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Alzheimer’s disease is the leading cause of dementia worldwide, but the cellular

pathways that underlie its pathological progression across brain regions remain
poorly understood'™. Here we report a single-cell transcriptomic atlas of six
different brain regions in the aged human brain, covering 1.3 million cells from

283 post-mortem human brain samples across 48 individuals with and without
Alzheimer’s disease. We identify 76 cell types, including region-specific subtypes of
astrocytes and excitatory neurons and aninhibitory interneuron population unique
to the thalamus and distinct from canonical inhibitory subclasses. We identify
vulnerable populations of excitatory and inhibitory neurons that are depleted in
specific brain regions in Alzheimer’s disease, and provide evidence that the Reelin
signalling pathway is involved in modulating the vulnerability of these neurons. We
develop ascalable method for discovering gene modules, which we use to identify
cell-type-specific and region-specific modules that are altered in Alzheimer’s disease
and to annotate transcriptomic differences associated with diverse pathological
variables. We identify an astrocyte program that is associated with cognitive resilience
to Alzheimer’s disease pathology, tying choline metabolism and polyamine
biosynthesisinastrocytesto preserved cognitive function late in life. Together, our
study develops aregional atlas of the ageing human brain and provides insightsinto
cellular vulnerability, response and resilience to Alzheimer’s disease pathology.

Alzheimer’s disease (AD) is characterized by pathological protein
aggregationinastereotyped patternacross multiple brain regions™*.
Post-mortem diagnosis of AD is staged by the severity and distribu-
tion of these pathological hallmarks: extracellular amyloid-f deposits
and intracellular neurofibrillary tangles (NFTs) in neurons. Tangles
are first seen in the entorhinal cortex (EC) (Braak stages I-1I), then
the hippocampus and thalamus (Braak stages IlI-1V) and finally
the neocortex (Braak stages V-VI), a sequence that is typically syn-
chronous with cognitive decline from mild cognitive impairment
to severe dementia'**”. Understanding the cellular architecture
of affected brain regions has important implications for early and
region-specific therapeutic interventions and may shed light on
the molecular mechanisms underlying the regional progression of
pathology. Although some brain regions relevant to AD have been
studied individually at scale or jointly in samples from afew individu-
als®*®, acomprehensive molecular characterization of region-specific
differencesin AD is currently lacking and could capture differences
inregional molecular architecture”>* and region-specific neuronal

and glial subtype alterations in AD and in cognitive resilience to AD
pathology**,

Here we present a transcriptomic atlas of the human brain span-
ning six distinct anatomical regions from persons with and without
Alzheimer’s dementia as abasis for understanding disease-associated
differences. We profile the transcriptomes of over 1.3 million nuclei
fromthe EC, hippocampus (HC), anterior thalamus (TH), angular gyrus
(AG), midtemporal cortex (MT) and prefrontal cortex (PFC) from 48
individuals, 26 of whom have a pathologic diagnosis of AD. We anno-
tate region-specific neuronal and glial subtype diversity, present an
online resource for navigating this atlas (http://compbio.mit.edu/
ad_multiregion) and provide mechanisticinsightsinto cellular vulner-
ability, response and resilience to AD.

A multiregion atlas of AD

To characterize cellular diversity in the human brain, and the genes,
pathways and cell types that underlie AD progression across brain
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Fig.1|snRNA-seqanalysis of six distinct regions of the aged human brain.
a,snRNA-seq profilingsummary, covering 283 samples across 6 brain regions
from 48 participants from ROSMAP, showing global pathology, Braak stage and
pathological (26 AD and 22 non-AD) or clinical diagnosis of AD (16 AD dementia
(dem.) and 32 no dementia). b,c, Joint uniform manifold approximationand
projection (UMAP), coloured by major cell type (b) and region of origin (c).

d, Theregional composition of major cell types. e, Relative enrichment of
major cell types across regions by quasi-binomial regression. False discovery
rate (FDR)-corrected Pvalues areindicated by asterisks; ***P < 0.001,**P< 0.01,
*P<0.05.f,g, Global breakdown, region composition, enrichment and number
of nucleifor excitatory (f) and inhibitory (g) neuronal subtypes. h, Gene
expression analysis of the top four markers per inhibitory subclass, averaged at

regions, we performed single-nucleus RNA-sequencing (SnRNA-seq)
analysis of nucleiisolated from 283 post-mortem brain samples across
six brain regions from 48 participants in the Religious Order Study
(ROS) or the Rush Memory and Aging Project (MAP)? (together, ROS-
MAP; Fig. 1a). We selected 48 participants on the basis of pathologic
diagnosis of AD (stratified by NIA-Reagan score of 26 (with AD) and 22
(without AD; labelled non-AD)) and on the basis of clinical diagnosis of
Alzheimer’s dementia (n = 16) versus non-dementia (n = 32)* (Fig. 1a,
Extended DataFig.1aand Supplementary Table1). Fromthese 48 indi-
viduals, we profiled six brain regions: the EC (221,493 cells), which is
affected in early AD (stages I-1I); the HC (221,415) and TH (207,625),
which are affected in mid-AD (stages l1I-1V); and the AG (220,409), MT
(227,412) and PFC (254,721), which are affected in late AD (stages V-VI),
for atotal of 1.35 million transcriptomes of independent nuclei after

2 | Nature | www.nature.com

GABAergic module score

the sample by subclass level (columns). i, RNAscope validation of FOXP2and
MEIS2as markers of the unique thalamus subtype, with quantification (left)
performed using Student’s t-tests and representative images (right). The blue
punctarepresent MEIS2 (top) or FOXP2 (bottom) transcripts and red puncta
represent GAD2transcripts. FOXP2:n =19 (PFC) and n =22 (TH) cells; MEIS2:
n=35(PFC)and n=26 (TH) cells; each dot represents anindividual cell, pooled
from eight samples (four individuals; each had one PFC and one thalamus sample).
Jj, Glutamatergic versus GABAergic scores for allneuronsubtypes. The dotted
linesrepresent the 95% confidence interval around the linear fit. Pvalues were
calculated using two-sided Ftests. Ast., astrocytes; exc., excitatory neurons;
inh., inhibitory neurons; mic., microglia/immune cells; olig., oligodendrocytes;
vasc., vascular/epithelial cells.

removing doublets, low-quality cells and highly sample-specific clus-
ters. We annotated 76 high-resolution cell types in 14 major cell type
groups, including 32 excitatory neuron subtypes (436,014 nuclei,
32.2% of total) and 23 inhibitory subtypes (159,838 nuclei, 11.8% of
total) (Extended DataFig.1b-d, Supplementary Figs.1and 2 and Sup-
plementary Table 2). We characterized these cell types in terms of their
transcriptome size and proliferative status, compared our atlas with
previously published data across species® * (Extended Data Fig. 1e,f
and Supplementary Figs. 3-5) and identified broad cell type identity
programs using non-negative matrix factorization (NMF)** and tran-
scriptional regulons using SCENIC*?¢ (Extended DataFigs.2and 3 and
Supplementary Tables 3 and 4).

Togaininsightsinto the cellular architecture of the humanbrain, we
investigated differences inthe composition of major cell types between



the six brain regions. The fraction of neurons increased significantly
fromthe TH (14.4% neurons) to the three-layer allocortical HC (32.2%),
the entorhinal periallocortex (36.6%) and the six-layered neocortical
regions (AG, MT and PFC, 58.9%) (Fig.1b-e and Supplementary Fig. 6).
Glia, including astrocytes, oligodendrocytes, oligodendrocyte precur-
sor cells (OPCs) and microglia/immune cells, tended to be less abundant
inneocortical samples (Fig. 1b-e), in agreement with previous studies
in humans®?® and mice®*° (Supplementary Fig. 7a-d). Differences in
the composition of major cell types between regions were reproduc-
ibly observed across study participants, irrespective of the individual’s
disease status (Supplementary Fig. 7e-h), suggesting that variability
in the major cell type composition between regions is a fundamental
characteristic of the human brain and is not affected by AD pathology.

Neuronal diversity across brain regions

We first characterized the regional diversity of excitatory neuron sub-
types, whichwere consistent across individuals and were either highly
region-specifictothe HC,ECand TH (7, 9 and 2 subtypes, respectively)
orwere predominantly shared across neocortical regions (12 subtypes)
(Fig.1fand Supplementary Fig. 8-12). Hippocampal subtypesincluded
neurons from the highly structured CAland CA2/CA3 subfields and
dentate gyrus and the more entorhinal-proximal subiculumand para/
presubiculum areas’. EC-specific subtypes that clustered separately
from neocortical subtypes for the same layers were often marked by
expression of RELN, TOX3and GPCS5, and contained subtypes from both
thelateral (L2 RELN*GPCS") and medial (L2 TOX3'POSTN*) EC*'** (Sup-
plementary Fig.10). Excitatory neurons in the TH were predominantly
composed (74%) of asubtype (NXPHI'RNF220") that was not observed
inthe neocortexandis predicted tobe regulated by LHX9, SOX2, SHOX2
and TCF7L2*** (Extended Data Fig. 2a,b and Supplementary Figs. 9e-i
and 11n,0). We found that the thalamic-neocortex separation is con-
served in mice and recapitulated both this divide and thalamic marker
genesinindependentsingle-cell, bulk and microarray datain both mice
and humans®*#%# (Supplementary Fig.12).

In contrast to excitatory neuron subtypes, the majority of inhibi-
tory neuron subtypes (22 out of 23 subtypes) were observed in all five
cortical regions (Fig. 1g and Supplementary Figs. 13-17), although
some inhibitory subtypes had regional biases, including PVALB*HTR4*
and CUX2"MSRI" (enriched in neocortex), layer 6 SST'NPY* (EC and
HC) and GPC5'RIT2" (EC), suggesting that there are significant differ-
ences in inhibitory neuron composition between the neocortex and
allocortex (Fig. 1g and Supplementary Fig. 14). Moreover, in the HC,
EC and MT, caudal ganglionic eminence-derived GABAergic neurons
(VIP*LAMPS®) were significantly more abundant than medial ganglionic
eminence-derived neurons (SST'PVALB"), but these two major clades
were not significantly different in the PFC (Extended Data Fig. 1g). By
contrast, the TH contained a single unique, thalamus-specificinhibitory
subtype (MEIS2'FOXP2") marked by genes that are involved in neurite
outgrowth, such as the semaphorins SEMA3C and SEMA3E, DISCI and
SPONI, and receptors for serotonin (HTR2A), acetylcholine (CHRM2,
CHRNA3) and glutamate (GRM3) (Fig.1g,h and Supplementary Figs. 14
and15). These genes were inasingleinhibitory program (Inh-22, from
NMF) that included the SCENIC-predicted subtype regulators FOXP2
and LEFI*** (Extended Data Figs. 2¢,d and 3b). We recapitulated this
thalamic difference and program genes in the mouse thalamus and
human lateral geniculate nucleus (dLGN) using previously published
single-cell data (Supplementary Figs.16 and 17). To validate the locali-
zation and specificity of markers of the thalamic inhibitory neuron
subtype, we performed in situ hybridization for both FOXP2 and MEIS2
with GAD2 on TH and PFC post-mortem brain samples from four indi-
viduals, and found significant thalamus-specific co-localization of
both marker genes with GAD2 (Fig. 1i).

Asthalamic MEIS2 neurons expressed several typically glutamatergic
neuron genes, we determined glutamatergic and GABAergic module

scores for every neuronal cell to further examine the chimeric nature
of thissubtype (Supplementary Fig.15g-k and Supplementary Table 5).
These scores matched the cortical excitatory and inhibitory split and
were negatively correlated both across and within broad neuronal
classes (Fig. 1j and Supplementary Fig. 15g,h). Both thalamic MEIS2*
inhibitory and NXPHI" excitatory neurons had intermediate scores,
placing them between the cortical excitatory and inhibitory clusters,
suggesting that they are less polarized with regard to the expression
of cortical glutamatergic versus GABAergic programs (Fig. 1j and Sup-
plementary Fig.15i-k). Predicted cell-cell communicationinteractions
were mostly shared across multiple regions, but the thalamus had
multiple differential interactions (Supplementary Figs.18 and 19). The
top thalamus-specific interactions were between excitatory NXPH1
and neuronal NRXNI or NRXN3, whereas inhibitory neurons expressed
NXPH1 in the other regions, suggesting that neurexophilin signalling
swaps from excitatory neurons in the thalamus to inhibitory neurons
in cortical brain regions (Extended Data Fig. 4).

Glial diversity annotated by gene modules

We next tested whether glial cells also had transcriptional differ-
ences betweenbrainregions. We identified multiple transcriptionally
distinct subsets for each major glial cell type and determined their
characteristic marker genes (Fig. 2a and Supplementary Fig. 20-25).
Among glial cell types, astrocytes had the highest regional hetero-
geneity, containing both highly neocortex-enriched (GRM3'DPP10")
and thalamus-enriched (LUZP2"DCLKT") subtypes (Fig. 2a-c and
Supplementary Fig. 20). Region-specific astrocyte subtypes were
experimentally validated using RNA in situ hybridization (Fig. 2d) and
confirmed by analysing a separate snRNA-seq dataset™ (Supplementary
Fig.23m). Cortical astrocytes were enriched for markers involved in
glutamate processing and transport, whereas hippocampus- and ante-
rior thalamus-enriched DCLK1 astrocytes had lower glutamate trans-
porter activity and were enriched instead for focal-adhesion-related
genes (Fig. 2c and Supplementary Fig. 25a). Thalamic astrocytes
(LUZPZ") expressed GABA-uptake genes SLC6A1 and SLC6A11 at much
higherlevels compared with other subtypes, eventhoughthe propor-
tion of inhibitory neurons was not markedly higher in the thalamus
(Fig. 2c). Notably, the thalamic MEIS2'FOXP2" interneurons shared
multiple markers with neocortical GRM3 astrocytes, including GRM3,
MEIS2and VAV3**4°43 (Supplementary Fig. 23n), suggesting that astro-
cytes in evolutionarily newer regions may share some functions with
inhibitory neuronsin older regions.

We developed amethod, single-cell decorrelated module networks
(scdemon), to identify gene expression modules from highly corre-
lated sets of genes in atlas-scale snRNA-seq datasets (Fig. 2e). Highly
imbalanced cell type compositioninsingle-cell datasets, in which rare
cellular states are outnumbered by common cell types, can lead to
under-recovery of gene-geneinteractions, especially for genes thatare
expressed at low levels. To account for these issues, our method esti-
mates asample-decorrelated gene-gene correlation matrix, thresholds
gene-gene pairs based on their sparsity and uses the adjusted matrix
toidentify modules of highly correlated genes (Methods). We used our
method toidentify modulesbothacrossall cellsin the atlas and for each
major cell type independently, and recovered modules expressed to
varying degrees, ranging fromidentity modules for each glial cell type
toacellcycle module foundinjust 0.7% of microglia (Fig. 2f, Extended
Data Fig. 5, Supplementary Figs. 26-36 and Supplementary Table 6).
Cells expressing these modules were enriched for diverse aspects of
our dataset, including cellular subtype identity (205 modules), brain
region (156, with 77 thalamus specific and 34 EC specific), AD status (73),
APOE genotype (78) and sex (24) (Fig. 2fand Supplementary Table 7). We
hierarchically clustered modules across the cell types and found that
many cell types expressed gene programs for cholesterol biosynthesis
(C10), chaperones (C5), ribosomes (Cland C2), ER protein processing
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Fig.2|Astrocytediversity acrossregions annotated by gene expression
modules. a, UMAP plot for astrocyte nuclei, coloured by astrocyte subtype
orbrainregion of origin. b, Global breakdown and regional composition of
astrocyte subtypes. c, Gene expression heat map for the top markers of each
astrocyte subclass, averaged to sample by subtype and scaled to the row
maximum (max.). d, RNAscope validation of GRM3 and LGR6 as markers

of AQP4* neocorticaland TH astrocytes, respectively (bold markersin c).
Representative images (left) showing AQP4 transcripts (blue puncta) and GRM3
or LGR6 transcripts (red puncta). Scale bars, 20 pm. Quantification (right) was
performed using two-tailed unpaired Student’s t-tests; ****P < 0.0001. Each dot
represents anindividual cell, pooled from eight samples (four individuals;
eachwithone PFC and one thalamus sample). GRM3:n=37 (PFC) and n=23 (TH)
cells; LGR6:n=17 (PFC) and n=23 (TH) cells. e, The framework for detecting
gene expression modules using scdemon. f, The number of modules enriched
foreach covariate across allmodule sets (hypergeometric test, P< 0.001).

(C7), oxidative phosphorylation (C18), synapse interaction (C16), and
glycolysis and response to hypoxia (C20) (Extended Data Fig. 6a,b).
Using this approach, we identified 32 modules in astrocytes,
including an astrocyte-wide program (M9, expressed in >99% of
astrocytes) marked by GPM6A and GPC5 and enriched for cell junc-
tion assembly, and subtype- and region-specific identity programs
such as thalamus-associated M19 (SLC6A11, LGR6, MRAS), which were
enriched for sonic hedgehog signalling, M12 (GRM3: forebrain neuron
development) and M7 (DCLK1: synaptic membrane) (Fig. 2g,hand Sup-
plementary Fig.31). Other modules spanned a diverse set of functions,
including metallostasis, RNA splicing, glycolysis, oxidative phospho-
rylation and cholesterol biosynthesis and were shared by multiple
subtypes (Fig. 2i-k and Extended Data Figs. 5b and 6a-c). For example,
chaperone-enriched and APOE-g4-associated M8 was expressed in
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Bar plots are coloured by the covariate level for which the modules are enriched
(or by the major cell type used for module discovery for cell subtype). Diag.,
diagnosis. g,h, Gene-gene network (g) and magnification of theindicated
regions (h) for astrocyte modules, withinsets for M19, asubtype identity
module for LUZP2 astrocytes (h, left) and M17, a functional programinvolved
in cholesterol biosynthesis (h, right). AA,amino acid. i, Contour plotson the
astrocyte UMAP for module expression of five identity (top row) and five
functional (bottom row) programs. Expression was smoothed ona500 x 500
gridwitha2D Gaussiankernel (size =25 x25; g=1).j,k, Module contours showing
regions of top expression on the astrocyte UMAP for selected identity modules
(j) and corresponding module scores (k) for the 18 labelled representative cells
across the astrocyte UMAP for selected identity and expression models, scaled
to the maximal expression of each module. ER, endoplasmic reticulum; SVD,
singular value decomposition.

multiple different astrocyte subtypes and regions, and expression of
AD-associated M28 (metallostasis) overlapped with expression of both
APOE* (MO) and reactive (M3) astrocytes (Fig. 2i-k). Module-module
correlations across samples revealed co-expressed programs, such
as reactive astrocytes (M3, marked by TPST1, CLIC4 and EMPI) with
cholesterol biosynthesis module M17 (r = 0.60), and glycolysis (M6)
with AP-1 module M13 (r = 0.39, including FOS/JUN and ubiquitin), a
pair that is potentially co-expressed in astrocytes under metabolic
stress (Extended Data Fig. 6d,e).

Incontrast toastrocytes,immune cells showed ittle regional specific-
ityand oligodendrocyte-lineage cells had thalamus-enriched subtypes
with minor transcriptomic differences to neocortex-enriched subtypes
(Supplementary Figs. 21-25). Immune modules included identity pro-
grams, such asfor T cells (M6), macrophages (M7) and cycling microglia



(MKl67",M5) as well as modules found across immune cellsand enriched
for genesinvolved in NF-kB signalling (M18), interferon (M20), p53 and
DNA damage response (M22) and TGFf signalling (M14) (Extended
Data Fig. 6f and Supplementary Fig. 32). Oligodendrocyte-lineage
modules showed high regional specificity, and two OPC modules—
thalamus-enriched M11 and EC-enriched M25—were marked by
synapse-associated genes such as neural adhesion-related SEMA3D,
SEMA6D and CNTNS, and glutamate receptor GRIA4, suggestingarole
for OPC sensation and response to neuronal activity in specific brain
regions (Extended Data Fig. 5c,e and Supplementary Figs. 33,34 and 36).

Vulnerable neuronal subtypesin AD

After constructing our atlas across AD-affected brain regions, we exam-
ined how AD affects the cellular composition. At the level of major cell
types, we observed slight, non-significant decreases in the number of
bothexcitatory neurons (odds ratio (OR) = 0.94, individuals stratified
by pathologic diagnosis of AD), inhibitory neurons (OR =0.93) and
OPCs (OR=0.85),aswellasanincrease in the number of oligodendro-
cytes (OR =1.14, adjusted P (P,4;) = 0.01) and vascular cells (OR =1.24),
mostly driven by differences inthe EC, HC and PFC regions, especially in
late AD (Extended Data Fig. 7a,b). We next tested whether the fractions
ofregion-specific neuronal subtypes were significantly altered relative
to both individual-level pathologic and clinical diagnoses of AD and
region-level NFT and plaque accumulation (Fig. 3aand Extended Data
Fig. 7c,d). Among excitatory neurons, we identified one HC-specific
(CAlpyramidal neurons) and four EC-specific (L2 RELN" lateral EC, L3
RELN', L5 and L2/3 TOX3'TTC6" neurons) subtypes that were signifi-
cantly lessabundant (OR = 0.38-0.66) inindividuals with a pathologic
diagnosis of AD (Fig. 3a and Supplementary Fig. 37a-c). Neocortical
L2-3 neurons were also significantly less abundant in samples with
high NFT levels and in individuals with neocortical NFT involvement
(Fig.3a).Individuals with lower percentages of these vulnerable excita-
tory neuron subtypes performed significantly worse on cognitive tasks,
with the strongest observed impacts on episodic memory and global
cognitive function for subtypes marked by GPC5 (ECL5and L2 RELN*)?
(Extended DataFig. 7e,f). Notably, while the overall excitatory fraction
was not associated with cognition, lower OPC fraction across regions
and, in particular, in non-neocortex regions was significantly associated
with impaired cognition (Supplementary Fig. 37d).

Given that these neuronal subtypes lie in highly interconnected
regions, we next examined whether neuronal subtypes connected
across regions were coordinately depleted. We found that vulnerable
neuronal subtypes were co-depleted specifically inindividuals with AD,
withsome of the strongest effects observed in established connections
between the CAl, subiculum, EC-L3 and EC-L5 (Fig. 3b,c and Extended
Data Fig. 7g). These included co-depletion for entorhinal L5 versus
L5-projecting subiculum (Kendall’s 7= 0.37 (AD); —0.1 (non-AD)) or
CA1(r=0.42(AD)and -0.16 (non-AD)); and for CAlversus L2-lateral EC
(LEC,7=0.26 (AD) and -0.07 (non-AD)) and L3RELN' (1= 0.24 (AD) and
-0.13 (non-AD)) EC neurons, both of which project in part to the CA1
subfield*** (Fig. 3b,c and Extended Data Fig. 7g).

We nextinvestigate whether vulnerable subtypes share marker genes
that might mediate their vulnerability, and identified 391 genes with sig-
nificantly higher baseline (non-AD) expressionin vulnerable subtypes
(Fig.3dand Supplementary Table 8). These included Reelin signalling
pathway genes RELN and DABI; kinase-associated genes MAP2KS, PRKCA
and SPHKAP; and multiple genes associated with heparan sulfate pro-
teoglycan biosynthesis (including HS6S73, XYLTI and NDST3) (Fig. 3d
and Extended DataFig. 7h,i). Notably, while RELN expression, which is
typically restricted to inhibitory neurons, was highly specific to two EC
excitatory subtypes, its downstream partner DABI was present across
subtypes (Extended Data Fig. 7h,i and Supplementary Fig. 37e,f).

We next examined whether vulnerable inhibitory neuron subtypes
in the PFC share characteristics with vulnerable excitatory neuron

subtypes across our brainregions using single-cell transcriptomes from
621 ROSMAP study participants®#, We identified specific inhibitory
neuron subtypes that are depleted in individuals with a high tangle
density burden, consistent with our previous findings” (Extended
Data Fig. 7j). Vulnerable and non-vulnerable inhibitory neuron sub-
types differedinthe expression of genes involved in neuron projection
morphogenesis (ROBO2, SEMA6A and EPHB6), enzyme-linked receptor
protein signalling pathways (FGFR2, TGFBRI1 and PLCEI) and heparan
sulfate proteoglycan biosynthesis (Extended Data Fig. 7k and Sup-
plementary Table 8). Notably, vulnerable inhibitory neuron subtypes
expressed significantly higher levels of the Reelin signalling pathway
components RELN and DABI, mirroring the observed higher expression
ofthese two genesin vulnerable excitatory neuron subtypes (Fig. 3e).
Furthermore, the Reelin receptors LRP8 (also known as ApoER2) and
NRP1exhibited significantly different baseline expressionin vulnerable
compared with non-vulnerable inhibitory neuron subtypes (Fig. 3f).

Totest theselective vulnerability of Reelin-expressing excitatory neu-
ronsin AD, we performed in situ hybridization (RNAscope) analysis of
Reelinand vGlut (excitatory neuron marker) in EC tissue samples from
both patients with AD and healthy individuals without AD. We found
asignificant decrease in the percentage of Reelin-expressing excita-
tory neurons in the EC of individuals with AD (Fig. 3g). To determine
whether this finding was conserved in animal models of AD, we used
immunohistochemistry to assess the expression of Reelinin the EC of
both12-month-old App knock-in (KI) mice and 9-month-old Tau(P301S)
transgenic mice. We found that, relative to wild-type littermate con-
trols, App-KI mice and Tau(P301S) mice had a significantly decreased
percentage of Reelin-positive neuronsin the EC (Fig. 3h,i), inagreement
withour human transcriptomic data suggesting a selective vulnerability
of Reelin-expressing neurons (Fig. 3d-f).

To understand how vulnerable subtypes are altered in AD, we com-
puted differentially expressed genes (DEGs) for each excitatory neuron
subtype (Methods and Supplementary Fig. 38a-c). We partitioned
DEGs into sets associated with either vulnerable or non-vulnerable
subtypes according to their expression levels in individuals with late
AD (Extended DataFig. 7I,m). DEGs linked to non-vulnerable subtypes
were enriched foradiverse set of functions, including ubiquitin-ligase
binding, heat-shock-family chaperones, ER protein processing and
mediators of neuronal death, whereas vulnerability-associated DEGs
were highly enriched only for mitochondrial oxidative phosphorylation
butincluded CRKand NEUROD2, which are both associated with Reelin
signalling”*® (Extended Data Fig. 7l m and Supplementary Fig. 38d-f).
Some DEGs associated with non-vulnerable subtypes had higher dif-
ferential effect sizes in the vulnerable subtypes, and showed additional
enrichment for aerobic glycolysis (including PGK1, LDHB and SLC2A3)
and clathrin-mediated endocytosis (including AP2M1/AP2S1, OCRL and
COPS8) (Extended Data Fig. 7m).

Regional expression differencesin AD

To identify regional differences in cellular expression and function
specific to individuals with pathologic AD, we computed DEGs for
each major cell type in every region alone and across regions using a
negative binomial linear mixed model framework, adjusting for both
known covariates and potential unknown batch effects (Methods)
(Extended Data Fig. 8a and Supplementary Table 9). Astrocytes and
inhibitory and excitatory neurons showed the highest number of DEGs
over all of the regions, with the largest number of changes in the EC
(Extended DataFig. 8a). Notably, neuronal DEGs showed little overlap
acrossregions, indicating that neuronal differencesin AD are primarily
determined by subtype or region of origin (Extended Data Fig. 8b). By
contrast, microgliaand OPC DEGs overlapped within the non-neocortex
regions, and astrocyte and oligodendrocyte changes were more con-
sistent across all regions (Extended Data Fig. 8b). AD DEGs were con-
sistent with published results both for region-specific DEGs and for

Nature | www.nature.com | 5



Article

a Regional Individu_al Regional In_dividual b @ versus @ @versus @ [
pathology diagnosis pathology diagnosis .
T VAT1L*ERBB4* TRPC6*ANO2* 1 LR = 3.0%
"l:”:]NXPHVRNFZQO* COBLLI"UST* z 10.0% 1, L e . @ ao
Lo-G HORBILINGO2196' CR2. OA3 ) S 0 10%
L3-5 B*PLCH1+ I granu le cells O 1.0% . $ o
2 g AN ZNF385D'COL24AT Q@ 1.0%; .. =g 03%
g L6b ubicu [ =-013 9
> L4-5 RORB*GABRG1* CA1 pyramidal cells @ -r=-0 0 0.1%
R o
» - - 5A1 *
£ L4 RoRBCUX2 L6/L6b DI OF "SNTGS" 01% 1.0% 10% 01% 1.0% 10.0%
8 L6 CT Eo)ﬁé év%’)()?\;sP OSTN' EC L3 (RELN) HC CA1 i
§ tg;gﬁ%z%/URAPLz eedWWed | 3 1) OO 5AD 0) Subiculum versus @ @versus @
R * S L2-3 CBLN2*LINC02306* bl -2-LEC RELN'GPC5* 3 . " .
# _|NRGN LR L 5 AGBL 1*GPC5* 4 = 8.0% {1« 2 =3.0% IS
Fgeooo ke | 2/3 TOX3*TTC6* 5 & T2, 4. 3 R "t
Lgs <8< G 1.0%4{" .. ¢ ©1.0% e
£3 8°%¢ log,[OR] Pubtypes: < i < .
=38 (AD:non-AD) | Yunerable 9 03%{ < " 2 08% s > ..
Plaque X Q 0.1% H ':5 250317' o | ‘e == 8%% Region: @ -Vulnerable subtype
1.0-050 0.51.0 [ Regional pathology T - 0% —T= HC *—> Major connection between
-1.0-05 51, measurements missing 0.1% 0.3% 1.0% 3.0% 0.1% 1.0% 10.0% EC vulnerable subtypes
Subiculum EC L3 (RELN) co-depleted in AD
Pathology diagnosis of AD M Yes l No
d Expression in e f g Non AD, EC AD, EC
vulnerable Lap> Ey: & <
50 4 Subtypes ; AG%% s < 50 *
E Higher PRKCA " —DLGAP1 ” P Y 2 404 ©
S Lower SPHKAP NREL’N:R?VEFLEZO § 1601 - . RiLN RELN [ g I
] ~ 2 . € s 2
gg 4 Hs63T3 5 .t LRP8 | 8 S
2o 3 Vs $ 20
sE 2 e DAB1 == 3
=] S RO é A + 10
o » 30 RANBP17 - i = fea EYS 2 [
£9 FSTLS 2 S g o
=1 = .o o
Q0 KAZN £ LoR hd LS QO L
T o | = AR a Badi s
® & 20 i S 2 £ . S 5
4 o = ¢ .,_, - . . ARV
= [N T ¢ IogleC]
55 % R, A
510 g olabtetss . .. DAB1 | “CSRE 4 .
S ! 0 20 40 60
—? | —log,x[P] for vulnerable/non-vulnerable | Reelin downstream signalling |
- 0 1 for excitatory subtypes (six regions) @Hoechst OVGIut ®RELN
Coefficient for regression of gene expression
versus subtype composition (log,[non-AD:AD])
h WT mouse App-KI mouse i WT mouse Tau( P301S ) mouse
EC =50
50 S ok
- S = =
z 5 40 2 297%
3 5 3 230 §
o g 30 <} 3
T 3 T
g 20 L)
20 ke 15
£ 2 o1 8
> T 10 k] 3}
2 & 25 €
o 0 o=
g & o
< W& g
o
- - ; Reelm B Ree“n
z z
S S
o o
z z
£ - <
] ©
2 App Kl, Reelin 2 Tau(P301S), Reelin
2 2
= =
o o
aQ Q
£ £
Q Q
(¢} o

Fig.3|Subtype-specificneuronal vulnerability in AD. a, Compositional
differencesin excitatory neuronsubtype enrichmentand depletionin AD by
quasi-binomial regression with FDR correction. Clin. diag., clinical diagnosis;
path. AD, pathologic AD. b, Scatter plot and correlations (Kendall’s 7) of

the subtype fraction between four pairs of neuronal subtypesinthe HC and
EC (linear fit with 95% confidence intervals). ¢, Schematic of the HC and EC,
highlighting the locations of vulnerable excitatory subtypes and co-depleted
connections. d, Genes associated with excitatory neuron subtype vulnerability
acrossallbrainregions. Linear regression between normalized sample + subtype-
level gene expression and log,[OR] for late-AD, with FDR-corrected Pvalues.

e, Genes associated with excitatory and inhibitory subtype vulnerability (FDR-
corrected Pvalues, only genes significantly and positively associated with
excitatory subtype vulnerability). f, Schematic of Reelin signalling pathway
genesthatare differentially expressed in vulnerable inhibitory subtypes (colour
indicatesthe log,-transformed fold change in expression between vulnerable
and non-vulnerable subtypes). The diagram was created using BioRender.

DEGs computed jointly over all regions for multiple AD variables, and
were further corroborated by comparisons with variousindependent
studies™251947°53 (Sypplementary Fig. 39).

Excitatory DEGs were strongly enriched for electron-transport func-
tional terms across regions and showed weak region-specific enrich-
ments for protein-folding-, ubiquitination- and synapse-associated
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g, Insitu hybridization (RNAscope) validation of depletion of RELN* excitatory
neuronsinthe ECof individuals with AD relative to individuals without AD.
Representative images (left) include Hoechst (blue), vGlut transcripts
(greenpuncta) and RELNtranscripts (magenta puncta). Scale bars, 20 um.
Quantification (right) was performed using unpaired two-tailed Student’s t-tests
(P=0.0242).Dataaremean +s.e.m.n=5(non-AD) and n=4 (AD) individuals.

h,i, Immunohistochemistry analysis of Reelin, NeuN and amyloid-p (h) or
phosphorylated tau (i) in12-month-old App-K/ mice (h) or 9-month-old
Tau(P301S) transgenic mice (i), showing depletion of Reelin-positive neurons
inthe ECs of theKland transgenic mice compared with those of the wild-type
controls. Representative images (left) show Hoechst (blue); amyloid- (h; D54D2)
or phosphorylated-tau (i) (green); NeuN (yellow); and Reelin (red). Scale bars,
100 pm (handi). Quantification (right) was performed using unpaired two-tailed
Student’s t-tests; P=0.0181 (App-KI, h; n =7 (App-KI) and n = 6 (wild type) mice)
and P=0.0005 (Tau(P301S), i; n = 6 mice (Tau(P301S)) and n = 5 (wild type) mice).
Dataare mean +s.e.m. ParaS, parasubiculum; PrS, presubiculum.

terms (Extended Data Fig. 8c). Inhibitory DEGs were also broadly
enriched for protein-folding- and synapse-associated terms and
for oxidative phosphorylation uniquely in the thalamus (Extended
Data Fig. 8c). While microglia DEGs were broadly enriched for
clathrin-coated endocytosis (up) and viral response (down), they also
had diverse region-specific enrichments, including upregulation of



major histocompatibility complex type Il (MHC-II) binding in the ECand
HC, RNA processing in thalamus and glycolysis in the PFC and EC; and
HC-driven downregulation of phagocytosis, phospholipase signalling
and protein kinase activity (Extended Data Fig. 8c).

The majority of region-specific DEGs was either broadly shared (on
average, 11% of genes were differentially expressed in 3+ cell types in
aregion) or were in cell-type-specific programs (40% of DEGs were
in 3+ regions for a cell type) (Extended Data Fig. 8d,e). Such genes
included SLC38A2 and EIF4G2 (broadly shared across regions) and
PRDXS, HLA-DRA or CD44, upregulated DEGs in excitatory neurons,
microgliaand astrocytes, respectively (Extended DataFig. 8f and Sup-
plementary Fig. 40). Broadly shared genes across cell types showed
region-specificenrichment, including for DNA damage (EC), amyloid-3
binding and iron transport (HC) and glycolysis (thalamus) in upregu-
lated genes as well as for phospholipid biosynthesis and autophagy
in downregulated genes (Extended Data Fig. 8e). Gene sets based
on DEGs for global AD pathology burden in the PFC across 427 indi-
viduals changed consistently in each region and glial cell type across
global pathology, indicating that a significant component of the glial
AD response is consistent across regions” (Extended Data Figs. 8b-e
and 9a,b). The remaining regional DEGs (on average, 48% of DEGs)
highlighted region- and cell-type-specific changes. In microglia, these
included PPARG and MSR1, upregulated inthe HC, each associated with
microglia polarization, as well as upregulation of lipoprotein modifier
APOCI and downregulation of transcription factor FOXP2in the EC
(Extended Data Fig. 8f and Supplementary Fig. 40).

We next examined which celltypes and regions were most enriched
for genes identified in genome-wide association studies (GWASs) of
AD by computing GWAS scores for each cell using single-cell disease-
relevance score (scDRS)***. Microglia and immune cells showed
consistently high scores across regions, with the top scores for the
microglia TPTI* subtype and macrophagesinthe HC, thalamus and AG
(Extended Data Fig. 9c). We examined whether GWAS genes showed
region-specific differences in expression that might be linked to
the region specificity of AD progression. We identified eight GWAS
genes with region-specific expression in microglia, including PLCG2
(EC), APOE and SORL1 (thalamus), and MS4A4A (midtemporal cortex)
(Extended Data Fig. 9c-f).

Todetermine whether GWAS-identified genes have regional associa-
tions with Alzheimer’s pathology, we intersected DEGs for regional
pathology measurements with 149 identified familial AD and GWAS
locus genes***8 (Extended Data Figs. 10 and 11a). We found that 74
genes (49%) were differentially expressed for at least one cell type,
and multiple genes showed region-specific expression, including
the lipid transporter ABCA7 (enriched in thalamus), the zinc-finger
protein ZNF655 (EC) and the complement receptor CR1 (neocortex)*
(Extended Data Fig.10). GWAS and familial AD genes were maximally
expressed (75 genes) and differentially expressed (30 genes) in micro-
glia, and 25 genes were differentially expressed in at least three cell
types, including upregulated CLU, PLCG2 and SORTI, and downregu-
lated DENND6A (Extended Data Fig. 10). Among all of the cell types,
astrocytes and microglia showed the largest differential changes for
these genesinregions with high neuritic plaque density, for example,
for APOE, HLA-DRA, PILRA and SORT1, and showed the most response
todiffuse plaque. Neurons and oligodendrocyte-lineage cells showed
stronger differences for these genes, including for PLCG2, CLUand MAF,
inregions with high NFT density (Extended Data Fig. 10).

Pathology-specific expression changes

To determine whether different pathologiesinduce distinct transcrip-
tional responses, we computed DEGs for region-specific measurements
of NFT and neuritic amyloid-f3 plaque burden (measuredin eachregion
except thalamus) (Fig. 4a, Extended DataFig. 11a,b and Supplementary
Fig. 41). DEGs for AD pathology showed a high overlap with DEGs for

pathologic diagnosis (NFT: 45% and plaque: 53% on average) (Fig. 4a).
Agreement between NFT and plaque DEGs was highest in the EC and
HC for all cell types (average adjusted R? of 67% in both) and lowest in
the PFC (43%) and AG (21%), consistent with late-AD NFT appearance
inthe neocortex (Fig. 4b).

We next identified genes with higher differential effects in either
NFTs or neuritic plaques (Fig. 4c, Extended Data Fig. 11c-fand Supple-
mentary Table10). Consistently, NFT-associated genes (374 genes, dif-
ferentially expressedin 2+ cell types) included PLCG2, CLUand CTNNA2
(inoligodendrocytes and OPCs) and mitochondrial subunits, and were
enriched for ER protein processing, electron transport and cadherin
binding (Fig. 4d,e). Neuritic-plaque-associated genes (190 genes)
included the energy-homeostasis-regulating genes /RS2, PDK4 and
HIF3A, and genes enriched forimmune response, chromatin regulation
and lipid droplets. Notably, in excitatory neurons, plaque-associated
and upregulated DEGs were strongly enriched for aerobic transport
chain components (including NDUFA4 and COX6BI) (Fig. 4f,g). Onthe
other hand, NFT-associated and downregulated DEGs were enriched for
TCAcyclegenes, whereas upregulated DEGs were enriched for unfolded
protein response and lysosome-linked genes. Finally, astrocytes con-
tained more plaque-associated DEGs compared with other cell types,
and their pathology-associated DEGs were enriched in our expres-
sionmodules, including in metallostasis (M28) for plaque-associated
DEGs and oxidative phosphorylation (M27) and chaperones (M8) for
NFT-associated DEGs (Fig. 4c,h-j). Interestingly, a reactive astrocyte
module (M3) was enriched in upregulated genes for plaques but in
downregulated genes for NFTs (Fig. 4j).

Giventhe enrichment of NFT-associated or plaque-associated DEGs
inexpression modules, we next examined whether gene modules were
enriched for AD DEGs (for AD pathology or for AD diagnosis) (Fig. 4k,
Extended DataFig.11g and Supplementary Fig. 42). The same modules
enriched for pathology-associated astrocyte DEGs were also enriched
for the full sets of DEGs, including metallostasis (M28) with neuritic
plaque DEGs and oxidative phosphorylation (M27) with NFT DEGs
(Fig.4k).Modulesincluding ECM, adhesion and neurogenesis-related
genes were much lower in AD (M1and M11), while the modules for spe-
cificastrocyte subtypes (M7, DCLKI"; and M24, DPP10") were enriched
for upregulated DEGs (Fig. 4k).

Weindependently identified modules for heat-shock chaperones,
glycolysis and oxidative phosphorylationin multiple cell types, which
were correlated across cell types and were enriched for upregulated
DEGs (Fig. 4k, Extended Data Figs. 6a,b and 11g and Supplementary
Fig. 42a,b). The glycolysis modules were enriched among diffuse
plaque DEGs in microglia and astrocytes and shared a set of genes
that included canonical glycolysis genes (PDK1/3/4, PFKL/P, PKM
and PGK1), anaerobic glycolysis enzymes (TP/1 and LDHA) and
stress-induced genes (EGLNI1, DDIT4, VEGFA and BNIP3L) (Fig. 4k-m
and Extended Data Fig. 6a,b). All glial types upregulated core glyco-
lysis driver GAPDH and mitophagy-regulating BNIP3L in response to
NFTburdenandin individuals with cognitive impairment® (Fig. 4m).
In regions with high diffuse plaque, astrocytes upregulated glyco-
lysis enzymes converting glucose-6-phosphate to pyruvate, while
downregulating MPC1, the mitochondrial pyruvate transporter®®
(Fig. 4n). In parallel, astrocytes uniquely upregulated DDIT4, PFKP
and ADCYS, along with genes that suppress fatty acid metabolism
(ANGPTL4) and promote lipid droplet storage of fatty acids (HILPDA),
while microglia upregulated multiple glycogen-related genes (GBEI,
UGP2and PYGL)*® (Fig. 4m).

Tovalidate differential expression of ADCY8 and PFKP, we performed
in situ hybridization (RNAscope) in AG tissue samples from patients
with AD and control individuals without AD and found a significant
increase in transcripts of both genes in AQP4" astrocytes (Fig. 40,p).
Finally, we noticed that the glycolysis pathway genes were maximally
expressed at different pointsin global AD progression for each region
(pathology diagnosis by ABC score)?**°. The pathway peaked very early
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Fig.4|Gene expression modules annotate and separate AD changes across
pathology. a, The percentage of AD DEGs (pathologic diagnosis) overlapping
with DEGs for neuritic plaques (neu. plaq.) and NFTs in each major cell type and
region.b, Concordance of effect-sizes between neuritic plaque and NFT DEGs.
Adjusted R? of log-transformed fold changes between neuritic plaque and NFT
DEGs ineach major celltype andregion. ¢, The number of neuritic-plaque- or
NFT-biased DEGs (=3 DEGs for one of plaques or NFTs, and <2 for the other) for
eachmajor celltype or shared across 2+ cell types. d-i, The average effect sizes
for NFTs and neuritic plaques for DEGs with biased differential effect sizes
(d,f,h) and their respective functional enrichments (e,g,i), for DEGs shared
across multiple celltypes (d,e), in excitatory neurons (f,g) or in astrocytes (h,i).
Jj,Enrichments (hypergeometric test) of pathology-biased DEGsin astrocyte
modules. k, Enrichments (enr.) of AD DEGs in glial gene expression modules
(*P,4; < 0.05, signed log,[fold change], only significant modules are shown).

1, Pearson correlation of module scoresin eachregion with region-level

inthe EC(ABCscore of 1, low levels of AD pathology), laterinthe HC and
midtemporal cortex (intermediate levels), and very latein the PFC (high
levels) (Supplementary Fig. 42c), suggesting that the glial metabolic
response to AD may not be coordinated globally.
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pathology measures for glycolysis and oxidative phosphorylation modulesin
astrocytes, microgliaand OPCs (P<0.1).m, Core and selected diffuse plaque
(diff. plaq.) DEGsin glial glycolysis-associated modules. n, Schematic of the
glycolysis pathway, annotated by astrocyte diffuse plaque DEGs. Significant
DEGs for diffuse plaques across all regions are indicated by asterisks.
o,p,RNAscope validation of astrocyte energy metabolism DEGs in the AG of
individuals with AD relative to control individuals without AD (pathologic
diagnosis of AD). Representative images (left) show AQP4 transcripts (blue
puncta) and ADCY8 (o) or PFKP (p) transcripts (red puncta). Scale bars, 20 um
(o and p). Quantification (right) was performed using unpaired two-tailed
Student’s t-tests (ADCY8:n=117 (non-AD) and n =76 (AD) cells; PFKP:n=43
(non-AD) and n=40 (AD) cells). The dots represent individual cells, pooled
from eight samples (four individuals; each had one PFC and one thalamus
sample). Activ., activation; DAM, disease associated microglia; ox. phos.,
oxidative phosphorylation; resp., response.

Astrocytes and cognitive resilience

Inaddition to understanding cellular alterations associated with spe-
cific pathological measuresin AD, we investigated what transcriptional
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Fig.5|Molecular correlates of CR to AD pathology. a, The concept of CRand
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PFC (427 individuals, DEGs were computed using muscat). i, The association
between the expression of CR genes in astrocytes acrosssix brainregions and
CRtoglobal AD pathology (48 individuals; DEGs were computed using MAST).

changes are associated with cognitive resilience (CR) in AD, cases in
which individuals with AD brain pathology display much less cogni-
tive impairment than expected®** . To identify potential molecular
mediators that confer CR to AD pathology, we defined CR either cat-
egorically as the absence of cognitive impairment despite a pathologic
diagnosis of AD (clinical diagnosis condition), or continuously, as the
difference between observed cognition and the cognition expected
on the basis of pathology level (Fig. 5a). We computed both scores
for CR based on global cognitive function and for cognitive decline
resilience (CDR) based on the rate of change of global cognitive func-
tion over time, and used four different measures of AD pathology:
global AD pathology, neuritic plaque burden, NFT burden and tangle
density (Fig. 5a).

We calculated DEGs for both CR and CDR in each major cell type in
the PFC (snRNA-seq from 427 ROSMAP study participants)?. Astro-
cytes were the only cell type with a consistently high number of genes
associated with CR across all of the measures tested (Fig. 5b). Toiden-
tify specific molecular pathways within astrocytes that may contrib-
ute to CR, we focused on genes that are consistently associated with
multiple measures of CR in astrocytes (termed CR-associated genes).
Several CR-associated genes, including GPX3, HMGN2, NQO1 and ODC1
(encodingarate-limiting enzyme of polyamine biosynthesis), possess
or promote antioxidant activities®®¢ (Fig. 5c-f and Supplementary
Fig.43a-d). The expression of HMGN2, NQO1, 0DCI and GPX3in astro-
cyteswas also positively associated with cognitive function (Fig. 5g and
SupplementaryFig.43e), and these genes exhibited the highest expres-
sioninastrocytesisolated from those individuals with the least cogni-
tive decline over time (Fig. Sh and Supplementary Fig. 43f). Analysis
of bulk RNA-seq data from the ROSMAP cohorts (n = 638) confirmed a
significant positive association between the expression level of HMGN2,

— ]

8 3 - a iy adlt e
O@GPCPD1 @AQP4
°
Cl e (] Cl o
4‘4"** ate %
cr{ Yo CR o H&
0 20 40 60
Average transcripts per AQP4+ cell

O©PNPLA6 ®@AQP4 ©CHDH @AQP4

hﬂ

Average transcripts per AQP4+ cell

0 0510152025
Average transcripts per AQP4* cell

m Polyamine

Choline metabolism biosynthesis
1-Acyl-sn-glycerol 3-phosphocholine  Choline Ornithine
g % vi ? ¢
a o obc1
A %’7’"‘ R >\#“-a Methionine —> SAM Putrescine
GPcPD1 ¥ |CHDH =
Glycerophosphocholine Betaine aldehyde —» Betaine deSAM —\_S;iermidine
1 Homocysteine *
Hon Ay I
o v = ) Spermine

Positive association with CR measures
[ Negative association with CR measures

© Hydrogen @ Oxygen @ Nitrogen
@ Carbon  © Phosphorus

j-1, RNAscope validation of the differentially expressed astrocyte CR

genes PNPLAG6 (j), GPCPDI (k) and CHDH (1) in the PFC of individuals with
cognitiveimpairment (CI) relative to cognitively resilient (CR) individuals.
Representative images (top) show AQP4 transcripts (red puncta) and CR gene
transcripts (blue puncta). Scale bars, 20 um (j-1). Quantification (bottom)
was performed using unpaired two-tailed Student’s t-tests; P= 0.0249 (j),
P=0.0052(k), P=0.0375(I). Dataaremean +s.e.m.PNPLA6:n=3(Cl)andn=4
(CR) individuals; GPCPD1 and CHDH: n =4 individuals per group. m, Schematic
of choline metabolism and polyamine biosynthesis; significant astrocyte CR
genes are highlighted.

0DCI and GPX3 and multiple measures of cognitive function and CR
to AD pathology (Supplementary Fig. 44a-d).

Furthermore, we noticed that several CR-associated genes within
astrocytes encode enzymes that catalyse metabolic reactions that
are involved in choline formation and breakdown. The expression of
GPCPD1, which encodes glycerophosphocholine phosphodiester-
asel, an enzyme that is critical for cleaving glycerophosphocholine
(GPC) to produce choline, was positively associated with measures
of CRin astrocytes (Fig. 5c—f and Supplementary Fig. 43a-d). Con-
versely, PNPLA6, which encodes a phospholipase that catalyses the
hydrolysis of intracellular phosphatidylcholine, a major membrane
lipid, generating GPC, and CHDH, which encodes choline dehydroge-
nase, an enzyme that catalyses the conversion of choline to betaine
aldehyde, were both negatively associated with multiple measures of
CRinastrocytes (Fig. 5c-fand Supplementary Fig. 43a-d). Many of the
CR-associated genesidentified in PFC astrocytes were also associated
with CRin astrocytes from other regions of the human brain (Fig. 5i
and Supplementary Fig. 45), corroborating a link between astrocytes
and CRbeyond the PFC.

To validate the choline pathway genes PNPLA6, GPCPD1 and CHDH,
we selected PFC samples from individuals with high amyloid and tau
pathology and compared transcript levels between individuals with
intact cognition (that is, cognitively resilient) to those with cognitive
impairment, and performed in situ hybridization (RNAscope) analysis
of these genes with AQP4 as a marker for astrocytes. We found a sig-
nificant decrease in PNPLA6 and CHDH transcripts and a significant
increase in GPCPDI transcripts in cognitively resilient individuals, in
agreement with the differential expression results (Fig. 5j-1). Nota-
bly, choline oxidation to betaine generates a labile methyl group that
canbe used for homocysteine remethylation, resulting in methionine
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formation, whichis subsequently transformed into the universal methyl
donor S-adenosylmethionine®. S-adenosylmethionineisinvolved in the
biosynthesis of spermidine, linking choline metabolism and polyamine
biosynthesis in astrocytes in CR to AD pathology (Fig. 5m).

Discussion

Here we present a transcriptomic atlas of the aged human brain—
spanning six brain regions from 48 individuals with and without a
diagnosis of AD—that we used to annotate regional cellular diversity,
identify gene expression programs and differences in AD across cell
types, and pinpoint region-specific cell populations that are vulner-
able to AD. We provide an interactive website for exploring the atlas
and these annotations, markers, functional modules and differences
in AD at both the single-cell and pseudo-bulk levels (http://compbio.
mit.edu/ad_multiregion).

By annotating neuronal and glial subtypes by brain region, we
found significant compositional differences between regions, includ-
ing a subtype of thalamic GABAergic neurons (MEIS2'FOXP2") that
is molecularly distinct from the canonical subclasses of inhibitory
neurons in the neocortex. We used region-specific measurements
of AD pathology to identify changes in gene expression associated
with neurofibrillary tau tangle or amyloid-f plaque burden, including
plaque-associated upregulation of metallostasis in astrocytes and
of the electron-transport chain in excitatory neurons. We found that
AD-risk genes were highly perturbed in AD—in particular for microglia,
consistent with their enrichment for GWAS signal®®—but few risk genes
showed region-specific expression. To further examine the cellular and
regional heterogeneity of the human brain, we developed a scalable
method, scdemon, whichuses sample decorrelation to annotate both
ubiquitous and rare gene expression programs in each major cell type,
and used annotated modules to identify functional programs associ-
ated with specific pathological variables, including a glycolysis- and
energy-metabolism-linked programin glia**¢° associated with diffuse
plaque burden.

Weidentified five excitatory neuron subtypes that were reduced in
patients with AD (vulnerable subtypes) in the early-affected EC and
HC"8 including EC layer 11 (L2), RORB-positive L5 (AGBLI'GPCS")" and
hippocampal CAlsubfield neurons®* 2, Notably, vulnerable excitatory
neurons shared expression of genes involved in Reelin signalling and
heparan sulfate proteoglycan biosynthesis, both of which were also
predictive of inhibitory neuron vulnerability to AD. Recent case stud-
ies haveidentified variantsin RELN and APOE as potentially mediating
CR to autosomal-dominant AD. Notably, the RELN variant enhanced
its binding to glycosaminoglycans (GAGs) and NRP1, and the APOE
variant decreased binding to GAGs, potentially affecting their ability
to compete for receptor binding®®’°. Thus, our findings suggest a con-
vergence of factors associated with cellular vulnerability in sporadic
AD, and resilience to autosomal-dominant AD.

Finally, we analysed the transcriptomic correlates of cognition and
pathology in AD, and identified a set of astrocyte genes linked to CR
to AD pathology. Notably, these genes converged on the pathways of
choline metabolism and polyamine biosynthesis. This finding aligns
with studies showing benefits of dietary choline intake and supple-
mentation on cognitive performance in human individuals and in
animal models” 78, Similarly, dietary supplementation with the poly-
amine spermidine prolongs life spanand health spaninseveral animal
models®®, and spermidine has also been shown to enhance memory
performance and counteract age-related cognitive decline’ 8., Our
findings support choline metabolism and polyamine synthesis as
attractive targets for promoting CRin AD.

Our study has several limitations: isotropic fractionation and read
depth cut-offs may bias cell recovery based on their nuclear content;
nuclear RNA may not fully capture microglial states® or localized tran-
scriptomic changes; and pathology burden is based on per-sample
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averages instead of on the spatial context of each cell. Additional
individuals and data modalities will strengthen future analyses of
region-specific alterations in AD, and spatial data may help to further
separate pathology-associated changes.
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Methods

Datareporting

No statistical methods were used to predetermine sample size. The
experiments were not randomized and the investigators were not
blinded to allocation during experiments and outcome assessment.

snRNA-seq

Sample selection from ROSMAP. We selected 48 individuals from
ROSMAP, both ongoing longitudinal clinical-pathological cohort stud-
ies of ageing and dementia, in which all of the participants are brain
donors. The studies include clinical data collected annually, detailed
post-mortem pathological evaluations, and extensive genetic, epi-
genomic, transcriptomic, proteomic and metabolomic bulk-tissue
profiling®. For the purpose of this study, individuals were selected
based on the modified NIA-Reagan diagnosis of AD and the Braak stage
score (Braak stages 0,1and 2, n = 20; Braak stages 3and 4, n = 14; Braak
stages 5and 6, n =14), with 26 individuals having a positive pathologic
diagnosis of AD and 22 individuals having a negative pathologic diag-
nosis of AD®, Details of the clinical and pathological data collection
methods have been previously reported>>*?%8¢, Individuals were bal-
anced between sexes (male:female ratios 13:13 in AD, 11:11 in NoAD),
matched for age (median, 86.6 years (AD) and 86.0 years (no AD)) and
post-morteminterval (median, 5.9 h (AD) and 6.3 h (no AD)). Informed
consentwas obtained from each participant, and the Religious Orders
Study and Rush Memory and Aging Project were each approved by an
Institutional Review Board (IRB) of Rush University Medical Center.
The participants also signed an Anatomic Gift Act, and a repository
consent to allow their data to be repurposed.

Dissection criteria. All dissections were doneon abed of dryice using
either afine-toothed razor saw (for cortical regions) or ajewellers saw
with diamond wire (for subcortical regions). Region-specific descrip-
tions are as follows. (1) AG: full thickness cortex from the AG (Brodmann
area: BA39/40); take from the first or second slab posterior to the end
of the HC. Minimize white matter. (2) MT: full thickness cortex from the
middle temporal gyrus (BA 22); take as close to the level of the anterior
commissure as possible. Minimize white matter. (3) PFC: full thickness
cortex from the frontal pole (BA 10); take from the lateral side of the
first or second slab. Minimize white matter. (4) EC: full thickness cortex
fromthe EC (BA 28); take at the level of the amygdala. Avoid amygdala.
Minimize white matter. (5) Posterior HC: take from the last slab contain-
ing HC.If the last slab hasless than 5 mm of HC, take from the next slab
anterior. Collectafull cross section. (6) TH: take from the first slab with
thalamus. Include the most medial aspect.

Isolation of nuclei from frozen post-mortem brain tissue. The pro-
tocol for theisolation of nuclei from frozen post-mortem brain tissue
was adapted from a previous study™. All of the procedures were per-
formed oniceorat4 °C.Inbrief, post-mortem brain tissue was homog-
enized in 700 pl homogenization buffer (320 mM sucrose, 5 mM CacCl,,
3 mM Mg(CH,C00),,10 mM TrisHCIpH 7.8,0.1 MM EDTA pH 8.0, 0.1%
IGEPAL CA-630,1 mM B-mercaptoethanol and 0.4 U pl™ recombinant
RNase inhibitor (Clontech)) using a Wheaton Dounce tissue grinder
(15strokes withtheloose pestle). The homogenized tissue was then fil-
teredthrougha40 pmcell strainer, mixed with an equal volume of work-
ing solution (50% OptiPrep density gradient medium (Sigma-Aldrich),
5mM CaCl,, 3 mM Mg(CH,C00),,10 mM Tris HCI pH 7.8,0.1 mM EDTA
pH 8.0 and 1 mM f-mercaptoethanol) and loaded ontop of an OptiPrep
density gradient (750 pl 30% OptiPrep solution (30% OptiPrep density
gradient medium, 134 mM sucrose, 5 mM CaCl,, 3 mM Mg(CH,C0O),,
10 mM TrisHCIpH 7.8,0.1 mM EDTA pH 8.0,1 mM 3-mercaptoethanol,
0.04%IGEPAL CA-630 and 0.17 U pl ' recombinant RNase inhibitor)) on
top of 300 pl 40% OptiPrep solution (40% OptiPrep density gradient
medium, 96 mM sucrose, 5 mM CacCl,, 3 mM Mg(CH,C0O0),, 10 mM

TrisHCIpH 7.8,0.1 mM EDTA pH 8.0,1 mM -mercaptoethanol, 0.03%
IGEPAL CA-630 and 0.12 U pl™ recombinant RNase inhibitor). The
nuclei were separated by centrifugation (5 min,10,000g, 4 °C). A total
of 100 pl of nuclei was collected from the 30%/40% interphase and
washed with 1 ml of PBS containing 0.04% BSA. The nuclei were centri-
fuged at 300g for 3 min (4 °C) and washed with 1 ml of PBS containing
0.04% BSA. The nuclei were then centrifuged at 300g for 3 min (4 °C)
andresuspendedin100 plPBS containing 0.04% BSA. The nuclei were
counted and diluted to a concentration of 1,000 nuclei per plin PBS
containing 0.04% BSA.

Droplet-based snRNA-seq. For droplet-based snRNA-seq, librar-
ies were prepared using the Chromium Single Cell 3’ Reagent Kits v3
according tothe manufacturer’s protocol (10x Genomics). The gener-
ated snRNA-seq libraries were sequenced using NextSeq 500/550 High
Output v2kits (150 cycles) or NovaSeq 6000 S2 reagent kits.

snRNA-seq processing, QC, and annotation

snRNA-seq data preprocessing. Gene counts were obtained by align-
ing reads to the GRCh38 genome using Cell Ranger software (v.3.0.2)
(10x Genomics)®. To account for unspliced nuclear transcripts, reads
mappingto pre-mRNA were counted. After quantification of pre-mRNA
using the Cell Ranger count pipeline, the Cell Ranger aggr pipeline
was used to aggregate all libraries (without equalizing the read depth
between groups) to generate agene-count matrix. The Cell Ranger v.3.0
default parameters were used to call cell barcodes. We used SCANPY®®
to process and cluster the expression profiles and infer cell identities.
Weretained only protein-coding genes and filtered out cells with over
20% mitochondrial or 5% ribosomal RNA, leaving 1.47 million cells over
48 individuals and 283 samples across all regions. We further filtered
the dataset to the top 5,000 most variable genes and used them to
calculate the low dimensional embedding of the cells (UMAP) (default
parameters, using 50 principal components and 15 nearest neighbours)
and clusters using the Leiden clustering algorithm at a high resolution
(15), giving 337 preliminary clusters®. We separately called doublets
using DoubletFinder and flagged and removed clusters with strong
doublet profiles and clusters showing strongindividual-specificbatch
effects, leaving a final dataset of 1.35 million cells®,

Cell type annotations. For the UMAP visualization of individual major
cell type classes (excitatory neurons, inhibitory neurons, astrocytes,
oligodendrocytes, OPCs, immune cells), the SCTransform-based
integration workflow of Seurat was used to align data fromindividual
samples, using the default settings®°°. We selected the set of relevant
principal components on the basis of EIbow plots. We annotated cell
types using previously published marker genes and single-cell RNA-seq
data®?*°1"%3 To annotate cell types on the basis of previously pub-
lished single-cell RNA-sequencing data (Allen Institute’s cell types
database; https://portal.brain-map.org/atlases-and-data/rnaseq/
human-multiple-cortical-areas-smart-seq), we used three separate
approaches. First, Spearman rank correlation coefficients between
the average expression profiles of neuronal subpopulations previ-
ously defined by the Allen Brain Institute® and the neuronal subtypes
identified in this study were computed using the cor functioninR.
Second, to project annotations of neuronal subpopulations previously
defined by the Allen Brain Institute onto the neuronal cells analysed
inthis study, we followed the integration and label transfer workflow
of Seurat®. Third, we determined cell type marker genes based on
datapublished by the Allen Brain Institute® using the FindAlIMarkers
function from Seurat (Wilcoxon rank-sum test with Bonferroni cor-
rection for multiple testing; P,q < 0.05) and computed module scores
for each cell type marker gene set across all neuronal cells analysed in
this study using the AddModuleScore function of Seurat. To further
annotate cell types, we determined marker genes using the FindAll-
Markers function from Seurat (Wilcoxon rank-sum test with Bonferroni
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correction for multiple testing; P,4; < 0.05). We tested only genes that
were detected in aminimum of 25% of the cells within the cell type (min.
pct =0.25) and that showed, on average, at least a 0.25-fold difference
(log-scale) between the cells of the cell type and all remaining cells
(logfc.threshold = 0.25). Marker genes of the high-resolution cell types
or states were determined separately for each major cell type class. We
additionally compared the EC excitatory neuron subtypesto celltype
annotations previously reported previously®*, which were computed
using ACTIONet®, and compared microglial markers to previously
reported subtypes®®?’.

Cell cycle scores and global properties of gene expression. G2/M
and S phase cell cycle scores were determined using the function Cell-
CycleScoring in Seurat. Histograms showing the distribution of the
G2/M- and the S phase module scores in each major cell class were
generated using Prism 9 software. The statistical analyses compar-
ing the number of genes detected per cell and the number of unique
transcripts (UMIs) detected per cell between cell types was performed
using Prism 9 software.

Integration of external data sources. Single-cell transcriptomic
data from the human dLGN®® were obtained from the Allen Brain
Institute (https://portal.brain-map.org/atlases-and-data/rnaseq/
comparative-lgn). Single-cell transcriptomic data from multiple cor-
tical areas and the hippocampal formation of the mouse brain* were
obtained from the Allen Brain Institute (https://portal.brain-map.org/
atlases-and-data/rnaseq/mouse-whole-cortex-and-hippocampus-10x).
Single-cell transcriptomic data across nine regions in the adult mouse
brain* were obtained from the McCarroll and Macosko Labs (http://
dropviz.org/). Single-cell transcriptomic data from the mouse nerv-
ous system*® were obtained from the Linnarsson laboratory (http://
mousebrain.org/adolescent/downloads.html). The external datasets
and the human multiregion data presented in this study were integrated
using the reciprocal PCA (RPCA) pipeline with the default parameters
inSeurat (https://satijalab.org/seurat/articles/integration_rpca.html).
Theintegration of single-cell data was performed separately for astro-
cytes, excitatory neurons and inhibitory neurons. For the integration of
GABAergic neurons, the single-cell transcriptomic data from multiple
cortical areas and the hippocampal formation of the mouse brain* were
downsampled to 50,000 GABAergic neurons. For the integration of
excitatory neurons, the human multiregion dataset was downsampled
to 5,000 neurons per high-resolution cell type. The mouse cortical
data** were downsampled to 50,000 excitatory neurons. The frontal
cortex, posterior cortex, HC and thalamus data of the DropViz dataset
were combined and downsampled to 50,000 neurons. Downsampling
of the data was performed using the Seurat function subset with the
default parameters. The comparison of microarray datafrom different
humanbrain regions was performed using the Differential Search tool
of the Allen Brain Atlas data portal (https://human.brain-map.org/
microarray/search). The thalamus was selected as the target structure
and compared to the cerebral cortex asthe contrast structure. The dif-
ferential searchresultsincluding the fold change values and Pvalues of
the top 2,000 genes were downloaded from the data portal.

Gene expression and regulon modules

Gene expression modules using ZCA (scdemon framework). We
would like to find gene expression modules by calculating gene-gene
correlationsinsingle-cell dataand using these to detect communities
of similarly expressed genes. However, in single-cell data, which often
containanunbalanced composition of cell types, modules computed
using this approach will be dominated by the most common cell type
markers and pathways. Moreover, correlation values will often be
inflated for pairs of sparsely expressed genes. We developed amethod
which accounts for these pitfalls to call multiresolution gene expression
programs from single-cell data using an SVD-based approximation of

zero-phase component analysis (ZCA) and gene sparsity-dependent
thresholding®*°°,

scdemon (single-cell decorrelated module networks) method.
The preprocessing transformations alternately called decorrelation,
whitening, or sphering, transform amatrix X with a matrix Wsuchthat
the covariance of XWis the identity matrix'®. In particular, ZCA is the
transformation which maximizes the similarity of the transformed
data to the original, which is achieved by setting W= C™2, where Cis
the covariance of X.

In single-cell data, given a count matrix X with n cells (rows) and g
genes (columns), we would like to perform ZCA decorrelation on the
samples as a preprocessing step for calling modules. Computing and
storing the n by n sample-wise covariance C,= XX"/g is prohibitively
expensive for modern datasets (with n >1x 10°), even without centring
X.Instead, we can analytically approximate the covariance with the SVD
of X"=U,S,V,"asC,~ (U,S,V,)(US,V.,)N/g=V,S2V, /g and therefore
C, V2=g"?y,5,V,”. The ZCA transformation can then be computed as
Xoea=C, VX =g"V,S, 'V, "X before calculating the covariance of X,, for
downstream analysis. While this approximationis already tractable for
small single-cell datasets, we may not be able to compute the matrix
multiplications or centred SVD for larger datasets. Here, we can use the
SVD of X= USV", which is commonly calculated in single-cell analyses,
to approximate C, "2as g"2US*U" and X,c, = g/2US*U"X. From this, the
non-centred covariance of Xyc, is Cyca = Xzca Xaca/n =g % (USU'X)(US™
UX)/n.By substituting the SVD in for X, this reduces to C,c, =g x VV'/n,
whichisasimple and efficient approximation for very large single-cell
data. As this approximation commonly drops out the largest identity
programinthe dataduetothe decorrelationapproach, we allow com-
puting C,c, =g % VS’V'/n, for any p, to tune the relative involvement of
the larger eigenvalue components of the SVD.

To control forinflated correlation estimates in highly sparse genes,
webinthe estimated correlations (C,¢,) for each pair of genes accord-
ing to their sparsities (fraction of cells expressing the gene, binned
onalog;,scale). We calculate the mean and s.d. for each 2D bin and
smooth the estimates by fitting bivariate splines to the binned statis-
tics, weighted by the log number of examples in the bin. We use the
smoothed estimates to z-score the correlation matrix (C,c,), which we
thenthreshold withasingle z-score cut-offto create an adjacency matrix
for agene-gene graph. Graphs are laid out using the Fruchterman-
Reingold algorithm and we remove connected components with fewer
than four genes'2 We then use the leidenalg package and the Leiden
algorithmwith anRBConfiguration vertex partition to cluster the graph
into gene modules®. To robustly estimate modules for each set of cells
inour analyses, we first performed a grid search for the optimal num-
ber of SVD components for cells of that type. We then computed the
z-scored matrices for each of 10 bootstraps, selecting 90% of batches
for each bootstrap and using only genes expressed in over 5% of cells
in the full dataset for the cell type. We thresholded the average of the
bootstrapped z-score estimates with z=4.5to build agraph. Tobalance
the contributions of modules across the compositional spectrum,
we calculated and thresholded separate graphs for eigenvalue
powersp=0,0.25,0.5,0.75and 1and combined them using multigraph
Leiden clustering to callmodules with leiden resolution = 3. Although
weidentify smaller modules, here we only report modules with at least
10 genes. We also ranthe modules method onthree published datasets,
for which we ran the method with the same parameters on each data-
set (k=100,z=4.5, resolution = 2.5), used genes with >5% sparsity for
the COVID' and brain'® datasets and genes with >10% sparsity for the
Tabula Sapiens dataset'®, and report modules with 10 genes or more.

Module enrichments, network and contour plots. Module enrich-
ments for cell subtypes and brain regions were performed using the
hypergeometric test by calculating whether cells with a module score
abovels.d.fromthe meanscore were significantly enriched inaspecific
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subtype or region. For plotting scores against other modules, aver-
aged modulesscores to either the subtype by sample level (within the
same major cell type) or at the sample level alone (across cell types)
and calculated Pearson correlations and P values using the cor.test
function of R. To create the module-module network across microglial
and immune modules, we calculated module-module score Pearson
correlations using the logged module scores at the aggregated subtype
by sample level, using a one-sided test with P, < 0.01 as a cut-of ',
To generate contour plots of module expression on a UMAP, we first
smoothed cell-level expressionona 500 x 500 grid with a 2D Gaussian
kernel (size =25 x 25 and o0 =1) and then plot contours for smoothed
values (0.1t0 0.8).

Gene expression programs using cNMF. Gene expression pro-
grams underlying both cell type identity and cellular activities were
determined according to the consensus NMF (CNMF) analysis pipeline
established previously using the default parameters®*. The number
of components (K) to use for cNMF was determined on the basis of a
diagnostic plot showing the stability of the solution and the Frobe-
nius reconstruction error as a function of K. To reduce runtime and
working memory requirements, the data were downsampled using
the Seurat function subset with the default parameters. The data were
downsampled to 200 cells per major cell type. For the cNMF analysis
at the level of high-resolution cell types, the analysis was performed
separately on excitatory neurons, inhibitory neurons and astrocytes.
For these analyses, the datawere downsampled to 2,000 cells per astro-
cyte subtypeand1,000 cells per excitatory and inhibitory neuron sub-
type. Statistical significance of the overlap between the top 200 genes
ofagene expression program and cell type marker genes was computed
using Fisher’s exact tests.

SCENIC analysis and computation of regulon module scores. The
generegulatory network analysis was performed using pySCENIC with
the default parameters®. To reduce runtime and working memory
requirements, the datawere downsampled to 2,000 cells per major cell
type. For the SCENIC analysis at the level of high-resolution cell types,
the analysis was performed separately on excitatory neurons, inhibi-
tory neurons and astrocytes and the datawere downsampled to1,000
cells per high-resolution cell type. To identify the top cell-type-specific
regulons, we calculated regulon specificity scores as described by
previously and ranked the regulons based on their regulon specific-
ity score'®, Finally, we calculated the activity of each regulon in each
cell using the AddModuleScore function of Seurat. The calculation of
regulonmodule scores for major cell types was performed onarandom
sample of 50% of the cells (676,537 cells). For the analysis at the level
of high-resolution cell types, the regulon module scores were deter-
mined based onall the cells of amajor cell type class. For the statistical
analysis of differences in the activity of regulons between cell types,
the average regulon module score per individual and major cell type
or high-resolution cell type was computed, respectively. The statistical
analyses comparing the regulon module score activity was performed
using Prism 9 software.

Analysis of GABAergic and glutamatergic module scores. GABAer-
gicand glutamatergic module scores across all neuronal cell types were
determined onthebasis of aset of GABAergic and glutamatergic neuron
marker genes, respectively, using the AddModuleScore function of Seu-
rat. The sets of GABAergic and glutamatergic neuron marker genes were
determined based on the human multiple cortical areas SMART-seq
dataset from the Allen Brain Institute (https://portal.brain-map.org/
atlases-and-data/rnaseq/human-multiple-cortical-areas-smart-seq).
We identified marker genes using the FindAlIMarkers function from
Seurat (Wilcoxon rank-sum test with Bonferroni correction for mul-
tiple testing; P,4; < 0.05). We tested only genes that were detected in
a minimum of 25% of the cells within the cell type (min.pct = 0.25)

and thatshowed, onaverage, atleast a 0.25-fold difference (log-scale)
between the cells of the cell class of interest and all remaining cells
(logfc.threshold = 0.25). To quantify the intermediate character of
thalamic excitatory and inhibitory neurons, we first computed the
average GABAergic and glutamatergic module score values for each
neuronal cell type and for each individual. We then used the resulting
datatodetermine the first principal component (PC1) scores (the coor-
dinates of the individual observations on the first principal component
axis) using the princomp functioninR. The ridgeline plot showing the
distribution of PC1 score for each neuronal cell type was generated
using the ggplot2 package in R. To determine the association between
the average glutamatergic and the GABAergic module score across
neuronal cell types, we performed a simple linear regression analysis
using Prism 9 software.

Analysis of extratelencephalic projection neuron module scores.
Marker genes significantly upregulated in extratelencephalic projec-
tion neurons (exc. L5 ET) compared with near-projecting excitatory
neuronsinlayers 5 and 6 (exc. L5/6 NP) were determined using the
FindAlIMarkers function from Seurat (Wilcoxon rank-sum test with
Bonferronicorrection for multiple testing; P, < 0.05). We tested only
genes that were detected inaminimum of 25% of the cells within the cell
type (min.pct = 0.25) and that showed, on average, at least a 0.25-fold
difference (log-scale) between exc. LS ET cells and exc. L5/6 NP cells
(logfc.threshold = 0.25). The exc. LS ET module score was computed
based onthe identified marker genes using the AddModuleScore func-
tion of Seurat. To determine the exc. L5ET module scores across excita-
tory and inhibitory neurons, cells were downsampled to 2,000 cells
per high-resolution cell type.

Cell-cell communication analysis

Cell-cell communication events were predicted using the Ligand-
receptor ANalysis frAmework (LIANA)'*”in R. Specifically, the ligand-
receptor analysis was performed using liana_wrap(). The methods
included were CellPhoneDB!°%, NATMI'® and SingleCellSignalR"°,
liana_aggregate() with the argument ‘aggregate_how’ set to ‘magnitude’
was run to find consensus ranks of different methods. Only interac-
tions (ligand-receptor pairs) with a robust rank aggregation (RRA)
score smaller than 0.05 (aggregate_rank < 0.05) were considered in
downstream analyses. The interaction score of ligand-receptor pairs
was calculated by applying —log,, transformation to the RRA score
(aggregate_rank). To determine the number of interactions and the
overlap of interactions between regions, liana_wrap() was run on the
pool of cells isolated from all individuals, with separate analyses con-
ducted for each brain region. To determine cell-cell communication
events thatare brain-region specific, liana_wrap() was run separately for
eachindividual. We then used alinear mixed-effects model to evaluate
the association between the interaction scores of individual ligand-
receptor pairs obtained from LIANA and the respective brain region
serving as the predictor variable. Toaccount for potential confounding
factors andindividual variability, we included age, sex and post-mortem
interval as covariatesin the linear mixed-effects model. These variables
were added as fixed effects to the model. Moreover, we included a
random effect for the individual to capture the participant-specific
variability in the data. Linear mixed-effects models wereimplemented
using the Rsoftware packages Ime4™ and ImerTest". The Imer() func-
tion from the Ime4 package was employed to fit the models. To obtain
Pvalues for the fixed effects in these models, we used the ImerTest pack-
age, which incorporated Satterthwaite’s degrees of freedom approx-
imation. To account for multiple hypothesis testing, the obtained
Pvalues were further adjusted using the Bonferroni method.

Cell type composition
Analysis of cell type composition differences between brain regions.
For comparing the relative abundance of major cell types across brain
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regions, the fraction of cells of a major cell type class was computed
relativetoall the cellsisolated fromaregion. For the statistical analysis
of cell type composition differences between brain regions, we also
computed therelative abundance of major cell type classes separately
for each study participant. To this end, the fraction of cells of a major
celltype class was computed relative to all the cells isolated from abrain
regionof anindividual. At the level of high-resolution cell types or cell
states, two distinct measures of relative abundance were computed.
First, the relative abundance of each subtype of a major cell class was
computed asthe proportion of asubtyperelative to all cells of the cor-
responding major cell classisolated from a brain region. Second, for the
statistical analysis of differences between brain regions, the fraction of
cells of a subtype was computed relative to all the cells isolated from
abrainregion of anindividual. The statistical analyses comparing the
relative abundance of major cell types and subtypes between brain
regions was performed using Prism 9 software.

Analysis of cell type composition alterations in AD. We calculated
compositional differences in individuals with AD versus individuals
without AD (or AD dementia versus no dementia) by modelling the
number of cells of a certain cell type or subtype in a specific sample
(individual by region) relative to the total number of cells using a
quasi-binomial regression model. We modelled AD status by binary
ascertainment variables (cogdx 4-5, NIA-Reagan score1-2, Braak stage
5-6 versus others, as well as any detected presence of NFTs, neuritic
plaque or diffuse plaquesin the region) while adjusting for brainregion
and sex. We used the emmeans package in R to assess the significance
of the regression contrasts and used p.adjust with the fdr method to
adjust Pvalues. We modelled the effects of fraction of cells on cogni-
tive performance in multiple domains with gaussian linear regression
of cognitive performance on last visit versus the log,,-transformed
fraction of cellsin the subtype or major cell type jointly with covariates
for age, sex, APOE-e4 and post-mortem interval, with false-discovery
rate P-value correction (p.adjust in R). We compared the fractional
abundances of pairs of neuronal subtypes between two regions using
Kendall'sonly inindividuals with AD (NIA-Reagan score). Significance
was assessed using beta regression (R library betareg) controlling for
sex, APOE genotype, post-mortem interval and age of death, and we
adjusted Pvalues using p.adjustin R with the fdr method.

Differential gene expression

DEGs in AD. We performed differential expression analyses with three
separate methods: MAST, Nebula and Wilcoxon testing™*'™. For all
methods, we subset the tested genes to only genes present in over
20% of cells. For MAST and Nebula, we calculated and included in the
regression the top 10 components of unwanted variation calculated
using RUV on the pseudo-bulk-level data (individuals by regions). For
these methods, we alsoincluded as covariates the individual’'s sex, age
of death and post-mortem interval, each cell’s counts per gene and
number of captured genes and, where applicable, the high-resolution
cell subtypes and the brain region. For Nebula we used a Poisson
mixed-model onthe counts data withan offset of the log,,-transformed
total counts per cell. For MAST and Wilcoxon, we normalized each cell
to atotal library size 0f 10,000 counts. We ran Wilcoxon tests on both
the celland individual levels. We adjusted Pvalues for multiple testing
inall cases by using the p.adjust functionin Rwith the fdr method. For
our final set of differential genes in each analysis, we took all genes
that were significant (P,4; > 0.05) and concordant in both the MAST
and Nebula results. We also provide the results for Wilcoxon tests,
but did not use these to determine concordant results as they do not
correct for many covariates. We computed differential expression
against five AD ascertainment variables: continuous measurements of
NFT, plag_n, and plaq_d measured in each region except the thalamus
(excluded fromthese analyses) and binary cognitive impairment (cogdx
no dementia=1and 2 versus AD dementia =4 and 5) and NIA-Reagan

score classifications (non-AD = 3 and 4 versus AD = 1and 2). We provide
differential expression results for each of the 14 major cell types (with
T cells, CNS macrophages, and each vascular subtype separately) for all
regionsjointly and for each region separately. We also provide results
for each of the excitatory subtypes either inits most prevalent region
for EC, HC or TH subclasses, or across the neocortex for neocortical
subtypes (Supplementary Table 9). We also computed DEGs for the
interaction between pathologic diagnosis of AD and sex in each major
celltype, both across all regions and in each region separately. For
the glial energy metabolism analyses we recomputed all DEGs in glial
glycolysis-associated modules separately (keeping all genes, with no
cell percentage cut-off). Glycolysis pathway diagramis from the glyco-

lysis and gluconeogenesis pathway from WikiPathways™.

Pathology-biased DEGs. Pathology-biased DEGs were based on neu-
ritic plaque or NFT pathology measurementsin each region and were
computedineach major celltype across all regions andin each region
(except for the TH). Genes were ordered by the residual between NFT
effectsize and predicted NFT effect size fromaregression using plaque
effect size and region. Genes were retained if they were consistently
up (or down) in 3+ regions for either NFT or plaque but in fewer than 2
regions for the other pathology measurement (shared genes are genes
foundin 2+ cell types).

Comparison with published DEGs. We compared our differential
expression results to results from seven different previously pub-
lished studies?"*#5°_ We compared the published DEGs both to:
(1) cross-region DEGs calculated in each major cell type for individual-
level AD status (NIA-Reagan score or clinical diagnosis of AD) and for
quantitative measurements of AD pathology (neuritic plaques, diffuse
plaques and NFTs); and (2) region-specific DEGs calculated in each
major cell type and in endothelial cells, computed relative to patho-
logic diagnosis of AD (NIA-Reagan score, AD, 1-2; non-AD, 3-4). As
some studies reported only the significant genes, we compared the
log-transformed fold change estimates for our DEGs and reported
DEGs by a Pearson correlation test.

DEG module enrichments. To assess the enrichment of upregulated,
downregulated non-differentially expressed genes in each module,
we first assigned each tested DEGs to its closest module by correla-
tionto the module’s average expression profile. We then performed a
hypergeometricenrichment test for the number of genesin a category
(upregulated, downregulated, not differentially expressed) assigned
to the module, against the total number of tested genes assigned to
the module, the total number in the category and the total number
tested and corrected P values using p.adjust (Benjamini-Hochberg).
Enrichments of pathology-biased DEGs in modules were performed
in the same manner.

Neuronal DEG partitions. To partition neuronal DEGs into non-
vulnerable and vulnerable-associated subclasses, we calculated each
genes’ average expressions and differential expression effect sizes at
the subtype level and compared these to the relative depletion of the
subtypes. For each gene that was differentially expressed in late-AD
(stratified by Braak stage, late AD, 5-6 versus non-AD or early-AD, 1-4)
in at least 25% of all neuronal subtypes, we calculated the correlation
of itsaverage subtype expressionin late-AD with each subtype’s com-
positional stability (log,[OR] in late AD) across excitatory subtypes,
separating non-vulnerable-associated genes (correlation > 0.2) from
vulnerable-associated genes (correlation < —0.2). We calculated func-
tional enrichments on neuronal DEG partitions using the top 250 genes
ordered by effect sizein each category. We further separated DEGs with
higher effect sizes in vulnerable subtypes from those with similar effect
sizes across allneuronal subtypes by calculating the correlation of their
differential effect sizes in each subtype with that subtype’s depletion
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(log,[OR]inlate AD). To perform enrichments along the continuum
of genes associated with vulnerability to non-vulnerability, we kept
only genes with biased effect sizes (effect size correlation < -0.2) and
binned them along the axis of expression correlation (window size
0.2 for at 0.05 intervals) and performed functional enrichments for
all binsjointly.

DEG and module pathway enrichments. We performed DEG enrich-
ments for each differential expression run using the gprofiler2 package
in R, with multi-query for upregulated and downregulated genes, as
unordered queries, a P-value cutoff of 0.05, and using GO, REAC, WP,
KEGG and CORUM as annotation sources, and retained enriched terms
with fewer than 500 genes. Module and module cluster enrichments
were performed in the same manner, using the core genes identified
foreach module and for genes found in more than two modules within
amodule cluster.

Markers of neuronal vulnerability. We identified markers associated
with excitatory neuron subtype vulnerability by performing linear
regression to predict the log,[OR] of each subtype’s depletion in late
AD based on its expression at the subtype-aggregate level (log[X +1],
averaged normalized expressionin each subtype by region by individual
batch), controlling for age, sex and post-morteminterval and adjusting
Pvalues with p.adjust (fdr).

Identification of genes associated with cellular vulnerability in
inhibitory neurons. Processed snRNA-seq data (DLPFC, experiment 2)
were obtained from Synapse (syn51123521) and integrated with our own
PFCsnRNA-seq dataset comprising 427 individuals. To identify vulner-
ableinhibitory neuronsubtypes, we examined the association between
the relative abundance of cell types and the measure of NFT density
(variable tangles). We used a quasi-binomial regression model to model
the number of cells belonging to a specific cell type in a given sample
(individual study participant), relative to the total number of cells in
that sample. We fitted the regression model using the glm functionin
R,includingage, sex and post-mortem interval as covariates. P values
were corrected for multiple testing using the Benjamini-Hochberg
procedure as implemented in the R function p.adjust. The results are
presented in the form of association scores (signed —log,,-transformed
Benjamini-Hochberg-adjusted Pvalue, where the sign was determined
by the direction (positive or negative) of the association). Inhibitory
neuron subtypes demonstrating a significant negative association
with tangle density (Benjamini—-Hochberg-adjusted P value < 0.05)
were classified as vulnerable subtypes, while all other subtypes were
categorized as non-vulnerable. Genes exhibiting differential expres-
sion between vulnerable and non-vulnerable inhibitory neuron sub-
types were identified on the basis of our PFC snRNA-seq dataset. This
analysis was restricted to individuals without a pathologic diagnosis
of AD. The differential expression analysis comparing vulnerable to
non-vulnerable inhibitory neuron subtypes was performed using
the R package dreamlet (https://diseaseneurogenomics.github.io/
dreamlet/). We used the dreamletCompareClusters function with the
argument ‘method’ set to ‘fixed’ for this analysis. Adjusted Pvalues for
multiple testing were obtained using the topTable function of dreamlet,
with the ‘adjust.method’set to ‘BH".

GWAS analyses. Intersection of regional expression and pathology-
specific DEGs (across all regions) was performed for 149 annotated AD
GWAS familial and AD risk loci from recent GWAS****8, We calculated
the disease-relevance score of each cellinthe dataset against arecent
Alzheimer’s GWAS, using scDRS (based on MAGMA)***1_ For the scDRS
results, we counted the fraction of cells with significant scDRS scores
(FDR < 0.05)ineachcelltype, subtype andregion. Totest for overlap with
microglia/immune modules, we compared the set ofimmune cells with
significant expression of each module (zscore >2.5) and with the set of

cellswithsignificant scDRS scores (FDR < 0.05) and performed a hyper-
geometric test for significance of the overlap (P, < 0.01, Benjamini-
Hochberg correction). To identify region-specific GWAS genes, we
performed an analysis of variance for the effect of region on average
gene expression at the pseudobulk level.

Identification of genes associated with CR. To quantify CR, we com-
puted aCRscore asthe difference between the observed cognition and
the cognition predicted by a linear regression model, given the level
of pathology (Fig. 5a). Using this approach, we computed cognitive
resilience (CR) scores based on the measure of global cognitive function
and CDR scores based on the measure estimating the rate of change of
global cognitive function over time (Fig. 5a). Four distinct CRand CDR
scores were derived using four distinct measures of AD pathology,
namely global AD pathology and, separately, neuritic plaque burden,
NFT burden and tangle density.

We performed differential expression analyses using the R package
muscat to identify genes associated with CR in the PFC'”. Low-expressed
genes were excluded and only genes withmore than one countinatleast
ten cells were considered. To take advantage of robust bulk RNA-seq
differential expression frameworks, such as edgeR"S, in a first step,
muscat aggregates measurements for each sample (in each cluster)
to obtain pseudobulk data. Using this approach, single-cell measure-
ments were aggregated per study participant and cell type using the
sum of raw counts option. Differential expression analysis was run using
the edgeR method as implemented in muscat. We included as covari-
atestheindividual’s age at death and post-morteminterval. We report
adjusted Pvalues for multiple testing in all cases by using the p.adjust
function with the Benjamini—-Hochberg method as implemented in
muscat. The multiple testing correction was performed locally, that is,
on each of the cell types separately with the number of tests equal to
the number of genes considered. These differential expression analy-
ses were performed on the entire set of 427 individuals except for the
group-based differential expression analysis based on our categorical
definition of CR. In this case, we focused on comparing two distinct
groups determined by their pathologic and clinical diagnoses of AD.
First, weidentified individuals with a pathologic diagnosis of AD, using
the NIA-Reagan pathology criteria. Subsequently, these individuals
were further categorized on the basis of their clinical consensus diag-
nosis of cognitive status at the time of death. Specifically, we compared
individuals with no cognitive impairment (NCI, final consensus cogni-
tive diagnosis (cogdx) value of 1) against individuals with a cognitive
diagnosis of AD dementia and no other cause of cognitive impairment
(cogdxvalue of 4) amongindividuals with a pathologic diagnosis of AD.

To confirm the differential gene expression results based on the
CR and CDR scores, we also evaluated the association between gene
expression and global cognitive function or the rate of change of global
cognitive function adjusting for AD pathology as a covariate. The AD
pathology measures considered as a covariate were global AD pathol-
ogy (gpath), neuritic plaque burden (plag_n), NFT burden (nft), or
tangle density (tangles). Thus, together with the DGE analysis based on
CRand CDRscores, we performed atotal of 16 different tests assessing
the association between gene expression and CR.

We used the model-based analysis of single-cell transcriptomics
(MAST) tool toinvestigate whether the CR genesidentified in PFC astro-
cytes were also associated with CR in astrocytes from other regions
of the human brain. To ensure robust analysis, we initially filtered the
genes under investigation, selecting only those with more than one
countinatleast10 cells. The analytical modelincorporated the condi-
tionvariable of interest, as well as several covariates known to influence
gene expression. These covariates included the cellular detectionrate
(cngeneson), age at death (age_death), post-mortem interval (pmi),
and sex (msex). We also accounted for potential participant-specific
variation in the data by incorporating a random effect term for the
individual (1individual). To account for multiple comparisons, the
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Pvalues were adjusted using the FDR method as implemented in the
p.adjust function.

Bulk RNA-seq differential expression analysis. Differential expres-
sion analysis of bulk RNA-seq data from the ROSMAP cohorts was
performed using DESeq2" (plotted) and edgeR™®. Age at death and
post-mortem interval were converted into z scores and included as
covariates in the regression equation. Both approaches (DESeq2 and
edgeR) provided similar results.

Permutation test for evaluating the significance of the overlap of
DEGs between our dataset and the SEA-AD dataset. The average
expression level of each gene within each major cell type was deter-
mined using the ‘AverageExpression’ function from the Seurat R pack-
age. The genes considered in the differential expression analysis for
each major cell type were categorized into ten subsets based on their
average expression level within the corresponding cell type. We next
intersected the genes in each of the ten subsets with genes identified
as significantly associated with either neuritic plaque burden (in our
dataset) or the CPS score (in the MTG SEA-AD dataset). This intersec-
tion enabled us to determine the number of significant DEGs in each
subset. The process was performed separately for genes positively and
negatively associated with AD pathology. Subsequently, we randomly
sampled the determined number of significant DEGs from each of the
10 subsets, ensuring that the expression level distribution of the DEGs
was preserved inthe random samples. This random sampling step was
repeated for a total of 1,000 iterations. These steps were performed
separately for both our dataset and the SEA-AD dataset. For each of the
1,000 random samples, we determined the overlap of genes between
datasetsand comparedit to the observed overlap between the two data-
sets. To assess the significance of the observed overlap, we computed
zscores, which represent the difference between the observed value
of overlap and the mean value of overlap based on the permutation
results, divided by the s.d. of the permutation results.

Comparison with previously published proteomics study of AD. To
further validate our differential expression results, we evaluated the cor-
relation between the effect sizes of gene expression changes observed
in our study and those identified through quantitative proteomics®.
We specifically examined the correlation between the effect sizes of
genes associated with neuritic plaque burdeninour study and the effect
sizes of overlapping differentially expressed proteins in the quantita-
tive proteomics analysis of bulk tissue. The correlation was computed
using the cor.test function in R with the argument “alternative’ set to
‘two.sided’ and the argument ‘method’ set to ‘pearson’. Pvalues were
adjusted for multiple testing using the Benjamini-Hochberg method
asimplemented in the R function p.adjust.

Inter-regional comparison of AD pathology-associated gene setsin
glial cells along the spectrum of global AD pathology burden. We
determined genes significantly associated with global AD pathology
foreachglial celltype, using single-nucleus RNA sequencing datafrom
the PFC of 427 participants in the ROSMAP study. We then calculated
module scores for these gene sets in astrocytes, microglia, oligoden-
drocytes,and OPCs using the Seurat AddModuleScore’ function. The
module scores were determined separately for genes positively and
negatively associated with global AD pathology. To assess the progres-
sionofthese scoresacross the spectrum of global AD pathology burden,
we averaged the module scores of all cells of a specified cell type iso-
lated fromthe brainregion of interest of anindividual. For visualizing
the relationship between the global AD pathology burden and mean
module scores, we employed Locally Estimated Scatterplot Smooth-
ing (LOESS) using the ggplot2 package in R, with the ‘geom_smooth’
function and the ‘method’ parameter set to ‘loess’. The correlation
of mean module scores between regions was determined using the

cor.mtest function of the R package corrplot. Pvalues were adjusted for
multiple hypotheses testing using the Benjamini-Hochberg method
asimplemented in the R function p.adjust.

Insitu hybridization (RNAscope)

Frozen human post-mortem brain samples were embedded in
Tissue-Tek OCT compound (VWR; 25608-930), sectioned on a Leica
cryostatatathickness of 20 pm, and mounted onto Fisherbrand Super-
frost Plus microscope slides (Thermo Fisher Scientific; 12-550-15).
Slides were fixed in 4% paraformaldehyde at 4 °C for 30 min, and dehy-
drated in ethanol. The RNAscope 2.5 HD Chromogenic Duplex Detec-
tionKitand RNAscope Multiplex fluorescent V2 Kit (ACDBio) were then
used according to the manufacturer’s instructions. Tissue samples
were hybridized using the following chromogenic RNAscope probes:
GAD2, FOXP2, MEIS2, AQP4, GRM3, ADCYS, PFKP, PNPLA6, GPCPD1
and CHDH (ACDBio). For insitu hybridization of Reelin, tissue samples
were hybridized using the following fluorescent RNAscope probes:
vGlut and Reelin. Cell nuclei were stained with 50% haematoxylin (for
chromogenic experiments) or with Hoechst (for fluorescent experi-
ments). For fluorescence RNAscope analysis, sections wereincubatedin
TrueBlack (Biotium;23007) for 10 s before Hoechst staining to quench
auto-fluorescence. Images were acquired using the Zeiss LSM 900 con-
focal microscope, with a 63x oil objective. Two images were acquired
per tissue sample. For both chromogenic and fluorescence RNAscope
experiments, puncta were manually counted by researchers blinded
to the experimental group of each image.

Immunohistochemistry

All experiments were performed according to the Guide for the Care
and Use of Laboratory Animals and were approved by the National
Institute of Health and the Committee on Animal Care at Massachu-
setts Institute of Technology. Sample sizes were determined on the
basis of previous work from our laboratory, without power analysis
calculation or randomization. In the experiment comparing App-KI
(C57BL/6-App<tm3(NL-G-F)Tcs>, RBRC06344) and WT mice, the
App-Kl group consisted of 7 mice (5 male and 2 female) and the WT
group included 6 female mice. In the experiment comparing Tau
P301S (The Jackson Laboratory, 008169) to WT mice, both groups
consisted entirely of male mice, with 6 mice in the Tau(P301S) group
and 5 mice in the WT group. Mice were transcardially perfused with
ice-cold phosphate-buffered saline, followed by 4% paraformalde-
hyde for fixation. Brains were dissected out and post-fixed in 4% para-
formaldehyde overnight at 4 °C. Brains were sectioned horizontally
on the Leica vibratome at a thickness of 40 pm. Slices containing the
EC were selected under a dissecting microscope to ensure consistent
anatomical structure across all cohorts. Brain sections were incubated
inantigenretrieval solution (pH 6,100 mM sodium citrate buffer, pre-
warmed to 80 °C) for 20 min, and then cooled to room temperature.
The sections were then washed twice with phosphate-buffered saline,
and blocked in buffer (0.3% Triton X-100, 2% bovine serum albumin,
10% normal donkey serum in phosphate-buffered saline) for1 hat room
temperature.

The sections were incubated in primary antibodies (anti-Reelin,
1:200; anti-NeuN, 1:200, anti-phospho tau, 1:200; and anti-amyloid-§3,
1:500) overnight at 4 °C. After primary antibody incubation, the sec-
tions were washed three times with PBS, twice with blocking buffer and
incubatedinsecondary antibody (1:1,000) for 2 hat room temperature.
The sections were then washed three times with PBS, incubated with
Hoechst (1:1,000) for 10 min and washed once more with PBS.

Confocal tile scans of the EC were acquired on the Zeiss LSM 900
using a20x% objective, with consistent laser setting across all cohorts.
Layer II-1ll EC was identified based on previous criteria?®. Orthogonal
projections of the confocal tile scans were exported to Fiji for signal
quantification. In Fiji, layer II-11l of the EC was set as a region of inter-
est, and a macro was used to count Reelin-positive cells in the region
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of interest and quantify the mean fluorescence intensity for each cell.
The signal intensity of the Reelin channel was subsequently normal-
ized tothe NeuN signal. Researchers were blinded to animal genotype.

External data sources

Processed snRNA-seq data generated by the Seattle Alzheimer’s Dis-
ease Brain Cell Atlas (SEA-AD) consortium (SEAAD_MTG_RNAseq_final-
nuclei.2023-05-05.h5ad) were obtained from the Seattle Alzheimer’s
Disease Brain Cell Atlas (SEA-AD) (https://sea-ad-single-cell-profiling.
s3.amazonaws.com/index.htmI#MTG/RNAseq/). The SEA-AD DLPFC
data (SEAAD_DLPFC_RNAseq_final-nuclei.2023-07-19.h5ad) were down-
loaded from https://sea-ad-single-cell-profiling.s3.amazonaws.com/
index.html#DLPFC/RNAseq/. Additional processed snRNA-seq data-
sets (specifically the h5ad files Neurons.h5ad and Nonneurons.h5ad)
were obtained from the Linnarsson laboratory (https://console.cloud.
google.com/storage/browser/linnarsson-lab-human;tab=objects?
authuser=0&prefix=&forceOnObjectsSortingFiltering=false).

Reporting summary
Furtherinformation onresearchdesignisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

snRNA-seq profiling data are available from Synapse in coordination
with the ROSMAP project. Data are accessible under accession codes
syn52293442 (as part of the MIT ROSMAP Single-Nucleus Multiomics
Study; Synapse: syn52293417). The data are available under controlled
use conditions set by human privacy regulations. To access the data, a
datauseagreementis needed. This registrationisin placesolely to ensure
anonymity of the ROSMAP study participants. A data use agreement can
be agreed with either Rush University Medical Center (RUMC) or with
SAGE, who maintains Synapse, and can be downloaded from their web-
sites (https://www.radc.rush.edu/; https://adknowledgeportal.synapse.
org/).Additional processed data as well as integrative visualizationand
exploration of the atlas are available online (http://compbio.mit.edu/
ad_multiregion/and https://ad-multi-region.cells.ucsc.edu/)*. We also
downloaded the following public single-cell gene expression datasets:
humanmultiple cortical areas SMART-seq (https://portal.brain-map.org/
atlases-and-data/rnaseq/human-multiple-cortical-areas-smart-seq),
human DLPFC (Synapse: syn51123521), SEA-AD MTG (https://sea-ad-
single-cell-profiling.s3.amazonaws.com/index.html#MTG/RNAseq/),
SEA-AD DLPFC (https://sea-ad-single-cell-profiling.s3.amazonaws.
com/index.html#DLPFC/RNAseq/), human dLGN (https://portal.
brain-map.org/atlases-and-data/rnaseq/comparative-lgn), multiple
human brain regions (https://console.cloud.google.com/storage/
browser/linnarsson-lab-human;tab=objects?authuser=0&prefix=
&forceOnObjectsSortingFiltering=false), multiple cortical areas and the
hippocampal formation of the mouse brain (https://portal.brain-map.
org/atlases-and-data/rnaseq/mouse-whole-cortex-and-hippocampus-
10x), nine regions in the adult mouse brain (http://dropviz.org/) and
Mouse Brain Atlas (http://mousebrain.org/). Source data are provided
with this paper.

Code availability

Code for analysis is available at GitHub (https://github.com/cboix/
admultiregion_analysis) and Zenodo (https://doi.org/10.5281/
zen0do.11051020). The code for the scdemon method for module
detection from single-cell RNA-seq is available at GitHub (https://
github.com/KellisLab/scdemon).
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Extended DataFig.1|Overview of the study sample and major cell type
annotations. a, Metadata overview: a total of 283 post-mortem brain tissue
samples from 24 male and 24 female study participants were analysed across
Alzheimer’s disease progression (AD). Top two panels show metadata at the
individual level and bottom three panels show region-specific pathology
measurements of neurofibrillary tangle burden (nft), neuritic plaque burden
(plaq_n), and diffuse plaque burden (plaq_d). Individuals (columns) are ordered
accordingto their global AD pathology burden.b,Joint UMAP of 1.3 M cells
across14 major cell types coloured and labelled by 76 high-resolution subtypes.
c,d, Representation ofindividuals across cell types. The stacked bar plots show
the proportion of cells contributed by each study participant across 14 major
celltypes (c) and 76 high-resolution cell types (d). e-f, Box plots of the number
ofgenes detected per cell across all major cell types (e) and mean number of
uniquetranscripts detected per cell perindividual and major cell type across

thesixbrainregions analysed (f). Within each box, horizontal lines denote
median values; boxes extend from the 25th to the 75th percentile of each
group’s distribution of values; whiskers extend from the 5th to the 95th
percentile. ****P <0.0001, ***P < 0.001, **P < 0.01; ns, P > 0.05; (ordinary one-
way ANOVA corrected for multiple comparisons using Bonferroni’s multiple
comparisonstest). g, Relative abundance of inhibitory neurons originating
from the medial (MGE) ganglionic eminences (SST and PVALB) and the caudal
(CGE) ganglionic eminence (VIP, PAX6,and LAMPS) across brainregions.
Thebar plots show the mean fraction of cells per individual and brainregion
(AG,HC,MT,PFC:n=48; TH:n=45;EC:n=46). The fraction of cellswas
computed relative to all the cellsisolated from abrain region of anindividual.
Dataare expressed as mean with 95% confidenceintervals and individual data
pointsareshown (two-way ANOVA corrected for multiple comparisons using
Bonferroni’s multiple comparisons test).
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@ Summary panels for modules computed from all cells in the atlas
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Extended DataFig.5|See next page for caption.
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Extended DataFig.5|Module summary panels across modules.

a-h, Overview of gene expression modules with at least 10 genes each acrossall
cellsand across major cell types, showing the module name, number of genes,
percent expression, top module genes, enrichments by subtype (except for
neuronsubtypes, see Supplement), covariates, and regions, and the top
functional enrichment foreachmodule. Percent expressionis the percent of
cellswhose average expression (loglp, normalized) of the moduleis above 1.
Covariateenrichments are performed by hypergeometric test, comparing the
intersection of cells with z-scored module expression of atleast 1 vs. withz <1

againstaparticular level of acovariate of interest (e.g. cells from the entorhinal
cortexregionor cells of aspecific subtype). Panels summarize modules
foundinallcells (a), astrocytes (b), OPCs (c), microgliaand immune cells (d),
oligodendrocytes (e), inhibitory neurons (f), vasculature and epithelia (g), and
excitatory neurons (h). Allmodules except vasculature and epitheliamodules
aresplitintoidentity vs. other, where identity modules are highly enrichedina
single subtype and have an average expressiongreater than1(loglp, normalized)
forover 50% of the subtype’s cells.
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Extended DataFig. 6 |See next page for caption.
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Extended DataFig. 6 | Cross-module clustering and comparison. a, Module-
module correlation (Pearson correlation) and gene set overlap (Jaccard distance)
for modules with atleast 10 genes from all sets of modules (263 modules in total).
Heatmaps are ordered by the hierarchical clustering of the correlation

matrix and cuts represent 20 clusters cut from the hierarchical clustering
dendrogram. Leftand right side bars label rows by their modules set of origin
(major cell type colours and grey for all cells). The most commonly shared
genesinselected clusters of modules are shownonthe right of the gene set
overlap heatmap. b, Functional enrichments for each cluster of modules for
theshared genes (>2 modules) in each cluster (only clusters with significant
enrichments shown). Up to 5enrichments shown, ordered by p-value, labelled
by their source and only keeping terms with fewer than 500 genes. ¢, Covariate
and functional enrichments for example astrocyte modules M19 (thalamus
identity program)and M17 (cholesterol metabolism and biosynthesis program).
Region, subtype, and covariate enrichments performed at cell level by

stratifying cells with z-score >1and testing for regional or subtype enrichment
(see Methods). Functional enrichments performed using gprofiler2, keeping
terms with fewer than 500 genes. d, Scatterplots and correlation of scores
forselected pairs of astrocyte modules. Each dot represents the module
expression scores for asubtypeinaspecific sample andis coloured by the
astrocytesubtype. Grey arearepresentsthe 95% confidence interval around
thelinearfit. e, Functional enrichments for selected astrocyte modules,
showing top 10 functional enrichments for each pair of compared correlated
modules (and for M6, M13, M27 together). Only terms with fewer than 500 genes
shown. f, Microglialandimmune modules network from correlation of module
pairs atthe subtype by sample level (edges shown where FDR-adjusted
p-value <0.05). Nodes are coloured by module’s relative expressionin each
ofthe microglialandimmune subtypes and groups highlight sets of subtype-
biased modules.
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Extended DataFig.7 |Neuronal vulnerability, connectivity, and markers

of vulnerability. a, Compositional differences for major celltypesin AD

by quasi-binomial regression with FDR-correction.log, OR shown both for
each AD variable acrossregions (left) and for each regioninlate-AD (right).
Analysis performed forindividual-level AD status and region-level pathology
measurements. Pathologic diagnosis of AD (Path. AD) was stratified by NIA-
Reaganscore (26 AD and 22 non-AD) and clinical diagnosis was stratified as AD
dementia (n =16) and non-ClI (n = 32). b-c, Compositional differences for glial
subtypesandinhibitory neuronsubtypesaccordingtoindividual-level AD
status and region-level pathology measurements (asina). Grey boxes indicate
interactions that are not computed due to MEIS2 FOXP2 specificity to the
thalamus, where we do not have measured regional scores.d, Compositional
differencesininhibitory neuronsubtypesinlate AD (Braak Stage 5-6 vs.1-4)
ineachregion. Grey boxesindicate interactions thatare not computed due to
subtype regional specificity. e, Boxplots (top) of neuronal fraction for two
vulnerable EC subtypes, split by AD status (AD: blue, non-AD: red), with p-values
from one-sided Wilcoxon test. Scatter plots (bottom) of individuals’ global
cognitionatlast visitagainst cell fraction for two AD-vulnerable entorhinal
cortex subtypes, coloured by AD. Linear fit with 95% confidence interval shown
ingrey.f, Estimated effect size of cell fraction (log,,) on scores for performance
invarious cognitive domains atlast visitand combined scores from all domains
(global). Linear regression FDR-corrected p-values (**adjusted p-value <0.01,
*<0.05, dot is <0.1). g, Full correlation matrix between subtype fraction between
the hippocampus and entorhinal cortexin the sameindividuals, as described
inthe methods (***adjusted p-value < 0.001, **<0.01, *<0.05). i, Example genes

predictive of subtype vulnerability. Scatterplots show average expression
inthe subtypeacrossindividuals against the effect size of the depletion or
enrichmentin AD as measured by the log, odds-ratio for late-AD, asin the
Methods. i, Functional enrichments and intersected genes for top 30 markers
of subtype vulnerability (terms with <500 genes). j, Association (quasi-binomial
regression) between the relative abundance of inhibitory neuron subtypesin
the prefrontal cortex and the density of neurofibrillary tangles. Association
scores (signed negative logl0 FDR-adjusted P value, where the sign was
determined by the direction (positive or negative) of the association) are shown.
Thedotted lineindicates the significance level threshold of an FDR-corrected
Pvalue of 0.05. P values were derived using the glm functionin R and adjusted
for multiple testing viathe Benjamini-Hochberg method.k, Volcano plot showing
genes differentially expressed in vulnerable versus non-vulnerable inhibitory
neuronsubtypes (genes significantly higher in vulnerable subtypesinred,
lowerinblue). FDR-adjusted P values as determined by the R package ‘dreamlet’
areshown.l, Scatter plot ofeach tested gene’s average differential expression
effectsizeinlate-AD (y-axis) versus the correlation of its expressionina
subtype and that subtype’s level of depletionin late-AD (x-axis). Dashed

lines separate genes associated with vulnerability and non-vulnerability.

m, Functional enrichments for each identified class of neuronal DEGs

(terms <500 genes) on bins (along x-axis from1), from genes associated with
vulnerability to those associated with non-vulnerability (only genes with
biased effect sizes, see Methods). Dashed lines correspond to the same breaks
asin(l).
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Extended DataFig. 8| Regional differential expressionand GWAS peranalysis are shown).d, Barplot of number of DEGs per region and cell type,
association. a, Number of up- and down-regulated differentially expressed coloured by type of DEG, as determined by its shared differential expression
genes (DEGs) withrespect to pathologic diagnosis of AD for each major cell acrossregionsand celltypes. e, Top functional enrichments for region-specific
type, calculated in each region separately as well as jointly over all regions. DEGs and DEGs shared across regions (=3 regions) with up to the top 2terms
b, Heatmaps of Jaccard similarity of DEGs across regions for each major cell (<500 genes only) shown per region. Panels shown and computed separately

type. ¢, Heatmap of -log,, p-values for functional enrichments showing the top foreach major cell type. f, Heatmap of log fold change for top shared, cell-type
pathways for AD DEG shared across 3+ cell types. Enrichments shown for DEGs consistent, and cell+region-specific DEGs in major cell types. GG-NER: global
calculatedineachregionandinallregions together (up to the top 3 pathways genome nucleotide excision repair.
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Extended DataFig. 9 |Inter-regional comparison of AD pathology-
associated gene sets and region-specific GWAS enrichments. a-b, Seurat
module scores of genes significantly positively (top) or negatively (bottom)
associated with the global AD pathology variable in prefrontal cortex for
astrocytes, oligodendrocytes, OPCs, and microglia across brainregions and
thespectrumofglobal AD pathology burden. The gene sets used for computing
the module scores (genes significantly associated with global AD pathology
burden) were determined based on snRNA-seq data derived from prefrontal
cortextissue of 427 ROSMAP study participants. The scatterplots (a panels)
illustrate the relationship betweenglobal AD pathology burden and the mean
modulescore for the specified gene set, with this mean score calculated by
averagingthe module scores of all cells of the designated cell typeisolated
fromanindividual. ALOESS (Locally Estimated Scatterplot Smoothing)
regression line witha 95% confidence intervalis shown, and the regression
linesare coloured by brainregion. The central LOESS regression line represents
thelocal measure of central tendency, calculated through locally weighted
regression to reflect the smoothed relationship between the module scores
indicated and global AD pathology burden. Interregional Pearson’s correlation
analysis of mean module scores (b panels) was performed by first averaging the

module scores ofall cells of the cell type of interest from anindividual study
participant. The correlation analysis was then performed between regions
based onthese averaged scores. P values were calculated using the cor.test
functioninRand were adjusted for multiple testing using the p.adjust function
with the Benjamini-Hochberg method. ¢, Heatmap (by region, left) and barplot
(overallregions, right) showing the percentage of cells with significant scDRS
(diseaserelevance scores) for AD GWAS. Rows are splitinto major cell type
groups (top) and microgliaand immune subtypes. d, Regional expression
(heatmap, left) and F-statistic for regionin predicting expression (barplot,
right) for eight GWAS genes with significantly region-specific expressionin
microglia. Barplotis coloured by the top expressed region (regression
coefficient). Heatmapis labelled with starsif the geneis a DEG for that region.
e, Boxplots showing expression of two of the region-specific GWAS genesin
individuals withand without a pathologic diagnosis of AD. f, Microglia/immune
modules associated with AD GWAS. Fraction of microglia orimmune cells with
significant expression of each module (z-score >2.5) and with significant
scDRSscores (FDR < 0.05). Only significant modules are shown (adjusted

p <0.01, hypergeometric test with BH correction).
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Software and code

Policy information about availability of computer code

Data collection  no software was used

Data analysis Gene counts were obtained by aligning reads to the GRCh38 genome using Cell Ranger software (v.3.0.2) (I0x Genomics).
We used SCAN PY (vI.6) to process and cluster the expression profiles and infer cell identities.
We called doublets using DoubletFinder (v2.0).
The R package Seurat (v.3.2) was used for UMAP visualizations and to determine marker genes.
Prism 9 software was used for histogram visualizations and for statistical analyses comparing the number of genes and transcripts detected
per cell.
The Differential Search tool of the Allen Brain Atlas data portal (v.7) (https://human.brain-map.org/microarray/search) was used to compare
microarray data from different human brain regions.
The Consensus Non-negative Matrix factorization (c(NMF) (vl.3) package implemented in python was used for the NMF analysis.
The gene regulatory network analysis was performed using pySCENIC (v0.10.4).
MAST (vI.16.0) and Nebula (vI.1.7) were used for the differential expression analyses.
The gprofiler2 package in R DEG was used for DEG enrichments.
Cell-cell communication events were predicted using the Ligand-receptor ANalysis frAmework (LIANA) (v0.1.12).
The differential expression analysis comparing vulnerable to non-vulnerable inhibitory neuron subtypes was performed with the R package
dreamlet (v0.99.6).
Genes associated with cognitive resilience were identified using the R package muscat (v1.12.1).
Bulk RNA-seq differential expression analysis was performed using DESeq?2 (v1.38.3).
Further statistical analyses and visualizations were implemented in R version 4.0.3 {2020-10-10).
Gene expression modules were determined using the scdemon (v0.9.0) framework. The code for the scdemon method for module detection
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from single-cell RNA-seq is available at https://github.com/KellisLab/scdemon.
Code for analysis is available at https://github.com/cboix/admultiregion_analysis and Zenodo (11051021, https://doi.org/10.5281/
zenodo.11051021).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Single-nucleus RNA-seq profiling data is available from Synapse (www.synapse.org) in coordination with the ROSMAP project. Data is accessible at https://
www.synapse.org/#!Synapse:syn52293442 (as part of The MIT ROSMAP Single-Nucleus Multiomics Study https://www.synapse.org/#!Synapse:syn52293417). The
data is available under controlled use conditions set by human privacy regulations. To access the data, a data use agreement is needed. This registration is in place
solely to ensure anonymity of the ROSMAP study participants. A data use agreement can be agreed with either Rush University Medical Center (RUMC) or with
SAGE, who maintains Synapse, and can be downloaded from their websites (https://www.radc.rush.edu/; https://adknowledgeportal.synapse.org/). Additional
processed data as well as integrative visualization and exploration of the atlas are available through http://compbio.mit.edu/ad_multiregion/ and https://ad-multi-
region.cells.ucsc.edu/.

We also downloaded the following public single-cell gene expression datasets: Human Multiple Cortical Areas SMART-seq (https://portal.brain-map.org/atlases-and-
data/rnaseq/human-multiple-cortical-areas-smart-seq), human DLPFC (https://www.synapse.org/#!Synapse:syn51123521), SEA-AD MTG (https://sea-ad-single-cell-
profiling.s3.amazonaws.com/index.htmI#MTG/RNAseq/), SEA-AD DLPFC (https://sea-ad-single-cell-profiling.s3.amazonaws.com/index.htmI#DLPFC/RNAseq/),
human dLGN (https://portal.brain-map.org/atlases-and-data/rnaseqg/comparative-lgn), multiple human brain regions (https://console.cloud.google.com/storage/
browser/linnarsson-lab-human;tab=objects?authuser=0&prefix=&forceOnObjectsSortingFiltering=false), multiple cortical areas and the hippocampal formation of
the mouse brain (https://portal.brain-map.org/atlases-and-data/rnaseq/mouse-whole-cortex-and-hippocampus-10x), nine regions in the adult mouse brain (http://
dropviz.org/), and Mouse Brain Atlas (http://mousebrain.org/).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender We selected 48 individuals from the Religious Orders Study and Rush Memory and Aging Project (ROSMAP), both ongoing
longitudinal clinical-pathologic cohort studies of aging and dementia, in which all participants are brain donors. Individuals
were balanced between sexes (male:female ratios 13:13 in AD, 11:11 in NoAD) (sex was determined based on self-reporting).

Reporting on race, ethnicity, or No socially constructed or socially relevant categorization variables were used in this study.
other socially relevant
groupings

Population characteristics We selected 48 individuals from the Religious Orders Study and Rush Memory and Aging Project (ROSMAP), both ongoing
longitudinal clinical-pathologic cohort studies of aging and dementia, in which all participants are brain donors. For the
purpose of this study, individuals were selected based on the modified NIA-Reagan diagnosis of Alzheimer's disease and the
Braak stage score (Braak stage 0,1,2, n=20; Braak stage 3,4, n=14; Braak stage 5,6, n=14), with 26 individuals having a positive
pathologic diagnosis of AD and 22 individuals having a negative pathologic diagnosis of AD. Individuals were balanced
between sexes (male:female ratios 13:13 in AD, 11:11 in NoAD), matched for age (medians 86.6 years (AD) and 86.0 years
(NoAD)), and postmortem interval (medians 5.9 hours (AD) and 6.3 hours (NoAD)).

Recruitment No donors were recruited, the tissue has been obtained from participants in the Religious Order Study.

Ethics oversight The Religious Orders Study and Rush Memory and Aging Project were approved by an IRB of Rush University Medical Center.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No explicit calculations were performed to determine sample size. Rather, we aimed to analyze brain tissue from an equal number of men and
women and at least 11 individuals per group. Therefore we analyzed brain tissue from 26 individuals having a positive pathologic diagnosis of
AD and 22 individuals having a negative pathologic diagnosis of AD. The sample size of 48 was chosen based on findings from our previous
study, which also included the same number of participants. This previous study demonstrated that a sample size of 48 is sufficient to detect
significant differences between individuals diagnosed with and without Alzheimer's Disease.

Data exclusions  Low quality snRNA-seq libraries were excluded and the exclusion criteria are described in the manuscript as follows. We kept only protein
coding genes and filtered out cells with over 20% mitochondrial or 5% ribosomal RNA, leaving 1.47M cells over 48 individuals and 283 samples
across all regions. We separately called doublets using DoubletFinder and flagged and removed clusters with strong doublet profiles and
clusters showing strong individual-specific batch effects, leaving a final dataset of 1.35M cells.

Replication Verification of the single-nucleus RNA-seq data was performed through validation using RNA in situ hybridization on post-mortem brain tissue.
These experiments validated the findings derived from snRNA-seq. The snRNA-seq experiment was performed once. The RNA in situ
hybridization (RNAscope) experiments shown in Figure 1i, Figure 2d, Figure 3g, Figure 40-p, and Figure 5j-I were each performed once.
Similarly, the IHC experiments shown in Figure 3h-i were each performed once.

Randomization  The study participants were allocated into groups based on Braak stage.

Blinding Investigators were not blinded to group allocation. The outcome measures used in our snRNA-seq analysis are objective, relying on
standardized computational methods, which reduces the potential for bias that blinding seeks to mitigate.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
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Plants

Antibodies

Antibodies used e Anti-reelin
0 Host: monoclonal mouse
o Catalogue name: Anti-Reelin Antibody, a.a. 164-496 mreelin, clone G10
o Catalogue number: Millipore Sigma MAB5364
e Anti-NeuN
o Host: polyclonal serum from guinea pig
o Catalogue name: NeuN antibody
o Catalogue number: Synaptic System 266004
¢ Anti-Amyloid
o Host: Monoclonal rabbit
o Catalogue name: B-Amyloid (D54D2) XP® Rabbit mAb
o Catalogue number: 8243S
e Anti-Phospho-tau
o Host: Polyclonal rabbit
o Catalogue name: Phospho-Tau (Ser396)
o Catalogue number: 44-752G

Validation ¢ Anti-reelin:
Millipore Sigma application statement: Detect Reelin using this Anti-Reelin Antibody, a.a. 164-496 mreelin, clone G10 validated for
usein IH & WB.
* Anti-NeuN
Silencing CA1 pyramidal cells output reveals the role of feedback inhibition in hippocampal oscillations.
Adaikkan C, Joseph J, Foustoukos G, Wang J, Polygalov D, Boehringer R, Middleton SJ, Huang AJY, Tsai LH, McHugh TJ
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Nature communications (2024) 151: 2190. 266 004 IHC; tested species: mouse

e Anti-Amyloid

Cell Signaling Technology Specificity/Sensitivity statement: B-Amyloid (D54D2) XP® Rabbit mAb recognizes endogenous levels of total
B-amyloid peptide (AB). The antibody detects several isoforms of AB, such as AB-37, AB-38, AB-39, AB-40, and AB-42. This product
detects transgenically expressed human APP in mouse models.

¢ Anti-Phospho-tau

Invitrogen Advanced Verification statement: This Antibody was verified by Cell treatment to ensure that the antibody binds to the
antigen stated.

Seed stocks

Novel plant genotypes

Authentication

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied. o ) )
Describe-any-authentication-procedures for-each seed stock-used-or novel-genotype generated.- Describe-any-experiments-used-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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