* x *Rosa26-lox-STOP-lox-eYFP* mouse model enabled us to track GC output of PC and MBC in dLN after subcutaneous  
107 model antigen immunization.

109 *Single-cell RNA-seq analysis of GC B cells and recent GC emigrants identifies putative prePC*

110 Using the GC B cell fate mapping mouse model in different immunization schemes with either the chicken  
111 ovalbumin (OVA) or NP-KLH model antigens (**Figure 2a**), we generated 3 distinct single-cell RNA-seq  
112 (scRNA-seq) datasets of IgD<sup>neg</sup> eYFP<sup>+</sup> B cells from dLN. In dataset #1, mice were primed with OVA in Alum,  
113 and we investigated cells 4 days after tamoxifen gavage, at day 10 and day 20 of either the primary response,  
114 or the secondary response after boosting, using the FACS-based 5-prime-end sequencing (FB5P-seq)  
115 method for integrative scRNA-seq analysis<sup>35</sup>. In dataset #2, mice were primed with NP-KLH in Sigma  
116 Adjuvant System, and we investigated cells 5 days after tamoxifen gavage, at day 16 of the primary response,  
117 using droplet-based 5'-end scRNA-seq. In dataset #3, mice were primed with NP-KLH in Sigma Adjuvant  
118 System, and we investigated cells 3 days after tamoxifen gavage, at day 10, day 16 and day 22 of the primary  
119 response, using droplet-based 5'-end scRNA-seq. After standard quality controls of the resulting scRNA-seq  
120 datasets, we integrated all experiments in a single low dimensional UMAP embedding (**Supplementary**  
121 **Figure 1a-b**) and defined gene expression-based subsets by non-supervised clustering (**Figure 2b**). Based  
122 on marker genes expression (**Figure 2c**), cluster 0 included mostly quiescent cells and corresponded to LZ  
123 GC B cells (*Cd83*, *Il4i1*); clusters 1, 2, 3 and 7 expressed distinct combinations of cell cycle associated genes  
124 and corresponded to DZ GC B cells; cluster 5 expressed the typical Myc-induced signature of positively  
125 selected LZ GC B cells (*Npm1*, *C1qbp*); cluster 4 included mostly quiescent cells and expressed both LZ and  
126 MBC markers (*Klf2*, *Serpib1a*), suggesting those cells corresponded to preMBC or early MBC; and cluster  
127 6 expressed high levels of immunoglobulin (Ig) coding genes and corresponded to PC. Although there was  
128 a clear continuum between quiescent LZ GC B cells and preMBC in the low dimensional embedding, the PC  
129 cluster was completely separated and we failed to identify transitional states from GC to PC through non-  
130 supervised analyses in that dataset.

131 We reasoned that a supervised approach would more accurately identify putative prePC transitional states  
132 that bridge GC B cells and PC. We thus used a gene signature-based scoring approach to hierarchically  
133 “gate” cells in the integrated scRNA-seq dataset (**Supplementary Table 1**, **Figure 2d** and **Supplementary**  
134 **Figure 1c**). In particular, we identified rare cells expressing intermediate levels of a PC-specific gene  
135 signature that were embedded in the GC “continent” of the UMAP embedding, which we named “prePC”  
136 (**Figure 2e**). Other supervised annotations, DZ, LZ, LZtoDZ, preMBC and PC were consistent with non-  
137 supervised clusters (**Figure 2e** and **Supplementary Figure 1d**). Putative PrePC represented very low  
138 frequencies (average 0.2%) of sequenced IgD<sup>neg</sup> eYFP cells in all time points of all datasets (**Figure 2f**). We  
139 computed marker genes of the supervised annotated cell subsets in the 3 datasets (**Supplementary Figure**  
140 **1e**). PreMBC, LZ, DZ, LZtoDZ and PC expressed the expected gene expression programs that have already  
141 been described in other mouse GC B cell scRNA-seq datasets<sup>36,37</sup>. Putative prePC expressed *Bst2*, *H2-Q7*,  
142 *Glipr1*, *Selplg*, *Itgb7*, *Plac8*, *Cd22*, *Usp8* and *Serpina3g* among other marker genes (**Supplementary Figure**

143 1e). In particular, high expression of *Psgl1* and *Bst2* (**Figure 2g**), encoding the surface markers PSGL1 and  
144 BST2, suggested that prePC may be identified and enriched by flow cytometry.

145 *Enrichment of putative prePC by flow cytometry*

146 We thus designed a 14-color flow cytometry panel targeting surface markers and transcription factors  
147 characteristic of GC, MBC and PC, and including the PSGL1 and BST2 markers, which we applied to analyze  
148 IgD<sup>neg</sup> B cells in dLN of *Aicda-Cre-ERT2 x Rosa26-lox-STOP-lox-eYFP* mice previously immunized with NP-  
149 KLH in Sigma Adjuvant System adjuvant and gavaged with tamoxifen (**Figure 3a**). UMAP embedding, based  
150 on 10 surface and intracellular markers identified clusters of phenotypically defined GC, MBC and PC, as  
151 well as cells located in intermediate areas of the low dimensional embedding (**Figure 3b**). We gated cells  
152 situated within GC and PC clusters as “GC-to-PC” and inspected their surface phenotype in comparison with  
153 the well-defined GC, MBC and PC clusters. GC-to-PC cells expressed high levels of the GC markers GL7,  
154 CD19 and B220 markers, high levels of the PC-specific transcription factor IRF4, intermediate levels of the  
155 PC marker CD138, and intermediate levels of PSGL1 (**Figure 3c**). Based on the specific surface phenotype  
156 of GC-to-PC cells, we thus reverse engineered a gating strategy (**Figure 3d**) that allowed for the identification  
157 and quantification of prePC (**Figure 3e**). At days 14-16 after primary immunization with NP-KLH, prePC  
158 accounted for approximately 0.08% of IgD<sup>neg</sup> B cells in dLN (**Figure 3f**), included significantly lower  
159 proportions of NP-binding cells (18% on average) compared to GC B cells (23%) and PC (24%), which was  
160 still higher than the proportion of MBC detectably binding NP (2%) (**Figure 3g**).

161 *Characterization of prePC in the GC-to-PC differentiation continuum*

162 In order to gain more insight into the molecular features of prePC, we next used our gating strategy to sort  
163 phenotypically defined prePC and compare them directly to DZ, LZ and PC in FB5P-seq (**Figure 4a**). After  
164 quality control and cell cycle regression of the resulting dataset, low-dimensional UMAP embedding displayed  
165 a clear separation between DZ and LZ GC B cells on one side, and PC on the other side, with a subset of  
166 phenotypically defined prePC bridging the 2 cell continents (**Figure 4b**). Consistent with our previous analysis  
167 on non-enriched cells (**Supplementary Figure 1e**), single prePC combined the expression of GC B cell  
168 signature genes *Ms4a1*, *Cd19*, *Irf8*, with the expression of positive-selection induced gene *Myc*, and the  
169 expression of PC differentiation surface markers and transcription factors *Sdc1*, *Prdm1*, *Irf4*, *Selp1g* and *Bst2*  
170 (**Figure 4c**). Those cells were also actively proliferating, either in S or G2/M phase of the cell cycle (**Figure**  
171 **4d**).

172 PC differentiation is characterized by the production of high amounts of antibodies, requiring high level of Ig  
173 genes transcription and the induction of a specific endoplasmic reticulum (ER) stress response<sup>30</sup>. PrePC  
174 expressed intermediate levels of genes involved in the ER stress response (**Supplementary Figure 2a**), and  
175 intermediate levels of Ig transcript counts (**Supplementary Figure 2b**), when compared with GC B cells and  
176 PC. We thus defined a continuum of GC-to-PC differentiation based on single-cell gene expression of the  
177 ER stress module and Ig transcripts counts (**Figure 4e-g**), in which most phenotypically defined prePC  
178 bridged the gap between GC B cells and PC. Another feature of PC differentiation, the gradual loss of antigen-  
179 presentation capacity on MHC-II<sup>38</sup>, was also intermediate in phenotypically defined prePC (**Figure 4h** and  
180 **Supplementary Figure 2c-d**). Functionally, FACS-sorted prePC spontaneously secreted detectable  
181 amounts of soluble IgG in ex vivo cultures (**Figure 4i**). Thus, prePC with the GL7<sup>+</sup> B220<sup>+</sup> CD138<sup>int</sup> PSGL1<sup>+</sup>  
182 phenotype were engaged in the early stages of GC-to-PC differentiation and had already initiated the  
183 antibody production program.

184 The distribution of phenotypically defined prePC along the GC-to-PC differentiation continuum showed that  
185 those cells were also heterogeneous, and could be further divided based on their degree of differentiation  
186 (**Figure 4j-k**). PrePC are rare intermediates in non-enriched datasets (e.g. **Figure 2**), but our enriched  
187 dataset provided a unique opportunity to finely map the transcriptional changes that pave the GC-to-PC  
188 differentiation. We thus clustered genes according to the dynamic evolution of their expression as cells  
189 progress through the GC-to-PC continuum (**Figure 4l**), and computed the gene ontology enrichment of gene  
190 modules that are progressively lost (clusters 1-3) or induced (clusters 4-6) through differentiation (**Figure**  
191 **4m**). Those analyses revealed that very early metabolic reprogramming (nucleotide biosynthesis process,  
192 cellular respiration, oxidative phosphorylation, proton motive force–driven mitochondrial ATP synthesis)  
193 preceded the gradual increase in antibody production-associated physiological responses (response to ER  
194 stress, response to unfolded protein).

195 **BCR analysis of prePC**  
196 The affinity maturation trajectory of GC B cells and their progeny is in-part traceable through the analysis of  
197 their Ig gene transcripts<sup>39</sup>. Our prePC-enriched FB5P-seq analysis retrieved IgH and IgL sequences for the  
198 vast majority of single cells (n=965/1367) For better resolution of the different gene expression programs and  
199 their associated BCR sequence features, we re-annotated the cell types and states using the supervised  
200 annotation method described in **Supplementary Figure 1c**, resulting in the identification of DZ, LZ, LZtoDZ,  
201 PC, preMBC and prePC with specific gene expression programs and phenotypes (**Supplementary Figure**  
202 **2e**). While close to 90% of DZ, LZ and LZtoDZ subsets carried mutations in their IGH and IgL variable genes,  
203 only 75% of preMBC and 40% of prePC and PC were mutated (**Figure 5a-b**). Unmutated and mutated prePC  
204 and PC did not differ in their gene expression programs as testified by low-dimensional UMAP embedding  
205 (**Figure 5c**), but were slightly different in isotype usage, with unmutated cells being more frequently IgM-  
206 positive (**Figure 5d**). IgM-expressing cells represented approximately 25% of both DZ and LZ cells, less than  
207 5% of positively selected LZtoDZ cells, and about 60% of preMBC; in unmutated PC and prePC, 30% were  
208 IgM-positive, as compared to 5% and 10%, respectively, for their mutated counterparts.

209 The supervised annotation showed that prePC were split into two subsets: one expressing intermediate levels  
210 of ER stress response genes and the signature of recent positive selection; and the other, mostly quiescent,  
211 expressing low levels of ER stress response genes and no sign of activation (**Figure 5e**). We re-annotated  
212 those prePC subsets as prePC.Act and prePC.ERstress<sup>lo</sup> (**Figure 5f-g**) and re-analyzed their surface  
213 phenotype and BCR mutations. PrePC.Act cells had the typical prePC phenotype identified in this study  
214 (GL7<sup>+</sup> CD138<sup>int</sup> B220<sup>+</sup> CD19<sup>+</sup>), while prePC.ERstress<sup>lo</sup> were phenotypically heterogeneous and analogous to  
215 PC, suggesting that the latter were more advanced in their differentiation (**Figure 5h**). BCR mutations did not  
216 differ between the two prePC subsets (**Figure 5i**). Finally, we identified BCR clonotypes in the dataset and  
217 analyzed the compositions in distinct cell types and states of clonal families (groups of 2 or more cells sharing  
218 the same IgH and IgL clonotype). We first annotated clonal families depending on whether they contained  
219 cells from one or several of the cell states defined by our supervised annotation; then we analyzed for each  
220 cell state the proportion of cells being allocated to distinct clonal families (**Figure 5j**). About half of DZ and  
221 LZ cells were in clonal families comprising either only GC B cells (either DZ, LZ and/or LZtoDZ), GC and PC,  
222 or GC, PC and prePC. By contrast, LZtoDZ cells were more frequently clonally associated to GC, prePC and  
223 PC, and preMBC were most often not clonally related to any other cell in the dataset. As expected for  
224 transitional states in the GC-to-PC differentiation, prePC.Act cells were often clonally related to both GC and  
225 PC.

226 Overall, the integration of gene expression, surface phenotype and BCR sequence measurements in single  
227 cells enriched in putative prePC enabled the fine characterization of the rare intermediate transitional states  
228 in the GC-to-PC differentiation.

### 229 *Recent GC-derived PC proliferate at the DZ-medulla interface*

230 Some of the genes specifically associated with the prePC state encoded chemotaxis (*Cxcr3*, *Gpr183*) or  
231 adhesion molecules (*Itga4*, *Itgb1*) (**Figure 6a**), suggesting that prePC may be localized in a specific  
232 compartment in the dLN. To assess the location of GC-derived PC differentiation in our model, we first  
233 performed whole transcriptome spot-based spatial transcriptomics (10x Genomics Visium) analysis of 4  
234 sections of the same 2 dLN, separated by approximately 50µm in depth (**Figure 6b**). After quality control, we  
235 annotated spots with a semi-supervised approach: first using non-supervised spot clustering and marker  
236 genes to identify spots corresponding to B follicles, T zones, medulla, GC LZ and GC DZ; then defining three  
237 zones at the interface of the GC (Methods), the GC-T zone interface (GTI), the GC-B follicle interface (GBI),  
238 and the GC-medulla interface (GMI) (**Figure 6b-c**). We then scored a PC gene expression signature on every  
239 spot as a proxy for detecting the presence of PC in the distinct dLN microenvironments and interfaces. The  
240 PC score was high in medulla, as expected since PC are known to reside in medullary chords before dLN  
241 exit<sup>40</sup>; among GC-proximal interfaces, GMI spots were the main areas with high PC scores (**Figure 6d**). This  
242 result suggested that stromal components of the medulla that support PC survival extend to the direct  
243 proximity of the GC, at the DZ side. Accordingly, several stromal cell subsets gene expression signatures<sup>41</sup>  
244 also scored highly in the medulla and GMI areas (**Supplementary Figure 3a-b**).

245 We thus turned to high-resolution microscopy to precisely map the location and interactions of eYFP<sup>+</sup> IRF4<sup>+</sup>  
246 cells, which we defined as recently differentiated PC. Consistent with our spatial transcriptomics results, we  
247 found clusters of eYFP<sup>+</sup> IRF4<sup>+</sup> cells accumulating in collagen-IV-rich areas in close proximity to the GC DZ  
248 (**Supplementary Figure 3c**). At the GMI, eYFP<sup>+</sup> IRF4<sup>+</sup> cells were surrounded by Lyve1<sup>+</sup> lymphatic  
249 endothelial cells and PDGFR1<sup>+</sup> stromal cells (**Figure 6e**). The density of eYFP<sup>+</sup> IRF4<sup>+</sup> cells in the GMI and

250 medulla was similar (**Figure 6f**) Although on some sections, the eYFP<sup>+</sup> IRF4<sup>+</sup> cells in close proximity to the  
251 GC DZ seemed to express lower levels of CD138 than those more distal in the medullary areas (**Figure 6e**,  
252 panel *iv*), suggesting less advanced differentiation, that observation was not statistically significant when  
253 considering all GCs from multiple dLN sections (**Figure 6g**). Our scRNA-seq data and recently published  
254 observations<sup>33</sup> have indicated that early differentiating prePC, or recently differentiated PC proliferate  
255 extensively. *In situ*, we showed that a majority of eYFP<sup>+</sup> IRF4<sup>+</sup> at the GMI expressed Ki67, a hallmark of  
256 active proliferation (**Figure 6h**). Since we did not find a GMI area surrounding every GC in every tissue  
257 section, we reasoned that the medulla may connect with the GC DZ only at certain contact areas that are not  
258 always captured in a 5-10  $\mu$ m tissue section. We thus run whole-LN 3D-imaging using light sheet microscopy,  
259 and could indeed show that every GC in a dLN included a GMI contact area, but that the area was not found  
260 at all depths (**Figure 6i** and **Supplementary Movie**).

261 Overall, we have characterized the GMI, a specific dLN microenvironment defined as an extension of the  
262 medulla contacting the GC DZ at some level, as the main environment for exit and proliferation of GC-derived  
263 PC.

264

## DISCUSSION

265 Our study provides a detailed characterization of rare prePC intermediate states in the GC-to-PC  
266 differentiation trajectory in draining LN after immunization. We showed that prePC expressed a mixed  
267 phenotype expressing both GC and early PC markers in phenotypic and transcriptomic analyses; they were  
268 also actively cycling, expressed intermediate levels of MHC-II genes, had initiated metabolic reprogramming  
269 and started upregulating UPR programs, and produced antibodies *ex vivo* without any additional signal.  
270 Those data indicate that we have identified late intermediate states in the GC-to-PC differentiation trajectory.  
271 As prePC spanned different unsupervised clusters in gene expression space, we analysed whether multiple  
272 prePC states existed. PrePC could be subdivided based on either their BCR mutational profile, or their gene  
273 expression profile. In the latter, we separated ERstress<sup>low</sup> PrePC from activated PrePC which expressed a  
274 gene expression profile (Myc-induced genes) and phenotype (GL7<sup>hi</sup> CD138<sup>lo</sup> B220<sup>int</sup> CD19<sup>hi</sup>) related to  
275 selected LZ GC B cells. PrePC also expressed a distinctive repertoire of homing markers, suggesting they  
276 had already homed or were homing to extra-GC areas in draining LN. We found recently GC-exported PC  
277 proliferating just outside of the GC DZ, at the interface with medullary tissue microenvironments that  
278 connected every GC to the deep medulla. The GC-medulla interface contained Lyve1<sup>+</sup> and PDGFR1<sup>+</sup> stromal  
279 cells that may serve as a maturation niche for cells in the GC-to-PC differentiation trajectory.

280 Several studies have identified prePC states as LZ GC B cells expressing high levels of *Irf4* in mice<sup>31,42</sup>, and  
281 cells expressing both PC and cell cycle markers in humans<sup>5,10,43</sup>. Those studies lacked other information such  
282 as their surface phenotype, function, and *in situ* localization, making it difficult to compare them directly with  
283 our definition of prePC. Recent studies in human tonsils has identified pre-plasmablasts that appeared  
284 integrated in the differentiation trajectory from GC to PC<sup>26,27,44</sup>. Indeed, in that study the authors described  
285 cells that were intermediate in their transcriptomic profile, and shared clones with both GC B cells and PC.  
286 Even though the authors did not focus their analyses on these states, we could identify some common  
287 features with the prePC we have identified in our study in mice (e.g. expression of PC lineage genes like  
288 *IRF4*, *PRDM1*, *XBP1*, *FKBP11*, and cell cycle progression), highlighting some evolutionary conserved  
289 modules activated at the GC-to-PC transition. In another high resolution human tonsil atlas<sup>45</sup>, it was described  
290 that GC-derived PC branched both from LZ GC B cells and activated LZ-to-DZ B cells, the latter likely  
291 representing the counterparts of the activated prePC we describe in our study in mouse LN. Another study  
292 characterized human prePC in an *ex vivo* MBC differentiation model using a combination of scRNAseq and  
293 ATACseq<sup>46</sup>. Although they originated from blood MBC, and not LN GC B cells, prePC in that study were  
294 highly heterogenous and integrated in a continuum of differentiation with stepwise induction of the unfolded  
295 protein response, and with AP-1 family transcription factors like BATF playing a likely role at the onset of  
296 differentiation. In our study, prePC branched from the LZ-to-DZ GC B cell state, where the transcription factor  
297 BATF has been shown to play a key role for metabolic refuelling induced by T cell help<sup>47</sup>. Altogether, our  
298 current results on prePC are consistent with previous studies, refine the molecular characterization of those  
299 rare intermediate states, and introduce a gating strategy for enriching those cells from mouse GC by flow  
300 cytometry, which will be important to specifically analyze that population in future studies.

301 *In silico* modeling experiments have suggested that PC exit the GC from the DZ<sup>28</sup>. Several homing receptors  
302 appear to be implicated in PC egress from GC (Gpr183, S1PR1, CXCR4), but the precise route that prePC  
303 or PC use to exit GCs remained unidentified<sup>29,30</sup>. Based on gene expression, we found that prePC were likely  
304 in the process of egress from the GC, but their scarcity precluded their robust identification by confocal  
305 microscopy in LN tissue sections. Instead, we analyzed recent GC emigrant PC (RGCE-PC) that were eYFP<sup>+</sup>  
306 IRF4<sup>+</sup> 3-4 days after tamoxifen induction of eYFP expression in GC B cells. RGCE-PC accumulated at the  
307 border of the GC. In previous studies, PC differentiated after early GC-independent B cell activation  
308 accumulated at the interface between the nascent GC and the T zone<sup>31,41</sup>. In our study, we showed that  
309 RGCE-PC were in fact accumulating and proliferating in DZ-proximal microenvironments characterized by a  
310 gene expression and cellular composition similar to the LN medulla. Notably, the GC-medulla interface was  
311 surrounded by Lyve1<sup>+</sup> cells resembling medullary sinus LEC<sup>48</sup>, and contained numerous PDGFR1<sup>+</sup> stromal  
312 cells with high gene expression scores for previously described medullary stromal cell subsets (Nr4a1<sup>+</sup> and  
313 Inmt<sup>+</sup> stromal cells)<sup>41</sup>. Medullary fibroblastic reticular cells have been shown to provide essential survival and  
314 maturation cues to plasma cells in lymph nodes<sup>49</sup>, but the fact that those cells may be in such a close proximity  
315 to the GC DZ has remained unnoticed in imaging studies focusing on B follicle stromal remodeling<sup>50,51</sup>. We  
316 attribute that to the fact that most 2D images of thin tissue sections failed to capture the GMI, which bridged  
317 medulla and GC DZ only at certain z-depth for a given GC structure. We did not detect GMI areas in non-  
318 immunized lymph nodes (unpublished observation), and other studies have shown a tight separation between  
319 medulla and B cell follicles in naïve LN<sup>49,52</sup>. However, adjuvanted immunization or infection induces

320 lymphangiogenesis and stromal remodeling<sup>49,53</sup> close to activated B cell follicles, which may initiate the  
321 spontaneous organization of a GMI area that supports early PC proliferation, maturation and migration.

322 In our experiments, close to 25% of LZ-to-DZ cells were clonally related to PC or prePC, compared to less  
323 than 10% for LZ or DZ GC B cells, suggesting that prePC derive more closely from GC B cells clones selected  
324 at the LZ-to-DZ stage. Thus, our study implies that, after being selected in the LZ, a fraction of LZ-to-DZ state  
325 GC B cells commit to the prePC state and proliferate at the external border of the DZ, mature locally in the  
326 GC-medulla interface, before migrating along the medullary continuum towards efferent lymphatics.

327 Overall, our study provides novel insights into the intermediate stages and microenvironmental factors  
328 involved in the differentiation of GC B cells into PC. The identification of the GMI as an important lymph node  
329 microenvironment for post-GC PC maturation and clonal expansion opens new perspective for studying  
330 factors contributing to PC differentiation. We anticipate that in-depth studies of those intermediate cellular  
331 states in different models of infection and vaccination will enable a finer understanding of the mechanisms  
332 that are key for generating long-lived high affinity PC, with implications for vaccine development.

333

334

335 **EXPERIMENTAL METHODS**

336 *Mouse models*

337 *Aicda-Cre-ERT2 x Rosa26-lox-STOP-lox-eYFP* mice<sup>34</sup> were bred at the Centre d'Immuno-Phenomique,  
338 (Marseille, France), and transferred to the animal care facility of Centre d'Immunologie de Marseille-Luminy  
339 for experiments. C57BL/6 mice were purchased from Janvier Labs (Le Genest-Saint-Isle, France). All mice  
340 were maintained in the CIML mouse facility under specific pathogen-free conditions. Experimental  
341 procedures were conducted in agreement with French and European guidelines for animal care under the  
342 authorization number APAFIS #30945-2021040807508680, following review and approval by the local animal  
343 ethics committee in Marseille. Mice were used regardless of sex, at ages greater than 7 weeks and less than  
344 3 months.

345 Mice were immunized with either 100µg of NP-KLH at 1µg/µL emulsified with Sigma Adjuvant System (SAS)  
346 at a 1:1 (v:v) ratio, or 100µg chicken ovalbumin (OVA) at 1µg/µL emulsified with Alum at a 1:1 (v:v) ratio,  
347 subcutaneously at the base of the tail, 50µL on each side. For induction of the Cre-ERT2-mediated labelling,  
348 we gavaged the mice once with 5mg of tamoxifen (TS648-1G, Sigma) in 200µL of peanut oil (P2144-250 ML,  
349 Sigma), at least 6 days after immunization. Mice were euthanized between 10 days and 21 days post-  
350 immunization (prime or boost) according to the experiments.

351 *Flow cytometry*

352 Single-cell suspensions from draining lymph nodes were washed and resuspended in FACS buffer (5% fetal  
353 calf serum, 2mM EDTA, 5% Brilliant Stain Buffer Plus in PBS 1X) at a concentration of 100 million of cells  
354 per ml. Cells were first incubated with FcBlock (Biolegend) for 10 min on ice. Then, cells were incubated with  
355 a mix of antibodies (see table1 below) conjugated with fluorochromes 30 min on ice. Cells were washed in  
356 PBS, and incubated with the Live/Dead Fixable Aqua Dead Cell Stain (Thermofisher) for 10 min on ice. Cells  
357 were then washed again in FACS buffer and resuspended in 2% paraformaldehyde during 50min to preserve  
358 the eYFP contained in the cytoplasm. Cells were washed and permeabilized using the FoxP3  
359 permeabilization kit (eBioscience) during 30min, then washed again in the permeabilization buffer and  
360 incubated with intracellular antibodies for 45min at RT. Cells were finally washed in permeabilization buffer  
361 and resuspended in FACS buffer. Cell suspensions were analyzed on the LSRII UV cytometer (Becton  
362 Dickinson).

363

| mAb                                    | Clone         | Manufacturer | Reference      |
|----------------------------------------|---------------|--------------|----------------|
| <b>Ki67 - BUV395</b>                   | B56           | BD           | 564071         |
| <b>PSGL1 (CD162) - BUV737</b>          | 2PH1          | BD           | 741796         |
| <b>GL7 - Pacific Blue</b>              | GL7           | Biolegend    | 144614         |
| <b>CCR6 (CD196) - BV605</b>            | 29-2L17       | Biolegend    | 129819         |
| <b>CD86 - BV650</b>                    | GL-1          | Biolegend    | 105035         |
| <b>CD138 - BV711</b>                   | 281-2         | BD           | 563193         |
| <b>CD19 - BV785</b>                    | 6D5           | Biolegend    | 115543         |
| anti-GFP (cross-react<br>eYFP) – AF488 |               | Thermofisher | A-21311        |
| <b>NP - PE</b>                         |               | Home made    |                |
| <b>B220 - PE-Cy5</b>                   | RA3-6B2       | Biolegend    | 103209         |
| <b>CXCR4 - PE-Cy7</b>                  | 2B11          | Thermofisher | 25-9991-<br>80 |
| <b>IRF4 - AF647</b>                    | IRF4.3E4      | Biolegend    | 646409         |
| <b>CD38 - AF700</b>                    | 90            | Thermofisher | 56-0381-<br>82 |
| <b>CD3 - APC-Cy7</b>                   | 17A2          | BD           | 560590         |
| <b>Gr1 (Ly6G) - APC-Cy7</b>            | 1A8           | BD           | 560600         |
| <b>IgD - APC-Cy7</b>                   | 11-<br>26c.2a | Biolegend    | 405716         |
| <b>Bst2 (CD317) - AF647</b>            | 129c1         | Biolegend    | 127106         |

364

365 For cell sorting, cells were pre-enriched using the “Pan B Cell Isolation Kit II mouse” enrichment kit from  
366 Miltenyi Biotec (ref. 130-104-443) in which we added a biotinylated anti-IgD antibody for further enrichment  
367 of IgD<sup>neg</sup> B cells (Biolegend ref. 405734). Cells were prepared as mentioned in the protocol provided and  
368 passed through LS columns according to the manufacturer’s instructions. We collected the negative fraction  
369 and processed the cells according to the classical extracellular staining protocol, using antibodies described  
370 in the table below. Cells were sorted on the BD Influx™ Cell Sorter, in 96-well plates, with index-sorting mode  
371 for recording the fluorescence parameters associated to each sorted cell.

| mAb                          | Clone     | Manufacturer | Reference  |
|------------------------------|-----------|--------------|------------|
| <b>B220 - FITC</b>           | RA3-6B2   | Biolegend    | 103205     |
| <b>CXCR4 - PerCP-eF710</b>   | 2B11      | Thermofisher | 46-9991-82 |
| <b>GL7 - Pacific Blue</b>    | GL7       | Biolegend    | 144614     |
| <b>CD138 - BV711</b>         | 281-2     | BD           | 563193     |
| <b>PSGL1 (CD162) - AF647</b> | 2PH1      | BD           | 562806     |
| <b>CD3 - APC-Cy7</b>         | 17A2      | BD           | 560590     |
| <b>Gr1 (Ly6G) - APC-Cy7</b>  | 1A8       | BD           | 560600     |
| <b>IgD - APC-Cy7</b>         | 11-26c.2a | Biolegend    | 405716     |
| <b>CD38 - PE</b>             | 90        | Invitrogen   | 12-0381-82 |
| <b>CD19 - PE-Dazzle594</b>   | 6D5       | Biolegend    | 115554     |
| <b>CD86 - PE-Cy7</b>         | GL-1      | Thermofisher | 12-0862-82 |

372  
373 Data were analysed using FlowJo (v10.8.1).  
374  
375 *FB5P-seq*  
376 The protocol was performed as previously described by Attaf et al.<sup>35</sup>. Individual cells were sorted into a 96-  
377 well PCR plate, with each well containing 2 µL of lysis buffer. Index sort mode was activated to record the  
378 fluorescence intensities of all markers for each individual cell. Flow cytometry standard (FCS) files from the  
379 index sort were analyzed using FlowJo software, and compensation parameters were exported as CSV  
380 tables for subsequent bioinformatic analysis. Immediately after sorting, plates containing individual cells were  
381 stored at -80°C until further processing. Following thawing, reverse transcription was performed, and the  
382 resulting cDNA was preamplified for 22 cycles. Libraries were then prepared according to the FB5P-seq  
383 protocol. The FB5P-seq data were processed to generate both a single-cell gene count matrix and single-  
384 cell B cell receptor (BCR) repertoire sequences for B cell analysis. Two separate bioinformatic pipelines were  
385 employed for gene expression and repertoire analysis, as detailed in Attaf et al.<sup>35</sup>.

385 *10x 5' scRNA-seq*  
386 For experiments described in Figure 2a, cells from draining lymph nodes were washed and resuspended in  
387 FACS buffer (PBS containing 5% FCS and 2 mM EDTA) at a concentration of 10<sup>8</sup> cells/ml. Samples from  
388 different mice and different time points were processed separately using cell hashing as described<sup>54</sup>. Cells  
389 were individually stained with distinct barcoded anti-mouse CD45 antibodies (in-house conjugated) in FACS  
390 buffer for 30 minutes on ice. Subsequently, cells were washed and stained with a mix of primary antibodies,  
391 then Live/Dead Fixable Aqua Dead Cell Stain (Thermofisher). Live cells of interest (IgD<sup>neg</sup> eYFP<sup>+</sup> PC and B  
392 cells) from each sample were bulk-sorted using a BD Influx cell sorter. PC and non-PC were captured in  
393 distinct wells for droplet-based scRNA-seq to maximize the recovery of BCR sequence information from non-  
394 PC. Within each fraction, cells from different samples were pooled and loaded for the 10x Genomics Single  
395 Cell 5' v2 workflow. Libraries were prepared according to the manufacturer’s instructions with modifications  
396 for generating B cell receptor (BCR) sequencing libraries. Following cDNA amplification, SPRI select beads  
397 were used to separate the large cDNA fraction derived from cellular mRNAs (retained on beads) from the  
398 hashtag oligonucleotide (HTO)-containing fraction (in supernatant). For the mRNA-derived cDNA fraction, 50  
399 ng were used to generate the transcriptome library, and 10-20 ng were used for BCR library construction.  
400 Gene expression libraries were prepared according to the manufacturer’s instructions. For BCR libraries,  
401 heavy and light chain cDNAs were amplified by two rounds of PCR (6 cycles + 8 cycles) using external

402 primers recommended by 10x Genomics. Approximately 800 pg of purified amplified cDNA was fragmented  
403 using the Nextera XT DNA Sample Preparation kit (Illumina) and amplified for 12 cycles using the SI-PCR  
404 forward primer (10x Genomics) and a Nextera i7 reverse primer (Illumina). For the HTO-containing fraction,  
405 5 ng were used to generate the HTO library. The resulting libraries were pooled and sequenced on an Illumina  
406 NextSeq2000 platform with single-indexed paired-end kits following the manufacturer's guidelines.

407 *Ex vivo culture and ELISA*

408 Single-cell suspensions FACS-sorted from draining lymph nodes were washed and resuspended in culture  
409 medium (10% FCS, 0.1% 2-Mercapto-ethanol, 1% non-essential amino acids, 1% Sodium Pyruvate, 1%  
410 HEPES buffer; 1% L-Glutamine, 1% Penicilin-Streptomycin in RPMI 1640) and placed in culture for different  
411 times at 37°C, 5% CO<sub>2</sub>. Cell culture supernatants were collected and stored at -80°C until analysis. Mouse  
412 IgG concentrations were determined using the LSBio Mouse IgG ELISA Kit (Catalog No. LS-F10451)  
413 according to the manufacturer's instructions.

414 *Spatial transcriptomics*

415 Freshly dissected draining lymph nodes were dried on absorbent paper, embedded in OCT, snap frozen in  
416 isopentane over dry ice, and stored at -80°C until processing. On the day of the experiment, 10 µm-thick  
417 cryosections were prepared from the region of interest using a cryostat. Four sections separated by 50µm in  
418 depth were placed on a Visium slide within the designated capture areas. Hematoxylin and eosin (H&E)  
419 staining was performed according to the manufacturer's guidelines with the following modifications:  
420 hematoxylin incubation for 30 seconds, bluing buffer for 5 seconds, and eosin incubation for 1 minute 30  
421 seconds, all at room temperature. Following washing, brightfield images of the stained sections were  
422 acquired before proceeding to subsequent steps of the 10x Genomics Visium Spatial Gene Expression  
423 protocol. The tissue was embedded in OCT medium and a 10 µm section was cut on a cryostat and deposited  
424 on the capture area of the Visium slide following the guidelines of the 10x Genomics Visium Spatial Gene  
425 Expression protocol. Briefly, we performed permeabilization (18 min), reverse transcription, second strand  
426 synthesis, denaturation, cDNA amplification (16 cycles of PCR), and library construction according to the  
427 manufacturer's instructions. The resulting libraries were sequenced on an Illumina NextSeq2000, generating  
428 an average of 120 million reads per library (Read 1: 28 cycles, Read i7: 10 cycles, Read i5: 10 cycles, Read  
429 2: 79 cycles).

430 *Confocal microscopy*

431 Draining lymph nodes were harvested from immunized mice and fixed in antigen fix solution (DiaPath, ref.  
432 P0014) for 2 hours at 4°C. Samples were subsequently washed in phosphate-buffered saline (PBS) and  
433 cryoprotected in 30% sucrose overnight. The tissue was then embedded in optimal cutting temperature  
434 (OCT) compound and snap-frozen in isopentane. Cryosections (20 µm thickness) were prepared using a  
435 cryostat and stored at -20°C until staining. For immunofluorescence staining, sections were rehydrated in 1X  
436 PBS for 10 minutes. Non-specific binding was blocked by incubating sections for 30 minutes at room  
437 temperature in a blocking solution containing 0.1% Triton X-100, 1% fetal calf serum (FCS), 1% bovine serum  
438 albumin (BSA), and 1% serum from the host species of the secondary antibody in 1X PBS. Primary antibodies  
439 (see table below) were diluted in blocking solution, and sections were incubated overnight at 4°C. Following  
440 washing, slides were mounted using ProLong Gold antifade reagent (Invitrogen, ref. P36930). Confocal and  
441 spectral images were acquired using a Zeiss LSM 980 confocal microscope. Image processing for  
442 conventional analysis was performed using Zen software, while quantitative analysis was conducted using  
443 QuPath software (see "Quantitative analysis of confocal microscopy images" section for details).

| mAb                                        | Clone     | Manufacturer | Reference  |
|--------------------------------------------|-----------|--------------|------------|
| <b>Lyve1 – eF570</b>                       | ALY7      | Thermofisher | 41-0443-82 |
| <b>Ki67 – eF660</b>                        | SolA15    | Thermofisher | 50-5698-82 |
| <b>IRF4 – AF594</b>                        | IRF4.3E4  | Biolegend    | 646409     |
| <b>CD3 – eF450</b>                         | 17A2      | Thermofisher | 48-0032-82 |
| <b>CD21/35 – AF700</b>                     | 7E9       | Biolegend    | 123431     |
| <b>IgD – SNIR 685</b>                      | 11-26c.2a | Biolegend    | 405749     |
| <b>PDGFR1 - PE</b>                         | 18A2      | Biolegend    | 323605     |
| <b>anti-GFP (cross-react eYFP) – AF488</b> |           | Thermofisher | A-21311    |

|                                     |           |                        |             |
|-------------------------------------|-----------|------------------------|-------------|
| <b>Bcl6 – AF647</b>                 | IG191E/A8 | Biolegend              | 648306      |
| <b>CD138 – PE</b>                   | 281-2     | Biolegend              | 142504      |
| <b>Rabbit anti-mouse Col IV</b>     |           | Abcam                  | Ab19808     |
| <b>Donkey anti-rabbit IgG – Cy3</b> |           | Jackson ImmunoResearch | 711-165-152 |

444

445 *Lightsheet microscopy*

446 Draining lymph nodes were harvested and fixed overnight in 0.4% paraformaldehyde (Electron Microscopy  
447 Science, ref. 15714) diluted in phosphate-buffered saline (PBS). Immunostaining was performed using a mild  
448 permeabilization protocol without methanol<sup>55</sup>. In short, after fixation, the organs were washed in PBS and  
449 incubated overnight at 4°C in blocking buffer (PBS containing 5% donkey serum, 1% rehydrated milk, and  
450 0.4% Triton X-100). Samples were then incubated for 5 days with primary antibodies (see table below) diluted  
451 in PBS containing 1% rehydrated milk, 0.4% Triton X-100, 3% donkey serum, and 3% mouse serum.  
452 Following incubation, samples were washed in PBS with 0.4% Triton X-100 for 1 day. Secondary antibody  
453 incubation was performed similarly for 5 days, followed by another 1-day wash in PBS. Samples were  
454 embedded in 1% low-melting agarose and subsequently dehydrated through a graded methanol series (20%,  
455 40%, 60%, 80%, and 2× 100% in PBS) for 1 hour per concentration at room temperature. Lymph nodes were  
456 then incubated overnight in 100% dehydrated methanol at room temperature. Clearing was initiated by  
457 incubating samples in a 1:1 mixture of methanol and BABB (benzyl alcohol and benzyl benzoate at a 1:2  
458 ratio, Sigma ref. 305197 and Fisher Scientific ref. 10654752), followed by overnight incubation in pure BABB.  
459 Finally, samples were transferred to ethyl cinnamate for storage until imaging. Imaging was performed using  
460 a LaVision Ultramicroscope II (Miltenyi Biotec). Image stacks were acquired with a step size of 6 µm at x2  
461 magnification using an optic zoom with a numerical aperture of 0.5. Three-dimensional reconstruction and  
462 analysis of image stacks were conducted using IMARIS software (Version 9.1.0, Bitplane).

| mAb                                   | Clone    | Manufacturer           | Reference   |
|---------------------------------------|----------|------------------------|-------------|
| <b>Chicken anti-GFP</b>               | -        | AVES                   | GFP-1020    |
| <b>Rabbit anti-mouse Lyve1</b>        | -        | Reliatech              | 103-PA50    |
| <b>Donkey anti-chicken IgY – Cy3</b>  | -        | Jackson ImmunoResearch | 703-166-155 |
| <b>Donkey anti rabbit IgG – AF790</b> | -        | Jackson ImmunoResearch | 711-655-152 |
| <b>CD4 – AF488</b>                    | GK1.5    | eBioscience            | 53-0041-82  |
| <b>IRF4 – AF647</b>                   | IRF4.3E4 | Biolegend              | 646409      |

463

464

465

## COMPUTATIONAL METHODS

466 *Flow cytometry data analysis*

467 The FlowJo UMAP extension was downloaded from FlowJo Exchange Website and used according to the  
468 default parameters (euclidean distance, nearest neighbors = 15, minimum distance = 0.5, number of  
469 components = 2). The UMAP presented in Figure 3b was computed based on the following compensated  
470 parameters: IRF4, Bst2, CD38, GL7, CD138, CD19, PSGL1, Bcl6, B220, CCR6.

471 *Pre-processing of scRNA-seq datasets*

472 10x Genomics 5'-end sequencing

473 Raw fastq files from gene expression libraries were processed using *Cell Ranger* and *Cell Ranger VDJ*  
474 (v3.0.1 for dataset #2, v6.1.2 for dataset #3), with alignment on the mm10 and vdj\_GRCm38\_alts\_ensembl-  
475 7.0.0 reference genomes, respectively. Quality control was performed on each dataset independently to  
476 remove poor quality cells based on UMI counts, number of genes detected, percentage of transcripts from  
477 mitochondrial genes, and percentage of transcripts from ribosomal protein coding genes. For each cell, gene  
478 expression UMI count values were log-normalized with Seurat *NormalizeData* with a scale factor of 10,000  
479 to generate normalized UMI count matrices. HTO barcodes for sample demultiplexing after hashing were  
480 counted using CITE-seq-count and were normalized for each cell using a centered log ratio (CLR)  
481 transformation across cells implemented in the Seurat function *NormalizeData*. Hashtags were demultiplexed

482 using *MULTIseqDemux* function and barcodes assigned as doublets or negative were excluded from further  
483 analysis.

484 FB5P-seq

485 We used a custom bioinformatics pipeline to process fastq files and generate single-cell gene expression  
486 matrices and BCR sequence files as previously described<sup>35</sup>. Detailed instructions for running the FB5P-seq  
487 bioinformatics pipeline can be found at <https://github.com/MilpiedLab/FB5P-seq>. Quality control was  
488 performed on each dataset independently to remove poor quality cells based on UMI counts, number of  
489 genes detected, ERCC spike-in quantification accuracy, and percentage of transcripts from mitochondrial  
490 genes. For each cell, gene expression UMI count values were log-normalized with Seurat *NormalizeData*  
491 with a scale factor of 10,000 to generate normalized UMI count matrices.

492 Index-sorting FCS files were visualized in FlowJo software and compensated parameters values were  
493 exported in CSV tables for further processing. For visualization on linear scales in the R programming  
494 software, we applied the hyperbolic arcsine transformation on fluorescence parameters<sup>56</sup>.

495 For BCR sequence reconstruction, the outputs of the FB5P-seq pipeline were further processed and filtered  
496 with custom R scripts. For each cell, reconstructed contigs corresponding to the same V(D)J rearrangement  
497 were merged, keeping the largest sequence for further analysis. We discarded contigs with no constant  
498 region identified in-frame with the V(D)J rearrangement. In cases where several contigs corresponding to the  
499 same BCR chain had passed the above filters, we retained the contig with the highest expression level. BCR  
500 metadata from the *MigMap* and *Blastn* annotations were appended to the gene expression and index sorting  
501 metadata for each cell.

502 *Non-supervised analysis*

503 For the analysis described in Figure 2, the three datasets after quality control and normalization were  
504 integrated in *Seurat* using *SelectIntegrationFeatures* (2000 features, excluding BCR coding genes),  
505 *FindIntegrationAchors*, and *IntegrateData* (30 components). After integration, we used *RunPCA* (30  
506 components), *FindNeighbors* (30 components) and *FindClusters* (resolution 0.3) for non-supervised  
507 clustering, and *RunUMAP* (30 components) for visualization. Marker genes were computed with  
508 *FindAllMarkers* (Wilcoxon assay) and top markers visualized as a *Seurat* dot plot. For the analysis described  
509 in Figure 4, we used a standard *Seurat* analysis workflow, including cell cycle regression.

510 *Supervised annotation*

511 Supervised annotation of scRNA-seq datasets were performed as described in Figure 2d and Supplementary  
512 Figure 2c. We used the *AddModuleScore* function to compute gene expression scores for every cell in the  
513 datasets for the indicated signatures (**Supplementary Table 1**). For DZ and LZ signatures, genes associated  
514 to cell cycle ontologies (based on GO terms), were removed from the gene lists prior to scoring, as described  
515 in Milpied et al.<sup>57</sup>. Thresholds for “gating” (**Supplementary Figure 1c**) were defined empirically to optimize  
516 concordance between supervised annotation and non-supervised clustering. The continuum score in Figure  
517 4f was computed by fitting a linear regression on the distribution of B cells in the scatter plot of ER stress  
518 score (x-axis) and Normalized Ig transcripts UMI counts (y-axis), and projecting data points on the regression  
519 line.

520 **Gene ontology**  
521 The evolution profile of genes along the differentiation continuum was computed by applying a kernel  
522 smoother on the distribution of data, for each gene expressed in more than 25% cells in the dataset (n=1834  
523 genes after excluding mitochondrial and ribosomal genes). The derivatives of the resulting profiles were  
524 hierarchically clustered (pearson's correlation distance) to define groups of co-evolving genes in the  
525 continuum. Lists of genes grouped in distinct evolution clusters were then submitted to gene ontology analysis  
526 using *gprofiler2*, with default settings, and computing only the results for the “BP: biological processes”  
527 categories. The results of multiple gene clusters were appended in a single plot using *ggplot2*.  
528 **BCR-seq analysis**  
529 Single-cell BCR-seq data were further analyzed with Change-O<sup>58</sup> to compute clonotypes and annotate  
530 somatic hypermutation load. The intersection between cell clonotype identities and supervised annotations  
531 based on gene expression was used to compute the clonal compositions displayed in Figure 5j.  
532 **Spatial Transcriptomics analysis**  
533 Spatial transcriptomics FASTQ files were aligned to the mm10 reference genome using *SpaceRanger* v1.3.1.  
534 Downstream analysis was performed using the *Seurat* R package v4.2.1, employing log-normalization and  
535 the Louvain clustering algorithm. Annotation of the four merged slices was conducted iteratively, beginning  
536 with a clustering resolution of 0.1 (50 principal components) to identify main areas (B cell zone, T cell zone,  
537 and medulla), followed by a resolution of 0.2 (50 principal components) to reveal germinal centers. GC spots  
538 were further subclustered for light zone (LZ) and dark zone (DZ) segregation (resolution 0.2, 30 principal  
539 components). Border regions were annotated based on neighboring spots, defining GC-T zone interface  
540 (GTI), GC-medulla interface (GMI), and GC-B zone interface (GBI) based on neighbor spots annotation.  
541 Annotations were projected onto a UMAP calculated using 50 principal components from the complete  
542 dataset. Cell type-specific genes were identified using *FindAllMarkers* (default parameters) and filtered for  
543 adjusted p-value < 0.05. For stromal cell signature analysis, gene lists were derived from Rodda et al.<sup>41</sup>  
544 (log2FoldChange > 0.5, FDR < 0.05, pct\_in > 0.10).  
545 **Quantitative analysis of confocal microscopy images**  
546 For cell detection and quantification in confocal microscopy images (Figure 6), we used the *QuPath* analysis  
547 platform. We annotated manually the GC and medulla areas based on the eYFP staining for the GC and on  
548 the IRF4 staining for the medulla. We defined the GC-medulla interface (GMI) as a 50µm-wide border  
549 surrounding the GC and intersecting the medulla annotation. We imported a custom script (*Cellpose2coloc*)  
550 in *QuPath*<sup>59</sup> to segment and identify cell subsets: we first generated cell segmentation masks based on the  
551 different channels selected; then we determined the positivity thresholds for defining cell subsets, and used  
552 them for colocalization analysis. We exported the measurements and performed quantification analyses in  
553 GraphPad Prism. All scripts are publicly available here: <https://github.com/Imagimm-CIML/Detection-of-B-cell-subtypes-in-a-draining-lymph-node-using-a-mask-colocalization-approach?tab=readme-ov-file#readme>.  
556 **Statistical analyses**  
557 Statistical analyses were performed using Graphpad Prism or R softwares with tests and p-value significance  
558 criteria detailed in the figure legends.  
559 **Data and code availability**  
560 Single-cell RNA-seq data have been deposited on NCBI GEO under accession numbers XXXXX. Spatial  
561 Transcriptomics data have been deposited on NCBI GEO under accession number XXXXX. Annotated  
562 scRNA-seq and spatial transcriptomics objects, as well as all code used to perform analyses will be available  
563 upon request to the corresponding author.

564 **ACKNOWLEDGEMENTS**

565 We are grateful to all past and present members of the “Integrative B cell Immunology” lab at Centre  
566 d’Immunologie de Marseille-Luminy (CIML) for useful discussions, to Marc Bajénoff for stimulating  
567 discussions on lymph node stromal cells, and to Hugues Lelouard for his expertise on spectral confocal  
568 microscopy. We acknowledge the Computational Biology, Biostatistics and Modeling (CB2M) hub at CIML  
569 for helpful discussions and comments. We thank the Flow Cytometry Core Facility, and the Imagimm facility  
570 of CIML. We thank the animal care facility of CIML. We acknowledge Centre de Calcul Intensif d’Aix-Marseille  
571 for granting access to its high-performance computing resources. This work was supported by the French  
572 National Research Agency through the « Investments for the Future » program (France-BioImaging, ANR-  
573 10-INBS-04). This work was supported by grants from ANR (ANR-17-CE15-0009-01 “MoDEX-GC” and ANR-  
574 23-CE15-0025-01 “GCselection”) to P.M. This work was supported by institutional grants from INSERM,  
575 CNRS and Aix-Marseille University to the CIML. L.B. and N.A. were supported by fellowships from the French  
576 Ministry of Research and Higher Education and Fondation pour la Recherche Médicale.

577  
578 **AUTHORSHIP CONTRIBUTIONS**

579 L.B. designed experiments, performed experiments, analyzed the data, performed some of the bioinformatics  
580 analyses, prepared the figures and wrote the manuscript. C.D. performed most bioinformatics analyses and  
581 prepared the figures. N.A. designed and performed experiments at the initiation of the project. L.G. performed  
582 single-cell and spatial transcriptomics experiments. M.F. and T.B. designed and performed the quantitative  
583 analysis of confocal microscopy images. B.E. performed the bioinformatics analysis of the spatial  
584 transcriptomics data. L.C. performed the spatial transcriptomics experiment. C.S. and S.vdP. supervised the  
585 light-sheet microscopy staining, data acquisition, and data analyses. J.M.N. produced hashtag antibodies.  
586 P.M. designed experiments, performed experiments, analyzed the data, prepared the figures, wrote the  
587 manuscript, acquired funding and supervised the study. All authors revised and approved the manuscript.

588  
589 **DISCLOSURE OF CONFLICTS OF INTEREST**

590 The authors declare no competing financial interests.

591

## REFERENCES

1. Victora GD, Nussenzweig MC. Germinal Centers. *Annu. Rev. Immunol.* 2022;40(1):413–442.
2. Smith KGC. The extent of affinity maturation differs between the memory and antibody-forming cell compartments in the primary immune response. *The EMBO Journal.* 1997;16(11):2996–3006.
3. Phan TG, Paus D, Chan TD, et al. High affinity germinal center B cells are actively selected into the plasma cell compartment. *The Journal of Experimental Medicine.* 2006;203(11):2419–2424.
4. Victora GD, Schwickert TA, Fooksman DR, et al. Germinal Center Dynamics Revealed by Multiphoton Microscopy with a Photoactivatable Fluorescent Reporter. *Cell.* 2010;143(4):592–605.
5. Robinson MJ, Ding Z, Dowling MR, et al. Intrinsically determined turnover underlies broad heterogeneity in plasma-cell lifespan. *Immunity.* 2023;S1074761323001838.
6. Alinikula J, Nera K-P, Junntila S, Lassila O. Alternate pathways for Bcl6-mediated regulation of B cell to plasma cell differentiation. *Eur. J. Immunol.* 2011;41(8):2404–2413.
7. Niu H, Ye BH, Dalla-Favera R. Antigen receptor signaling induces MAP kinase-mediated phosphorylation and degradation of the BCL-6 transcription factor. *Genes & Development.* 1998;12(13):1953–1961.
8. Heise N, De Silva NS, Silva K, et al. Germinal center B cell maintenance and differentiation are controlled by distinct NF- $\kappa$ B transcription factor subunits. *Journal of Experimental Medicine.* 2014;211(10):2103–2118.
9. Klein U, Casola S, Cattoretti G, et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. *Nat Immunol.* 2006;7(7):773–782.
10. O'Connor BP, Cascalho M, Noelle RJ. Short-lived and Long-lived Bone Marrow Plasma Cells Are Derived from a Novel Precursor Population. *The Journal of Experimental Medicine.* 2002;195(6):737–745.
11. Paus D, Phan TG, Chan TD, et al. Antigen recognition strength regulates the choice between extrafollicular plasma cell and germinal center B cell differentiation. *Journal of Experimental Medicine.* 2006;203(4):1081–1091.
12. Taylor JJ, Pape KA, Steach HR, Jenkins MK. Apoptosis and antigen affinity limit effector cell differentiation of a single naïve B cell. *Science.* 2015;347(6223):784–787.
13. Zhang Y, Garcia-Ibanez L, Toellner K-M. Regulation of germinal center B-cell differentiation. *Immunol Rev.* 2016;270(1):8–19.
14. Basso K, Klein U, Niu H, et al. Tracking CD40 signaling during germinal center development. *Blood.* 2004;104(13):4088–4096.
15. Saito M, Gao J, Basso K, et al. A Signaling Pathway Mediating Downregulation of BCL6 in Germinal Center B Cells Is Blocked by BCL6 Gene Alterations in B Cell Lymphoma. *Cancer Cell.* 2007;12(3):280–292.
16. Ise W, Fujii K, Shiroguchi K, et al. T Follicular Helper Cell-Germinal Center B Cell Interaction Strength Regulates Entry into Plasma Cell or Recycling Germinal Center Cell Fate. *Immunity.* 2018;48(4):702–715.e4.
17. Diehl SA, Schmidlin H, Nagasawa M, et al. STAT3-Mediated Up-Regulation of BLIMP1 Is Coordinated with BCL6 Down-Regulation to Control Human Plasma Cell Differentiation. *J Immunol.* 2008;180(7):4805–4815.
18. Kwon H, Thierry-Mieg D, Thierry-Mieg J, et al. Analysis of Interleukin-21-Induced Prdm1 Gene Regulation Reveals Functional Cooperation of STAT3 and IRF4 Transcription Factors. *Immunity.* 2009;31(6):941–952.
19. Kallies A, Hasbold J, Fairfax K, et al. Initiation of Plasma-Cell Differentiation Is Independent of the Transcription Factor Blimp-1. *Immunity.* 2007;26(5):555–566.
20. Ding BB, Bi E, Chen H, Yu JJ, Ye BH. IL-21 and CD40L Synergistically Promote Plasma Cell Differentiation through Upregulation of Blimp-1 in Human B Cells. *J. I.* 2013;190(4):1827–1836.
21. Nera K-P, Kohonen P, Narvi E, et al. Loss of Pax5 Promotes Plasma Cell Differentiation. *Immunity.* 2006;24(3):283–293.
22. Sciammas R, Li Y, Warmflash A, et al. An incoherent regulatory network architecture that orchestrates B cell diversification in response to antigen signaling. *Mol Syst Biol.* 2011;7:495.
23. Barwick BG, Scharer CD, Bally APR, Boss JM. Plasma cell differentiation is coupled to division-dependent DNA hypomethylation and gene regulation. *Nat Immunol.* 2016;17(10):1216–1225.
24. Kräutler NJ, Suan D, Butt D, et al. Differentiation of germinal center B cells into plasma cells is initiated by high-affinity antigen and completed by Tfh cells. *The Journal of Experimental Medicine.* 2017;214(5):1259–1267.
25. Nakagawa R, Toboso-Navasa A, Schips M, et al. Permissive selection followed by affinity-based proliferation of GC light zone B cells dictates cell fate and ensures clonal breadth. *PNAS.* 2021;118(2):

648 26. Holmes AB, Corinaldesi C, Shen Q, et al. Single-cell analysis of germinal-center B cells informs on  
649 lymphoma cell of origin and outcome. *Journal of Experimental Medicine*. 2020;217(10):e20200483.

650 27. King HW, Orban N, Riches JC, et al. Single-cell analysis of human B cell maturation predicts how  
651 antibody class switching shapes selection dynamics. *Sci. Immunol.* 2021;6(56):eabe6291.

652 28. Meyer-Hermann M, Mohr E, Pelletier N, et al. A Theory of Germinal Center B Cell Selection, Division,  
653 and Exit. *Cell Reports*. 2012;2(1):162–174.

654 29. Schwab SR, Cyster JG. Finding a way out: lymphocyte egress from lymphoid organs. *Nature  
655 Immunology*. 2007;8(12):1295–1301.

656 30. Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM. The generation of antibody-secreting plasma cells.  
657 *Nat Rev Immunol.* 2015;15(3):160–171.

658 31. Zhang Y, Tech L, George LA, et al. Plasma cell output from germinal centers is regulated by signals from  
659 Tfh and stromal cells. *The Journal of Experimental Medicine*. 2018;215(4):1227–1243.

660 32. Mohr E, Serre K, Manz RA, et al. Dendritic Cells and Monocyte/Macrophages That Create the IL-  
661 6/APRIL-Rich Lymph Node Microenvironments Where Plasmablasts Mature. *J Immunol.*  
662 2009;182(4):2113–2123.

663 33. Sprumont A, Rodrigues A, McGowan SJ, Bannard C, Bannard O. Germinal centers output clonally  
664 diverse plasma cell populations expressing high- and low-affinity antibodies. *Cell*. 2023;186(25):5486–  
665 5499.e13.

666 34. Le Gallou S, Nojima T, Kitamura D, Weill J-C, Reynaud C-A. The AID-Cre-ERT2 Model: A Tool for  
667 Monitoring B Cell Immune Responses and Generating Selective Hybridomas. *Methods Mol. Biol.*  
668 2017;1623:243–251.

669 35. Attaf N, Cervera-Marzal I, Dong C, et al. FB5P-seq: FACS-Based 5-Prime End Single-Cell RNA-seq for  
670 Integrative Analysis of Transcriptome and Antigen Receptor Repertoire in B and T Cells. *Front. Immunol.*  
671 2020;11:.

672 36. Laidlaw BJ, Duan L, Xu Y, Vazquez SE, Cyster JG. The transcription factor Hhex cooperates with the  
673 corepressor Tle3 to promote memory B cell development. *Nature Immunology*. 2020;21(9):1082–1093.

674 37. Kennedy DE, Okoreeh MK, Maienschein-Cline M, et al. Novel specialized cell state and spatial  
675 compartments within the germinal center. *Nature Immunology*. 2020;1–11.

676 38. Piskurich JF, Lin K-I, Lin Y, et al. BLIMP-1 mediates extinction of major histocompatibility class II  
677 transactivator expression in plasma cells. *Nat Immunol.* 2000;1(6):526–532.

678 39. Attaf N, Baaklini S, Binet L, Milpied P. Heterogeneity of germinal center B cells: New insights from single-  
679 cell studies. *European Journal of Immunology*. 2021;51(11):2555–2567.

680 40. Sze DM-Y, Toellner K-M, de Vinuesa CG, Taylor DR, MacLennan ICM. Intrinsic Constraint on  
681 Plasmablast Growth and Extrinsic Limits of Plasma Cell Survival. *The Journal of Experimental Medicine*.  
682 2000;192(6):813–822.

683 41. Rodda LB, Lu E, Bennett ML, et al. Single-Cell RNA Sequencing of Lymph Node Stromal Cells Reveals  
684 Niche-Associated Heterogeneity. *Immunity*. 2018;48(5):1014–1028.e6.

685 42. Suan D, Kräutler NJ, Maag JLV, et al. CCR6 Defines Memory B Cell Precursors in Mouse and Human  
686 Germinal Centers, Revealing Light-Zone Location and Predominant Low Antigen Affinity. *Immunity*.  
687 2017;47(6):1142–1153.e4.

688 43. Jellusova J. Metabolic control of B cell immune responses. *Current Opinion in Immunology*. 2020;63:21–  
689 28.

690 44. Corinaldesi C, Holmes AB, Shen Q, et al. Tracking Immunoglobulin Repertoire and Transcriptomic  
691 Changes in Germinal Center B Cells by Single-Cell Analysis. *Frontiers in Immunology*. 2022;12:.

692 45. Massoni-Badosa R, Aguilar-Fernández S, Nieto JC, et al. An atlas of cells in the human tonsil. *Immunity*.  
693 2024;0(0):

694 46. Alaterre E, Ovejero S, Bret C, et al. Integrative single-cell chromatin and transcriptome analysis of human  
695 plasma cell differentiation. *Blood Journal*. 2024;blood.2023023237.

696 47. Long Z, Phillips B, Radtke D, Meyer-Hermann M, Bannard O. Competition for refueling rather than cyclic  
697 reentry initiation evident in germinal centers. *Science Immunology*. 7(69):eabm0775.

698 48. Takeda A, Salmi M, Jalkanen S. Lymph node lymphatic endothelial cells as multifaceted gatekeepers in  
699 the immune system. *Trends in Immunology*. 2022;S1471490622002356.

700 49. Huang H-Y, Rivas-Caicedo A, Renevey F, et al. Identification of a new subset of lymph node stromal  
701 cells involved in regulating plasma cell homeostasis. *Proceedings of the National Academy of Sciences*.  
702 2018;115(29):E6826–E6835.

703 50. Pikor NB, Mörbe U, Lütge M, et al. Remodeling of light and dark zone follicular dendritic cells governs  
704 germinal center responses. *Nat Immunol.* 2020;21(6):649–659.

705 51. Lütge M, De Martin A, Gil-Cruz C, et al. Conserved stromal-immune cell circuits secure B cell  
706 homeostasis and function. *Nat Immunol.* 2023;24(7):1149–1160.

707 52. Takeuchi A, Ozawa M, Kanda Y, et al. A Distinct Subset of Fibroblastic Stromal Cells Constitutes the  
708 Cortex-Medulla Boundary Subcompartment of the Lymph Node. *Front. Immunol.* 2018;9:.

709 53. Dubey LK, Karemudi P, Luther SA, Ludewig B, Harris NL. Interactions between fibroblastic reticular  
710 cells and B cells promote mesenteric lymph node lymphangiogenesis. *Nat Commun.* 2017;8(1):367.

711 54. Mimitou EP, Cheng A, Montalbano A, et al. Expanding the CITE-seq tool-kit: Detection of proteins,  
712 transcriptomes, clonotypes and CRISPR perturbations with multiplexing, in a single assay. *Nat Methods.*  
713 2019;16(5):409–412.

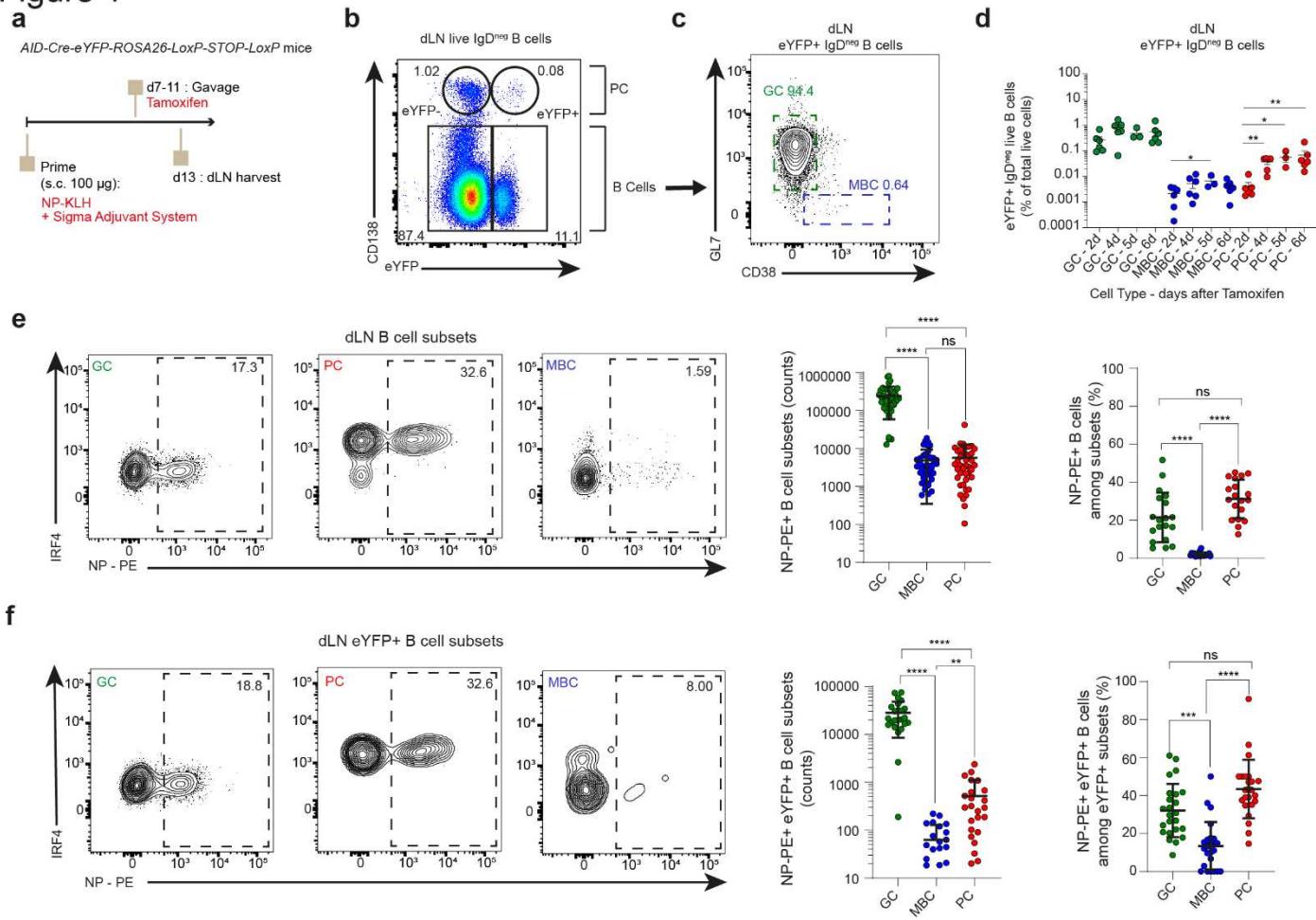
714 55. Siret C, van de Pavert SA. Three-Dimensional Imaging of Macrophages in Complete Organs. *Tissue-  
715 Resident Macrophages.* 2024;2713:297–306.

716 56. Finak G, Perez J-M, Weng A, Gottardo R. Optimizing transformations for automated, high throughput  
717 analysis of flow cytometry data. *BMC Bioinformatics.* 2010;11(1):546.

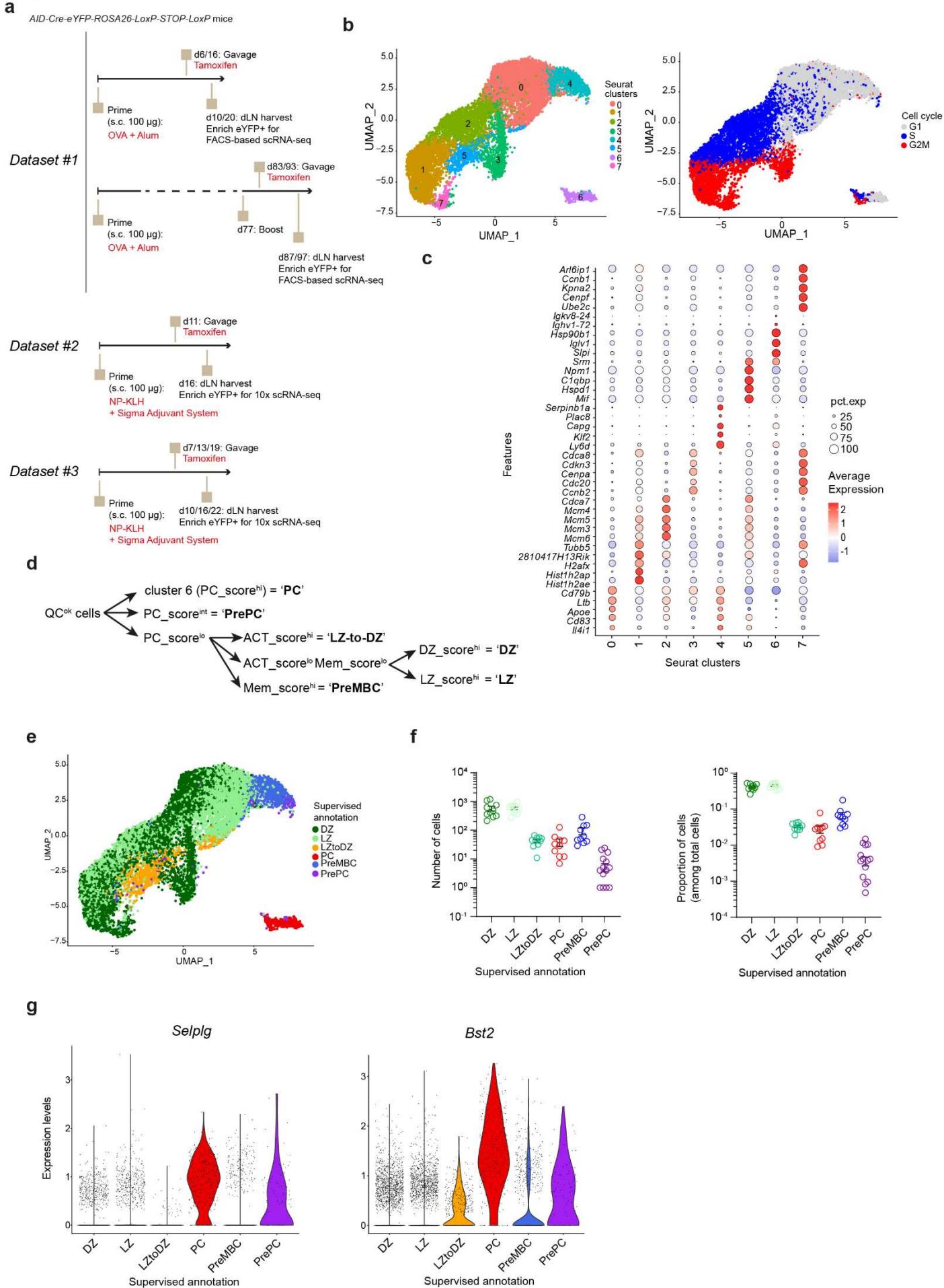
718 57. Milpied P, Cervera-Marzal I, Mollichella M-L, et al. Human germinal center transcriptional programs are  
719 de-synchronized in B cell lymphoma. *Nat Immunol.* 2018;19(9):1013–1024.

720 58. Gupta NT, Vander Heiden JA, Uduman M, et al. Change-O: a toolkit for analyzing large-scale B cell  
721 immunoglobulin repertoire sequencing data. *Bioinformatics.* 2015;31(20):3356–3358.

722 59. Bankhead P, Loughrey MB, Fernández JA, et al. QuPath: Open source software for digital pathology  
723 image analysis. *Sci Rep.* 2017;7(1):16878.


724

725

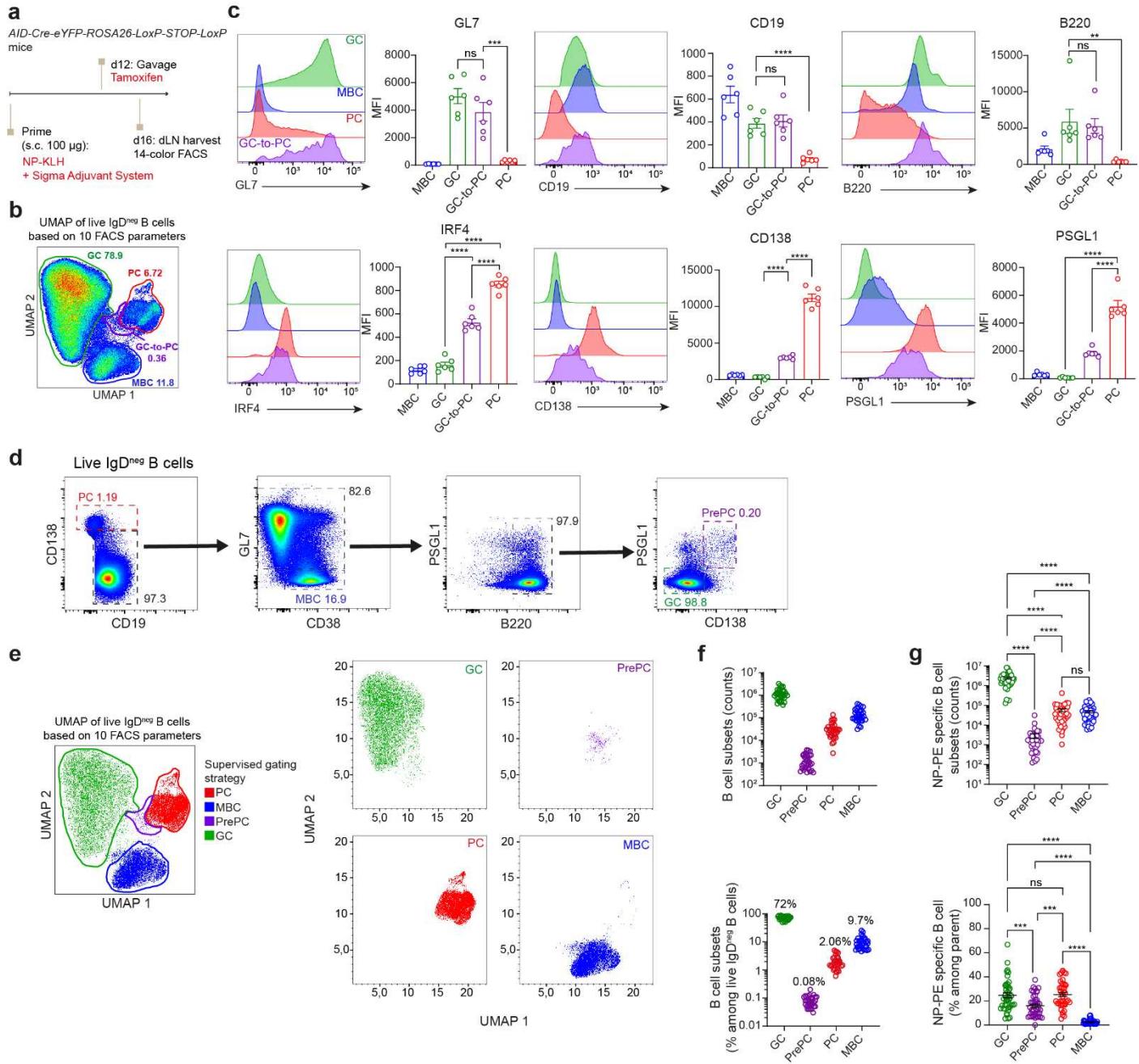

726

## FIGURES AND LEGENDS

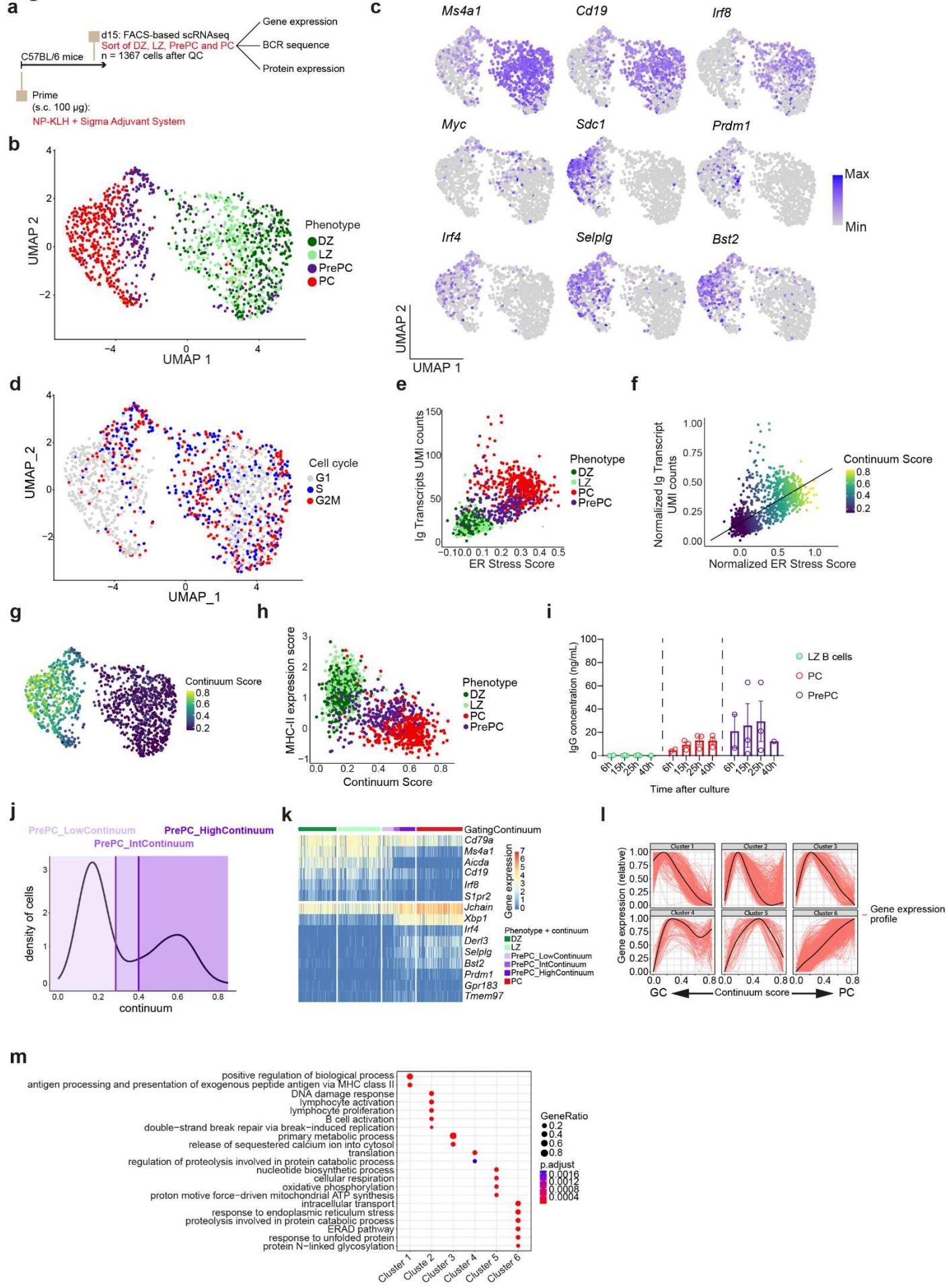
Figure 1



## Figure 2




742 **Figure 2:** Single-cell RNA-seq analysis of GC B cells and recent GC emigrants identifies putative prePC.


743 **a**, Experimental designs for the generation of three distinct scRNA-seq datasets of GC and GC-derived cells  
744 in dLN. **b**, UMAP representation of single-cell gene expression profiles of GC and GC-derived cells integrated  
745 from the three datasets, colored by unsupervised Louvain clusters (left) or by cell cycle status (right). **c**, dot  
746 plot of the expression of top 5 markers of each unsupervised cluster, as indicated. The percentage of cells  
747 from a cluster expressing a marker is coded by the size of the circles, the average expression level by the  
748 color. **d**, Hierarchical gating strategy for gene expression score-based supervised annotation of GC and GC-  
749 derived cells. **e**, UMAP representation colored by supervised annotations. **f**, Total counts (left) and proportion  
750 among total cells (right) of cells from the indicated supervised annotation. Each symbol represents a distinct  
751 sample from the three datasets. **g**, Violin plots of gene expression levels of *Selpg* (left) and *Bst2* (right)  
752 among cells from the indicated supervised annotations.

753

## Figure 3



**Figure 4**



768

**Figure 4:** Characterization of prePC in the GC-to-PC differentiation continuum.

769

**a**, Experimental design. **b**, UMAP projection of gene expression profiles of FACS-sorted DZ, LZ, PrePC and PC, after cell cycle regression. Each dot is a cell, colored by the FACS sorting phenotype. **c**, Feature plots showing the expression of the indicated GC (*Ms4a1*, *Cd19*, *Itf8*, *Myc*) and PC (*Sdc1*, *Prdm1*, *Itf4*, *Selp1g*, *Bst2*) marker genes in cells laid out as in b. **d**, UMAP projection as in b, with cells colored by cell cycle status. **e**, Scatter plot representation of the ER stress score (x-axis) and the Ig transcripts UMI counts (y-axis) in cells colored by the FACS sorting phenotype. **f**, Scatter plot presented in d, overlayed with the regression line and colored by the GC-to-PC continuum score computed after projecting cells on the regression line and ranking. **g**, UMAP projection as in b, colored by the continuum score. **h**, Scatter plot representation of the continuum score (x-axis) and the MHC-II gene expression score (y-axis) in cells colored by the FACS sorting phenotype. **i**, IgG concentration in culture supernatant of LZ B cells, PC and PrePC at the indicated times after *ex vivo* cell culture. **j**, Cell density histogram distribution of continuum scores for cells in the dataset, indicating the continuum thresholds used for defining low, intermediate and high values for the continuum score in PrePC. **k**, Single-cell gene expression heatmap of the indicated GC (top 6 genes), PC (next 7 genes) and PrePC (bottom 2 genes) markers expression in the different subsets defined by their phenotype and continuum score. **l**, Relative gene expression profile of cells ranked by continuum score, for genes grouped according to their evolution profile (each gene a red line, the average cluster profile a black line). **m**, Results of gene ontology (GO) enrichment analysis for genes in the different evolution clusters defined in l.

770

771

772

773

774

775

776

777

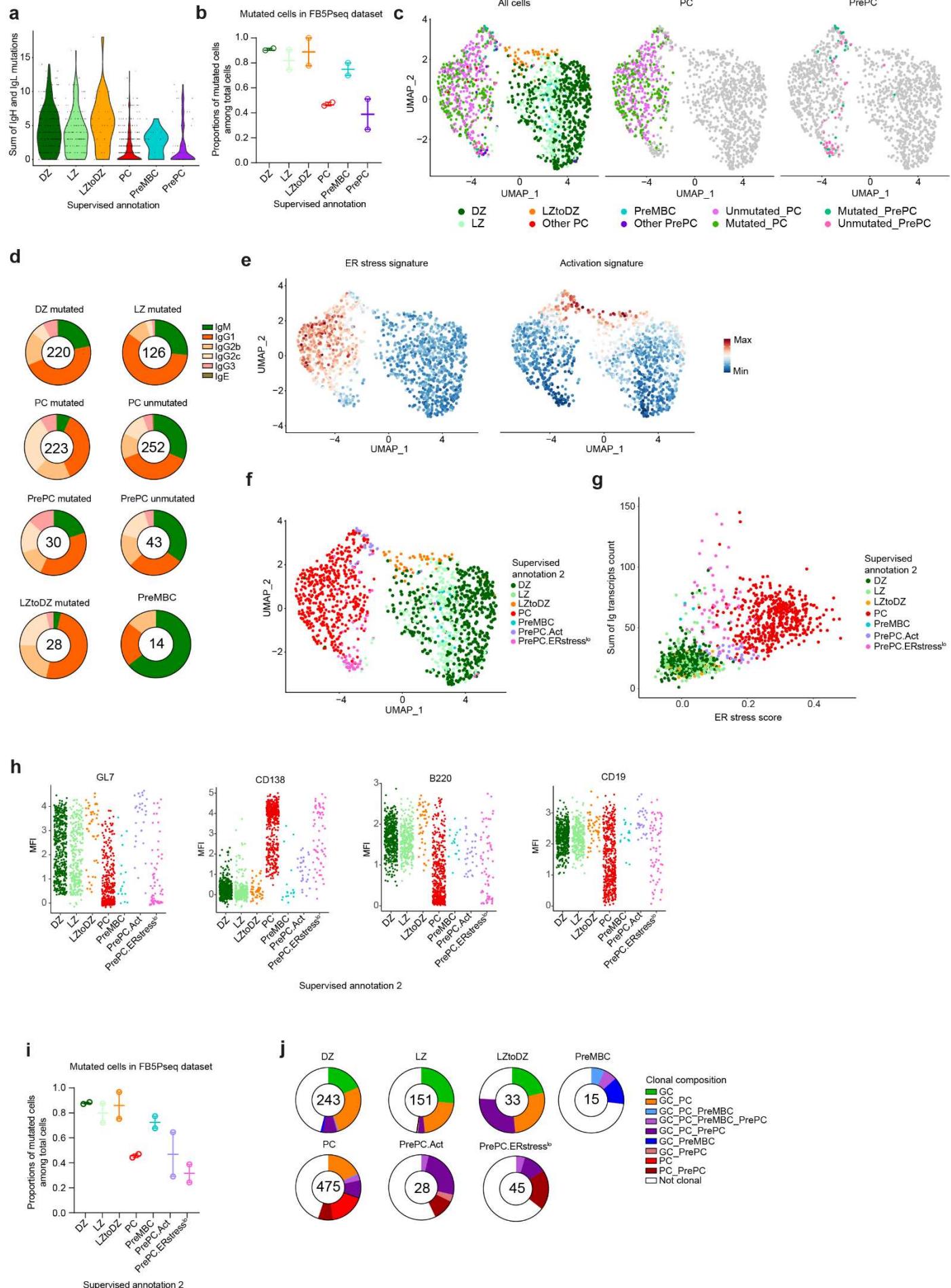
778

779

780

781

782


783

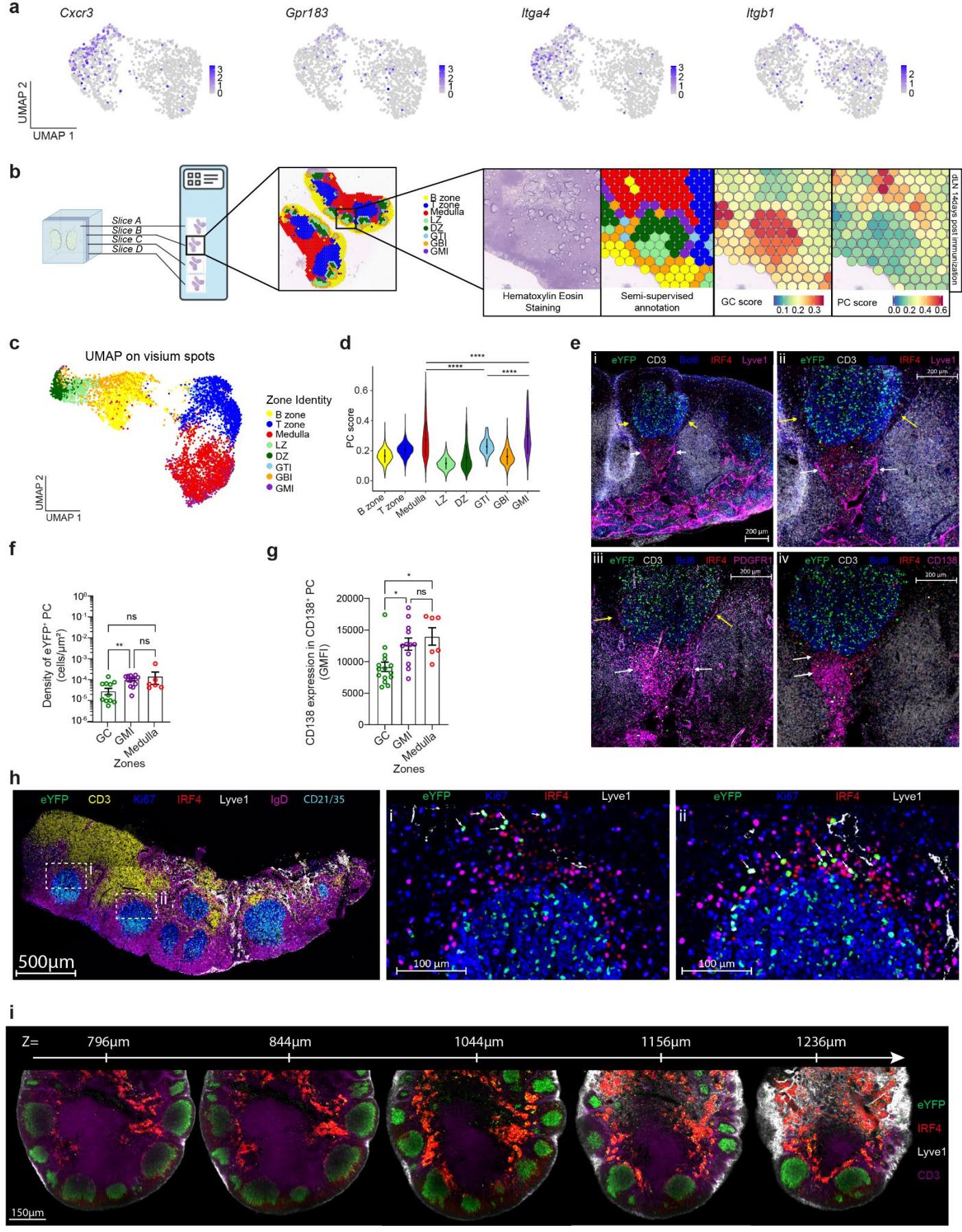
784

785

786

Figure 5




788

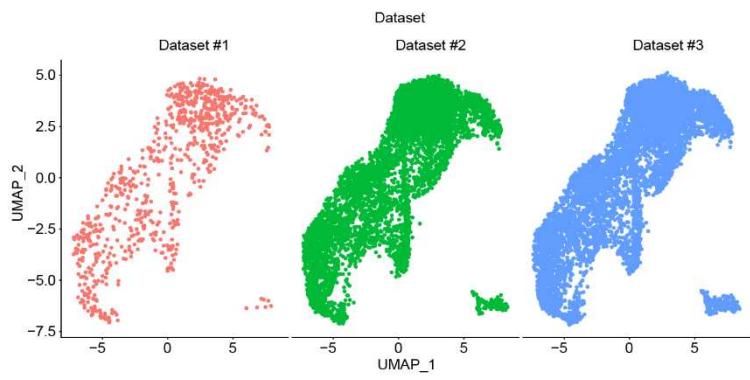
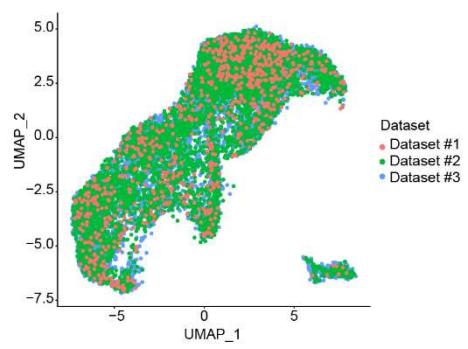
**Figure 5:** BCR analysis of prePC.

789  
790  
791  
792  
793  
794  
795  
796  
797  
798  
799  
800  
801  
802  
803  
804

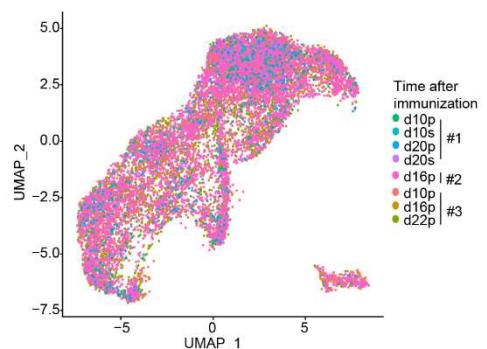
**a**, Violin plot of BCR mutations (sum of IgH and IgL) in the indicated cell subsets from the dataset described in Figure 4. **b**, Proportion of mutated cells among total cells of the indicated subsets. Each dot represents a distinct mouse, bar at median. **c**, UMAP projection as in Figure 4, colored by cell subsets, with PC and PrePC divided into BCR-unmutated and BCR-mutated (left), and split to display only PC (middle) and PrePC (right). **d**, Pie charts of the isotype repartition in the indicated cell subsets, with PC and PrePC divided into BCR-unmutated and BCR-mutated. Numbers indicate the number of cells analyzed for each subset. **e**, UMAP projection as in Figure 4, colored by the expression levels of the ER stress gene expression signature (left) or the activation gene expression signature (right). **f**, UMAP projection as in Figure 4, colored by supervised annotation 2 segregating prePC into prePC.Act and prePC.ERstress<sup>lo</sup>. **g**, Scatter plot representation of the ER stress score (x-axis) and the Ig transcripts UMI counts (y-axis) in cells colored by supervised annotation 2. **h**, Flow cytometry signal intensity (index sorting) of the indicated surface markers in cells from the indicated subsets (supervised annotation 2). **i**, Proportion of mutated cells among total cells grouped by supervised annotation 2. Each dot represents a distinct mouse, bar at median. **j**, Pie charts of shared clonotype composition within each subset of the supervised annotation 2. Numbers indicate the number of cells analyzed for each subset.

## Figure 6

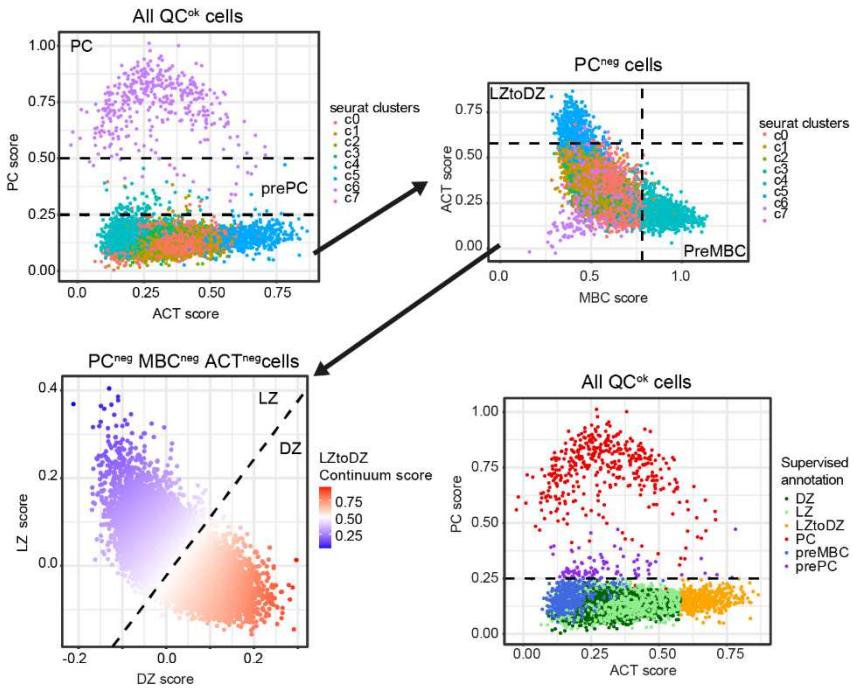




**Figure 6: Recent GC-derived PC proliferate at the DZ-medulla interface.**

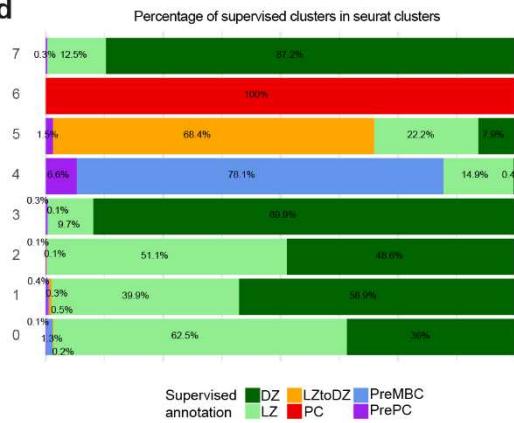
807 **a**, Feature plots showing the expression of the indicated genes (*Cxcr3*, *Gpr183*, *Itga4*, *Itgb1*) in cells laid out  
808 as in Figure 4b. **b**, Experimental design of the spot-based spatial transcriptomics analysis of dLN, and semi-  
809 supervised annotation of spots based on unsupervised spot clustering, gene expression scores, and  
810 neighboring spot identity (GTI: GC-T zone interface; GMI: GC-medulla interface; GBI: GC-B zone interface).  
811 **c**, Gene expression-based UMAP projection of spatial transcriptomics spots, colored by zonal identity. **d**,  
812 Violin plot of PC gene expression score in spots from the indicated zones. **e**, Spectral confocal microscopy  
813 images of serial dLN sections (14 days after primary NP-KLH immunization, 3 days after tamoxifen) stained  
814 for the indicated markers (scale bar 200  $\mu$ m). The images show a broad view around on GC (i). We zoomed  
815 in this view to show the GTI (ii and iii, yellow arrows) and the GMI (ii and iii, white arrows). The white arrows  
816 in iv represent the distinct populations of CD138<sup>lo</sup> and CD138<sup>+</sup> cells. **f**, Density of GC-derived PC (IRF4<sup>+</sup> cells  
817 expressing the GC-derived eYFP reporter) quantified from spectral confocal microscopy images after  
818 segmentation in the indicated zones. Each dot represents a zone, combining analyses from 2 dLN in 2 distinct  
819 experiments. **g**, Expression level of CD138 (geometric mean fluorescence intensity) in mature PC (IRF4<sup>+</sup>  
820 CD138<sup>+</sup> cells) in the indicated zones. Each dot represents a zone, combining analyses from 2 dLN in 2 distinct  
821 experiments. **h**, Spectral confocal microscopy image of the indicated markers in a whole dLN section (left)  
822 and zooming in on DZ proximal areas of two GCs (GC i: middle; GC ii: right). Arrows in the zoomed-in panels  
823 indicate triple positive eYFP<sup>+</sup> IRF4<sup>+</sup> Ki67<sup>+</sup> GC-derived proliferating PC. **i**, Lightsheet microscopy images of a  
824 whole dLN stained with the indicated markers, extracted from different Z-positions as indicated in the top  
825 panel. \* p < 0.05, \*\* p < 0.01, \*\*\*\* p < 0.0001 in Wilcoxon matched pairs signed rank test.  
826


827      Supplementary Figures and Legends

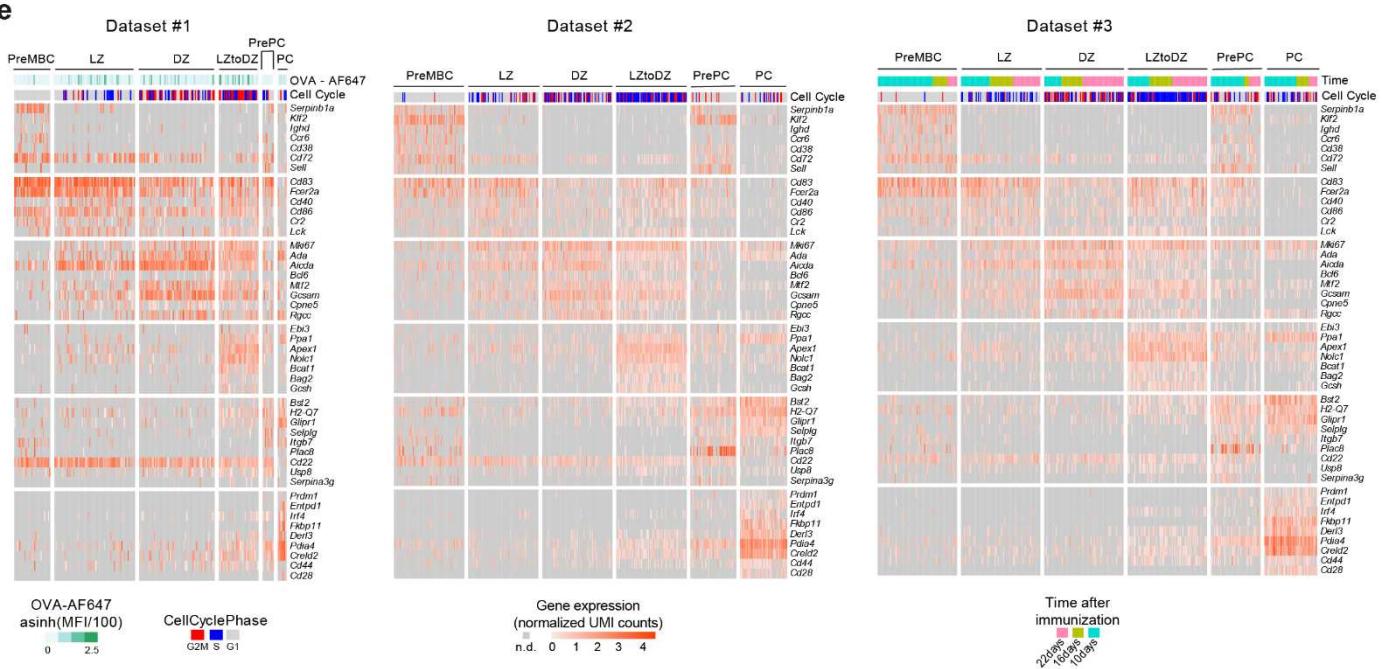
## Supplementary Figure 1


a




b




c



d



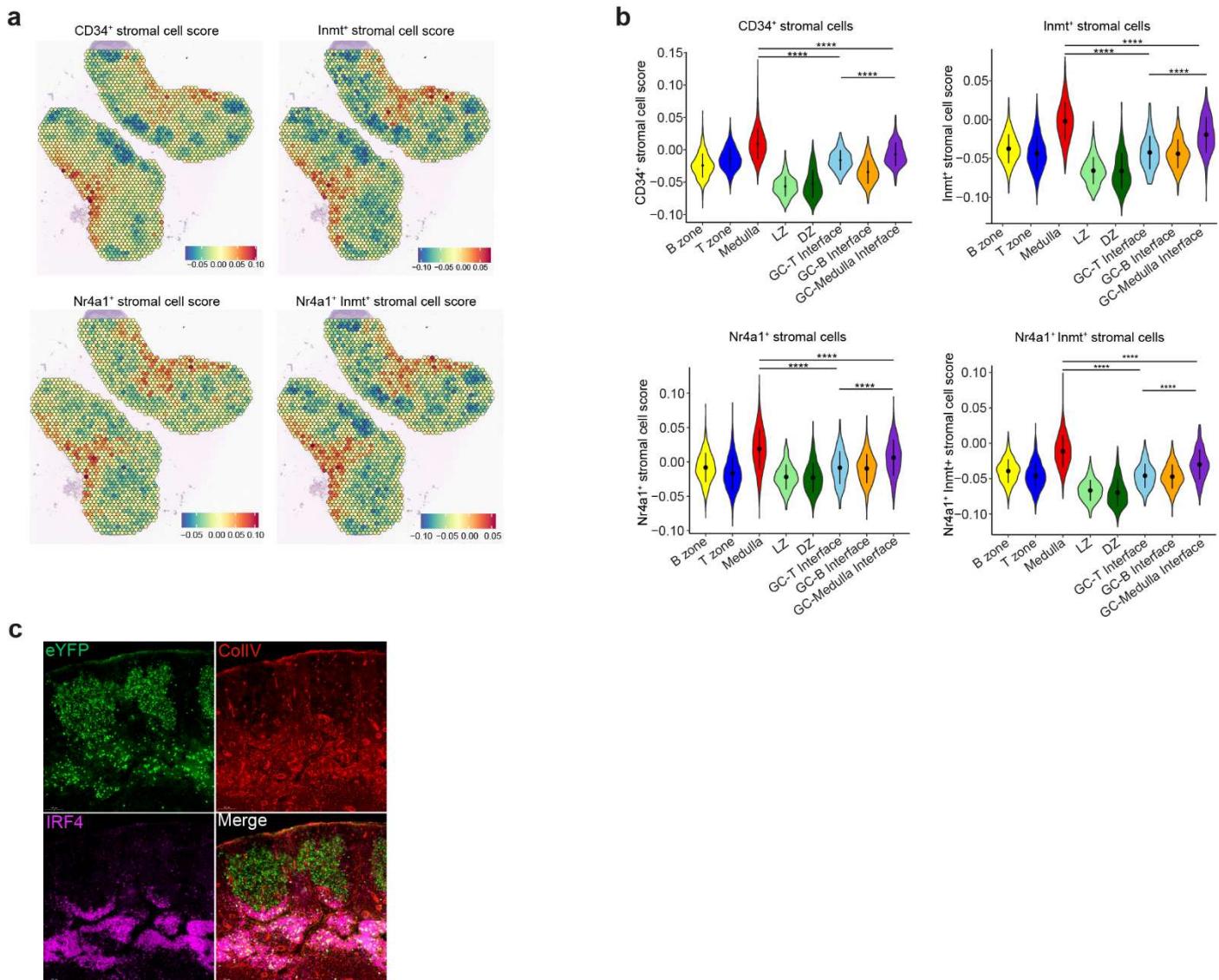
e



829 **Supplementary Figure 1:** supervised annotation of integrated scRNA-seq datasets of GC B cells and recent  
830 GC emigrants

831 **a**, UMAP representation of single-cell gene expression profiles of GC and GC-derived cells integrated from  
832 the three datasets, colored by dataset identity (left) and split by dataset (right). **b**, UMAP representation of  
833 single-cell gene expression profiles of GC and GC-derived cells integrated from the three datasets, colored  
834 by time after immunization (d10p: day 10 of primary response, d10s: day 10 of secondary response). **c**,  
835 Supervised gating strategy for the integrated scRNA-seq dataset based on gene expression scores for PC,  
836 activated (ACT), memory (MBC), DZ and LZ scores. Dashed lines represent the thresholds used to gate the  
837 cells in different annotations; the final supervised annotation is represented in the bottom right panel. **d**, Bar  
838 graphs of the composition of the unsupervised Louvain clusters in the cell types or states identified by  
839 supervised annotation. **e**, Single-cell gene expression heatmaps of the indicated marker genes in the different  
840 subsets defined by supervised annotation, also indicating the cell cycle phase (G1, S, G2/M) (all datasets),  
841 surface OVA binding (dataset #1) or time after primary immunization (dataset #3).

842


## Supplementary Figure 2



**Supplementary Figure 2: Characterization of prePC in the GC-to-PC differentiation continuum.**

**a**, UMAP projection as in Figure 4, colored by the expression levels of the ER stress gene expression signature (left) and violin plot of the expression of the ER stress signature in the cells grouped by phenotype (right). **b**, UMAP projection as in Figure 4, colored by the expression levels of Ig transcripts (left) and violin plot of the expression of Ig transcripts in the cells grouped by phenotype (right). **c**, UMAP projection as in Figure 4, colored by the expression levels of different MHC class II genes (*H2-Ob*, *H2-DMa*, *Ciita*, *H2-DMb1*, *H2-DMb2*). **d**, Violin plot of the expression of the MHC class II score in the cells grouped by phenotype. The MHC-II gene expression signature was built using the markers depicted in **c**. **e**, Flow cytometry signal intensity (index sorting) of the indicated surface markers in cells from the indicated subsets (supervised annotation).

## Supplementary Figure 3



**Supplementary Figure 3:** Recent GC-derived PC localize at the DZ-medulla interface.

**a**, Spatial feature maps showing the expression levels of the stromal cell subset specific gene expression signatures, as indicated. **b**, Violin plots showing the expression of the stromal cell subset specific gene expression signatures indicated in the different zones identified. **c**, Confocal microscopy image of the indicated markers in a dLN section, focusing on two GC and the DZ-proximal area. \*\*\*\* p < 0.0001 in Wilcoxon matched pairs signed rank test.