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Abstract

With the emerging technologies and all associated devices, it is predicted that massive amount of data will be created in the next few years —
in fact, as much as 90% of current data were created in the last couple of years — a trend that will continue for the foreseeable future. Sustainable
computing studies the process by which computer engineer/scientist designs computers and associated subsystems efficiently and effectively
with minimal impact on the environment. However, current intelligent machine-learning systems are performance driven — the focus is on the
predictive/classification accuracy, based on known properties learned from the training samples. For instance, most machine-learning-based
nonparametric models are known to require high computational cost in order to find the global optima. With the learning task in a large dataset,
the number of hidden nodes within the network will therefore increase significantly, which eventually leads to an exponential rise in compu-
tational complexity. This paper thus reviews the theoretical and experimental data-modeling literature, in large-scale data-intensive fields,
relating to: (1) model efficiency, including computational requirements in learning, and data-intensive areas’ structure and design, and intro-
duces (2) new algorithmic approaches with the least memory requirements and processing to minimize computational cost, while maintain-

ing/improving its predictive/classification accuracy and stability.

Keywords: big data; green computing; efficient machine learning; computational modeling

1. Introduction

Today, it’s no surprise that reducing energy costs is one of
the top priorities for many energy-related businesses. The
global information and communications technology (ICT) in-
dustry that pumps out around 830 Mt carbon dioxide (CO2)
emission accounts for approximately 2 percent of the global
CO2 emissions [1]. ICT giants are constantly installing more
servers so as to expand their capacity. The number of server
computers in data centers has increased sixfold to 30 million
in the last decade, and each server draws far more electricity
than its earlier models [2]. The aggregate electricity use for
servers had doubled between the years 2000 and 2005 period,
most of which came from businesses installing large numbers
of new servers [3]. This increase in energy consumption con-
sequently results in higher carbon dioxide emissions, and
hence causing an impact on the environment. Furthermore,
most of these businesses, especially in an uncertain economic
climate are placed under the pressure to reduce their energy
expenditure in order to remain competitive in the market [4].

With the emerging of new technologies and all associated
devices, it is predicted that there will be as much data created
as was created in the entire history of planet Earth [5]. Given
the unprecedented amount of data that will be produced, col-
lected and stored in the coming years, one of the technology
industry’s great challenges is how to benefit from it. During
the past decade, mathematical intelligent machine-learning
systems have been widely adopted in a number of massive
and complex data-intensive fields such as astronomy, biology,

climatology, medicine, finance and economy. However, cur-
rent intelligent machine-learning-based systems are not in-
herently efficient or scalable enough to deal with large vol-
ume of data. For example, for many years, it is known that
most non-parametric and model-free approaches require high
computational cost to find the global optima. With high-di-
mensional data, their good data fitting capacity not only
makes them more susceptible to the generalization problem
but leads to an exponential rise in computational complexity.
Designing more accurate machine-learning systems so as to
satisfy the market needs will hence lead to a higher likelihood
of energy waste due to the increased computational cost.

Nowadays, there is a greater need to develop efficient in-
telligent models to cope with future demands that are in line
with similar energy-related initiatives. Such energy-efficient-
oriented data modeling is important for a number of data-in-
tensive areas, as they affect many related industries. Design-
ers should focus on maximum performance and minimum en-
ergy use so as to break away from the traditional” performance
vs. energy-use’ tradeoff, and increase the number and diver-
sity of options available for energy-efficient modeling. How-
ever, despite the fact that there is a demand for such efficient
and sustainable data modeling methods for large and complex
data-intensive fields, to our best knowledge, only a few of
these literatures have been proposed in the field [6][7].

This paper provides a comprehensive review of state-of-



the-art sustainable/energy-efficient machine-learning litera-
tures, including theoretical, empirical and experimental stud-
ies pertaining to the various needs and recommendations. Our
objective is to introduce a new perspective for engineers, sci-
entists, and researchers in the computer science, and green
ICT domain, as well as to provide its roadmap for future re-
search endeavors.

This paper is organized as follows. Section 2 introduces
the different large-scale data-intensive areas and discusses
their structure and nature, including the relation between data
models and their characteristics. Section 3 discusses the is-
sues in current intelligent data modeling for sustainability and
gives recommendations. Section 4 concludes the paper.

2. Big data challenge

e-Science areas are typically data-intensive in that the
quality of their results improves with both quantity and qual-
ity of data available. However, current intelligent machine-
learning systems are not inherently efficient enough which
ends up, in many cases, a growing fraction of this quantity
data unexplored and underexploited. It is no small problem
when existing methods fail to capture such data immensity.
When old concepts fail to keep up with change, traditions and
past experience become inadequate guide for what to do next.
Effective understanding and the use of this new wealth of raw
information pose a great challenge to today’s green engi-
neers/researchers. It should be noted that the scope of the re-
view is limited to the analytical aspects of science areas using
immense datasets, and the methods for reducing computa-
tional complexity in distributed or grid-computing environ-
ment is excluded.

2.1. Geo, climate and environment

There are many recent examples that can illustrate the tre-
mendous growth in scientific data generation in the literature.
It is estimated that there are thousands of wireless sensors cur-
rently in place, which generates about a gigabyte of data per
sensor per day [8]. Such sensors measure and record sensory
information about the natural environment at a joint spatial
and temporal dimensions that has never previously been pos-
sible. This environmental information is gathered by sensors
via its sensing devices that are attached to small, low-power
computer systems with digital radio communications. The
sensor nodes self-organize itself into a network to deliver, and
perhaps process the collected data to a base station, where it
can be made available to the users through the Internet. These
sensors generate several petabytes of data per year and deci-
sions need to be taken in real time as to how much data to
analyze, how much to transmit for further analysis.

Besides the environmentalists, a similar challenge facing
the climatologists, meteorologists, and geologists today is
also making sense of the vast and continually increasing
amount of data generated by the earth observation satellites,
radars, and high-throughput sensor networks. The World Data
Centre for Climate (WDCC) is the world-largest climate data

repository, and is also known to have the largest database in
the world [9]. The WDCC archives 340 terabytes of earth sys-
tem model data and related observations, and 220 terabytes of
data readily accessible on the web including information on
climate research and anticipated climatic trends, as well as
110 terabytes (or 24,500 DVD’s) worth of climate simulation
data. The WDCC data is accessible by a standard web-inter-
face (http:/ /cera.wdc-climate.de). These data are increas-
ingly available in many different formats and have to be in-
corporated correctly into the various climate change models.
Timely and accurate interpretation of these data can provide
advance warnings in times of severe weather changes, hence
enabling corresponding action to be taken promptly so as to
minimize its resulting catastrophic damage.

2.2. Bio, medicine, and health

Biological data has been produced at a phenomenal rate
due to the international research effort called the Human Ge-
nome Project. It is estimated that the human genome DNA
contains around 3.2 billion base (3.2 gigabase) pairs distrib-
uted among twenty-three chromosomes, which is translated
to about a gigabyte of information [10]. However, when we
add the gene sequence data (data on the 100,000 or so trans-
lated proteins and the 32,000,000 amino acids), the relevant
data volume can easily expand to an order of about 200 giga-
byte [11]. Now, by including also the X-ray/NMR spectros-
copy structure determination of these proteins, the data vol-
ume will increase dramatically to several petabytes, and that
is assuming only one structure per protein.

As of December 2014, the GenBank repository of nucleic
acid sequences contained above 178 million entries [12] and
the SWISS-PROT database (inc. both UniProtKB/Swiss-Prot,
UniProtKB/TrEMBL) of protein sequences contained about
18 million entries [13][14]. On average, these databases are
doubling in size in every 15 months. This is further com-
pounded by data generated from the myriad of related projects
that study gene expression, that determines the protein struc-
tures encoded by the genes, and that details how these pro-
teins interact with one another. From that, we can begin to
imagine the enormous amount and variety of information that
is being produced every month.

Over the past decade, the health sector has also evolved
significantly, from paper-based systems to largely paperless
electronic systems. Many countries’ public health systems are
now providing electronic patient records with advanced med-
ical imaging media. In fact, this has already been imple-
mented by more than 200 American hospitals, and the days of
squinting to decipher a doctor’s untidy scrawl on a handwrit-
ten prescription will soon be a thing of the past in Canada and
many other countries too [15].

InSiteOne is one of the leading service providers in offer-
ing data archiving, storage, and disaster-recovery solutions to
the healthcare industry. Its U.S. InSiteOne’s archives include
almost 4 billion medical images and 60 million clinical stud-
ies, in a coverage area of about 800 clinical sites [16]. The
combined annual total of its radiological images exceeds 420
million and this number is still increasing at an approximate
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rate of about 12% per year. There are about 35,500 radiolo-
gists currently practicing in the U.S [17]. Each image will typ-
ically constitute several megabytes of digital data and is re-
quired to be archived for a minimum of five years. ESG (En-
terprise Storage Group) forecasts medical image data in North
America will grow to more than 35 percent per year and will
reach nearly 2.6 million terabytes by 2014 [18]. It is also
worthwhile to note that for the digital health data, its integrity
and security issues are of critical importance in the field. For
instance, for the former, data compression techniques may not
be used, in many cases, as they may distort the data; and for
the latter, the confidentiality of patient data is clearly cardinal
in order to foster public confidence in such technologies.

2.3. Stars, galaxies, and the universe

The digital data volume from the stars, galaxies and uni-
verse has multiplied over the past decade due to the rapid de-
velopment of new technologies such as new satellites, tele-
scopes and other observatory instruments. Recently, the Visi-
ble and Infrared Survey Telescope for Astronomy (VISTA)
[19] and the Dark Energy Survey (DES) [20] — the largest
universe survey projects initiated by two different consorti-
ums of universities, from the U K., and from the U.S., are ex-
pected to yield databases of 20-30 terabytes in size in the next
decade.

According to DES, its observatory field is so large that a
single image will record data from an area of the sky 20 times
the size of the moon as seen from the earth [20]. The survey
will image 5000 degrees of the U.S. southern sky and will
take about five years to complete. As for VISTA, its perfor-
mance requirements were so challenging that it peaks at 55
megabytes/second data rate with a maximum of 1.4 terabytes
of data per night [19]. But, these are now fairly commonplace.
Many other astro-scientific databases, such as the Sloan Dig-
ital Sky Survey (SDSS) are already terabytes in size [21] and
the Panoramic Survey Telescope-Rapid Response System
(Pan-STARRY) is expected to produce a science database of
more than 100 terabytes in size for the next five years [22].
Likewise, the Large Synoptic Survey Telescope (LSST) is
producing 30 terabytes of data per night, yielding a total da-
tabase of about 150 petabytes [23]. As the data produced by
the new telescopes are expected to come to the Internet, this
picture will change radically.

Many believe that the massive data volume and the ever
increasing computing power will dramatically change the
way in how conventional science and technology are con-
ducted. We believe that this surge in data will open up and
challenge further research in each field, hence, instigating the
search for new approaches. Likewise, such challenge needs to
be addressed in the area of intelligent information science as
well.

3. Sustainable data modeling and efficient learning

With consideration of the large influx of data, it is defi-
nitely necessary to improve the way in how conventional

computational/analytic data models are designed and devel-
oped. Sustainable data modeling can be defined as a form of
data modeling technology, aimed to make sense of the large
amount of data associated in its own field, by discovering pat-
terns and correlations in an effective and efficient way. Sus-
tainable data modeling specifically focuses on 1) maximum
learning accuracy with minimum computational cost, and 2)
rapid and efficient processing of large volumes of data. Sus-
tainable data modeling seems to be ideal because of its ease
in which large quantities of data are handled efficiently as
well as its associated cost reduction observed in many cases.
In a wider perspective, it entails a data-modeling revolution
in e-sciences. In fact, these newly designed sustainable data
models will effectively cope with the above data issues and,
as a result, bring about benefits to the various e-science areas.
Some of the excellent examples are well discussed in Patnaik
et al., Sundaravaradan et al., and Marwah’s article [24-27].
Hence, in this section, we will give a few recommendations
to green engineers/researchers on a few key mechanics of the
sustainable data modeling.

3.1. Ensemble models

One of the key success elements of sustainable data mod-
eling is to maintain or improve its performance while signifi-
cantly reducing its computational cost. Recent data-modeling
research has shown that ensemble methods have gained much
popularity as they often perform better than individual models
[28][29]. Ensemble method uses multiple models to obtain
better performance than those that could be obtained from any
of the constituent models [29][30]. However, it can result in
significant increase in computational cost. If the model deals
with large-scale data, model complexity and computational
requirements will grow exponentially. An example of such
ensemble model is the Bayes classifier [31]. In Bayes classi-
fier, each hypothesis is given a vote proportional to the likeli-
hood that the training dataset would be sampled from a sys-
tem if that hypothesis was true. To facilitate the training data
of finite size, the vote of each hypothesis is also multiplied by
the prior probability of that hypothesis. The Bayes classifier
is expressed as follows:

y=argmax, . » P(c;|)P(T | h)P(h)-

heH

where y is the predicted class, C is the set of all possible clas-
ses, H is the hypothesis space, P refers to a probability, and 7
is the training data. As an ensemble, the Bayes classifier rep-
resents a hypothesis that is not necessarily in H. The hypoth-
esis represented by the Bayes classifier, however, is the opti-
mal hypothesis in ensemble space (the space of all possible
ensembles consisting only of hypotheses in H).

Considering the problem of numerical weather prediction,
ensemble predictions are now commonly made at most of the
major operational weather prediction facilities worldwide
[32], including the National Centers for Environmental Pre-
diction, U.S., the European Centre for Medium-Range



Weather Forecasts (ECMWF), the United Kingdom Met Of-
fice, Metro France, Environment Canada, the Japanese Mete-
orological Agency, the Bureau of Meteorology, Australia, the
China Meteorological Administration, the Korea Meteorolog-
ical Administration, and CPTEC, Brazil.

3.2. Model complexity problem

Bayes estimation techniques have been well-adopted in
general intelligent data modeling because they provide a fun-
damental formalism for combining all the information avail-
able, with regards to the parameters to be estimated, with op-
timized time complexity [33].

One of the most serious problems in Bayes nonparametric
learning models is its high-algorithmic complexity and exten-
sive memory requirements, especially for the necessary quad-
ratic programming in large-scale tasks. As a nonparametric
Bayes classifier extracts worst-case example x and uses sta-
tistical analysis to build a classifying model, any learning al-
gorithm that examines every attribute values of every training

example must have at least the same or worse complexity [33].

Many applications of machine learning deal with problems
where both the number of features i as well as the number of
examples x; is large. Linear Support Vector Machines are
among the most prominent machine-learning techniques for
such high-dimensional and sparse data. In this article, we use
two machine-learning models as examples to be semiparam-
eterized. In other words, the two models are to be modified to
be more efficient and fast computationally. The time com-
plexity of the Bayes and SVMs are well discussed in Elkan’s
and Joachims’ article respectively [34][35].

3.3. Local learning strategy

Yoo et al. have proposed two different support-vector-
based efficient ensemble models that have shown to reduce

its computational cost while maintaining its performance [36].

Their novel learning technique has proven to be successful by
other similar studies [7]. With a nonparametric model, a
unique model must be constructed for each test set, which will
significantly increase its computational complexity and cost.

To reduce the computational cost, they have thus proposed
to partition the training samples into clusters, with that, build
a separate local model for each cluster — this method is called
local learning. A number of recent works have demonstrated
that such a local learning strategy is far superior to that of the
global learning strategy, especially on data sets that are not
evenly distributed [37—40]. If a local-learning method is
adopted in the decision function of a nonparametric classifier
(i.e., the general regression network), it will allow for the
classifier to be semiparameterized. Its semiparametric ap-
proximation can be expressed as follows:

—(x—x,)" (x—x,)

T z,
—(x—¢;) (x—¢ :
Zeptime) Gme) 3,

20 = 20
where x; is a training vector for class i in the input space, &

is a single learning or smoothing parameter chosen during the

network training, and Z; is a number of input training vectors
x;associated with its center ¢;. In nonparametric classification,
many different types of radial basis functions can be chosen
in place of the Gaussian function. The radial basis function,
used in many cases, is actually a spherical kernel function,
which is specifically used for nonparametric function estima-
tion. If the number of training samples approaches infinity,
the nonparametric function estimation hence becomes no
longer dependent on the parameters of the radial basis func-
tion, however, for finite training samples, we can always ob-
serve some forms of dependency on the radial basis function
parameters.

The local learning strategy provides more dependence on
the radial basis function parameters than that of a nonpara-
metric model because the local learning model is a semipara-
metric approximation of a nonparametric/global learning
model. In other words, in semiparametric modeling, model
assumptions gets stronger than those of nonparametric mod-
els, but are less restrictive than those of parametric model. In
particular, this approximation avoids the practical disad-
vantages of nonparametric methods at the expense of in-
creased risk of specification errors. Semiparametric models
that are based on local learning help not only in reducing the
model complexity but also in finding the optimal tradeoff be-
tween the parametric and nonparametric models — so as to
achieve both low model bias and variance [41]. In short, it can
therefore take on the inherent advantage of both the models
while reducing its computational requirements effectively.

3.4. Semiparametric approximation

The above examples can be seen as a spherical function
mixture model with data-directed center vector allocation.
That is because the relative widths of the spherical functions
at each center are directly proportional to the relative number
of training vectors associated with each center. Many differ-
ent types of computational local models, and the diverse se-
lection method of the yi and the grouping of the associated
input vectors in each class i can be used for the global model
semiparametric approximation.

The local learning strategy provides a reasonable approxi-
mation since x; are sufficiently close in the input vector space.
In that case, they can be adequately represented by a single
center vector ¢;in that local space. In the case of Support Vec-
tor Regression (SVR), the ¢; vectors can be derived from ei-
ther the k-means or the codebook theory. In SVR, where the
two classes are not separable, they map the input space into a
high-dimensional feature space (where the classes are linearly
separable), using a nonlinear kernel function. The kernel
function calculates the scalar product of the images of two
examples in the feature space.

Given a n-dimensional input vector, x;=(x;,x2,...,x,) With
two labels, y; € {+1, —1} where i=1,2,...,N, the hyperplane de-
cision function of the binary SVR with kernel method is:

fx= sgn[z ¥,0,(D(x), D(x,)) +bj = sgn[z y,ak(x,x,) +b)

i=1 i=1



and the quadratic program is given as:

maximize W (aq) = Za —5 Za -yl-y,-k(xwxj) ’
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i=1

subjectto @, >0, i =1,...

where £ is the number of training patterns, a; is the parame-
ters of SVR, K (.,.) is a spherical (nonparametric) kernel func-
tion, and b is the bias term. In the above case, the local model
can be constructed from k-means clustering. The objective
function of the k-means clustering can be expressed as fol-
lows:

min 337, [x,~C [ +RY,

Jj=1 i=1 =

>z,

i=1

where X; is the i row of the similarity matrix >, C;isa I xm
row vector representing the centroid of the j” cluster, R is a
non-negative scaling parameter, and Z;; € {0,1} is an element
of the cluster membership matrix, whose value is equal to one
if the i source vector belongs to the j* cluster, and zero if
otherwise. The first term in the objective function corre-
sponds to a cluster cohesion measure. The minimization of
the above equation would ensure that the training vectors in
the same cluster have highly correlated similarity vectors. The
second term measures the skewness of class distribution in
each cluster. The minimization of this term would ensure that
each cluster contains a balanced number of positive and neg-
ative estimation vectors. The cluster centroid C and cluster
membership matrix Z are estimated iteratively as follows:
e  We fix the cluster centroids and use them to deter-
mine the cluster membership matrix.
e Therevised cluster membership matrix is used to up-
date the centroids. — repeated until the algorithm
converges to a local minimum.

To compute the cluster membership matrix Z, we trans-
form the original optimization problem, using & slack variable
¢, into:

IMIZZFJW C”+RZ%

j=1 i=1
n
s.t. —t; SZZi’jyiStj,
i=1

1,20,0<Z, <1,
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if the cluster membership matrix is obtained, the cluster cen-
troid C; is updated based on the following:

2z,

Z,:l Zi,j

To construct a semiparametric model, we substituted Q; (X)
for each training sample x; used in the SVR decision function.
The new semiparametric model’s approximation is therefore
expressed as:

0,(X,)=C;

flx)= sgn(w~ &(x) +b)= sgn(z v.ak(x,c,) +bj,

i=1
and the quadratic program is given as:
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As mentioned, the local model can also be constructed
from the principle of codebook [42]. In this case, its basic idea
is to replace key values from an original multidimensional
vector space with values from a discrete subspace of lower
dimension. The lower-dimension vector requires less storage
space and the data is thus compressed.

Consider a training sequence consisting of M source vec-
tors, T={xj, X2, ..., xm}. M is assumed to be sufficiently large,
such that all the statistical properties of the source are cap-
tured by the training sequence. We assume that the source
vectors are k-dimensional, X,=(m1 Xm2 ..., Xmk)
m=1,2,...,M. These vectors are compressed by choosing the
nearest matching vectors, and form a codebook comprising of
the entire set of codevectors. N is the number of codevectors,
C={cics...,cn} and each codevector is k-dimensional,
Ccn=(Cn1,Cn2, ---,Cni), n=1,2,...,N. The representative codevec-
tor is determined to be the closest in Euclidean distance from
the source vector. The Euclidean distance is defined by:

k
2
Z (x;=¢;)"
=

where x; is the j# component of the source vector, ¢;; is the j
component of the codevector ¢;, S, is the nearest-neighboring
region associated with codevector c,, and the partitions of the
whole region are denoted by P={S,,S>,...,Sx}. If the source
vector X, is in the region S, its approximation can be denoted
by O(X)=cy, if X € S,. The Voronoi region is defined by:

d(x,c;) =

V,={xeR :||x—c,.||SHx—cj ,

the training vectors falling into a particular region are approx-
imated by a red dot associated with that region (Fig. 1.).

To find the optimal C and P, vector quantization uses a
square-error distortion measure that specifies exactly how
close the approximation is. The distortion measure is given as:
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If C and P are solution parameters to the minimization prob-
lem, then it must satisfy two conditions: (1) nearest-neighbor
and (2) centroid. The nearest-neighbor condition indicates
that the subregion S, should consist of all the vectors that are
closer to ¢, than any of the other codevectors:

S, = {x: ||x—cn

finally, the centroid condition indicates that the codevector ¢,
can be derived from the average of all the training vectors in
its Voronoi Region S;:

Lo =12, NJ.

2
< ||x —-C,

c, = M,n =1,2,...
ZXmeSnl

As Elkan’s discussed [34], the local learning techniques —
use of ¢, vectors for building a local model — prove that any
intelligent learning model that examines all the attribute val-
ues of every training example must have the same or worse
complexity. In other words, such a local learning strategy is
far more efficient than that of the global learning strategy, es-
pecially on a large volume of data problems [37—40].
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Fig. 1. Two-dimensional (2D) vector quantization
3.5. Deep learning

Shallow learning models (e.g., SVM, MLP, and GMM)
have been widely used in the literature to solve simple or
well-constrained problems. However, their limited modeling
and representational power do not support their use in solving
more complex problem, such as natural language problems.
In 2006, the so-called deep learning (a.k.a. Representation
learning) has emerged as new area of ML research [43—45]
that exploits multiple layers of information-processing in a
hierarchical architecture for pattern classification and or rep-

resentation learning (e.g., Feed-forward neural networks) [46].

The main advantage of deep learning is referred to the drasti-
cally increased chip processing abilities, the lowered cost of
computing hardware, and the recent advances in ML.

Deep neural networks (DNNs) are multilayer networks
with many hidden layers, whose weights are fully connected
and often initialized or pretrained using stacked Restricted
Boltzmann Machine (RBM) or Deep Belief Networks (DBMs)
[46]. DBM is a pretraining unsupervised step that utilizes
large amount of unlabeled training data for extracting struc-
tures and regularities in input features [47]. DBN not only
uses a huge amount of unlabeled training data but also pro-
vides good initialization weights for DNN. Moreover, over-
fitting and underfitting problems can be tackled by using the
pretraining step of DBN. DNN has shown great performance
in recognition and classification tasks, including natural lan-
guage processing, image classification, and traffic flow detec-
tion [48]. However, DNN has high computational cost and
difficult to scale [49]. DSN addresses the scalability problem
of DNN, simple classifiers are stacked on top of each other in
order to construct more complex classifier [S0][51].

New techniques used in Sections 3.3 and 3.4 could fit to
the problems of DNN naturally. The decision function of
DNN is as follows:

o)
! Zkexp(xk)’

where P; represents the class probability and x; and xx repre-
sent the total input to units j and & respectively. The cross en-
tropy is defined as follows:

C=2d;log(p)),
J

where d; represents the target probability for output unit j, and
P; is the probability output for j after applying the activation
function [52]. Now, the new semiparametric model’s approx-
imation is approximated as:

exp(c;) N exp(x;)
Dexplc) D exp(x)’

this approximation no longer extracts worst-case example x
and is now able to reduce its complexity effectively. As in the
local learning strategy, the model assumptions gets stronger
than those of nonparametric models, but they are less restric-
tive than those of parametric model while reducing its com-
putational complexity significantly.

3.6. Big data computing

Big data computing systems fall into two major categories,
based on how data is analyzed with regards to time constraint
[53]. First, batch processing of large volumes of on-disk data
with no time constraints (e.g., MapReduce and GraphLab).
Second, streaming processing of in-memory data in real-time
or short period of time (e.g., Storm, SAMOA) [54][55]. In
[54], Huang and Li argued that next-generation computing
systems for big data analytics need innovative designs in both
hardware and software that would provide a good match be-
tween big data algorithms and the underlying computing and



storage resources.

There are several computing frameworks, e.g., Hadoop
[56], SHadoop [57], ComMapReduce [58], Dryad [59], Pic-
colo [60], and IBM parallel machine learning toolbox, such
systems have the capabilities to scale up machine learning.
The combination of deep learning and parallel training imple-
mentation techniques provides potential ways to process Big
Data [61]. Quoc V. Le ef al. [62] consider the problem of
building high-level, class-specific feature detectors from only
unlabeled data. Experimental results reveal that it is possible
to train a face detector without having to label images as con-
taining a face or not.

K. Zhang and X. Chen [63] presented a distributed learn-
ing paradigm for the RBMs and the backpropagation algo-
rithm using MapReduce. The DBNs are trained in a distrib-
uted way by stacking a series of distributed RBMs for pre-
training and a distributed backpropagation for fine-tuning.
Experimental results demonstrate that the distributed RBMs
and DBNs are amenable to large-scale data with a good per-
formance in terms of accuracy and efficiency.

4. Concluding Remarks

In this review, we provided an overview of the current state
of research in sustainable data modeling. In particular, we dis-
cussed its theoretical and experimental aspects in large-scale
data-intensive fields, relating to: (1) model energy efficiency,
including computational requirements in learning, and possi-
ble approaches, and (2) data-intensive areas’ structure and de-
sign, including the relation between data models and charac-
teristics, With the surge in e-science data, sustainable data
modeling has been shown to offer a way forward due to its
ease in handling large quantities of data. It is also envisaged
that such data-modeling revolution can be readily extended to
various areas in e-science. These newly designed sustainable
data models will not only be able to cope with the emerging
large-scale data paradigm, but also provide a means in max-
imizing its return for the various e-science areas.
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