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Summary 152 

 153 

Structurally intact tropical forests sequestered ~50% of global terrestrial carbon uptake over 154 

the 1990s and early 2000s, removing ~15% of anthropogenic CO2 emissions1-3. Climate-driven 155 

vegetation models typically predict that this tropical forest ‘carbon sink’ will continue for 156 

decades4,5. Here, we assess trends in the carbon sink using 244 structurally intact African 157 

tropical forests spanning 11 countries, we compare them with 321 published plots from 158 

Amazonia and investigate the underlying drivers of the trends. The carbon sink in live 159 

aboveground biomass in intact African tropical forests has been stable for the three decades to 160 

2015, at 0.66 Mg C ha-1 yr-1 (95% CI:0.53-0.79), in contrast to the long-term decline in 161 

Amazonian forests6. Thus, the carbon sink responses of Earth’s two largest expanses of 162 

tropical forest have diverged. The difference is largely driven by carbon losses from tree 163 

mortality, with no detectable multi-decadal trend in Africa and a long-term increase in 164 

Amazonia. Both continents show increasing tree growth, consistent with the expected net effect 165 

of rising atmospheric CO2 and air temperature7-9. Despite the past stability of the African 166 

carbon sink, our data suggest a post-2010 increase in carbon losses, delayed compared to 167 

Amazonia, indicating asynchronous carbon sink saturation on the two continents. A statistical 168 

model including CO2, temperature, drought and forest dynamics accounts for the observed 169 

trends and indicates a long-term future decline in the African sink, while the Amazonian sink 170 

continues to rapidly weaken. Overall, the uptake of carbon into Earth’s intact tropical forests 171 

peaked in the 1990s. Given that the global terrestrial carbon sink is increasing in size, 172 

observations indicating greater recent carbon uptake into the Northern hemisphere landmass10 173 

reinforce our conclusion that the intact tropical forest carbon sink has already saturated. This 174 

tropical forest sink saturation and ongoing decline has consequences for policies to stabilise 175 

Earth’s climate. 176 
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Main text 177 

 178 

Tropical forests account for approximately one-third of Earth’s terrestrial Gross Primary Productivity 179 

and one-half of Earth’s carbon stored in terrestrial vegetation11. Thus, small biome-wide changes in 180 

tree growth and mortality can have global impacts, either buffering or exacerbating the increase in 181 

atmospheric CO2. Models2,4,5,7,12, ground-based observations13-15, airborne atmospheric CO2 182 

measurements3,16, inferences from remotely sensed data17, and synthetic approaches3,8,18 each suggest 183 

that, after accounting for land-use change, remaining structurally intact tropical forests (i.e. not 184 

impacted by direct anthropogenic impacts such as logging) are increasing in carbon stocks. This 185 

structurally intact tropical forest carbon sink is estimated at ~1.2 Pg C yr-1 over 1990-2007 using 186 

scaled inventory plot measurements1. Yet, despite its policy relevance, changes in this key carbon 187 

sink remain highly uncertain19,20. 188 

  189 

Globally the terrestrial carbon sink is increasing2,7,8,21. Between 1990 and 2017 the land surface 190 

sequestered ~30% of all anthropogenic carbon dioxide emissions1,21. Rising CO2 concentrations are 191 

thought to have boosted photosynthesis more than rising air temperatures have enhanced respiration, 192 

resulting in an increasing global terrestrial carbon sink2,4,7,8,21. Yet, for Amazonia, recent results from 193 

repeated censuses of intact forest inventory plots show a progressive two-decade decline in sink 194 

strength primarily due to an increase of carbon losses from tree mortality6. It is unclear if this simply 195 

reflects region-specific drought impacts22,23, or potentially chronic pan-tropical impacts of either 196 

heat-related tree mortality24,25, or internal forest dynamics resulting from past increases in carbon 197 

gains leaving the system26. A more recent deceleration of the rate of increase in carbon gains from 198 

tree growth is also contributing to the declining Amazon sink6. Again, it is not known if this is a 199 

result of either pan-tropical CO2 fertilisation saturation, or rising air temperatures, or is merely a 200 

regional drought impact. To address these uncertainties, we (i) analyze an unprecedented long-term 201 
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inventory dataset from Africa, (ii) pool the new African and existing Amazonian records to 202 

investigate the putative environmental drivers of changes in the tropical forest carbon sink, and (iii) 203 

project its likely future evolution. 204 

 205 

We collected, compiled and analysed data from structurally intact old-growth forests from the 206 

African Tropical Rainforest Observation Network27 (217 plots) and other sources (27 plots) spanning 207 

the period 1968 to 2015 (Extended Data Figure 1; Supplementary Table 1). In each plot (mean size, 208 

1.1 ha), all trees ≥100 mm in stem diameter were identified, mapped and measured at least twice 209 

using standardised methods (135,625 trees monitored). Live biomass carbon stocks were estimated 210 

for each census date, with carbon gains and losses calculated for each interval (Extended Data Figure 211 

2).  212 

 213 

Continental Carbon Sink Trends 214 

We detect no long-term trend in the per unit area African tropical forest carbon sink over three 215 

decades to 2015 (Figure 1). The aboveground live biomass sink averaged 0.66 Mg C ha-1 yr-1 (95% 216 

CI: 0.53-0.79; n=244) and was significantly greater than zero for every year since 1990 (Figure 1). 217 

While very similar to past reports (0.63 Mg C ha-1 yr-1)13, this first estimate of the temporal trend in 218 

Africa contrasts with the declining Amazonian trend6 (Figure 1). A linear mixed effect model shows 219 

a significant difference in the slopes of the sink trends for the two continents over the common time 220 

window (pooled data from both continents, common time window, 1983-2011.5; p=0.017). Thus, the 221 

per unit area sink strength of the two largest expanses of tropical forest on Earth diverged in the 222 

1990s and 2000s.  223 

 224 

The proximal cause of the divergent sink patterns is a significant increase in carbon losses (from tree 225 

mortality, i.e. the loss of carbon from the live biomass pool) in Amazonian forests, with no 226 
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detectable trend over three decades in African forests (Figure 1). A linear mixed effects model using 227 

pooled data shows a significant difference in slopes of carbon losses between the two continents over 228 

the common 1983-2011.5 time window (p=0.027). Long-term trends in carbon gains (from tree 229 

growth and newly recruited trees) on both continents show significant increases (Figure 1), and we 230 

could detect no difference in slopes between the continents (p=0.348; carbon gains from tree growth 231 

alone also show no continental difference in long-term trends, p=0.322). However, an assessment of 232 

how underlying environmental drivers affect carbon gains and losses is needed to understand the 233 

ultimate causes of the divergent sink patterns. 234 

 235 

Understanding the Carbon Sink Trends 236 

We first investigate environmental drivers exhibiting long-term change that impact theory-driven 237 

models of photosynthesis and respiration: atmospheric CO2 concentration, surface air temperature, 238 

and water availability. A linear mixed effects model of carbon gains, with censuses nested within 239 

plots, and pooling the new African and published Amazonian data, shows a significant positive 240 

relationship with CO2, and significant negative relationships with mean annual temperature (MAT) 241 

and drought (measured as the Maximum Climatological Water Deficit, MCWD14; Figure 2; 242 

Extended Data Table 1). These results are consistent with a positive CO2 fertilisation effect, and 243 

negative effects of higher temperatures and drought on tree growth, consistent with temperature-244 

dependent increases in autotrophic respiration, and temperature- and drought-dependent reductions 245 

in carbon assimilation. By contrast, the equivalent model for carbon losses (i.e. tree mortality) shows 246 

no significant relationships with CO2, MAT or MCWD (Figure 2; Extended Data Table 1).  247 

 248 

We further investigate the responses of carbon gains and losses (for which the above analysis has no 249 

explanatory power) by expanding our potential explanatory variables to additionally include the 250 

change in environmental conditions (CO2-change, MAT-change, MCWD-change, see Extended Data 251 
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Figure 3 for calculation details), and two attributes of forests that may influence their response to the 252 

same environmental change: plot mean wood density (which in old-growth forests correlates with 253 

below-ground resource availability28,29), and the plot carbon residence time (which measures how 254 

long fixed carbon remains in the system, hence dictates when past increases in carbon gains leave the 255 

system as elevated carbon losses30).  256 

 257 

The minimum adequate carbon gain model using our expanded explanatory variables (best ranked 258 

model using multimodel inference) has a positive relationship with CO2-change, and negative 259 

relationships with MAT, MAT-change, MCWD, and wood density (Table 2; model-average results 260 

are similar, see Methods and Supplementary Tables 2-4). The retention of both MAT and MAT-261 

change suggests that higher temperatures correspond to lower tree growth, and that trees only 262 

partially acclimate to recently rising temperatures, which further reduces growth, consistent with 263 

warming experiments31 and observations9. The inclusion of higher wood density, and it being related 264 

to lower carbon gains (Extended Data Figure 4), alongside no temporal trends in wood density 265 

(Extended Data Figure 5), suggests that old-growth forests with denser-wooded tree communities 266 

typically have fewer available below-ground resources, or such patterns may also emerge from 267 

disturbance regimes lacking large-scale exogenous events, consistent with prior studies26,28,32. 268 

 269 

The minimum adequate carbon gain model using our expanded explanatory variables also highlights 270 

continental differences. Between 2000 and 2015 African forest carbon gains increased by 3.1% 271 

compared with a 0.1% decline in Amazonia over the same interval (Table 2). In Africa, from 2000 to 272 

2015, the increase was composed of a 3.7% increase from CO2-change, partially offset by increasing 273 

droughts depleting gains by 0.5%, and only a slight decline in gains of 0.1% resulting from 274 

temperature increases (Table 2), because the rate of temperature change (MAT-change) decelerated 275 

over this time window (Extended Data Figure 5). For Amazonia, the same 3.7% increase due to CO2-276 
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change was seen, while increasing droughts—and these forests’ greater sensitivity to drought— 277 

reduced gains by 2.7% (five times the impact in Africa), and temperature increases at the same rate 278 

as in the past (i.e. MAT-change is zero) further reduced gains by 1.1% (ten times the impact in 279 

Africa), leaving a net change in gains slightly below zero (Table 2). Thus, the recent stalling of 280 

carbon gain increases in Amazonia6 is a response to drought and temperature and not due to an 281 

unexpected saturation of CO2 fertilisation. Overall, the larger modelled increase in gains in Africa 282 

relative to Amazonia appear to be driven by slower warming, fewer or less extreme droughts, lower 283 

forest sensitivity to droughts, and overall lower temperatures (African forests are on average ~1.1°C 284 

cooler than Amazonian forests, as they typically grow at ~200 m higher elevation). Other continental 285 

differences may also be influencing the results, including higher nitrogen deposition in African 286 

tropical forests due to the seasonal burning of nearby savannas33 and biogeographic history resulting 287 

in differing contemporary species pools and resulting functional attributes34,35.  288 

 289 

The minimum adequate carbon loss model using our expanded explanatory variables shows higher 290 

losses with CO2-change and MAT-change, and lower losses with MCWD and the carbon residence 291 

time (CRT; Table 2). Thus, changes in carbon losses appear to be largely a function of carbon gains. 292 

First, the greater losses in forests with shorter CRT conform to a ‘high-gain high-loss’ forest 293 

dynamics pattern26. Second, wetter plots have a longer growing season and so have higher gains and 294 

correspondingly higher losses, explaining the negative relationship with MCWD. Third, as 295 

increasing CO2 levels result in additional carbon gains, after some time these additional past gains 296 

leave the system resulting in greater carbon losses, explaining the positive relationship with CO2-297 

change. Finally, in addition to these relationships with carbon gains, the inclusion of MAT-change 298 

(p<0.001) indicates heat- or vapour pressure deficit-induced tree mortality24. Overall, our results 299 

imply that chronic long-term environmental change factors, temperature and CO2, rather than simply 300 
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the direct effects of drought, underlie longer-term trends in tropical forest tree mortality, although 301 

other changes such as rising liana infestation rates seen in Amazonia36,37 cannot be excluded.  302 

 303 

The minimum adequate carbon loss model using our expanded explanatory variables replicates the 304 

continental trends (Figure 3). The overall lower loss rates in Africa reflect their longer CRT (69 yrs, 305 

95% CI, 66-72), compared with Amazonian forests (56 yrs, 95% CI, 54-59) while over the 2000-306 

2015 window the much smaller increase in loss rates in Africa compared to Amazonia results from a 307 

slower increase in warming and a stable CRT in Africa compared to continued warming at previous 308 

rates and a shortening CRT in Amazonian forests (Extended Data Figure 5). Furthermore, given that 309 

losses appear to lag behind gains they should relate to the long-term CRT of plots. This is what we 310 

find: the longer the CRT the smaller the increase in carbon losses, with no increase in losses for plots 311 

with CRT ≥77 years (Extended Data Figure 6). Consequently, due to the typically longer residence 312 

times of African forests, increasing losses in Africa ought to appear 10-15 years after the increase in 313 

Amazon losses began (c.1995). Strikingly, in Africa the most intensely monitored plots suggest that 314 

losses began increasing from c.2010 (Extended Data Figure 7), and plots with shorter CRT are 315 

driving the increase (Extended Data Figure 8). Thus, a mortality-dominated African carbon sink 316 

decline appears to have begun very recently.  317 

 318 

Future of the Tropical Forest Carbon Sink 319 

Our carbon gain and loss models (Table 2) can be used to make a tentative estimate of the future size 320 

of the per unit area intact forest carbon sink (Figure 3). Extrapolations of the changes in the predictor 321 

variables from 1983-2015 forward to 2040 (Extended Data Figure 5) show declines in the sink on 322 

both continents (Figure 3). By 2030 the carbon sink in aboveground live biomass in intact African 323 

tropical forest is predicted to decline by 14% from the measured 2010-15 mean, to 0.57 Mg C ha-1 yr-324 

1 (2ı range, 0.16-0.96; Figure 3). The Amazon sink continues to decline, reaching zero in 2035 (2ı 325 
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range, 2011-2089; Figure 3). Our estimated sink strength on both continents in the 2020s and 2030s 326 

is sensitive to future CO2 emissions pathways (CO2-change)38, resulting temperature increase (MAT, 327 

MAT-change) and hydrological changes (MCWD), plus changes in forest dynamics (CRT), but the 328 

sink is always lower than levels seen in the 2000s (see Methods and Supplementary Table 5). Thus, 329 

the carbon sink strength of the world’s two most extensive tropical forests have now saturated, albeit 330 

asynchronously.  331 

 332 

Scaling Results to the Pan-tropics 333 

Scaling our estimated mean sink strength by forest area for each continent signifies that Earth 334 

recently passed the point of peak carbon sequestration into intact tropical forests (Table 1). The 335 

continental sink in Amazonia peaked in the 1990s, followed by a decline, driven by sink strength 336 

peaking in the 1990s and a continued decline in forest area (Table 1). In Africa the per unit area sink 337 

strength peaked later in the 2000-2010 period, but the continental African sink peaked in the 1990s, 338 

due to the decline in forest area in the 2000s outpacing the small per unit area increase in sink 339 

strength. Including the modest uptake in the much smaller area of intact Asian tropical forest 340 

indicates that total pan-tropical carbon uptake peaked in the 1990s (Table 1). From peak pan-tropical 341 

intact forest uptake of 1.26 Pg C yr-1 in the 1990s, we project a continued decline reaching just 0.29 342 

Pg C yr-1 in the 2030s (multi-decade decline of ~0.24 Pg C yr-1 decade-1), driven by (i) reduced mean 343 

pan-tropical sink strength decline of 0.1 Mg C ha-1 yr-1 decade-1 and (ii) ongoing forest area losses of 344 

~13.5 million ha yr-1 (see Extended Data Table 2 for forest area details). Critically, climate-driven 345 

vegetation model simulations have not predicted that peak net carbon uptake into intact tropical 346 

forests has already been passed2,4,5. 347 

 348 
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Discussion 349 

Our method of scaling to arrive at a pan-tropical sink estimate – in common with other studies using 350 

similar datasets1,6,13 – is limited. Yet, pervasive net carbon uptake is expected given that we find a 351 

strong and ongoing CO2 fertilisation effect. Using our CO2 response in Table 2, we find an increase 352 

in aboveground carbon stocks of 10.8±3.7 Mg C ha-1 100 ppm-1 CO2, or 6.5±2.2% (±SE; using an 353 

area-weighted pan-tropical mean aboveground C stock of 165 Mg C ha-1), comparable to the 354 

5.0±1.2% increase in tropical forest C stocks 100 ppm-1 CO2 derived from a recent synthesis of CO2 355 

fertilisation experiments, despite a lack of data from mature tropical forests39. Our result is within the 356 

range of climate-driven vegetation models2,7, although it is greater than a number of recently-357 

published models that include potential nutrient constraints, reported as 5.9±4.7 Mg C ha-1 100 ppm-1 358 

CO2 (Ref.40). We find that the CO2 fertilisation uptake is currently only partially offset by the 359 

negative impacts of similarly widespread rising air temperatures (-2.0±0.4 Mg C ha-1 °C-1, from 360 

Table 2), consistent with models7, limited experiments31 and independent observations9, plus 361 

negative responses to drought41,42. Long-term and extensive increases in satellite-derived greenness 362 

in tropical regions not experiencing major changes in land-use management17,43, particularly in 363 

central Africa in the past decade44, indicate increases in tropical forest net primary productivity, 364 

providing further evidence that the sink is a widespread phenomenon44. 365 

 366 

Nonetheless, our analyses show that this pervasive tropical forest sink in live biomass is in long-term 367 

decline, first saturating in Amazonia, and more recently followed by African forests, explaining the 368 

prior Africa-Amazon carbon sink divergence as part of a longer-term pattern of asynchronous 369 

saturation and decline. From an atmospheric perspective the full impacts of the contribution to the 370 

saturation of the sink from slowing carbon gains are experienced immediately, but the contribution 371 

from rising carbon losses is delayed because dead trees do not decompose instantaneously. 372 

Decomposition of this dead tree mass is ~50% in 4 yrs, and ~85% in 10 yrs, thus rising carbon losses 373 
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result in delayed carbon additions to the atmosphere45. Hence, from an atmospheric perspective the 374 

intact tropical forest biomass carbon sink likely peaked a few years later than our plot data indicate 375 

and the full impacts are not yet realised. The pan-tropical carbon sink in live biomass reduced by 376 

0.27 Pg C yr-1 between the 1990s and 2000s (Table 1), but accounting for dead wood 377 

decomposition45 shows a smaller 0.17 Pg C yr-1 reduction from an atmospheric perspective (see 378 

Methods). 379 

 380 

Given that the global terrestrial carbon sink is increasing, a weakening intact tropical forest sink 381 

implies that the extra-tropical carbon sink has increased over the past two decades. Independent 382 

observations of inter-hemispheric atmospheric CO2 concentration indicates that carbon uptake into 383 

the Northern hemisphere landmass has increased at a greater rate than the global terrestrial carbon 384 

sink since the 1990s, with a further disproportionate increase in the 2000s10. The inter-hemispheric 385 

analysis suggests a weakening of the tropical forest sink by ~0.2 Pg C yr-1 between the 1990s and 386 

2000s10, which is similar to the 0.17 Pg C yr-1 weakening over the same time period that we find. 387 

This reinforces our conclusion that the intact tropical forest carbon sink has already saturated.  388 

 389 

In summary, our results indicate that while intact tropical forests remain major stores of carbon and 390 

are key centres of biodiversity11, their ability to sequester additional carbon is waning. In the 1990s 391 

intact forests removed 17% of anthropogenic CO2 emissions. This has declined to 6% in the 2010s, 392 

because the pan-tropical weighted average per unit area sink strength declined by 33%, forest area 393 

decreased by 19%, and CO2 emissions increased by 46%. Although tropical forests are more 394 

immediately threatened by deforestation46 and degradation47, and the future carbon balance will also 395 

depend on secondary forest dynamics48 and forest restoration plans49, our analyses show that they are 396 

also impacted by atmospheric chemistry and climatic changes. Given that the intact tropical forest 397 

carbon sink is set to end sooner than even the most pessimistic climate-driven vegetation models 398 
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predict4,5, our analyses suggest that climate change impacts in the tropics may become more severe 399 

than predicted. Furthermore, the carbon balance of intact tropical forests will only stabilise once CO2 400 

concentrations and the climate stabilises. 401 

 402 

Continued on-the-ground monitoring of the world’s remaining intact tropical forests will be required 403 

to test our prediction that the intact tropical forest carbon sink will continue to decline. Such direct 404 

ground-based measurements also provide a constraint on estimating the size and location of the 405 

terrestrial carbon sink. In addition, our conclusion that tree mortality and internal forest dynamics are 406 

important controls on the future of the tropical forest carbon sink, may assist in improving the 407 

vegetation components of future Earth System Models50 and contribute to reducing terrestrial carbon 408 

cycle feedback uncertainty19,20. Our findings also have policy implications. At the country-level: 409 

given intact tropical forests are a carbon sink, but the size is changing, national greenhouse gas 410 

reporting will require careful forest monitoring. At the international-level: given tropical forests are 411 

likely to sequester less carbon in the future than Earth System Models predict, an earlier date to reach 412 

net zero anthropogenic greenhouse gas emissions will be required to meet any given commitment to 413 

limit the global heating of Earth.  414 

 415 
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 674 

Main Figures 675 

 676 

Figure 1. Long-term carbon dynamics of structurally intact tropical forests in Africa (blue) 677 

and Amazonia (brown). Trends in net aboveground live biomass carbon sink (a), carbon gains to 678 

the system from wood production (b), and carbon losses from the system from tree mortality (c), 679 

measured in 244 African inventory plots (blue lines) and contrasting published6 Amazonian 680 

inventory data (brown lines; 321 plots). Shading corresponds to the 95% CI, with less transparent 681 

shading indicating a greater number of plots monitored in that year (most transparent: minimum 25 682 

plots monitored). The CI for the Amazonian dataset is omitted for clarity, but can be seen in Figure 683 

3. Slopes and p-values are from linear mixed effects models (see Methods).  684 
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 685 

Figure 2. Potential environmental drivers of carbon gains and losses in structurally intact old-686 

growth African and Amazonian tropical forests. Aboveground carbon gains, from woody 687 

production (a-c), and aboveground carbon losses, from tree mortality (d-f), presented as time-688 

weighted mean values for each plot, i.e. each census within a plot is weighted by its length, against 689 

the corresponding values of atmospheric carbon dioxide concentration (CO2), mean annual air 690 

temperature (MAT) and drought (as Maximum Climatological Water Deficit, MCWD), for African 691 

(blue) and Amazonian (brown) inventory plots. Each data point therefore represents an inventory 692 

plot, for visual clarity, and the level of transparency represents the total monitoring length, with 693 

empty circles corresponding to plots monitored for ≤ 5 years and solid circles for plots monitored for 694 

>20 years. Solid lines show significant trends, dashed lines non-significant trends calculated using 695 

linear mixed effect models with census intervals (n=1566) nested within plots (n=565), using an 696 

empirically derived weighting based on interval length and plot area, on the untransformed pooled 697 

Africa and Amazon dataset (see Methods). Slopes and p-values are from the same linear mixed 698 

effects models. Carbon loss data and models are presented untransformed for comparison with 699 

carbon gains, but transformation is needed to fit normality assumptions; linear mixed effects models 700 

on transformed carbon loss data does not change the significance of the results, nor does including 701 

all three parameters and transformed data in a model (see Extended Data Table 1). 702 
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 703 

Figure 3. Modelled past and future carbon dynamics of structurally intact tropical forests in 704 

Africa and Amazonia. Predictions of net aboveground live biomass carbon sink (a,d), carbon gains 705 

(b,e), and carbon losses (c,f), for African (left panels) and Amazonian (right panels) plot inventory 706 

networks, based on CO2-change, Mean Annual Temperature, Mean Annual Temperature-change, 707 

drought (as Maximum Climatological Water Deficit), plot wood density, and plot carbon residence 708 

time, using observations in Africa until 2014 and Amazonia until 2011.5, and extrapolations of prior 709 

trends to 2040. Model predictions are in blue (Africa) and brown (Amazon), with solid lines 710 

spanning the window when ≥75% of plots were monitored to show model consistency with the 711 

observed trends, and shading showing upper and lower confidence intervals accounting for 712 

uncertainties in the model (both fixed and random effects) and uncertainties in the predictor 713 

variables. Light grey lines and grey shading are the mean and 95% CI of the observations from the 714 

African and Amazonian plot networks.  715 
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Main Tables 716 

 717 

Table 1. Carbon sink in intact forests in Africa, Amazonia and the pan-tropics: 1980-2015 and 718 

predictions to 2040. Mean values in bold, future predictions in italics, uncertainty in parentheses, 719 

95% bootstrapped confidence intervals for 1980-2015, and 2ı for the predictions (2010-2040). 720 

Period 

 

No. 

 

Per unit area aboveground live biomass C sink 

 

Total C sink * 

  

plots 

 

(Mg C ha-1 yr-1) 

 

(Pg C yr-1) 

  

Af. Am. 

 

Africa Amazon Pan-tropics† 

 

Africa Amazon Pan-tropics† 

1980-1990 

 

45 73 

 

0.33 (0.06-0.63) 0.35 (0.06-0.59) 0.35 (0.07-0.62) 

 

0.28 (0.05-0.53) 0.49 (0.08-0.82) 0.87 (0.16-1.52) 

1990-2000 

 

96 172 

 

0.67 (0.43-0.89) 0.53 (0.42-0.65) 0.57 (0.39-0.74) 

 

0.50 (0.32-0.66) 0.68 (0.54-0.83) 1.26 (0.88-1.63) 

2000-2010 

 

194 291 

 

0.70 (0.55-0.84) 0.38 (0.26-0.48) 0.50 (0.35-0.64) 

 

0.46 (0.37-0.56) 0.45 (0.31-0.57) 0.99 (0.70-1.25) 

2010-2015 

 

184 172 

 

0.66 (0.40-0.91) 0.24 (0.00-0.47) 0.40 (0.15-0.65) 

 

0.40 (0.24-0.56) 0.27 (0.00-0.52) 0.73 (0.25-1.18) 

2010-2020 ‡ - - 

 

0.63 (0.36-0.89) 0.23 (-0.05-0.50) 0.38 (0.11-0.65) 

 

0.37 (0.21-0.53) 0.25 (-0.05-0.54) 0.68 (0.17-1.16) 

2020-2030 ‡ - - 

 

0.59 (0.24-0.93) 0.12 (-0.29-0.51) 0.30 (-0.08-0.67) 

 

0.31 (0.13-0.49) 0.12 (-0.29-0.52) 0.47 (-0.15-1.07) 

2030-2040 ‡ - - 

 

0.55 (0.08-0.99) 0.00 (-0.54-0.49) 0.21 (-0.29-0.67) 

 

0.26 (0.04-0.47) 0.00 (-0.50-0.46) 0.29 (-0.46-0.97) 

* Total Continental C sink is the per unit area aboveground C sink multiplied by intact forest area for 721 

1990-2010 (from ref.1, see Extended Data Table 2) and continent specific extrapolations to 2040. 722 

Total Continental C sink includes continent-specific estimates of trees <100 mm DBH, lianas and 723 

roots (see Methods). 724 

† Pan-tropical aboveground live biomass C sink is the area-weighted mean of African, Amazonian 725 

and Southeast Asian sink values. Southeast Asian values were from published per unit area carbon 726 

sink data15 (n=49 plots) for 1990-2015, with 1980-1990 assumed to be the same as 1990-2000 due 727 

very low sample sizes. Pan-tropical total C sink is the sum of African, Amazonian and Southeast 728 

Asian total continental carbon sink values. The continental sink in Southeast Asia is a modest and 729 

declining contribution to the pan-tropical sink, due to the very small area of intact forest remaining, 730 

at 0.11, 0.08, 0.07 and 0.06 Pg C yr-1 in the 1980s, 1990s, 2000s and 2010s, hence uncertainty in the 731 

Southeast Asian sink cannot reverse the pan-tropical declining sink trend.  732 

‡ Per unit area total C sink for 2010-2020, 2020-2030 and 2030-2040 was predicted using parameters 733 

from Table 2, except for the 2010-2020 sink in Africa which is the mean of the measured sink from 734 

2010-2015 and the modelled sink from 2015-2020. For the Asian sink we assumed the parameters as 735 

for Africa, as Asian forest median CRT is 61 years, close to African median, 63 years. 736 

 737 
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Table 2. Minimum adequate models to predict carbon gains and losses in African and 738 

Amazonian tropical forests. These are the best ranked gains and loss models. Where continental 739 

values differ, those for Africa are reported first, followed by Amazonian values. 740 

Carbon gains, Mg C ha-1 yr-1 

Predictor variable  Parameter 

value 

Standard 

Error 

t-value p-value 2000-2015 change in gains 

(%) * 

(Intercept) 

 

5.255 | 5.395 0.603 | 0.614 8.7 | 8.8 <0.001 - 

CO2-change (ppm yr-1) † 

 

0.238 0.096 2.5 0.013 3.69% | 3.71% 

MAT (°C) 

 

-0.083 0.025 -3.3 0.001 -0.67% | -1.07% 

MAT-change (°C yr-1) ‡ 

 

-1.243 0.233 -5.3 <0.001  0.58% | 0.00% § 

MCWD (mm x1000) 

 

-0.405 | -1.391 0.381 | 0.24 -1.1 | -5.8 0.289 | <0.001 -0.52% | -2.73% 

WD (g cm-3)   -1.295 0.530 -2.4 0.015 0.05% | 0.00% 

Carbon losses, Mg C ha-1 yr-1 Œ 

Predictor variable  Parameter 

value 

Standard 

Error 

t-value p-value 2000-2015 change in losses 

(%) * 

(Intercept) 

 

1.216 0.086 14.1 <0.001 - 

CO2-change (ppm yr-1) † 

 

0.130 0.059 2.2 0.026  11.38% | 14.81% 

MAT-change (°C yr-1) 

 

0.766 0.162 4.7 <0.001 -1.56% | 0.00% 

MCWD (mm x10000) ‡ 

 

-0.232 0.107 -2.2 0.030  -1.21% | -2.42% 

CRT (yr)   -0.003 0.001 -6.1 <0.001 -0.57% | 1.39% 

* The 2000-2015 change in gains/losses for each predictor variable was estimated allowing only the 741 

focal predictor to vary; this change was then expressed as a percentage of the annual gains/losses in 742 

the year 2000 allowing all predictors to vary. 743 

† Change over the past 56 years. 744 

‡ Change over the past 5 years. 745 

§ A positive value for Africa indicates that MAT increased more slowly over 2000-2015 compared 746 

to the mean increase over 1983-2015, therefore contributing to an increase in gains; a zero value fpr 747 

Amazonia indicates that the rate of MAT increase was the same over 2000-2015 as the mean 748 

increase over 1983-2015.  749 

Œ Carbon loss values were normalized via power-law transformation, Ȝ= 0.361. 750 

 751 
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Online Methods 752 

 753 

Plot Selection 754 

Closed canopy (i.e. not woody savanna) old-growth mixed-age forest inventory plots were selected 755 

using commonly used criteria6,13,27: free of fire and industrial logging; all trees with diameter at 756 

reference height ≥100 mm measured at least twice; ≥0.2 ha area; <1500 m.a.s.l. altitude; MAT 757 

≥20.0°C51; annual precipitation ≥1000 mm51; located ≥50 m from anthropogenic forest edges. Of the 758 

244 plots included in the study, 217 contribute to the African Tropical Rainforest Observatory 759 

Network (AfriTRON; www.afritron.org), with data curated at www.ForestPlots.net52,53. These 760 

include plots from Sierra Leone, Liberia, Ghana, Nigeria, Cameroon, Gabon, Republic of Congo, 761 

Democratic Republic of Congo (DRC), Uganda and Tanzania52,53 (Extended Data Figure 1). Fifteen 762 

plots are part of the TEAM network, from Cameroon, Republic of Congo, Tanzania, and Uganda54-763 

57. Nine plots contribute to the ForestGEO network, from Cameroon and DRC58 (9 plots from DRC, 764 

codes SNG, contribute to both AfriTRON and ForestGEO networks, included above in the 765 

AfriTRON total). Finally, three plots from Central African Republic are part of the CIRAD 766 

network59,60. The large majority of plots are sited in terra firme forests and have mixed species 767 

composition, although four are in seasonally flooded forest and 14 plots are in Gilbertiodendron 768 

dewevrei monodominant forest, a locally common forest type in Africa (Supplementary Table 1). 769 

The 244 plots have a mean size of 1.1 ha (median, 1 ha), with a total plot area of 277.9 ha. The 770 

dataset comprises 391,968 diameter measurements on 135,625 stems, of which 89.9% were 771 

identified to species, 97.5% to genus and 97.8% to family. Mean total monitoring period is 11.8 772 

years, mean census length 5.7 years, with a total of 3,214 ha years of monitoring. The 321 Amazon 773 

plots are published and were selected using the same criteria6, except in the African selection criteria 774 

we specified a minimum anthropogenic edge distance and added a minimum temperature threshold. 775 

 776 

http://www.afritron.org/
http://www.forestplots.net/
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Plot Inventory and Tree Biomass Carbon Estimation 777 

Tree-level aboveground biomass carbon is estimated using an allometric equation with parameters 778 

for tree diameter, tree height and wood mass density61. The calculation of each is discussed in turn. 779 

All calculations were performed using the R statistical platform, version 3.2.1 (ref.62) using the 780 

BiomasaFP R package, version 0.2.1 (ref.63). 781 

  782 

Tree Diameter: In all plots, all woody stems with ≥100 mm diameter at 1.3 m from the base of the 783 

stem (‘diameter at breast height’, DBH), or 0.5 m above deformities or buttresses, were measured, 784 

mapped and identified using standard forest inventory methods64,65. The height of the point of 785 

measurement (POM) was marked on the trees and recorded, so that the same POM is used at the 786 

subsequent forest census. For stems developing deformities or buttresses over time that could 787 

potentially disturb the initial POM, the POM was raised approximately 500 mm above the deformity. 788 

Estimates of the diameter growth of trees with changed POM used the ratio of new and old POMs, to 789 

create a single trajectory of growth from the series of diameters at two POM heights6,13,65. We used 790 

standardised protocols to assess typographical errors and potentially erroneous diameter values (e.g. 791 

trees shrinking by >5 mm), missing values, failures to find the original POM, and other issues. 792 

Where necessary we estimated the likely value via interpolation or extrapolation from other 793 

measurements of that tree, or when this was not possible we used the median growth rate of trees in 794 

the same plot, census and size-class, defined as DBH = 100-199 mm, or 200-399 mm, or >400 mm65. 795 

We interpolated measurements for 1.3% of diameters, extrapolated 0.9%, and used median growth 796 

rates for 1.5%. 797 

 798 

Tree height: Height of individuals from ground to the top leaf, hereafter Ht, was measured in 204 799 

plots, using a laser hypsometer (Nikon forestry Pro) from directly below the crown (most plots), a 800 

laser or ultrasonic distance device with an electronic tilt sensor, a manual clinometer, or by direct 801 
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measurement, i.e. tree climbing. Only trees where the top was visible were selected66. In most plots, 802 

tree selection was similar: the 10 largest trees were measured, together with 10 randomly selected 803 

trees per diameter from five classes: 100-199 mm, 200-299 mm, 300-399 mm, 400-499 mm, and 804 

500+ mm trees, following standard protocols66. We measured actual height of 24,270 individual trees 805 

from 204 plots. We used these data and the local.heights function in R package BiomasaFP63 to fit 3-806 

parameter Weibull relationships: Ht=a × (1-e((-b × (DBH/10)c ) ) ) (equation 1). We chose the Weibull 807 

model as it is known to be robust when a large number of measurements are available66,67. We 808 

parameterised separate Ht-DBH relationship for four different combinations of edaphic forest type 809 

and biogeographical region: (i) terra firme forest in West Africa, (ii) terra firme forest in Lower 810 

Guinea and Western Congo Basin, (iii) terra firme forest in Eastern Congo Basin and East Africa, 811 

(iv) seasonally flooded forest from Lower Guinea and Western Congo Basin (there were no 812 

seasonally flooded forest plots in the other biogeographical regions). The parameters are: (i) terra 813 

firme forest in West Africa, a=56.0; b=0.0401; c=0.744; (ii) terra firme forest in Lower Guinea and 814 

Western Congo Basin, a=47.6; b=0.0536; c=0.755; (iii) terra firme forest in Eastern Congo Basin 815 

and East Africa, a=50.8; b=0.0499; c=0.706; and finally (iv) seasonally flooded forest from Lower 816 

Guinea and Western Congo Basin, a=38.2; b=0.0605; c=0.760. For each of these combinations of 817 

forest type and bioregion, the local.heights function combines all height measurements from all plots 818 

belonging to that forest type/bioregion and fits the Weibull model parameters using non-linear least 819 

squares (nls function in R with default settings), with starting values of a = 25, b = 0.05 and c = 0.7 820 

chosen as they led to regular model convergence. We fitted these models either treating each 821 

observation equally or with case weights proportional to each trees’ basal area. These weights give 822 

more importance to large trees during model fitting. We selected the best fitting of these models, 823 

determining this as the model that minimised prediction error of stand biomass when calculated with 824 

estimated heights or observed heights. The parameters were used to estimate Ht from DBH for all 825 

tree DBH measurements for input into the allometric equation. Mean measured individual total tree 826 
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height is 20.5 m; the height range is 1.5 to 72.5 m. The root mean squared error (RMSE) between the 827 

full dataset of measured heights and the predicted heights, is 5.7 m, which is 8.0% of the total range. 828 

Furthermore, RMSE is 5.3 m in terra firme forest in West Africa (7.5% of the range; n=9771 trees); 829 

RMSE is 6.4 m in terra firme forest in Lower Guinea and Western Congo Basin (8.7% of the range; 830 

n=10,838 trees); RMSE is 4.8 m in terra firme forest in Eastern Congo Basin and East Africa (8.8% 831 

of the range; n=3269 trees); and RMSE is 4.1 m in seasonally flooded forest from Lower Guinea and 832 

Western Congo Basin (12.5% of the range; n=392 trees). 833 

 834 

Wood Density: Dry wood density (ȡ) measurements were compiled for 730 African species from 835 

published sources and stored in www.ForestPlots.net; most were sourced from the Global Wood 836 

Density Database on the Dryad digital repository (www.datadryad.org)68,69. Each individual in the 837 

tree inventory database was matched to a species-specific mean wood density value. Species in both 838 

the tree inventory and wood density databases were standardized for orthography and synonymy 839 

using the African Plants Database (www.ville-ge.ch/cjb/bd/africa/) to maximize matches13. For 840 

incompletely identified individuals or for individuals belonging to species not in the ȡ database, we 841 

used the mean ȡ value for the next higher known taxonomic category (genus or family, as 842 

appropriate). For unidentified individuals, we used the mean wood density value of all individual 843 

trees in the plot13,52. 844 

 845 

Allometric equation: For each tree we used a published allometric equation61 to estimate 846 

aboveground biomass. We then converted this to carbon, assuming that aboveground carbon (AGC) 847 

is 45.6% of aboveground biomass70. Thus: AGC=0.456×(0.0673×(ȡ×(DBH/10)²×Ht)0.976)⁄1000 848 

(equation 2), with DBH in mm, dry wood density, ȡ, in g cm-3, and total tree height, Ht, in m (ref.61).  849 

 850 

http://www.forestplots.net/
http://www.datadryad.org/
http://www.ville-ge.ch/cjb/bd/africa/
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Aboveground Carbon (AGC, in Mg C ha-1) in living biomass for each plot at each census date was 851 

estimated as the sum of the AGC of each living stem, divided by plot area (in hectares). 852 

 853 

Carbon Gain and Carbon Loss estimation 854 

Net Carbon Sink (in Mg C ha-1 yr-1) is estimated as carbon gains minus carbon losses. Calculation 855 

details are explained below. 856 

 857 

Carbon Gains (in Mg C ha-1 yr-1) are the sum of the aboveground live biomass carbon additions from 858 

the growth of surviving stems and the addition of newly recruited stems, divided by the census 859 

length (in years) and plot area (in hectares). For each stem that survived a census interval, carbon 860 

additions from its growth (Mg C ha-1 yr-1) were calculated as the difference between its AGC at the 861 

end census of the interval and its AGC at the beginning census of the interval. For each stem that 862 

recruited during the census interval (i.e. reaching DBH≥100 mm), carbon additions were calculated 863 

in the same way, assuming DBH=0 mm at the start of the interval65. Carbon Losses (in Mg C ha-1 yr-864 

1) are estimated as the sum of aboveground biomass carbon from all stems that died during a census 865 

interval, divided by the census length (in years) and plot area (in hectares). Both carbon gains and 866 

carbon losses are calculated using standard methods6, including a census interval bias correction, 867 

using the SummaryAGWP function of R-package BiomasaFP63,64,68.  868 

 869 

As carbon gains are affected by a census interval bias, with the underestimate increasing with census 870 

length, we corrected this bias by accounting for (i) the carbon additions from trees that grew before 871 

they died within an interval (unobserved growth) and (ii) the carbon additions from trees that 872 

recruited and then died within the same interval (unobserved recruitment)65,71.  873 

 874 
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Component (i), the unobserved growth of a stem that died during a census interval, is estimated as 875 

the difference between AGC at death and AGC at the start of the census. These are calculated using 876 

equation 2, from respectively DBHdeath and DBHstart. The latter is part of the data, the first can be 877 

estimated as: DBHdeath = DBHstart × G × Ymean, where G is the plot-level median diameter growth rate 878 

(mm yr-1) of the size class the tree was in at the start of the census interval (size classes are defined 879 

as D < 200 mm, 400 mm > D ≥ 200 mm and D ≥ 400 mm) and Ymean is the mean number of years 880 

trees survived in the census interval before dying. Ymean is calculated from the number of trees that 881 

are expected to have died in each year of the census interval, which is derived from the plot-level 882 

per-capita mortality rate (ma; % dead trees yr-1) calculated following equation 5 in ref.71.  883 

 884 

Component (ii), growth of recruits that were not observed because they died during the census 885 

interval, is estimated by calculating the number of unobserved recruits and diameter at death for each 886 

unobserved recruit. The number of unobserved recruits (stems ha-1 yr-1) is estimated as: Nu.r = Ra – 887 

Psurv × Ra, where Ra (recruited stems ha-1 yr-1) is the per area annual recruitment calculated following 888 

equation 11 in ref.71 and Psurv is the probability of each recruit surviving until the next census: Psurv = 889 

(1-ma)T, where T is the number of years remaining in the census interval. Summing Nu.r for each year 890 

in a census interval gives the total number of unobserved recruits in that census interval. We then 891 

estimate diameter at death for each unobserved recruit, which is given in mm by DBHdeath,u.r = 100 + 892 

(Gs × Ymean-rec), where Gs is the plot-level median diameter growth rate (mm yr-1) of the smallest size 893 

class (i.e. D < 200 mm) and Ymean-rec is the mean life-span of unobserved recruits calculated as the 894 

mean life-span of recruits in a given year, weighted by Nu.r. The mean life-span of recruits in a given 895 

year is calculated from the number of recruits that died in that year, which is derived from the plot-896 

level per-capita mortality rate (ma; % dead trees yr-1). Growth of each unobserved recruit (mm yr-1) is 897 

then calculated as DBHdeath,u.r divided by Ymean-rec. 898 

 899 
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The census interval bias correction (components i and ii together) typically add <3% to plot-level 900 

carbon gains. Carbon Losses are affected by the same census interval bias, hence we corrected this 901 

bias by accounting for (i) the additional carbon losses from the trees that were recruited and then 902 

died within the same interval, and (ii) the additional carbon losses resulting from the growth of the 903 

trees that died in the interval6,15,63. These two components are calculated in the same way as for 904 

Carbon gains and typically add <3% to plot-level carbon losses. 905 

 906 

Carbon gains include both gains from the growth of surviving stems and new recruits. Separating 907 

carbon gains from tree growth of surviving stems and newly recruited stems, shows that carbon gains 908 

from recruitment are small overall, and are significantly lower in Africa than in the Amazon, likely 909 

due to the lower stem turnover rates and longer carbon residence time (Africa: 0.17 Mg C ha -1 yr-1; 910 

CI: 0.16-0.18 versus Amazon: 0.27 Mg C ha-1 yr-1; CI: 0.25-0.28, p<0.001; two-way Wilcoxon test), 911 

but this is compensated by carbon gains from survivors being significantly larger in Africa (2.33 Mg 912 

C ha-1 yr-1; CI: 2.27-2.39) than in the Amazon (2.13 Mg C ha-1 yr-1; CI: 2.09-2.17, p=0.014). 913 

Therefore, gains overall (sum of gains from surviving stems and newly recruited stems) are 914 

indistinguishable between the continents (Africa: 2.57 Mg C ha-1 yr-1; CI: 2.51-2.67 vs Amazon: 2.46 915 

Mg C ha-1 yr-1; CI: 2.41-2.50, p=0.460; two-way Wilcoxon test). 916 

 917 

Long-term Gain, Loss and Net Carbon Sink Trend Estimation, 1983-2014 918 

The estimated mean and uncertainty in carbon gains, carbon losses and the net carbon sink of the 919 

African plots from 1983-2014 (Figure 1, Extended Data Figure 7 and Extended Data Figure 8) were 920 

calculated following ref.6 to allow direct comparison with published Amazonian results. First, each 921 

census interval value was interpolated for each 0.1-yr period within the census interval. Then, for 922 

each 0.1-yr period between 1983 and 2014, we calculated a weighted mean of all plots monitored at 923 
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that time, using the square root of plot area as a weighting factor6. Confidence intervals for each 0.1-924 

yr period were bootstrapped.  925 

 926 

Trends in carbon gains, losses and the net carbon sink over time were assessed using linear mixed 927 

effects models (lmer function in R, lme4 package72), providing the linear slopes reported in Figure 1. 928 

These models regress the mid-point of each census interval against the value of the response variable 929 

for that census interval. Plot identity was included as a random effect, i.e. assuming that the intercept 930 

can vary randomly among plots. We did not include slope as a random effect, consistent with 931 

previously published Amazon analyses6, because models did not converge due to some plots having 932 

too few census intervals. Observations were weighted by plot size and census interval length. 933 

Weightings were derived empirically, by assuming a priori that there is no significant relation 934 

between the net carbon sink and census interval length or plot size, following ref.13. The following 935 

weighting removes all pattern in the residuals: Weight= 3√lengthint + 4√plotsize -1 (equation 3), 936 

where lengthint is the length of the census interval, in years. Significance was assessed by regressing 937 

the residuals of the net carbon sink model against the weights (p=0.702).  938 

 939 

Differences in long-term slopes between the two continents for carbon gains, carbon losses and net 940 

carbon sink, reported in the main text, were also assessed using linear mixed effects models, as 941 

described above, but performed on the combined African and Amazonian datasets and limited to 942 

their common time window, 1983 to 2011.5. For these three tests on the pooled data we included an 943 

additional interaction term between census interval date and continent, where a significant 944 

interaction would indicate that the slopes differ between continents. The statistical significance of 945 

continental differences in slope were assessed using the F-statistic (Anova function in R, car 946 

package73). Shortening the common time window to the 20 years when the continents are best-947 

sampled, 1991.5 to 2011.5, gave very similar results, including a divergent continental sink (p=0.04).  948 
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 949 

Continental and Pan-Tropical Carbon Sink Estimates 950 

The per unit area total net carbon sink (in Mg C ha-1 yr-1) for each time period in Table 1 (each 951 

decade between 1980 and 2010; and 2010-2015) is the sum of three components. The first 952 

component is the per unit area aboveground carbon sink from living trees and lianas with DBH≥100 953 

mm. For Africa we use the per unit area net carbon sink values presented in this paper. For 954 

Amazonia, we use data in ref.6. For Southeast Asia, we use inventory data collected using similar 955 

standardised methods from 49 plots in ref.15. For each time window, we use all plots for which 956 

census dates overlap the period, weighted by the square root of plot area, as for the solid lines in 957 

Figure 1. The second component is the per unit area aboveground carbon sink from living trees and 958 

lianas with DBH<100 mm. This is calculated as 5.19%, 9.40% and 5.46% of the first component (i.e. 959 

aboveground carbon of large living trees) in Africa, Amazonia and Southeast Asia respectively13,74. 960 

The third component is the per unit area belowground carbon sink in live biomass, i.e. roots. This is 961 

calculated as 25%, 37% and 17% of the aboveground carbon of living trees with DBH≥100 mm in 962 

Africa13, Amazonia6 and Southeast Asia75 respectively.  963 

 964 

For each time period in Table 1 we calculated the continental-scale total carbon sink (Pg C yr-1) by 965 

multiplying the per unit area total net carbon sink described above by the area of intact forest on each 966 

continent at that time interval (in ha) reported in Extended Data Table 2. Decades are calculated from 967 

1990.01 to 1999.99. For comparability with previous continental-sink results, we used continental 968 

values of intact forest area for 1990, 2000 and 2010 as published in ref.1, i.e. total forest area minus 969 

forest regrowth. We used the 1990-2010 data to fit an exponential model for each continent and used 970 

this model to estimate intact forest area for 1980 and 2015. 971 

 972 

Finally, in the main text we calculated the proportion of anthropogenic CO2 emissions removed by Earth’s 973 

intact tropical forests, as the total pan-tropical carbon sink from Table 1 divided by the total anthropogenic 974 
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CO2 emissions. Total anthropogenic CO2 emissions are calculated as the sum of emissions from fossil fuel and 975 

land-use change and are estimated at 7.6 Pg C yr-1 in the 1990s, 9.0 Pg C yr-1 in the 2000s, and 11.1 Pg C yr-1 976 

in the 2010s (ref.21, assuming 1.7% growth in fossil fuel emissions in 2018 and 2019, and mean 2010-2017 977 

land-use change emissions for 2018 and 2019). 978 

 979 

Carbon Sink from an Atmospheric Perspective 980 

To estimate the evolution of the carbon sink from an atmospheric perspective, we assumed that the 981 

contribution to the atmosphere from carbon gains are experienced immediately, while the 982 

contribution to the atmosphere from carbon losses must take into account the delay in decomposition 983 

of dead trees. We did this by calculating total forest carbon loss (Mg C ha-1 yr-1) for each year 984 

between 1950-2015, using the mean 1983-2015 records from Figure 1 and assuming constant losses 985 

prior to 1983 (1.9 and 1.5 Mg C ha-1 yr-1 for Africa and Amazonia respectively). Then, for each focal 986 

year between 1950-2015, we calculated how much carbon was released to the atmosphere in the 987 

subsequent years as: yt = x0 × e-0.17× (t-1) - x0 × e-0.17× t, where x0 is the total forest carbon loss of the 988 

focal year; yt is the carbon released to the atmosphere at t years from the focal year; and -0.17 yr-1 is 989 

a constant decomposition rate calculated for tropical forests in the Amazon45. For example, carbon 990 

loss was 1.95 Mg C ha-1 in 1990 in African forests (Figure 1), from which 0.31 Mg C ha-1 was 991 

released to the atmosphere in 1991; 0.26 Mg C ha-1 in 1992; 0.22 Mg C ha-1 in 1993; 0.07 Mg C ha-1 992 

in 2000 and 0.01 Mg C ha-1 in 2010. Hence, of the full 1.95 Mg C ha-1 dead tree biomass from 1990, 993 

~50% was released to the atmosphere after 4 yrs, ~85% after 10 yrs, and ~97% after 20 years. 994 

Finally, for each year between 1983 and 2015, the total contribution to the atmosphere from carbon 995 

losses was calculated as the sum of all carbon contributions released at that year, from all total yearly 996 

forest carbon loss pools of the previous years. We then calculated decadal-scale mean contributions 997 

to the atmosphere from carbon losses, reported in the main text. 998 

 999 
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Predictor Variable Estimates, 1983-2014 1000 

For each census interval of each plot, we examined potential predictor variables that may explain the 1001 

long-term trends in carbon gains and carbon losses, reported in Extended Data Table 1 and main text 1002 

Table 2. First, the environmental conditions during the census interval; second the rate of change of 1003 

these parameters; and third forest attributes that may affect how different forests respond to the same 1004 

environmental change. The predictor variable estimates for each census need to avoid bias due to 1005 

seasonal variation, for example the intra-annual variability in atmospheric CO2 concentration. We 1006 

therefore applied the following procedure to avoid seasonal variability impacts on long-term trends: 1007 

(i) the length of each focal census interval was rounded to the nearest complete year (e.g. a 1.1 year 1008 

interval became a 1 year interval); (ii) we computed dates that minimised the difference between 1009 

actual fieldwork dates and complete-year census dates, while ensuring that subsequent census 1010 

intervals of a plot do not overlap. The resulting sequence of non-overlapping census intervals was 1011 

used to calculate interval-specific means for each environmental predictor variable to remove 1012 

seasonal effects. The mean difference between the actual fieldwork dates and the complete-year 1013 

census dates is 0.01 decimal years. 1014 

 1015 

The first group of potential predictor variables, estimated for each census interval of each plot, are 1016 

theory-driven choices: atmospheric CO2 concentration (CO2), mean annual temperature (MAT), and 1017 

drought intensity, which we quantified as maximum climatological water deficit (MCWD)14,20,76,77.  1018 

 1019 

Atmospheric CO2 concentration (CO2, in ppm) is estimated as the mean of the monthly mean values 1020 

from the Mauna Loa record78 over the census interval. While atmospheric CO2 concentration is 1021 

highly correlated with time (R²=0.98), carbon gains are slightly better correlated with CO2 1022 

(Radj²=0.0027) than with time (Radj²=0.0025).  1023 

 1024 
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Mean Annual Temperature (MAT, in °C) was derived from the temporally resolved (1901-2015) 1025 

dataset of monthly mean temperature from the Climatic Research Unit (CRU TS version 4.03; ~3025 1026 

km² resolution; released 15 May 2019; https://crudata.uea.ac.uk/cru/data/hrg/)79. We downscaled the 1027 

data to ~1 km2 resolution using the WorldClim dataset51,80, by subtracting the difference in mean 1028 

monthly temperature, and applying this monthly correction to all months81. We then calculated MAT 1029 

for each census interval of each plot using the downscaled monthly CRU record. 1030 

 1031 

Maximum Climatological Water Deficit (MCWD, in mm) was derived from the ~3025 km² 1032 

resolution Global Precipitation Climatology Centre dataset (GPCC version 6.0) that includes many 1033 

more rain gauges than CRU in tropical Africa82,83. As GPCC ends in 2013 we combined it with 1034 

satellite-based Tropical Rainfall Measurement Mission data (TRMM 3B43 V7 product, ~757 km² 1035 

resolution)84. The fit for the overlapping time period (1998-2013) was used to correct the systematic 1036 

difference between GPCC and TRMM: GPCC’ = a+b*GPCC, with GPCC’ the adjusted GPCC 1037 

record and a and b different parameters for each month of the year and for each continent. 1038 

Precipitation was then downscaled to ~1 km2 resolution using the WorldClim dataset51,80, by dividing 1039 

by the ratio in mean monthly rainfall, and applying this monthly correction to all months81. For each 1040 

census interval we extracted monthly precipitation values and estimated evapotranspiration (ET) to 1041 

calculate monthly Climatological Water Deficit (CWD), a commonly used metric of dry season 1042 

intensity for tropical forests14,76,77. Monthly CWD values were calculated for each subsequent series 1043 

of 12 months (complete years)77. Monthly CWD estimation begins with the wettest month of the first 1044 

year in the interval, and is calculated as 100 mm per month evapotranspiration (ET) minus monthly 1045 

precipitation (P). Then, CWD values for the subsequent 11 months were calculated recursively as: 1046 

CWDi= ET - Pi + CWDi-1, where negative CWDi values were set to zero77 (no drought conditions). 1047 

This procedure was repeated for each subsequent complete 12 months. We then calculated the annual 1048 

MCWD as the largest monthly CWD value for every complete year within the census interval, with 1049 
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the MCWD of a census interval being the mean of the annual MCWD values within the census 1050 

interval. Larger MCWD indicates more severe water deficits.  1051 

 1052 

We assume ET is 100 mm month-1 on both continents, based on measurements from Amazonia76,77, 1053 

more limited measurements from West Africa summarized in ref.85, predictive skill86, and use in past 1054 

studies on both continents14,87. MCWD therefore represents a precipitation-driven dry season deficit, 1055 

as ET remains constant. An alternative assessment, using a data-driven ET product88,89, gave a mean 1056 

ET of 95 and 98 mm month-1 for the African and Amazonian plot networks respectively. Using these 1057 

values did not affect the results. 1058 

 1059 

To calculate the environmental change of potential predictor variables, CO2-change (in ppm yr-1), 1060 

MAT-change (in °C yr-1) and MCWD-change (in mm yr-1), we selected an optimum period over 1061 

which to calculate the change, derived empirically by assessing the correlation of carbon gains (all 1062 

plots, all censuses) with the change in each environmental variable, using linear mixed effects 1063 

models (lmer function in R, lme4 package72). The annualised change in the environmental variable 1064 

was calculated as the change between the focal interval and a prior interval (termed the baseline 1065 

period) with a lengthening time window ranging from 1 year through to 80 years prior to the focal 1066 

interval (i.e. 80 linear mixed effects models per variable). We calculated AIC for each model and 1067 

selected the interval length with the lowest AIC. Thus, MAT-change (in °C yr-1) = (MATi-1068 

MATb)/(datei-dateb), where MATi is the MAT over the focal census interval calculated using the 1069 

procedure described above, MATb is the MAT over a baseline period prior to the focal interval, datei 1070 

is the mid-date of the focal census interval and dateb is the mid-date of the baseline period. The lmer 1071 

results show that the baseline period for MAT-change is 5 years and for CO2-change it is 56 years, 1072 

while MCWD showed no clear trend, so MCWD-change was not included in the models (see 1073 

Extended Data Figure 3). All three results conform to a priori theoretical expectations. For CO2 a 1074 
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maximum response to an integrated 56 years of change is expected because forest stands will 1075 

respond most strongly to CO2 when most individuals have grown under the new rapidly changing 1076 

condition, which should be at its maximum at a time approximately equivalent to the carbon 1077 

residence time of a forest stand30,90 (mean of 62 years in this dataset). For MAT, 5 years is consistent 1078 

with experiments showing temperature acclimation of leaf- and plant-level photosynthetic and 1079 

respiration processes over half-decadal timescales31,91. MCWD has no overall trend suggesting that 1080 

once a drought ends, its impact on tree growth fades rapidly, as seen in other studies14,92. Also in the 1081 

moist tropics wet-season rainfall is expected to re-charge soil water, hence lagged impacts of 1082 

droughts are not expected.  1083 

 1084 

We calculated estimates of two forest attributes that may alter responses to environmental change as 1085 

potential predictor variables: Wood Density (WD) and Carbon Residence Time (CRT). In intact old-1086 

growth forests, mean WD (in g cm-3) is inversely related to resource availability28,93,94, as is seen in 1087 

our dataset (carbon gains and plot-level mean WD are negatively correlated, Extended Data Figure 1088 

4). WD is calculated for each census interval in the dataset, as the mean WD of all trees alive at the 1089 

end of the census interval, to be consistent with the previous Amazon analysis6. Carbon residence 1090 

time (CRT, in yrs) is a measure of the time that fixed carbon stays in the system. CRT is a potential 1091 

correlate of the impact of past carbon gains on later carbon losses30. To avoid circularity in the 1092 

models, the equation used to calculate CRT differed depending on the response variable. If the 1093 

response variable is carbon loss, the CRT equation is based on gains: CRT=AGC/gains, with AGC 1094 

for each interval based on AGC at the end of the interval, and the gains for each interval calculated 1095 

as the mean of the gains in the interval and the previous intervals (i.e. long-term gains). If the 1096 

response variable is carbon gains, the CRT equation is based on losses: CRT=AGC/losses. The 1097 

equation employed for use in the carbon loss model (based on gains) is the standard formula used to 1098 

calculate CRT and is retained in the minimum adequate model (see below and Table 2). The non-1099 
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standard CRT equation (based on losses) used in the carbon gain model is not retained in the 1100 

minimum adequate model (see below).  1101 

 1102 

Statistical modelling of the Carbon Gain, Loss and Sink Trends 1103 

We first constructed two models including those environmental drivers exhibiting long-term change 1104 

that impact theory-driven models of photosynthesis and respiration as predictor variables: CO2, 1105 

MAT, and MCWD. One model had carbon gains as the response variable, the other had carbon 1106 

losses as the response variable (both in Mg C ha-1 yr-1). Models were fitted using the lme function in 1107 

R, with maximum likelihood (NLME package95). All census intervals within all plots were used, 1108 

weighted by plot size and census length (using equation 3 above). Plot identity was included as a 1109 

random effect, i.e. assuming that the intercept can vary randomly among plots. All predictor 1110 

variables in the models were scaled without centering (scale function in R, RASTER package62). 1111 

Carbon gain values were normally distributed but carbon loss values required a power-law 1112 

transformation (Ȝ= 0.361) to meet normality criteria. Multi-parameter models are: carbon gains = 1113 

intcp + a×CO2 + b×MAT + c×MCWD (model 1); carbon losses = intcp + a×CO2 + b×MAT + 1114 

c×MCWD (model 2); where intcp is the estimated model intercept, and a, b, and c are model 1115 

parameters giving the slope of relationships with environmental predictor variables. For multi-1116 

parameter model outputs see Extended Data Table 1, for single-parameter relationships, Figure 2. 1117 

 1118 

The second pair of models include the same environmental predictors (CO2, MAT, MCWD), plus 1119 

their rate of change (CO2-change, MAT-change, but not MCWD-change as explained above), and 1120 

forest attributes that may alter how forests respond (WD, CRT), as described above. We also 1121 

evaluated the possible inclusion of a differential continent effect of each variable in the full model. 1122 

We first constructed models with only a single predictor variable, and allowed different slopes in 1123 

each continent. Next, if removal of the continent-specific slope (using stepAIC function in R, MASS 1124 
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package96) decreased model Akaike Information Criterion (AIC) then the continent-specific slope 1125 

was not included in the full model for that variable. Only MCWD showed a significant differential 1126 

continent-specific slope. This implies that forests on both continents have common responses to CO2, 1127 

CO2-change, MAT, MAT-change, WD and CRT, but respond differently to differences in MCWD. 1128 

This is likely because wet-adapted species are much rarer in Africa than in Amazonia as a result of 1129 

large differences in past climate variation34. Lastly, we allowed different intercepts for the two 1130 

continents to potentially account for differing biogeographical or other continent-specific factors. For 1131 

the carbon loss model, we applied the same continent-specific effects for slope as for the carbon gain 1132 

model. Carbon loss values were transformed using a power-law transformation (Ȝ= 0.361) to meet 1133 

normality criteria. 1134 

 1135 

For both carbon gains and losses we parameterized a global model including the significant 1136 

continent-specific effect of MCWD, selecting the most parsimonious simplified model using all-1137 

subsets regression97,98. To do so, we first generated a set of models with all possible combinations 1138 

(subsets) of fixed effect terms in the global model using the dredge function of the MuMIn package 1139 

in R99. We then chose the best-ranked simplified model based on the AICc criterion, hereafter called 1140 

“minimum adequate carbon gain/loss model”, reported in Table 2. The minimum adequate models 1141 

are: carbon gains = intcp×continent + a×CO2-change + b×MAT + c×MAT-change + 1142 

d×MCWD×continent + e×WD (model 3); carbon losses = intcp + a×CO2-change + b×MAT-change 1143 

+ c×MCWD + d×CRT (model 4). WD was retained in the carbon gain model, likely because growth 1144 

is primarily impacted by resource availability, while CRT was retained in the carbon loss model, 1145 

likely because losses are primarily impacted by how long fixed carbon is retained in the system.  1146 

 1147 

Table 2 presents model coefficients of the best-ranked gain model and best-ranked loss model 1148 

selected using all-subsets regression. These best-ranked gain and loss models have weights of 0.310 1149 
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and 0.132 respectively, which is almost double the weight of the second ranked models (0.152 and 1150 

0.075 respectively). In Supplementary Table 2 we also used the model.avg function of the MuMIn 1151 

package to calculate a weighted mean of the coefficients of the best-ranked models together 1152 

representing a cumulative weight-sum of 0.95 (i.e. a 95% confidence subset). Supplementary Table 2 1153 

(model-averaged) and main text Table 2 (best-ranked) model parameters are very similar. 1154 

Supplementary Tables 3 and 4 report the complete sets of carbon gains and loss models that 1155 

contribute to the model average results. 1156 

 1157 

The model-average results show the same continental differences in sensitivity to environmental 1158 

variables as the best-ranked models. From 2000 to 2015, carbon gains increased due to CO2-change 1159 

(+3.7% in both the averaged and the best-ranked models, both continents), while temperature rises 1160 

led to a decline in gains, which especially had an effect in the Amazon (-1.14% and -1.07% due to 1161 

MAT and MAT-change together in the averaged and best-ranked model respectively). Finally, both 1162 

models result in similar predictions of the net carbon sink over the 1983-2040 period: the future net 1163 

sink trend in Africa is -0.004 and -0.003 in the best-ranked and averaged models respectively; in 1164 

Amazonia the future net sink trend is -0.013 and -0.011 in the best-ranked and averaged models 1165 

respectively. The Amazon sink reaches zero in 2041 using model-averaged parameters compared to 1166 

2035 using the best-ranked models. 1167 

 1168 

Estimating Future Predictor Variables to 2040 1169 

To calculate future modelled trends in carbon gains and losses (Figure 3), we first estimated annual 1170 

records of the predictor variables (CO2-change, MAT, MAT-change, MCWD, WD and CRT) to 1171 

2040 (Extended Data Figure 5).  1172 

 1173 
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To do so we first calculated annual records for the period of the observed trends for each plot 1174 

location (i.e. from 1983-2014 in Africa and 1983-2011.5 in Amazonia). For CO2-change, MAT, 1175 

MAT-change and MCWD we extracted monthly records as described in section Predictor Variable 1176 

Estimates (above). For WD and CRT we interpolated to a 0.1-yr period within each census interval 1177 

(as in Figure 1). Then, we calculated the mean annual value of each predictor variable from the 244 1178 

plot locations in Africa, and separately the mean annual value of each predictor variable from the 1179 

321 plot locations in Amazonia (i.e. solid lines in ED Figure 5). For each predictor variable, we 1180 

calculated annual records of upper and lower confidence intervals by respectively adding and 1181 

subtracting 2ı to the mean of each annual value (shaded area in ED Figure 5).  1182 

 1183 

Secondly, for each predictor variable we parameterised a linear model for each continent using the 1184 

annual records for the period of the observed trends. Then for each predictor variable, the continent-1185 

specific linear regression models were used to estimate predictor variables for each plot location 1186 

from 2014 to 2040 in Africa and from 2011.5 to 2040 in the Amazon (dotted lines in Extended Data 1187 

Figure 5). For each predictor variable, we calculated annual records of upper and lower confidence 1188 

intervals by respectively adding and subtracting 2ı to the slope of each linear model (shaded area 1189 

around dotted lines in ED Figure 5). 1190 

 1191 

Estimating Future Carbon Gain, Loss and Net Carbon Sink 1192 

We used the minimum adequate models (Table 2) to predict annual records of carbon gain, carbon 1193 

loss and the carbon sink for the plot networks in Africa and Amazonia over the period 1983 through 1194 

to 2040 (Figure 3). We extracted fitted carbon gain and loss values using the mean annual records for 1195 

each predictor variable (predictSE.lme function, AICcmodavg package100). Upper and lower 1196 

confidence intervals were calculated accounting for uncertainties in the model (both fixed and 1197 

random effects) and predictor variables using the 2ı upper and lower confidence interval for each 1198 
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predictor variable (using predictSE.lme). Finally the net carbon sink was calculated by subtracting 1199 

the losses from the gains. To obtain sink values in the future in Table 1, annual per unit area sink 1200 

predictions, from Figure 3, were averaged over each decade and multiplied by the future forest area, 1201 

as described above.  1202 

 1203 

To test the sensitivity of the future predictions in Figure 3, we reran the analysis by modifying future 1204 

trajectories of predictor variables one at a time, while keeping all others the same, to assess the mean 1205 

C sink over 2010-15 and 2030 (averaging at 2030 is not necessary as trends in MAT-change and 1206 

MCWD, which largely drive modelled inter-annual variability, are estimated as smooth trends in the 1207 

future). For each predictor variable, we explored potential impacts of the likely bounds of possibility, 1208 

(i) by taking the steepest slope of either continent from the extrapolated trends, doubling this slope 1209 

and applying it on both continents; and (ii) by taking the steepest slope of either continent from the 1210 

extrapolated trends, taking the opposite of this slope and applying it on both continents. These 1211 

bounds represent deviations of >2 sigma from observed trends. Change in MAT also alters MAT-1212 

change, so we present the sensitivity of both parameters together. 1213 

 1214 

Additionally, for CO2-change and MAT, we also calculated future slopes under three future 1215 

Representative Concentration Pathway (RCP) scenarios38 with different radiative forcing in 2100: 1216 

RCP2.6, 4.5, and 8.5. Future RCP CO2-change slopes (ppm yr-1) were calculated using RCP CO2 1217 

concentration data for the years between 2015 and 2030 inclusive. Future RCP MAT and MAT-1218 

change slopes were obtained from plot-specific MAT values extracted from downscaled 30 seconds 1219 

resolution data for current80 and future51 climate from WorldClim, and averaged over 19 CMIP5 1220 

models. We subtracted the mean 2040-2060 climate MAT (i.e. 2050) from the mean 1970-2000 1221 

climate MAT (i.e. 1985), divided by 65 years to give the annual rate of change. We then calculated a 1222 

mean slope over all plots per continent. Finally, to avoid mismatches between RCP-derived values of 1223 
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CO2 and MAT and the observed records we removed any difference in intercept between the RCP 1224 

trends and observed trends, so the RCP trends were a continuation of the end-point of the observed 1225 

trajectory in 2015. We did not estimate the sensitivity of MCWD under the RCP scenarios, because 1226 

the CMIP5 model means do not show drought trends for our forest plot networks, unlike rain gauge 1227 

data for the recent past, and thus would show little or no sensitivity to MCWD. For each modified 1228 

slope, Supplementary Table 5 reports the absolute decline in the sink in each continent in 2030 1229 

compared to the 2010-15 mean sink. This shows that the future sink strength is sensitive to future 1230 

environmental conditions, but within both RCP scenarios and our bounds of possibility we show a 1231 

decline in the sink strength in both continents over the 2020s. 1232 

 1233 

Data and Code Availability 1234 

Source data and R-code to generate figures and tables are available from: 1235 

http://dx.doi.org/10.5521/Forestplots.net/2019_1 1236 
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Extended Data Figures 1377 

 1378 

Extended Data Figure 1. Map showing the locations of the 244 plots included in this study. 1379 

Dark green represents all lowland closed-canopy forests, submontane forests and forest-agriculture 1380 

mosaics; light green shows swamp forests and mangroves101, blue circles represent plot clusters, 1381 

referred to by three-letter codes (see Supplementary Table 1 for the full list of plots). Clusters <50 1382 

km apart are shown as one point for display only, with the circlesize corresponding to sampling 1383 

effort in terms of hectares monitored. 1384 
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 1385 

Extended Data Figure 2. Long-term above-ground carbon dynamics of 244 African intact 1386 

tropical forest inventory plots. Points in the scatterplots indicate the mid-census interval date, with 1387 

horizontal bars connecting the start and end date for each census interval for net aboveground 1388 

biomass carbon change (a), carbon gains (from woody production from tree growth and newly 1389 

recruited stems) (b), and carbon losses (from tree mortality) (c). Examples of time series for three 1390 

individual plots are shown in purple, yellow and green. Associated histograms show the distribution 1391 

of the plot-level net aboveground biomass carbon (d) (with a three-parameter Weibull probability 1392 

density distribution fitted in blue, showing the carbon sink is significantly larger than zero; one-tail t-1393 

test: p<0.001), carbon gains (e), and carbon losses (f).  1394 
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 1395 

Extended Data Figure 3. Akaike’s Information Criterion (AIC) from correlations between the 1396 

carbon gain in tropical forest inventory plots and changes in either atmospheric CO2, 1397 

temperature (as MAT) or drought (as MCWD), each calculated over ever-longer prior 1398 

intervals. Panels show AIC from linear mixed effects models of carbon gains from 565 plots and 1399 

corresponding, atmospheric CO2 (CO2-change) (a), Mean Annual Temperature (MAT-change) (b), 1400 

and Maximum Climatological Water Deficit (MCWD-change) (c). For CO2 the AIC minimum was 1401 

observed when predicting the carbon gain from the change in CO2 calculated over a 56 year long 1402 

prior interval length. We use this length of time to calculate our CO2-change parameter. Such a value 1403 

is expected because forest stands will respond most strongly to CO2 when most individuals have 1404 

grown under the new rapidly changing condition, which should be at its maximum at a time 1405 

approximately equivalent to the carbon residence time of a forest stand30,90 (mean of 62 years in this 1406 
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pooled African and Amazonian dataset). For MAT the AIC minimum was 5 years, which we use as 1407 

the prior interval to calculate our MAT-change parameter. This length is consistent with experiments 1408 

showing temperature acclimation of leaf- and plant-level photosynthetic and respiration processes 1409 

over approximately half-decadal timescales31,91. For MCWD the AIC minimum is not obvious, while 1410 

the slope of the correlation, shown in panel (d), shows no overall trend and oscillates between 1411 

positive or negative values, meaning there is no relationship between carbon gains and the change in 1412 

MCWD over intervals longer than 1 year; thus MCWD-change is not included in our models. This 1413 

result suggests that once a drought ends, its impact on tree growth fades rapidly, as seen in other 1414 

studies14,92. Also in the moist tropics wet-season rainfall is expected to re-charge soil water, hence 1415 

lagged impacts of droughts are not expected. 1416 

 1417 

 1418 

 1419 

 1420 

 1421 
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 1422 

Extended Data Figure 4. Potential forest dynamics-related drivers of carbon gains and losses in 1423 

structurally intact African and Amazonian tropical forest inventory plots. The aboveground 1424 

carbon gains, from woody production (a-b), and aboveground carbon losses, from tree mortality (c-1425 

d), are plotted against the carbon residence time (CRT), and wood density (WD), for African (blue) 1426 

and Amazonian (brown) inventory plots. Linear mixed effect models were performed with census 1427 

intervals (n=1566) nested within plots (n=565) to avoid pseudo-replication, using an empirically 1428 

derived weighting based on interval length and plot area (see methods). Significant regression lines 1429 

for the complete dataset are shown as a solid line; non-significant regressions as a dashed line. Each 1430 

dot represents a time-weighted mean plot-level value; transparency of the inner part of the dot 1431 

represents total monitoring length, with empty circles corresponding to plots monitored for ≤ 5 years 1432 

and solid circles for plots monitored for >20 years. Carbon loss data are presented untransformed for 1433 

comparison with carbon gains; linear mixed effects models on transformed data to fit normality 1434 

assumptions do not change the significance of the results. Note, CRT is calculated differently for the 1435 

carbon gains and losses models (see methods). 1436 
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 1437 

Extended Data Figure 5. Trends in predictor variables used to estimate long-term trends in 1438 

above-ground carbon gains, carbon losses and the resulting net carbon sink in African and 1439 

Amazonian intact tropical forest plot networks. Mean annual CO2-change (a), MAT (b), MAT-1440 

change (c), MCWD (d), CRT (e), and WD (f) for African plot locations in blue, and corresponding 1441 

Amazon plots locations in brown (g-l). Solid lines for CO2-change, MAT, MAT-change, MCWD 1442 

represent obervational data, and solid lines for CRT and WD represent plot means and a time 1443 

window where >75% of the plots were monitored, long-dashed lines are plot means were <75% of 1444 

plots were monitored. Dotted lines are future values estimated from linear trends on the 1983-2014 1445 

(Africa) or 1983-2011 (Amazon) data (slope and p-value reported in each panel), see methods for 1446 

details. Upper and lower confidence intervals (shaded area) for the past (Africa: 1983-2014; 1447 

Amazonia: 1983-2011) are calculated by respectively adding and subtracting 2ı to the mean of each 1448 

annual value. Upper and lower confidence intervals for the future were estimated by adding and 1449 

subtracting 2ı from the slope of the regression model. 1450 
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 1451 

Extended Data Figure 6. The change in carbon losses versus carbon residence time (CRT) of 1452 

inventory plots in Africa and Amazonia. For plots with two census intervals, we calculated the 1453 

change in carbon losses (∆losses, in Mg C ha-1 yr-1 yr-1) as the carbon losses (Mg C ha-1 yr-1) of the 1454 

second interval minus the carbon losses of the first interval, divided by the difference in mid-interval 1455 

dates. For plots with more than two intervals, we calculated the change in carbon losses for each pair 1456 

of subsequent intervals, then calculated the plot-level mean over all pairs, weighted by the time 1457 

length between mid-interval dates. This analysis includes only plots with at least two census intervals 1458 

and monitored for ≥20 years (i.e. roughly one-third of the mean CRT of the pooled African and 1459 

Amazon dataset; n = 116). Breakpoint regression was used to assess the CRT length below which 1460 

forest carbon losses begin to increase. Plots with CRT <77 years show a recent long-term increase in 1461 

carbon losses, longer CRT plots do not. Blue points are African plots, brown points are Amazonian 1462 

plots.  1463 
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 1464 

Extended Data Figure 7. Trends in African tropical forest net aboveground live biomass 1465 

carbon, carbon gains and carbon losses, calculated for the last 15 years of the twentieth 1466 

century (left panels a-c) and the first 15 years of the twenty-first century (right panels d-f). 1467 

Plots were selected from the full dataset if their census intervals cover at least 50% of the respective 1468 

time windows, i.e. they are intensely monitored (n=56 plots for 1985-2000, and n=134 plots for 1469 

2000-2015, respectively). Solid lines show mean values, shading corresponds to the 95% CI, as 1470 

calculated in Figure 1. Dashed lines, slopes and p-values are from linear mixed effects models, as in 1471 

Figure 1. The data shows a difference compared to Figure 1, notably the sink decline after ~2010 1472 

driven by rising carbon losses. This is because in Figure 1 we include all available plots over the 1473 

1983-2015 window, which includes clusters of plots monitored only in the 2010s that had low carbon 1474 

loss and high carbon sink values.  1475 
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 1476 

Extended Data Figure 8. Twenty-first century trends in aboveground biomass carbon losses 1477 

from African tropical forest inventory plots with either long (left panels) or short (right panels) 1478 

carbon residence time. Upper panels include all plots, i.e. as in Figure 1, but split into a long-CRT 1479 

group (a), and a short-CRT group (b), each containing half the 244 plots. Lower panels restrict plots 1480 

to those spanning >50% of the time window, i.e. intensely monitored plots, as in Extended Data 1481 

Figure 7, but split into a long-CRT group (c), and a short-CRT group (d), each containing half the 1482 

134 plots. Solid lines indicate mean values, shading the 95% CI, as for Figure 1. Dashed lines, slopes 1483 

and p-values are from linear mixed-effects models, as for Figure 1. Carbon losses increase at a higher 1484 

rate in the short-CRT than the long-CRT group of plots, in both datasets, although this increase is not 1485 

statistically significant.  1486 

 1487 

 1488 
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Extended Data Tables  1490 

 1491 

Extended Data Table 1. Models to predict carbon gains and losses in African and Amazonian 1492 

tropical forests, including only environmental variables, showing long-term trends that impact 1493 

theory-driven models of photosynthesis and respiration. Significant values in bold.  1494 

 1495 

 1496 

Extended Data Table 2. Forest area estimates used to calculate total continental forest sink. 1497 

 1498 


