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Summary

Structurally intact tropical forests sequestered ~50% of global terrestrial carbon uptake over
the 1990s and early 2000s, removing ~15% of anthropogenic CO emissions' 3. Climate-driven
vegetation models typically predict that this tropical forest ‘carbon sink’ will continue for
decades*®. Here, we assess trends in the carbon sink using 244 structurally intact African
tropical forests spanning 11 countries, we compare them with 321 published plots from
Amazonia and investigate the underlying drivers of the trends. The carbon sink in live
aboveground biomassin intact African tropical forests has been stable for the three decades to
2015, at 0.66 Mg C hal yr! (95% CI:0.53-0.79), in contrast to the long-term decline in
Amazonian forests’. Thus, the carbon sink responses of Earth’s two largest expanses of
tropical forest have diverged. The difference is largely driven by carbon losses from tree
mortality, with no detectable multi-decadal trend in Africa and a long-term increase in
Amazonia. Both continents show increasing tree growth, consistent with the expected net effect
of rising atmospheric CO, and air temperature’™®. Despite the past stability of the African
carbon sink, our data suggest a post-2010 increase in carbon losses, delayed compared to
Amazonia, indicating asynchronous carbon sink saturation on the two continents. A statistical
model including CO», temperature, drought and forest dynamics accounts for the observed
trends and indicates a long-term future decline in the African sink, while the Amazonian sink
continues to rapidly weaken. Overall, the uptake of carbon into Earth’s intact tropical forests
peaked in the 1990s. Given that the global terrestrial carbon sink is increasing in size,
observationsindicating greater recent carbon uptake into the Northern hemisphere landmass*®
reinforce our conclusion that the intact tropical forest carbon sink has already saturated. This
tropical forest sink saturation and ongoing decline has consequences for policies to stabilise

Earth’s climate.
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Main text

Tropical forests account for approximately one-third of Earth’s terrestrial Gross Primary Productivity
and one-half of Earth’s carbon stored in terrestrial vegetation!. Thus, small biome-wide changes in
tree growth and mortality can have global impacts, either buffering or exacerbating the increase in
atmospheric CO.. Models>*>"12 ground-based observations'®>%°, airborne atmospheric CO:
measurements>8, inferences from remotely sensed datal’, and synthetic approaches®®!8 each suggest
that, after accounting for land-use change, remaining structurally intact tropical forests (i.e. not
impacted by direct anthropogenic impacts such as logging) are increasing in carbon stocks. This
structurally intact tropical forest carbon sink is estimated at ~1.2 Pg C yr* over 1990-2007 using
scaled inventory plot measurements®. Yet, despite its policy relevance, changes in this key carbon

sink remain highly uncertain'®%,

Globally the terrestrial carbon sink is increasing®’®2!, Between 1990 and 2017 the land surface
sequestered ~30% of all anthropogenic carbon dioxide emissions™?!. Rising CO2 concentrations are
thought to have boosted photosynthesis more than rising air temperatures have enhanced respiration,
resulting in an increasing global terrestrial carbon sink?*782%, Y et, for Amazonia, recent results from
repeated censuses of intact forest inventory plots show a progressive two-decade decline in sink
strength primarily due to an increase of carbon losses from tree mortality®. It is unclear if this simply
reflects region-specific drought impacts®®2?3, or potentially chronic pan-tropical impacts of either
heat-related tree mortality®*?, or internal forest dynamics resulting from past increases in carbon
gains leaving the system?. A more recent deceleration of the rate of increase in carbon gains from
tree growth is also contributing to the declining Amazon sink®. Again, it is not known if this is a
result of either pan-tropical CO- fertilisation saturation, or rising air temperatures, or is merely a

regional drought impact. To address these uncertainties, we (i) analyze an unprecedented long-term
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inventory dataset from Africa, (i) pool the new African and existing Amazonian records to
investigate the putative environmental drivers of changes in the tropical forest carbon sink, and (iii)

project its likely future evolution.

We collected, compiled and analysed data from structuraly intact old-growth forests from the
African Tropical Rainforest Observation Network?’ (217 plots) and other sources (27 plots) spanning
the period 1968 to 2015 (Extended Data Figure 1; Supplementary Table 1). In each plot (mean size,
1.1 ha), all trees >100 mm in stem diameter were identified, mapped and measured at least twice
using standardised methods (135,625 trees monitored). Live biomass carbon stocks were estimated
for each census date, with carbon gains and losses calculated for each interval (Extended Data Figure

2).

Continental Carbon Sink Trends

We detect no long-term trend in the per unit area African tropical forest carbon sink over three
decades to 2015 (Figure 1). The aboveground live biomass sink averaged 0.66 Mg C ha! yr! (95%
Cl: 0.53-0.79; n=244) and was significantly greater than zero for every year since 1990 (Figure 1).
While very similar to past reports (0.63 Mg C hat yr1)!3, this first estimate of the temporal trend in
Africa contrasts with the declining Amazonian trend® (Figure 1). A linear mixed effect model shows
a significant difference in the slopes of the sink trends for the two continents over the common time
window (pooled data from both continents, common time window, 1983-2011.5; p=0.017). Thus, the
per unit area sink strength of the two largest expanses of tropical forest on Earth diverged in the

1990s and 2000s.

The proximal cause of the divergent sink patterns is a significant increase in carbon losses (from tree

mortality, i.e. the loss of carbon from the live biomass pool) in Amazonian forests, with no
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detectable trend over three decades in African forests (Figure 1). A linear mixed effects model using
pooled data shows a significant difference in slopes of carbon losses between the two continents over
the common 1983-2011.5 time window (p=0.027). Long-term trends in carbon gains (from tree
growth and newly recruited trees) on both continents show significant increases (Figure 1), and we
could detect no difference in slopes between the continents (p=0.348; carbon gains from tree growth
alone also show no continental difference in long-term trends, p=0.322). However, an assessment of
how underlying environmental drivers affect carbon gains and losses is needed to understand the

ultimate causes of the divergent sink patterns.

Under standing the Carbon Sink Trends

We firgt investigate environmental drivers exhibiting long-term change that impact theory-driven
models of photosynthesis and respiration: atmospheric CO2 concentration, surface air temperature,
and water availability. A linear mixed effects model of carbon gains, with censuses nested within
plots, and pooling the new African and published Amazonian data, shows a significant positive
relationship with CO», and significant negative relationships with mean annual temperature (MAT)
and drought (measured as the Maximum Climatological Water Deficit, MCWD?'; Figure 2;
Extended Data Table 1). These results are consistent with a positive CO; fertilisation effect, and
negative effects of higher temperatures and drought on tree growth, consistent with temperature-
dependent increases in autotrophic respiration, and temperature- and drought-dependent reductions
in carbon assimilation. By contrast, the equivalent model for carbon losses (i.e. tree mortality) shows

no significant relationships with CO2, MAT or MCWD (Figure 2; Extended Data Table 1).

We further investigate the responses of carbon gains and losses (for which the above analysis has no
explanatory power) by expanding our potential explanatory variables to additionally include the

change in environmental conditions (CO»-change, MAT-change, MCWD-change, see Extended Data

10
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Figure 3 for calculation details), and two attributes of forests that may influence their response to the
same environmental change: plot mean wood density (which in old-growth forests correlates with
below-ground resource availability?®?°), and the plot carbon residence time (which measures how
long fixed carbon remains in the system, hence dictates when past increases in carbon gains leave the

system as elevated carbon losses™®).

The minimum adequate carbon gain model using our expanded explanatory variables (best ranked
model using multimodel inference) has a positive relationship with CO2-change, and negative
relationships with MAT, MAT-change, MCWD, and wood density (Table 2; model-average results
are similar, see Methods and Supplementary Tables 2-4). The retention of both MAT and MAT-
change suggests that higher temperatures correspond to lower tree growth, and that trees only
partially acclimate to recently rising temperatures, which further reduces growth, consistent with
warming experiments® and observations®. The inclusion of higher wood density, and it being related
to lower carbon gains (Extended Data Figure 4), alongside no temporal trends in wood density
(Extended Data Figure 5), suggests that old-growth forests with denser-wooded tree communities
typically have fewer available below-ground resources, or such patterns may also emerge from

disturbance regimes lacking large-scale exogenous events, consistent with prior studies?28=2,

The minimum adequate carbon gain model using our expanded explanatory variables also highlights
continental differences. Between 2000 and 2015 African forest carbon gains increased by 3.1%
compared with a 0.1% decline in Amazonia over the same interval (Table 2). In Africa, from 2000 to
2015, the increase was composed of a 3.7% increase from COz-change, partially offset by increasing
droughts depleting gains by 0.5%, and only a slight decline in gains of 0.1% resulting from
temperature increases (Table 2), because the rate of temperature change (MAT-change) decelerated

over thistime window (Extended Data Figure 5). For Amazonia, the same 3.7% increase due to CO»-

11
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300

change was seen, while increasing droughts—and these forests’ greater sensitivity to drought—
reduced gains by 2.7% (five times the impact in Africa), and temperature increases at the same rate
as in the past (i.e. MAT-change is zero) further reduced gains by 1.1% (ten times the impact in
Africa), leaving a net change in gains slightly below zero (Table 2). Thus, the recent stalling of
carbon gain increases in Amazonia® is a response to drought and temperature and not due to an
unexpected saturation of CO; fertilisation. Overall, the larger modelled increase in gains in Africa
relative to Amazonia appear to be driven by slower warming, fewer or less extreme droughts, lower
forest sensitivity to droughts, and overall lower temperatures (African forests are on average ~1.1°C
cooler than Amazonian forests, as they typically grow at ~200 m higher elevation). Other continental
differences may also be influencing the results, including higher nitrogen deposition in African
tropical forests due to the seasonal burning of nearby savannas® and biogeographic history resulting

in differing contemporary species pools and resulting functional attributes*3,

The minimum adequate carbon loss model using our expanded explanatory variables shows higher
losses with CO»-change and MAT-change, and lower losses with MCWD and the carbon residence
time (CRT; Table 2). Thus, changes in carbon losses appear to be largely a function of carbon gains.
First, the greater losses in forests with shorter CRT conform to a ‘high-gain high-loss’ forest
dynamics pattern®®. Second, wetter plots have a longer growing season and so have higher gains and
correspondingly higher losses, explaining the negative relationship with MCWD. Third, as
increasing CO:> levels result in additional carbon gains, after some time these additional past gains
leave the system resulting in greater carbon losses, explaining the positive relationship with CO-
change. Finally, in addition to these relationships with carbon gains, the inclusion of MAT -change
(p<0.001) indicates heat- or vapour pressure deficit-induced tree mortality?®. Overall, our results

imply that chronic long-term environmental change factors, temperature and CO, rather than simply

12
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the direct effects of drought, underlie longer-term trends in tropical forest tree mortality, although

other changes such as rising liana infestation rates seen in Amazonia®®*3’ cannot be excluded.

The minimum adequate carbon loss model using our expanded explanatory variables replicates the
continental trends (Figure 3). The overall lower loss rates in Africa reflect their longer CRT (69 yrs,
95% ClI, 66-72), compared with Amazonian forests (56 yrs, 95% CI, 54-59) while over the 2000-
2015 window the much smaller increase in loss rates in Africa compared to Amazonia results from a
slower increase in warming and a stable CRT in Africa compared to continued warming at previous
rates and a shortening CRT in Amazonian forests (Extended Data Figure 5). Furthermore, given that
losses appear to lag behind gains they should relate to the long-term CRT of plots. This is what we
find: the longer the CRT the smaller the increase in carbon losses, with no increase in losses for plots
with CRT >77 years (Extended Data Figure 6). Consequently, due to the typically longer residence
times of African forests, increasing losses in Africa ought to appear 10-15 years after the increase in
Amazon losses began (¢.1995). Strikingly, in Africa the most intensely monitored plots suggest that
losses began increasing from ¢.2010 (Extended Data Figure 7), and plots with shorter CRT are
driving the increase (Extended Data Figure 8). Thus, a mortality-dominated African carbon sink

decline appears to have begun very recently.

Future of the Tropical Forest Carbon Sink

Our carbon gain and loss models (Table 2) can be used to make a tentative estimate of the future size
of the per unit area intact forest carbon sink (Figure 3). Extrapolations of the changes in the predictor
variables from 1983-2015 forward to 2040 (Extended Data Figure 5) show declines in the sink on
both continents (Figure 3). By 2030 the carbon sink in aboveground live biomass in intact African
tropical forest is predicted to decline by 14% from the measured 2010-15 mean, to 0.57 Mg C hat yr-

! (26 range, 0.16-0.96; Figure 3). The Amazon sink continues to decline, reaching zero in 2035 (2o

13
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range, 2011-2089; Figure 3). Our estimated sink strength on both continents in the 2020s and 2030s
is sensitive to future CO, emissions pathways (CO»-change)®, resulting temperature increase (MAT,
MAT-change) and hydrological changes (MCWD), plus changes in forest dynamics (CRT), but the
sink is always lower than levels seen in the 2000s (see Methods and Supplementary Table 5). Thus,
the carbon sink strength of the world’s two most extensive tropical forests have now saturated, albeit

asynchronously.

Scaling Resultsto the Pan-tropics

Scaling our estimated mean sink strength by forest area for each continent signifies that Earth
recently passed the point of peak carbon sequestration into intact tropical forests (Table 1). The
continental sink in Amazonia peaked in the 1990s, followed by a decline, driven by sink strength
peaking in the 1990s and a continued decline in forest area (Table 1). In Africa the per unit area sink
strength peaked later in the 2000-2010 period, but the continental African sink peaked in the 1990s,
due to the decline in forest area in the 2000s outpacing the small per unit area increase in sink
strength. Including the modest uptake in the much smaller area of intact Asian tropical forest
indicates that total pan-tropical carbon uptake peaked in the 1990s (Table 1). From peak pan-tropical
intact forest uptake of 1.26 Pg C yr! in the 1990s, we project a continued decline reaching just 0.29
Pg C yrt in the 2030s (multi-decade decline of ~0.24 Pg C yr* decade?), driven by (i) reduced mean
pan-tropical sink strength decline of 0.1 Mg C ha* yr! decade and (ii) ongoing forest area losses of
~13.5 million ha yr? (see Extended Data Table 2 for forest area details). Critically, climate-driven
vegetation model simulations have not predicted that peak net carbon uptake into intact tropical

forests has already been passed®*®.
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Discussion

Our method of scaling to arrive at a pan-tropical sink estimate — in common with other studies using
similar datasets*®*® — is limited. Yet, pervasive net carbon uptake is expected given that we find a
strong and ongoing CO fertilisation effect. Using our CO- response in Table 2, we find an increase
in aboveground carbon stocks of 10.8+3.7 Mg C ha! 100 ppm? CO, or 6.5+2.2% (+SE; using an
area-weighted pan-tropical mean aboveground C stock of 165 Mg C ha'l), comparable to the
5.0+1.2% increase in tropical forest C stocks 100 ppm™* CO; derived from a recent synthesis of CO,
fertilisation experiments, despite alack of data from mature tropical forests®. Our result is within the
range of climate-driven vegetation models*/, although it is greater than a number of recently-
published models that include potential nutrient constraints, reported as 5.9+4.7 Mg C ha* 100 ppm*
CO: (Ref.*%). We find that the CO; fertilisation uptake is currently only partially offset by the
negative impacts of similarly widespread rising air temperatures (-2.0+0.4 Mg C ha' °C?, from
Table 2), consistent with models’, limited experiments®® and independent observations’, plus
negative responses to drought***2, Long-term and extensive increases in satellite-derived greenness
in tropical regions not experiencing major changes in land-use management’“3, particularly in
central Africa in the past decade®, indicate increases in tropical forest net primary productivity,

providing further evidence that the sink is a widespread phenomenon®.

Nonetheless, our analyses show that this pervasive tropical forest sink in live biomass is in long-term
decline, first saturating in Amazonia, and more recently followed by African forests, explaining the
prior AfricaaAmazon carbon sink divergence as part of a longer-term pattern of asynchronous
saturation and decline. From an atmospheric perspective the full impacts of the contribution to the
saturation of the sink from slowing carbon gains are experienced immediately, but the contribution
from rising carbon losses is delayed because dead trees do not decompose instantaneously.

Decomposition of this dead tree mass is ~50% in 4 yrs, and ~85% in 10 yrs, thus rising carbon losses
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result in delayed carbon additions to the atmosphere®™. Hence, from an atmospheric perspective the
intact tropical forest biomass carbon sink likely peaked a few years later than our plot data indicate
and the full impacts are not yet realised. The pan-tropical carbon sink in live biomass reduced by
0.27 Pg C yr! between the 1990s and 2000s (Table 1), but accounting for dead wood
decomposition®™ shows a smaller 0.17 Pg C yr! reduction from an atmospheric perspective (see

Methods).

Given that the global terrestrial carbon sink is increasing, a weakening intact tropical forest sink
implies that the extra-tropical carbon sink has increased over the past two decades. Independent
observations of inter-hemispheric atmospheric CO. concentration indicates that carbon uptake into
the Northern hemisphere landmass has increased at a greater rate than the global terrestrial carbon
sink since the 1990s, with a further disproportionate increase in the 2000s°. The inter-hemispheric
analysis suggests a weakening of the tropical forest sink by ~0.2 Pg C yr™ between the 1990s and
2000s™, which is similar to the 0.17 Pg C yr* weakening over the same time period that we find.

This reinforces our conclusion that the intact tropical forest carbon sink has already saturated.

In summary, our results indicate that while intact tropical forests remain major stores of carbon and
are key centres of biodiversity!!, their ability to sequester additional carbon is waning. In the 1990s
intact forests removed 17% of anthropogenic CO2 emissions. This has declined to 6% in the 2010s,
because the pan-tropical weighted average per unit area sink strength declined by 33%, forest area
decreased by 19%, and CO. emissions increased by 46%. Although tropical forests are more
immediately threatened by deforestation*® and degradation*’, and the future carbon balance will also
depend on secondary forest dynamics™ and forest restoration plans®, our analyses show that they are
also impacted by atmospheric chemistry and climatic changes. Given that the intact tropical forest

carbon sink is set to end sooner than even the most pessimistic climate-driven vegetation models
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predict*®, our analyses suggest that climate change impacts in the tropics may become more severe
than predicted. Furthermore, the carbon balance of intact tropical forests will only stabilise once CO»

concentrations and the climate stabilises.

Continued on-the-ground monitoring of the world’s remaining intact tropical forests will be required
to test our prediction that the intact tropical forest carbon sink will continue to decline. Such direct
ground-based measurements also provide a constraint on estimating the size and location of the
terrestrial carbon sink. In addition, our conclusion that tree mortality and internal forest dynamics are
important controls on the future of the tropical forest carbon sink, may assist in improving the
vegetation components of future Earth System Models™ and contribute to reducing terrestrial carbon
cycle feedback uncertainty!®?°. Our findings also have policy implications. At the country-level:
given intact tropical forests are a carbon sink, but the size is changing, national greenhouse gas
reporting will require careful forest monitoring. At the international-level: given tropical forests are
likely to sequester less carbon in the future than Earth System Models predict, an earlier date to reach
net zero anthropogenic greenhouse gas emissions will be required to meet any given commitment to

limit the global heating of Earth.
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Figure 1. Long-term carbon dynamics of structurally intact tropical forests in Africa (blue)
and Amazonia (brown). Trends in net aboveground live biomass carbon sink (a), carbon gains to
the system from wood production (b), and carbon losses from the system from tree mortality (c),
measured in 244 African inventory plots (blue lines) and contrasting published® Amazonian
inventory data (brown lines; 321 plots). Shading corresponds to the 95% CI, with less transparent
shading indicating a greater number of plots monitored in that year (most transparent: minimum 25
plots monitored). The CI for the Amazonian dataset is omitted for clarity, but can be seen in Figure

3. Slopes and p-values are from linear mixed effects models (see Methods).
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Figure 2. Potential environmental drivers of carbon gains and losses in structurally intact old-
growth African and Amazonian tropical forests. Aboveground carbon gains, from woody
production (a-c), and aboveground carbon losses, from tree mortality (d-f), presented as time-
weighted mean values for each plot, i.e. each census within a plot is weighted by its length, against
the corresponding values of atmospheric carbon dioxide concentration (COz), mean annual air
temperature (MAT) and drought (as Maximum Climatological Water Deficit, MCWD), for African
(blue) and Amazonian (brown) inventory plots. Each data point therefore represents an inventory
plot, for visual clarity, and the level of transparency represents the total monitoring length, with
empty circles corresponding to plots monitored for < 5 years and solid circles for plots monitored for
>20 years. Solid lines show significant trends, dashed lines non-significant trends calculated using
linear mixed effect models with census intervals (n=1566) nested within plots (n=565), using an
empirically derived weighting based on interval length and plot area, on the untransformed pooled
Africa and Amazon dataset (see Methods). Slopes and p-values are from the same linear mixed
effects models. Carbon loss data and models are presented untransformed for comparison with
carbon gains, but transformation is needed to fit normality assumptions; linear mixed effects models
on transformed carbon loss data does not change the significance of the results, nor does including

all three parameters and transformed data in a model (see Extended Data Table 1).
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Figure 3. Modelled past and future carbon dynamics of structurally intact tropical forests in
Africa and Amazonia. Predictions of net aboveground live biomass carbon sink (a,d), carbon gains
(b,e), and carbon losses (c,f), for African (left panels) and Amazonian (right panels) plot inventory
networks, based on CO,-change, Mean Annual Temperature, Mean Annual Temperature-change,
drought (as Maximum Climatological Water Deficit), plot wood density, and plot carbon residence
time, using observations in Africa until 2014 and Amazonia until 2011.5, and extrapolations of prior
trends to 2040. Model predictions are in blue (Africa) and brown (Amazon), with solid lines
spanning the window when >75% of plots were monitored to show model consistency with the
observed trends, and shading showing upper and lower confidence intervals accounting for
uncertainties in the model (both fixed and random effects) and uncertainties in the predictor
variables. Light grey lines and grey shading are the mean and 95% CI of the observations from the

African and Amazonian plot networks.
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Main Tables

Table 1. Carbon sink in intact forestsin Africa, Amazonia and the pan-tropics: 1980-2015 and
predictions to 2040. Mean values in bold, future predictions in italics, uncertainty in parentheses,

95% bootstrapped confidence intervals for 1980-2015, and 26 for the predictions (2010-2040).

Period No. Per unit area aboveground live biomass C sink Total Csnk *
plots (MgChaltyr?) (PgCyr?)
Af. Am. Africa Amazon Pan-tropicst Africa Amazon Pan-tr opicsf

1980-1990 45 73 0.33(0.06-0.63) 0.35(0.06-0.59) 0.35(0.07-0.62) 0.28(0.05-0.53) 0.49(0.08-0.82) 0.87(0.16-1.52)
1990-2000 96 172 0.67(0.43-0.89) 0.53(0.42-0.65) 0.57(0.39-0.74) 0.50(0.32-0.66) 0.68(0.54-0.83) 1.26(0.88-1.63)
2000-2010 194 291 0.70(0.55-0.84) 0.38(0.26-0.48) 0.50(0.35-0.64) 0.46(0.37-0.56) 0.45(0.31-0.57) 0.99(0.70-1.25)

2010-2015 184 172 0.66(0.40-0.91) 0.24(0.00-0.47) 0.40(0.15-0.65) 0.40(0.24-0.56) 0.27(0.00-0.52) 0.73(0.25-1.18)

201020201 - -  0.63(0.36-0.89) 0.23(-0.05-0.50) 0.38(0.11-0.65) 0.37 (0.21-0.53) 0.25(-0.05-0.54) 0.68 (0.17-1.16)
202020301 - -  0.59(0.24-0.93) 0.12(-0.29-0.51) 0.30(-0.08-0.67) 0.31(0.13-0.49) 0.12(-0.29-0.52) 0.47 (-0.15-1.07)
203020401 - -  0.55(0.08-0.99) 0.00 (-0.54-0.49) 0.21(-0.29-0.67) 0.26 (0.04-0.47) 0.00 (-0.50-0.46) 0.29 (-0.46-0.97)

* Total Continental C sink isthe per unit area aboveground C sink multiplied by intact forest area for
1990-2010 (from ref.!, see Extended Data Table 2) and continent specific extrapolations to 2040.
Total Continental C sink includes continent-specific estimates of trees <100 mm DBH, lianas and
roots (see Methods).

+ Pan-tropical aboveground live biomass C sink is the area-weighted mean of African, Amazonian
and Southeast Asian sink values. Southeast Asian values were from published per unit area carbon
sink data'® (n=49 plots) for 1990-2015, with 1980-1990 assumed to be the same as 1990-2000 due
very low sample sizes. Pan-tropical total C sink is the sum of African, Amazonian and Southeast
Asian total continental carbon sink values. The continental sink in Southeast Asia is a modest and
declining contribution to the pan-tropical sink, due to the very small area of intact forest remaining,
at 0.11, 0.08, 0.07 and 0.06 Pg C yr! in the 1980s, 1990s, 2000s and 2010s, hence uncertainty in the
Southeast Asian sink cannot reverse the pan-tropical declining sink trend.

1 Per unit areatotal C sink for 2010-2020, 2020-2030 and 2030-2040 was predicted using parameters
from Table 2, except for the 2010-2020 sink in Africa which is the mean of the measured sink from
2010-2015 and the modelled sink from 2015-2020. For the Asian sink we assumed the parameters as
for Africa, as Asian forest median CRT is61 years, close to African median, 63 years.
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Table 2. Minimum adequate models to predict carbon gains and losses in African and
Amazonian tropical forests. These are the best ranked gains and loss models. Where continental
values differ, those for Africa are reported first, followed by Amazonian values.

Carbon gains, Mg C ha' yr*

Predictor variable Parameter  Standard t-value p-value 2000-2015 changein gains
value Error %) *

(Intercept) 5.255]5.395 0.603|0.6148.7]8.8 <0.001 -

COz-change (ppmyr?") ¥ 0.238 0.096 25 0.013 3.69% | 3.71%

MAT (°C) -0.083 0.025 -3.3 0.001 -0.67% | -1.07%

MAT-change (°Cyr') I -1.243 0.233 -5.3 <0.001 0.58% | 0.00% 8§

MCWD (mm x1000) -0.405 | -1.391 0.381 | 0.24 -1.1|-5.80.289 | <0.001 -0.52% | -2.73%

WD (g cm’®) -1.295 0.530 -2.4 0.015 0.05% | 0.00%

Carbon losses, Mg C ha'yr™ |

Predictor variable Parameter  Standard t-value p-value 2000-2015 changein losses
value Error %) *

(Intercept) 1.216 0.086 14.1 <0.001 -

CO,-change (ppmyr?) T 0.130 0.059 2.2 0.026 11.38% | 14.81%

MAT-change (°C yr) 0.766 0.162 4.7 <0.001 -1.56% | 0.00%

MCWD (mmx10000) i -0.232 0.107 2.2 0.030 -1.21% | -2.42%

CRT (yr) -0.003 0.001 -6.1 <0.001 -0.57% | 1.39%

* The 2000-2015 change in gaing/losses for each predictor variable was estimated allowing only the
focal predictor to vary; this change was then expressed as a percentage of the annual gains/losses in
the year 2000 allowing all predictorsto vary.

1 Change over the past 56 years.

T Change over the past 5 years.

8 A positive value for Africa indicates that MAT increased more slowly over 2000-2015 compared
to the mean increase over 1983-2015, therefore contributing to an increase in gains; a zero value fpr
Amazonia indicates that the rate of MAT increase was the same over 2000-2015 as the mean
increase over 1983-2015.

| Carbon loss values were normalized via power-law transformation, A= 0.361.
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Online Methods

Plot Selection

Closed canopy (i.e. not woody savanna) old-growth mixed-age forest inventory plots were selected
using commonly used criteria®®2": free of fire and industrial logging; all trees with diameter at
reference height >100 mm measured at least twice; >0.2 ha area; <1500 m.a.s.l. altitude; MAT
>20.0°C>%; annual precipitation >1000 mm®?; located >50 m from anthropogenic forest edges. Of the

244 plots included in the study, 217 contribute to the African Tropical Rainforest Observatory

Network (AfriTRON; [www.afritron.org), with data curated a |www.ForestPlots.netf>>3. These

include plots from Sierra Leone, Liberia, Ghana, Nigeria, Cameroon, Gabon, Republic of Congo,
Democratic Republic of Congo (DRC), Uganda and Tanzania®>®® (Extended Data Figure 1). Fifteen
plots are part of the TEAM network, from Cameroon, Republic of Congo, Tanzania, and Uganda®*
57_ Nine plots contribute to the ForesGEO network, from Cameroon and DRC®® (9 plots from DRC,
codes SNG, contribute to both AfriTRON and ForestGEO networks, included above in the
AfriTRON total). Finally, three plots from Central African Republic are part of the CIRAD
network®>®, The large majority of plots are sited in terra firme forests and have mixed species
composition, although four are in seasonally flooded forest and 14 plots are in Gilbertiodendron
dewevrei monodominant forest, a locally common forest type in Africa (Supplementary Table 1).
The 244 plots have a mean size of 1.1 ha (median, 1 ha), with a total plot area of 277.9 ha. The
dataset comprises 391,968 diameter measurements on 135,625 stems, of which 89.9% were
identified to species, 97.5% to genus and 97.8% to family. Mean tota monitoring period is 11.8
years, mean census length 5.7 years, with atotal of 3,214 ha years of monitoring. The 321 Amazon
plots are published and were selected using the same criteria®, except in the African selection criteria

we specified a minimum anthropogenic edge distance and added a minimum temperature threshold.
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Plot Inventory and Tree Biomass Carbon Estimation

Tree-level aboveground biomass carbon is estimated using an allometric equation with parameters
for tree diameter, tree height and wood mass density®!. The calculation of each is discussed in turn.
All calculations were performed using the R dtatistical platform, version 3.2.1 (ref.%) using the

BiomasaFP R package, version 0.2.1 (ref.®3).

Tree Diameter: In all plots, all woody stems with >100 mm diameter at 1.3 m from the base of the
stem (‘diameter at breast height’, DBH), or 0.5 m above deformities or buttresses, were measured,
mapped and identified using standard forest inventory methods®*®. The height of the point of
measurement (POM) was marked on the trees and recorded, so that the same POM is used at the
subsequent forest census. For stems developing deformities or buttresses over time that could
potentially disturb the initial POM, the POM was raised approximately 500 mm above the deformity.
Estimates of the diameter growth of trees with changed POM used the ratio of new and old POMs, to
create a single trajectory of growth from the series of diameters at two POM heights®13%5, We used
standardised protocols to assess typographical errors and potentially erroneous diameter values (e.g.
trees shrinking by >5 mm), missing values, failures to find the original POM, and other issues.
Where necessary we estimated the likely value via interpolation or extrapolation from other
measurements of that tree, or when this was not possible we used the median growth rate of treesin
the same plot, census and size-class, defined as DBH = 100-199 mm, or 200-399 mm, or >400 mm®®.
We interpolated measurements for 1.3% of diameters, extrapolated 0.9%, and used median growth

rates for 1.5%.

Tree height: Height of individuals from ground to the top leaf, hereafter Hi, was measured in 204
plots, using a laser hypsometer (Nikon forestry Pro) from directly below the crown (most plots), a

laser or ultrasonic distance device with an electronic tilt sensor, a manual clinometer, or by direct
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measurement, i.e. tree climbing. Only trees where the top was visible were selected®. In most plots,
tree selection was similar: the 10 largest trees were measured, together with 10 randomly selected
trees per diameter from five classes: 100-199 mm, 200-299 mm, 300-399 mm, 400-499 mm, and
500+ mm trees, following standard protocols®. We measured actua height of 24,270 individual trees

from 204 plots. We used these data and the local.heights function in R package BiomasaFP® to fit 3-

parameter Weibull relationships; Hi=a x (1-e(t? * PBH109°)) ) (equation 1). We chose the Weibull
model as it is known to be robust when a large number of measurements are available®%’. We
parameterised separate Hi-DBH relationship for four different combinations of edaphic forest type
and biogeographical region: (i) terra firme forest in West Africa, (ii) terra firme forest in Lower
Guinea and Western Congo Basin, (iii) terra firme forest in Eastern Congo Basin and East Africa,
(iv) seasonally flooded forest from Lower Guinea and Western Congo Basin (there were no
seasonally flooded forest plots in the other biogeographical regions). The parameters are: (i) terra
firme forest in West Africa, a=56.0; b=0.0401; c=0.744; (ii) terra firme forest in Lower Guinea and
Western Congo Basin, a=47.6; b=0.0536; c=0.755; (iii) terra firme forest in Eastern Congo Basin
and East Africa, a=50.8; b=0.0499; c=0.706; and finally (iv) seasonally flooded forest from Lower
Guinea and Western Congo Basin, a=38.2; b=0.0605; c=0.760. For each of these combinations of
forest type and bioregion, the local.heights function combines all height measurements from all plots
belonging to that forest type/bioregion and fits the Weibull model parameters using non-linear least
sguares (nls function in R with default settings), with starting values of a = 25, b = 0.05 and c = 0.7
chosen as they led to regular model convergence. We fitted these models either treating each
observation equally or with case weights proportional to each trees’ basal area. These weights give
more importance to large trees during model fitting. We selected the best fitting of these models,
determining this as the model that minimised prediction error of stand biomass when calculated with
estimated heights or observed heights. The parameters were used to estimate H; from DBH for all

tree DBH measurements for input into the allometric equation. Mean measured individual total tree
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height is 20.5 m; the height range is 1.5 to 72.5 m. The root mean squared error (RMSE) between the
full dataset of measured heights and the predicted heights, is 5.7 m, which is 8.0% of the total range.
Furthermore, RMSE is 5.3 min terra firme forest in West Africa (7.5% of the range; n=9771 trees);
RMSE is 6.4 m in terra firme forest in Lower Guinea and Western Congo Basin (8.7% of the range;
n=10,838 trees); RMSE is 4.8 m in terra firme forest in Eastern Congo Basin and East Africa (8.8%
of the range; n=3269 trees); and RMSE is 4.1 m in seasonally flooded forest from Lower Guinea and

Western Congo Basin (12.5% of the range; n=392 trees).

Wood Density: Dry wood density (p) measurements were compiled for 730 African species from

published sources and stored in|www.ForestPlots.net| most were sourced from the Global Wood

Density Database on the Dryad digital repository (www.datadryad.org)®®°. Each individual in the

tree inventory database was matched to a species-specific mean wood density value. Species in both

the tree inventory and wood density databases were standardized for orthography and synonymy

using the African Plants Database (www.ville-ge.ch/cjb/bd/africa/) to maximize matches™. For

incompletely identified individuals or for individuals belonging to species not in the p database, we
used the mean p value for the next higher known taxonomic category (genus or family, as
appropriate). For unidentified individuals, we used the mean wood density value of all individual

treesin the plot*°2,

Allometric equation: For each tree we used a published alometric equation® to estimate
aboveground biomass. We then converted this to carbon, assuming that aboveground carbon (AGC)
is 45.6% of aboveground biomass™®. Thus. AGC=0.456x(0.0673x(px(DBH/10)2xH:)%°"6)21000

equation 2), with DBH in mm, dry wood density, p, in g cm™, and total tree height, Ht, in m (ref.6%).
q y Y, p, 1IN g
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Aboveground Carbon (AGC, in Mg C hal) in living biomass for each plot at each census date was

estimated as the sum of the AGC of each living stem, divided by plot area (in hectares).

Carbon Gain and Carbon L oss estimation
Net Carbon Snk (in Mg C ha! yr?) is estimated as carbon gains minus carbon losses. Calculation

details are explained below.

Carbon Gains (in Mg C ha! yrt) are the sum of the aboveground live biomass carbon additions from
the growth of surviving stems and the addition of newly recruited stems, divided by the census
length (in years) and plot area (in hectares). For each stem that survived a census interval, carbon
additions from its growth (Mg C ha yr) were calculated as the difference between its AGC at the
end census of the interval and its AGC at the beginning census of the interval. For each stem that
recruited during the census interval (i.e. reaching DBH>100 mm), carbon additions were calculated
in the same way, assuming DBH=0 mm at the start of the interval®. Carbon Losses (in Mg C ha yr-
1y are estimated as the sum of aboveground biomass carbon from all stems that died during a census
interval, divided by the census length (in years) and plot area (in hectares). Both carbon gains and
carbon losses are calculated using standard methods?, including a census interval bias correction,

using the SummaryAGWP function of R-package BiomasaFP?364¢8,

As carbon gains are affected by a census interval bias, with the underestimate increasing with census
length, we corrected this bias by accounting for (i) the carbon additions from trees that grew before
they died within an interval (unobserved growth) and (ii) the carbon additions from trees that

recruited and then died within the same interval (unobserved recruitment) %72,
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Component (i), the unobserved growth of a stem that died during a census interval, is estimated as
the difference between AGC at death and AGC at the start of the census. These are calculated using
equation 2, from respectively DBHgeth and DBHgat. The latter is part of the data, the first can be
estimated as: DBHdeath = DBHgart X G X Y mean, Where G is the plot-level median diameter growth rate
(mm yr?) of the size class the tree was in at the art of the census interval (size classes are defined
as D <200 mm, 400 mm > D > 200 mm and D > 400 mm) and Y mean iS the mean number of years
trees survived in the census interval before dying. Y mean is calculated from the number of trees that
are expected to have died in each year of the census interval, which is derived from the plot-level

per-capita mortality rate (ma; % dead trees yr't) calculated following equation 5 in ref.”.

Component (ii), growth of recruits that were not observed because they died during the census
interval, is estimated by calculating the number of unobserved recruits and diameter at death for each
unobserved recruit. The number of unobserved recruits (tems ha! yr?) is estimated as; Nur = Ra —
Parv X Ra, Where Ra (recruited stems ha yrt) is the per area annual recruitment calculated following
equation 11 in ref.” and Ps,r is the probability of each recruit surviving until the next census: Par =
(1-my)T, where T is the number of years remaining in the census interval. Summing Ny, for each year
in a census interval gives the total number of unobserved recruits in that census interval. We then
estimate diameter at death for each unobserved recruit, which is given in mm by DBH geath,ur = 100 +
(Gs X Y mean-rec), Where Gs is the plot-level median diameter growth rate (mm yr?) of the smallest size
class (i.e. D < 200 mm) and Y mean-rec iS the mean life-gpan of unobserved recruits calculated as the
mean life-span of recruitsin a given year, weighted by Nur. The mean life-span of recruits in a given
year is calculated from the number of recruits that died in that year, which is derived from the plot-
level per-capita mortality rate (ma; % dead trees yrt). Growth of each unobserved recruit (mmyr?) is

thm CaICUIated as DBHdeaih,u,r d|V|ded by Ymean-rec.
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The census interval bias correction (components i and ii together) typically add <3% to plot-level
carbon gains. Carbon Losses are affected by the same census interval bias, hence we corrected this
bias by accounting for (i) the additional carbon losses from the trees that were recruited and then
died within the same interval, and (ii) the additional carbon losses resulting from the growth of the
trees that died in the interval®'®®3, These two components are calculated in the same way as for

Carbon gains and typically add <3% to plot-level carbon losses.

Carbon gains include both gains from the growth of surviving stems and new recruits. Separating
carbon gains from tree growth of surviving stems and newly recruited stems, shows that carbon gains
from recruitment are small overall, and are significantly lower in Africa than in the Amazon, likely
due to the lower stem turnover rates and longer carbon residence time (Africa: 0.17 Mg C hat yr;
Cl: 0.16-0.18 versus Amazon: 0.27 Mg C ha* yr?; Cl: 0.25-0.28, p<0.001; two-way Wilcoxon test),
but this is compensated by carbon gains from survivors being significantly larger in Africa (2.33 Mg
C hal yrt; Cl: 2.27-2.39) than in the Amazon (2.13 Mg C ha? yrt; Cl: 2.09-2.17, p=0.014).
Therefore, gains overall (sum of gains from surviving stems and newly recruited stems) are
indistinguishable between the continents (Africa: 2.57 Mg C ha yrt; CI: 2.51-2.67 vs Amazon: 2.46

Mg C halyr?; Cl: 2.41-2.50, p=0.460; two-way Wilcoxon test).

Long-term Gain, Lossand Net Carbon Sink Trend Estimation, 1983-2014

The estimated mean and uncertainty in carbon gains, carbon losses and the net carbon sink of the
African plots from 1983-2014 (Figure 1, Extended Data Figure 7 and Extended Data Figure 8) were
calculated following ref.® to allow direct comparison with published Amazonian results. First, each
census interval value was interpolated for each 0.1-yr period within the census interval. Then, for

each 0.1-yr period between 1983 and 2014, we calculated a weighted mean of all plots monitored at

39



924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

that time, using the square root of plot area as a weighting factor®. Confidence intervals for each 0.1-

yr period were bootstrapped.

Trends in carbon gains, losses and the net carbon sink over time were assessed using linear mixed
effects models (Imer function in R, Ime4 package’?), providing the linear slopes reported in Figure 1.
These models regress the mid-point of each census interval against the value of the response variable
for that census interval. Plot identity was included as a random effect, i.e. assuming that the intercept
can vary randomly among plots. We did not include slope as a random effect, consistent with
previously published Amazon analyses?, because models did not converge due to some plots having
too few census intervals. Observations were weighted by plot size and census interval length.
Weightings were derived empirically, by assuming a priori that there is no significant relation
between the net carbon sink and census interval length or plot size, following ref.*3. The following
weighting removes all pattern in the residuals; Weight= 3Vlengthine + “Vplotsize -1 (equation 3),
where lengthin: is the length of the census interval, in years. Significance was assessed by regressing

the residuals of the net carbon sink model against the weights (p=0.702).

Differences in long-term slopes between the two continents for carbon gains, carbon losses and net
carbon sink, reported in the main text, were also assessed using linear mixed effects models, as
described above, but performed on the combined African and Amazonian datasets and limited to
their common time window, 1983 to 2011.5. For these three tests on the pooled data we included an
additional interaction term between census interval date and continent, where a significant
interaction would indicate that the slopes differ between continents. The statistical significance of
continental differences in slope were assessed using the F-satistic (Anova function in R, car
package™). Shortening the common time window to the 20 years when the continents are best-

sampled, 1991.5 to 2011.5, gave very similar results, including a divergent continental sink (p=0.04).
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Continental and Pan-Tropical Carbon Sink Estimates

The per unit area total net carbon sink (in Mg C ha? yrt) for each time period in Table 1 (each
decade between 1980 and 2010; and 2010-2015) is the sum of three components. The first
component is the per unit area aboveground carbon sink from living trees and lianas with DBH>100
mm. For Africa we use the per unit area net carbon sink values presented in this paper. For
Amazonia, we use data in ref.6. For Southeast Asia, we use inventory data collected using similar
standardised methods from 49 plots in ref.®. For each time window, we use al plots for which
census dates overlap the period, weighted by the square root of plot area, as for the solid lines in
Figure 1. The second component is the per unit area aboveground carbon sink from living trees and
lianas with DBH<100 mm. This is calculated as 5.19%, 9.40% and 5.46% of the first component (i.e.
aboveground carbon of large living trees) in Africa, Amazonia and Southeast Asia respectively®3,
The third component is the per unit area belowground carbon sink in live biomass, i.e. roots. Thisis
calculated as 25%, 37% and 17% of the aboveground carbon of living trees with DBH>100 mm in

Africat®, Amazonia® and Southeast Asia’™ respectively.

For each time period in Table 1 we calculated the continental-scale total carbon sink (Pg C yr?) by
multiplying the per unit areatotal net carbon sink described above by the area of intact forest on each
continent at that time interval (in ha) reported in Extended Data Table 2. Decades are calculated from
1990.01 to 1999.99. For comparability with previous continental-sink results, we used continental
values of intact forest area for 1990, 2000 and 2010 as published in ref.%, i.e. total forest area minus
forest regrowth. We used the 1990-2010 data to fit an exponential model for each continent and used

this model to estimate intact forest area for 1980 and 2015.

Finally, in the main text we calculated the proportion of anthropogenic CO, emissions removed by Earth’s
intact tropical forests, as the total pan-tropical carbon sink from Table 1 divided by the total anthropogenic
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CO; emissions. Total anthropogenic CO, emissions are calculated as the sum of emissions from fossil fuel and
land-use change and are estimated at 7.6 Pg C yr™* in the 1990s, 9.0 Pg C yr™ in the 2000s, and 11.1 Pg C yr™
in the 2010s (ref.!, assuming 1.7% growth in fossil fuel emissions in 2018 and 2019, and mean 2010-2017

land-use change emissions for 2018 and 2019).

Carbon Sink from an Atmospheric Perspective

To edimate the evolution of the carbon sink from an aimospheric perspective, we assumed that the
contribution to the atmosphere from carbon gains are experienced immediately, while the
contribution to the atmosphere from carbon losses must take into account the delay in decomposition
of dead trees. We did this by calculating total forest carbon loss (Mg C ha? yr) for each year
between 1950-2015, using the mean 1983-2015 records from Figure 1 and assuming constant losses
prior to 1983 (1.9 and 1.5 Mg C ha* yr* for Africa and Amazonia respectively). Then, for each focal
year between 1950-2015, we calculated how much carbon was released to the atmosphere in the
subsequent years as: yi = Xo X €017 D - x, x @017t where xo is the total forest carbon loss of the
focal year; y: is the carbon released to the atmosphere at t years from the focal year; and -0.17 yrtis
a constant decomposition rate calculated for tropical forests in the Amazon®. For example, carbon
loss was 1.95 Mg C ha? in 1990 in African forests (Figure 1), from which 0.31 Mg C ha'! was
released to the atmosphere in 1991; 0.26 Mg C hat in 1992; 0.22 Mg C ha in 1993; 0.07 Mg C hat
in 2000 and 0.01 Mg C ha' in 2010. Hence, of the full 1.95 Mg C ha* dead tree biomass from 1990,
~50% was released to the atmosphere after 4 yrs, ~85% after 10 yrs, and ~97% after 20 years.
Finally, for each year between 1983 and 2015, the total contribution to the atmosphere from carbon
losses was calculated as the sum of all carbon contributions released at that year, from all total yearly
forest carbon loss pools of the previous years. We then calculated decadal-scale mean contributions

to the atmosphere from carbon losses, reported in the main text.
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Predictor Variable Estimates, 1983-2014

For each census interval of each plot, we examined potential predictor variables that may explain the
long-term trends in carbon gains and carbon losses, reported in Extended Data Table 1 and main text
Table 2. Firgt, the environmental conditions during the census interval; second the rate of change of
these parameters; and third forest attributes that may affect how different forests respond to the same
environmental change. The predictor variable estimates for each census need to avoid bias due to
seasonal variation, for example the intra-annual variability in atmospheric CO. concentration. We
therefore applied the following procedure to avoid seasonal variability impacts on long-term trends:
(i) the length of each focal census interval was rounded to the nearest complete year (e.g. a 1.1 year
interval became a 1 year interval); (ii) we computed dates that minimised the difference between
actual fieldwork dates and complete-year census dates, while ensuring that subsequent census
intervals of a plot do not overlap. The resulting sequence of non-overlapping census intervals was
used to caculate interval-specific means for each environmental predictor variable to remove
seasonal effects. The mean difference between the actual fieldwork dates and the complete-year

census dates is 0.01 decimal years.

The first group of potential predictor variables, estimated for each census interval of each plot, are
theory-driven choices. atmospheric CO concentration (CO.), mean annual temperature (MAT), and

drought intensity, which we quantified as maximum climatological water deficit (MCWD)420.76.77,

Atmospheric CO. concentration (COz, in ppm) is estimated as the mean of the monthly mean values
from the Mauna Loa record’® over the census interval. While atmospheric CO, concentration is
highly correlated with time (R2=0.98), carbon gains are dightly better correlated with CO3

(Re?=0.0027) than with time (Rag2=0.0025).
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Mean Annual Temperature (MAT, in °C) was derived from the temporally resolved (1901-2015)
dataset of monthly mean temperature from the Climatic Research Unit (CRU TS version 4.03; ~3025
km? resolution; released 15 May 2019; https://crudata.uea.ac.uk/cru/data/hrg/) °. We downscaled the
data to ~1 km? resolution using the WorldClim dataset>®°, by subtracting the difference in mean
monthly temperature, and applying this monthly correction to all months®. We then calculated MAT

for each census interval of each plot using the downscaled monthly CRU record.

Maximum Climatological Water Deficit (MCWD, in mm) was derived from the ~3025 kn?
resolution Global Precipitation Climatology Centre dataset (GPCC version 6.0) that includes many
more rain gauges than CRU in tropical Africa®*®. As GPCC ends in 2013 we combined it with
satellite-based Tropical Rainfall Measurement Mission data (TRMM 3B43 V7 product, ~757 kn?
resolution)84. The fit for the overlapping time period (1998-2013) was used to correct the systematic
difference between GPCC and TRMM: GPCC’ = a+b*GPCC, with GPCC’ the adjusted GPCC
record and a and b different parameters for each month of the year and for each continent.
Precipitation was then downscaled to ~1 km? resolution using the WorldClim dataset®%°, by dividing
by the ratio in mean monthly rainfall, and applying this monthly correction to all months®*. For each
census interval we extracted monthly precipitation values and estimated evapotranspiration (ET) to
calculate monthly Climatological Water Deficit (CWD), a commonly used metric of dry season
intensity for tropical forests!*"’?, Monthly CWD values were calculated for each subsequent series
of 12 months (complete years)””. Monthly CWD estimation begins with the wettest month of the first
year in the interval, and is calculated as 100 mm per month evapotranspiration (ET) minus monthly
precipitation (P). Then, CWD values for the subsequent 11 months were calculated recursively as.
CWDi= ET - P + CWDi.1, where negative CWD; values were set to zero”” (no drought conditions).
This procedure was repeated for each subsequent complete 12 months. We then calculated the annual

MCWD as the largest monthly CWD value for every complete year within the census interval, with
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the MCWD of a census interval being the mean of the annual MCWD values within the census

interval. Larger MCWD indicates more severe water deficits.

We assume ET is 100 mm month™* on both continents, based on measurements from Amazonia’®’’,
more limited measurements from West Africa summarized in ref.8, predictive skill®, and use in past
studies on both continents'*8”. MCWD therefore represents a precipitation-driven dry season deficit,
as ET remains constant. An alternative assessment, using a data-driven ET product®8, gave a mean
ET of 95 and 98 mm month™ for the African and Amazonian plot networks respectively. Using these

values did not affect the results.

To calculate the environmental change of potential predictor variables, CO,-change (in ppm yr?),
MAT-change (in °C yrt) and MCWD-change (in mm yr?), we selected an optimum period over
which to calculate the change, derived empirically by assessing the correlation of carbon gains (all
plots, al censuses) with the change in each environmental variable, using linear mixed effects
models (Imer function in R, Ime4 package’). The annualised change in the environmental variable
was calculated as the change between the focal interval and a prior interval (termed the baseline
period) with a lengthening time window ranging from 1 year through to 80 years prior to the focal
interval (i.e. 80 linear mixed effects models per variable). We calculated AIC for each model and
selected the interval length with the lowest AIC. Thus, MAT-change (in °C yrl) = (MAT-
MATy)/(date-date,), where MAT; is the MAT over the focal census interval calculated using the
procedure described above, MAT), isthe MAT over a baseline period prior to the focal interval, date
is the mid-date of the focal census interval and date, is the mid-date of the baseline period. The Imer
results show that the baseline period for MAT-change is 5 years and for CO,-change it is 56 years,
while MCWD showed no clear trend, so MCWD-change was not included in the models (see

Extended Data Figure 3). All three results conform to a priori theoretical expectations. For CO; a
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maximum response to an integrated 56 years of change is expected because forest stands will
respond most strongly to CO2 when most individuals have grown under the new rapidly changing
condition, which should be at its maximum at a time approximately equivalent to the carbon
residence time of a forest and®® (mean of 62 years in this dataset). For MAT, 5 years is consistent
with experiments showing temperature acclimation of leaf- and plant-level photosynthetic and
respiration processes over half-decadal timescales®®*. MCWD has no overall trend suggesting that
once adrought ends, its impact on tree growth fades rapidly, as seen in other studies'*®2. Also in the
moist tropics wet-season rainfall is expected to re-charge soil water, hence lagged impacts of

droughts are not expected.

We calculated estimates of two forest attributes that may alter responses to environmental change as
potential predictor variables: Wood Density (WD) and Carbon Residence Time (CRT). In intact old-
growth forests, mean WD (in g cm?®) is inversely related to resource availability?®93%, asis seen in
our dataset (carbon gains and plot-level mean WD are negatively correlated, Extended Data Figure
4). WD is calculated for each census interval in the dataset, as the mean WD of all trees alive at the
end of the census interval, to be consistent with the previous Amazon analysis®. Carbon residence
time (CRT, in yrs) is a measure of the time that fixed carbon stays in the system. CRT is a potential
correlate of the impact of past carbon gains on later carbon losses®. To avoid circularity in the
models, the equation used to calculate CRT differed depending on the response variable. If the
response variable is carbon loss, the CRT equation is based on gains. CRT=AGC/gains, with AGC
for each interval based on AGC at the end of the interval, and the gains for each interval calculated
as the mean of the gains in the interval and the previous intervals (i.e. long-term gains). If the
response variable is carbon gains, the CRT equation is based on losses. CRT=AGC/losses. The
equation employed for use in the carbon loss model (based on gains) is the standard formula used to

calculate CRT and is retained in the minimum adequate model (see below and Table 2). The non-
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standard CRT equation (based on losses) used in the carbon gain model is not retained in the

minimum adequate model (see below).

Statistical modelling of the Carbon Gain, Lossand Sink Trends

We first constructed two models including those environmental drivers exhibiting long-term change
that impact theory-driven models of photosynthesis and respiration as predictor variables. COs,
MAT, and MCWD. One model had carbon gains as the response variable, the other had carbon
losses as the response variable (both in Mg C ha! yr!). Models were fitted using the Ime function in
R, with maximum likelihood (NLME package®). All census intervals within all plots were used,
weighted by plot size and census length (using equation 3 above). Plot identity was included as a
random effect, i.e. assuming that the intercept can vary randomly among plots. All predictor
variables in the models were scaled without centering (scale function in R, RASTER package®).
Carbon gain values were normally distributed but carbon loss values required a power-law
transformation (A= 0.361) to meet normality criteria. Multi-parameter models are: carbon gains =
intcp + axCO2 + bxMAT + cxMCWD (model 1); carbon losses = intcp + axCO; + bxMAT +
cxMCWD (model 2); where intcp is the estimated model intercept, and a, b, and ¢ are model
parameters giving the slope of relationships with environmental predictor variables. For multi-

parameter model outputs see Extended Data Table 1, for single-parameter relationships, Figure 2.

The second pair of models include the same environmental predictors (CO,, MAT, MCWD), plus
their rate of change (CO2-change, MAT-change, but not MCWD-change as explained above), and
forest attributes that may alter how forests respond (WD, CRT), as described above. We also
evaluated the possible inclusion of a differential continent effect of each variable in the full model.
We first constructed models with only a single predictor variable, and allowed different slopes in

each continent. Next, if removal of the continent-specific slope (using stepAlC function in R, MASS
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package™®) decreased model Akaike Information Criterion (AIC) then the continent-specific slope
was not included in the full model for that variable. Only MCWD showed a significant differential
continent-specific slope. Thisimplies that forests on both continents have common responsesto COx,
COo-change, MAT, MAT-change, WD and CRT, but respond differently to differences in MCWD.
This is likely because wet-adapted species are much rarer in Africa than in Amazonia as a result of
large differences in past climate variation®. Lastly, we allowed different intercepts for the two
continents to potentially account for differing biogeographical or other continent-specific factors. For
the carbon loss model, we applied the same continent-specific effects for dope as for the carbon gain
model. Carbon loss values were transformed using a power-law transformation (A= 0.361) to meet

normality criteria.

For both carbon gains and losses we parameterized a global model including the significant
continent-specific effect of MCWD, selecting the most parsimonious simplified model using all-
subsets regression®” %, To do so, we first generated a set of models with all possible combinations
(subsets) of fixed effect terms in the global model using the dredge function of the MuMIn package
in R%. We then chose the best-ranked simplified model based on the AlCc criterion, hereafter called
“minimum adequate carbon gain/loss model”, reported in Table 2. The minimum adequate models
are. carbon gains = intcpxcontinent + axCOz-change + bxMAT + cxMAT-change +
dxMCWDxcontinent + exWD (model 3); carbon losses = intcp + axCO,-change + bxMAT-change
+ cxMCWD + dxCRT (model 4). WD was retained in the carbon gain model, likely because growth
is primarily impacted by resource availability, while CRT was retained in the carbon loss model,

likely because losses are primarily impacted by how long fixed carbon is retained in the system.

Table 2 presents model coefficients of the best-ranked gain model and best-ranked loss model

selected using all-subsets regression. These best-ranked gain and loss models have weights of 0.310
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and 0.132 respectively, which is almost double the weight of the second ranked models (0.152 and
0.075 respectively). In Supplementary Table 2 we also used the model.avg function of the MuMIn
package to calculate a weighted mean of the coefficients of the best-ranked models together
representing a cumulative weight-sum of 0.95 (i.e. a 95% confidence subset). Supplementary Table 2
(model-averaged) and main text Table 2 (best-ranked) model parameters are very similar.
Supplementary Tables 3 and 4 report the complete sets of carbon gains and loss models that

contribute to the model average results.

The model-average results show the same continental differences in sensitivity to environmental
variables as the best-ranked models. From 2000 to 2015, carbon gains increased due to CO,-change
(+3.7% in both the averaged and the best-ranked models, both continents), while temperature rises
led to a decline in gains, which especially had an effect in the Amazon (-1.14% and -1.07% due to
MAT and MAT-change together in the averaged and best-ranked model respectively). Finally, both
models result in similar predictions of the net carbon sink over the 1983-2040 period: the future net
sink trend in Africa is -0.004 and -0.003 in the best-ranked and averaged models respectively; in
Amazonia the future net sink trend is -0.013 and -0.011 in the best-ranked and averaged models
respectively. The Amazon sink reaches zero in 2041 using model-averaged parameters compared to

2035 using the best-ranked models.

Estimating Future Predictor Variablesto 2040
To calculate future modelled trends in carbon gains and losses (Figure 3), we first estimated annual
records of the predictor variables (CO2-change, MAT, MAT-change, MCWD, WD and CRT) to

2040 (Extended Data Figure 5).
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To do 0 we first calculated annual records for the period of the observed trends for each plot
location (i.e. from 1983-2014 in Africa and 1983-2011.5 in Amazonia). For CO»-change, MAT,
MAT-change and MCWD we extracted monthly records as described in section Predictor Variable
Estimates (above). For WD and CRT we interpolated to a 0.1-yr period within each census interval
(asin Figure 1). Then, we calculated the mean annual value of each predictor variable from the 244
plot locations in Africa, and separately the mean annual value of each predictor variable from the
321 plot locations in Amazonia (i.e. solid lines in ED Figure 5). For each predictor variable, we
calculated annual records of upper and lower confidence intervals by respectively adding and

subtracting 26 to the mean of each annual value (shaded area in ED Figure 5).

Secondly, for each predictor variable we parameterised a linear model for each continent using the
annual records for the period of the observed trends. Then for each predictor variable, the continent-
specific linear regression models were used to estimate predictor variables for each plot location
from 2014 to 2040 in Africa and from 2011.5 to 2040 in the Amazon (dotted lines in Extended Data
Figure 5). For each predictor variable, we calculated annual records of upper and lower confidence
intervals by respectively adding and subtracting 2¢ to the slope of each linear model (shaded area

around dotted linesin ED Figure 5).

Estimating Future Carbon Gain, Lossand Net Carbon Sink

We used the minimum adequate models (Table 2) to predict annual records of carbon gain, carbon
loss and the carbon sink for the plot networks in Africa and Amazonia over the period 1983 through
to 2040 (Figure 3). We extracted fitted carbon gain and loss values using the mean annual records for
each predictor variable (predictSE.Ime function, AlCcmodavg package'®). Upper and lower
confidence intervals were calculated accounting for uncertainties in the model (both fixed and

random effects) and predictor variables using the 2¢ upper and lower confidence interval for each
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predictor variable (using predictSE.Ime). Finally the net carbon sink was calculated by subtracting
the losses from the gains. To obtain sink values in the future in Table 1, annual per unit area sink
predictions, from Figure 3, were averaged over each decade and multiplied by the future forest area,

as described above.

To test the sensitivity of the future predictions in Figure 3, we reran the analysis by modifying future
trajectories of predictor variables one at atime, while keeping all others the same, to assess the mean
C sink over 2010-15 and 2030 (averaging at 2030 is not necessary as trends in MAT-change and
MCWD, which largely drive modelled inter-annual variability, are estimated as smooth trends in the
future). For each predictor variable, we explored potential impacts of the likely bounds of possibility,
(i) by taking the steepest slope of either continent from the extrapolated trends, doubling this slope
and applying it on both continents; and (ii) by taking the steepest dope of either continent from the
extrapolated trends, taking the opposite of this slope and applying it on both continents. These
bounds represent deviations of >2 sigma from observed trends. Change in MAT also alters MAT-

change, so we present the sensitivity of both parameters together.

Additionally, for CO.-change and MAT, we also calculated future slopes under three future
Representative Concentration Pathway (RCP) scenarios® with different radiative forcing in 2100:
RCP2.6, 4.5, and 8.5. Future RCP CO,-change slopes (ppm yrt) were calculated using RCP CO;
concentration data for the years between 2015 and 2030 inclusive. Future RCP MAT and MAT-
change slopes were obtained from plot-specific MAT values extracted from downscaled 30 seconds
resolution data for current® and future®® climate from WorldClim, and averaged over 19 CMIP5
models. We subtracted the mean 2040-2060 climate MAT (i.e. 2050) from the mean 1970-2000
climate MAT (i.e. 1985), divided by 65 years to give the annual rate of change. We then calculated a

mean slope over al plots per continent. Finally, to avoid mismatches between RCP-derived values of
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CO2 and MAT and the observed records we removed any difference in intercept between the RCP
trends and observed trends, so the RCP trends were a continuation of the end-point of the observed
trajectory in 2015. We did not estimate the sensitivity of MCWD under the RCP scenarios, because
the CMIP5 model means do not show drought trends for our forest plot networks, unlike rain gauge
data for the recent past, and thus would show little or no sensitivity to MCWD. For each modified
slope, Supplementary Table 5 reports the absolute decline in the sink in each continent in 2030
compared to the 2010-15 mean sink. This shows that the future sink strength is sensitive to future
environmental conditions, but within both RCP scenarios and our bounds of possibility we show a

decline in the sink strength in both continents over the 2020s.

Data and Code Availability

Source data and R-code to generate figures and tables are available from:

http://dx.doi.orag/10.5521/Forestplots.net/2019 1
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Extended Data Figure 1. Map showing the locations of the 244 plots included in this study.

Dark green represents all lowland closed-canopy forests, submontane forests and forest-agriculture

mosaics; light green shows swamp forests and mangrovest®?, blue circles represent plot clusters,

referred to by three-letter codes (see Supplementary Table 1 for the full list of plots). Clusters <50

km apart are shown as one point for display only, with the circlesize corresponding to sampling

effort in terms of hectares monitored.
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Extended Data Figure 2. Long-term above-ground carbon dynamics of 244 African intact

tropical forest inventory plots. Points in the scatterplots indicate the mid-census interval date, with

horizontal bars connecting the start and end date for each census interval for net aboveground

biomass carbon change (a), carbon gains (from woody production from tree growth and newly

recruited stems) (b), and carbon losses (from tree mortality) (c). Examples of time series for three

individual plots are shown in purple, yellow and green. Associated histograms show the distribution

of the plot-level net aboveground biomass carbon (d) (with a three-parameter Weibull probability

density distribution fitted in blue, showing the carbon sink is significantly larger than zero; one-tail t-

test: p<0.001), carbon gains (€), and carbon losses (f).
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Extended Data Figure 3. Akaike’s Information Criterion (AIC) from correlations between the
carbon gain in tropical forest inventory plots and changes in either atmospheric COo,
temperature (as MAT) or drought (as MCWD), each calculated over ever-longer prior
intervals. Panels show AIC from linear mixed effects models of carbon gains from 565 plots and
corresponding, atmospheric CO. (CO.-change) (a), Mean Annual Temperature (MAT-change) (b),
and Maximum Climatological Water Deficit (MCWD-change) (c). For CO, the AIC minimum was
observed when predicting the carbon gain from the change in CO. calculated over a 56 year long
prior interval length. We use this length of time to calculate our CO,-change parameter. Such avalue
is expected because forest stands will respond mog strongly to CO2 when most individuals have
grown under the new rapidly changing condition, which should be at its maximum at a time

approximately equivalent to the carbon residence time of a forest stand*>*° (mean of 62 years in this
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pooled African and Amazonian dataset). For MAT the AIC minimum was 5 years, which we use as
the prior interval to calculate our MAT-change parameter. This length is consistent with experiments
showing temperature acclimation of leaf- and plant-level photosynthetic and respiration processes
over approximately half-decadal timescales®%t. For MCWD the AIC minimum is not obvious, while
the slope of the correlation, shown in panel (d), shows no overall trend and oscillates between
positive or negative values, meaning there is no relationship between carbon gains and the change in
MCWD over intervals longer than 1 year; thus MCWD-change is not included in our models. This
result suggests that once a drought ends, its impact on tree growth fades rapidly, as seen in other
studies'*®2, Also in the moist tropics wet-season rainfall is expected to re-charge soil water, hence

lagged impacts of droughts are not expected.
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Extended Data Figure 4. Potential forest dynamics-related driversof carbon gainsand lossesin
structurally intact African and Amazonian tropical forest inventory plots. The aboveground
carbon gains, from woody production (a-b), and aboveground carbon losses, from tree mortality (c-
d), are plotted against the carbon residence time (CRT), and wood density (WD), for African (blue)
and Amazonian (brown) inventory plots. Linear mixed effect models were performed with census
intervals (n=1566) nested within plots (n=565) to avoid pseudo-replication, using an empirically
derived weighting based on interval length and plot area (see methods). Significant regression lines
for the complete dataset are shown as a solid line; non-significant regressions as a dashed line. Each
dot represents a time-weighted mean plot-level value; transparency of the inner part of the dot
represents total monitoring length, with empty circles corresponding to plots monitored for < 5 years
and solid circles for plots monitored for >20 years. Carbon loss data are presented untransformed for
comparison with carbon gains; linear mixed effects models on transformed data to fit normality
assumptions do not change the significance of the results. Note, CRT is calculated differently for the

carbon gains and losses models (see methods).
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Extended Data Figure 5. Trends in predictor variables used to estimate long-term trends in
above-ground carbon gains, carbon losses and the resulting net carbon sink in African and
Amazonian intact tropical forest plot networks. Mean annual CO»-change (a), MAT (b), MAT-
change (c), MCWD (d), CRT (e), and WD (f) for African plot locations in blue, and corresponding
Amazon plots locations in brown (g-1). Solid lines for CO.-change, MAT, MAT-change, MCWD
represent obervational data, and solid lines for CRT and WD represent plot means and a time
window where >75% of the plots were monitored, long-dashed lines are plot means were <75% of
plots were monitored. Dotted lines are future values estimated from linear trends on the 1983-2014
(Africa) or 1983-2011 (Amazon) data (dope and p-value reported in each panel), see methods for
details. Upper and lower confidence intervals (shaded area) for the past (Africas 1983-2014;
Amazonia: 1983-2011) are calculated by respectively adding and subtracting 26 to the mean of each
annual value. Upper and lower confidence intervals for the future were estimated by adding and

subtracting 2¢ from the slope of the regression model.
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Extended Data Figure 6. The change in carbon losses versus carbon residence time (CRT) of
inventory plots in Africa and Amazonia. For plots with two census intervals, we calculated the
change in carbon losses (Alosses, in Mg C ha™* yr! yr?) asthe carbon losses (Mg C ha? yr?) of the
second interval minus the carbon losses of the first interval, divided by the difference in mid-interval
dates. For plots with more than two intervals, we calculated the change in carbon losses for each pair
of subsequent intervals, then calculated the plot-level mean over all pairs, weighted by the time
length between mid-interval dates. This analysis includes only plots with at least two census intervals
and monitored for >20 years (i.e. roughly one-third of the mean CRT of the pooled African and
Amazon dataset; n = 116). Breakpoint regression was used to assess the CRT length below which
forest carbon losses begin to increase. Plots with CRT <77 years show a recent long-term increase in
carbon losses, longer CRT plots do not. Blue points are African plots, brown points are Amazonian

plots.
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Extended Data Figure 7. Trends in African tropical forest net aboveground live biomass
carbon, carbon gains and carbon losses, calculated for the last 15 years of the twentieth
century (left panels a-c) and the first 15 years of the twenty-first century (right panels d-f).
Plots were selected from the full dataset if their census intervals cover at least 50% of the respective
time windows, i.e. they are intensely monitored (n=56 plots for 1985-2000, and n=134 plots for
2000-2015, respectively). Solid lines show mean values, shading corresponds to the 95% CI, as
calculated in Figure 1. Dashed lines, slopes and p-values are from linear mixed effects models, as in
Figure 1. The data shows a difference compared to Figure 1, notably the sink decline after ~2010
driven by rising carbon losses. This is because in Figure 1 we include all available plots over the
1983-2015 window, which includes clusters of plots monitored only in the 2010s that had low carbon

loss and high carbon sink values.
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Extended Data Figure 8. Twenty-first century trends in aboveground biomass carbon losses
from African tropical forest inventory plotswith either long (Ieft panels) or short (right panels)
carbon residence time. Upper panels include all plots, i.e. asin Figure 1, but split into along-CRT
group (a), and a short-CRT group (b), each containing half the 244 plots. Lower panels restrict plots
to those spanning >50% of the time window, i.e. intensely monitored plots, as in Extended Data
Figure 7, but split into a long-CRT group (c), and a short-CRT group (d), each containing half the
134 plots. Solid lines indicate mean values, shading the 95% CI, asfor Figure 1. Dashed lines, slopes
and p-values are from linear mixed-effects models, as for Figure 1. Carbon losses increase at a higher
rate in the short-CRT than the long-CRT group of plots, in both datasets, although this increase is not

statistically significant.
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1490 Extended Data Tables

1491

1492 Extended Data Table 1. Models to predict carbon gains and losses in African and Amazonian
1493  tropical forests, including only environmental variables, showing long-term trends that impact

1494  theory-driven models of photosynthesis and respiration. Significant values in bold.

Carbon gains, Mg C ha' yr'

Predictor variable Parameter value Standard Error t-value p-value
(Intercept) 4.694 0.739 6.354 0.000
CO; (ppm) 0.005 0.001 3.196 0.001
MAT (°C) -0.143 0.021 -6.844 0.000
MCWD (mm x1000) -1.232 0.210 -5.878 0.000
Carbon losses, Mg C ha™ yr' *
Predictor variable Parameter value Standard Error t-value p-value
(Intercept) 0.926 1.854 0.500 0.617
CO; (ppm) 0.004 0.004 0.947 0.344
MAT (°C) -0.011 0.044 -0.249 0.804
MCWD (mm x1000) -0.498 0.505 -0.985 0.325
1495 * carbon loss values were normalized via power-law transformation, A= 0.361.

1496

1497 Extended Data Table 2. Forest area estimates used to calculate total continental forest sink.

Period intact forest area (Mha)*
Africa Amazon Southeast Asia Pan-tropics

1980 671.5 958.3 233.6 1863.4
1985 634.3 921.1 207.4 1762.8
1990 600.2 885.2 190.6 1676.0
1995 565.9 851.1 163.5 1580.5
2000 531.8 817.2 136.9 1485.9
2005 504.8 784.5 129.2 1418.5
2010 477.8 756.3 118.4 1352.5
2015 450.5 726.7 101.5 1278.7
2020 425.5 698.5 90.1 1214.2
2025 402.0 671.5 80.0 1153.4
2030 379.7 645.4 71.0 1096.1
2035 358.6 620.4 63.0 10421
2040 338.8 596.4 56.0 991.1

* Intact forest area for 1990, 2000 and 2007 is published in ref.1 (i.e. the total forest area minus
forest regrowth). To estimate intact forest area for the other years in this table, we fitted
1498 exponential models for each continent using the published data.
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