

1 **Progressive neural engagement within the IFG-pMTG circuit**
2 **as gesture and speech entropy and MI advances**

3 Wanying Zhao^{1,2*}; Zhouyi Li^{1,5}; Xiang Li^{1,2}; Yi Du^{1,2,3,4*}

4

5 ¹ CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of
6 Sciences, Beijing, China 100101

7 ² Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
8 100049

9 ³ CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
10 200031

11 ⁴ Chinese Institute for Brain Research, Beijing, China 102206

12 ⁵ School of Psychology, Central China Normal University, Wuhan, China 430079

13

14 * Corresponding author:

15 Dr. Yi Du, Email: duyi@psych.ac.cn

16 16 Lincui Road, Chaoyang district, Beijing, China 100101

17 Dr. Wanying Zhao, Email: zhaowy@psych.ac.cn

18 16 Lincui Road, Chaoyang District, Beijing, China 100101

19

20 **Abstract**

21 Semantic representation emerges from distributed multisensory modalities, yet a
22 comprehensive understanding of the functional changing pattern within convergence zones or
23 hubs integrating multisensory semantic information remains elusive. In this study, employing
24 information-theoretic metrics, we quantified gesture and speech information, alongside their
25 interaction, utilizing entropy and mutual information (MI). Neural activities were assessed via
26 interruption effects induced by High-Definition transcranial direct current stimulation (HD-
27 tDCS). Additionally, chronometric double-pulse transcranial magnetic stimulation (TMS) and
28 high-temporal event-related potentials were utilized to decipher dynamic neural changes
29 resulting from various information contributors. Results showed gradual inhibition of both
30 inferior frontal gyrus (IFG) and posterior middle temporal gyrus (pMTG) as degree of gesture-
31 speech integration, indexed by MI, increased. Moreover, a time-sensitive and staged
32 progression of neural engagement was observed, evidenced by distinct correlations between
33 neural activity patterns and entropy measures of speech and gesture, as well as MI, across
34 early sensory and lexico-semantic processing stages. These findings illuminate the gradual
35 nature of neural activity during multisensory gesture-speech semantic processing, shaped by
36 dynamic gesture constraints and speech encoding, thereby offering insights into the neural
37 mechanisms underlying multisensory language processing.

38

39 **Keywords:** gesture-speech integration; pMTG-IFG circuit; information theory; multisensory;
40 semantic; dual-stage modal

41

42 **Introduction**

43 Semantic representation, distinguished by its cohesive conceptual nature, emerges from
44 distributed modality-specific regions. Consensus acknowledges the presence of 'convergence
45 zones' within the temporal and inferior parietal areas ¹, or the 'semantic hub' located in the
46 anterior temporal lobe², pivotal for integrating, converging, or distilling multimodal inputs.
47 Contemporary perspectives on semantic processing portray it as a sequence of quantitatively
48 functional mental states defined by a specific parser³, unified by statistical regularities among
49 multiple sensory inputs⁴ through hierarchical prediction and multimodal interactions⁵⁻⁹.
50 Hence, proposals suggest that the coherent semantic representation emerges from statistical
51 learning mechanisms within these 'convergence zones' or 'semantic hub'¹⁰⁻¹², potentially
52 functioning in a graded manner^{12,13}. However, the exact nature of the graded structure within
53 these integration hubs, along with their temporal dynamics, remains elusive.

54 Among the many kinds of multimodal extralinguistic information, representational gesture
55 is the one that is related to the semantic content of co-occurring speech^{14,15}. Representational
56 gesture is regarded as 'part of language'¹⁶ or functional equivalents of lexical units that
57 alternate and integrate with speech into a 'single unification space' to convey a coherent
58 meaning¹⁷⁻¹⁹. Empirical studies have investigated the semantic integration between
59 representational gesture (gesture in short hereafter) and speech by manipulating their
60 semantic relationship²⁰⁻²³ and revealed a mutual interaction between them²⁴⁻²⁶ as reflected by
61 the N400 latency and amplitude¹⁹ as well as common neural underpinnings in the left inferior
62 frontal gyrus (IFG) and posterior middle temporal gyrus (pMTG)^{20,27,28}. Quantifying the amount
63 of information from both sources and their interaction, the present study delved into cortical
64 engagement and temporal dynamics during multisensory gesture-speech integration, with a
65 specific focus on the IFG and pMTG, alongside various ERP components.

66 To this end, we developed an analytic approach to directly probe the contribution of
67 gesture and speech during multisensory semantic integration, while adopting the information-
68 theoretic complexity metrics of *entropy* and *mutual information* (MI). Entropy captures the
69 disorder or randomness of information and is used as a measurement of the uncertainty of
70 representation activated when an event occurs²⁹. MI illustrates the mutual constraint that the

71 two variables impose on each other³⁰. Herein, during gesture-speech integration, entropy
72 measures the uncertainty of information of gesture or speech, while MI indexes the degree of
73 integration.

74 Three experiments were conducted to unravel the intricate neural processes underlying
75 gesture-speech semantic integration. In **Experiment 1**, High-Definition Transcranial Direct
76 Current Stimulation (HD-tDCS) was utilized to administer Anodal, Cathodal and Sham
77 stimulation to either the IFG or the pMTG. HD-tDCS induces membrane depolarization with
78 anodal stimulation and membrane hyperpolarisation with cathodal stimulation³¹, thereby
79 respectively increasing or decreasing cortical excitability in the targeted brain area. Hence,
80 Experiment 1 aimed to determine whether the facilitation effect (Anodal-tDCS minus Sham-
81 tDCS) and/or the inhibitory effect (Cathodal-tDCS minus Sham-tDCS) on the integration hubs
82 of IFG and/or pMTG were modulated by the degree of gesture-speech integration, indexed
83 with MI. Considering the different roles of IFG and pMTG during integration²⁸, as well as the
84 various ERP components reported in prior investigations, such as the early sensory effect as
85 P1 and N1-P2^{33,34}, the N400 semantic conflict effect^{19,34,35}, and the late positive component
86 (LPC) reconstruction effect^{36,37}. **Experiment 2** employed chronometric double-pulse
87 transcranial magnetic stimulation (TMS) to target short time windows along the gesture-
88 speech integration period³². In parallel, **Experiment 3** utilized high-temporal event-related
89 potentials to explore whether the various neural engagements were temporally and
90 progressively modulated by distinct information contributors during gesture-speech
91 integration.

92

93 **Material and methods**

94 **Participants**

95 Ninety-eight young Chinese participants signed written informed consent forms and took part
96 in the present study (Experiment 1: 29 females, 23 males, age = 20 ± 3.40 years; Experiment
97 2: 11 females, 13 males, age = 23 ± 4.88 years; Experiment 3: 12 females, 10 males, age =
98 21 ± 3.53 years). All of the participants were right-handed (Experiment 1: laterality quotient
99 (LQ)³⁸ = 88.71 ± 13.14 ; Experiment 2: LQ = 89.02 ± 13.25 ; Experiment 3: LQ = $88.49 \pm$

100 12.65), had normal or corrected-to-normal vision and were paid ¥100 per hour for their
101 participation. All experiments were approved by the Ethics Committee of the Institute of
102 Psychology, Chinese Academy of Sciences.

103 **Stimuli**

104 Twenty gestures (**Appendix Table 1**) with 20 semantically congruent speech signals taken
105 from previous study²⁸ were used. The stimuli set were recorded from two native Chinese
106 speakers (1 male, 1 female) and validated by replicating the semantic congruency effect with
107 30 participants. Results showed a significantly ($t(29) = 7.16, p < 0.001$) larger reaction time
108 when participants were asked to judge the gender of the speaker if gesture contained
109 incongruent semantic information with speech (a 'cut' gesture paired with speech word '喷
110 pen1 (spray)': mean = 554.51 ms, SE = 11.65) relative to when they were semantically
111 congruent (a 'cut' gesture paired with '剪 jian3 (cut)' word: mean = 533.90 ms, SE = 12.02)²⁸.

112 Additionally, two separate pre-tests with 30 subjects in each (pre-test 1: 16 females, 14
113 males, age = 24 ± 4.37 years; pre-test 2: 15 females, 15 males, age = 22 ± 3.26 years) were
114 conducted to determine the comprehensive values of gesture and speech. Participants were
115 presented with segments of increasing duration, beginning at 40 ms, and were prompted to
116 provide a single verb to describe either the isolated gesture they observed (pre-test 1) or the
117 isolated speech they heard (pre-test 2). For each pre-test, the response consistently provided
118 by participants for four to six consecutive instances was considered the comprehensive
119 answer for the gesture or speech. The initial instance duration was marked as the
120 discrimination point (DP) for gesture (mean = 183.78 ± 84.82 ms) or the identification point
121 (IP) for speech (mean = 176.40 ± 66.21 ms) (**Figure 1A top**).

122 To quantify information content, responses for each item were converted into Shannon's
123 entropy (H) as a measure of information richness (**Figure 1A bottom**). With no significant
124 gender differences observed in both gesture ($t(20) = 0.21, p = 0.84$) and speech ($t(20) = 0.52,$
125 $p = 0.61$), responses were aggregated across genders, resulting in 60 answers per item
126 (**Appendix Table 2**). Here, $p(x_i)$ and $p(y_i)$ represent the distribution of 60 answers for a given
127 gesture (**Appendix Table 2B**) and speech (**Appendix Table 2A**), respectively. High entropy
128 indicates diverse answers, reflecting broad representation, while low entropy suggests

129 focused lexical recognition for a specific item (**Figure 2B**). The joint entropy computation for
130 gesture and speech, represented by $H(x_i, y_i)$, involved amalgamating datasets of gesture and
131 speech responses to depict their combined distributions. For specific gesture-speech
132 combinations, equivalence between the joint entropy and the sum of individual entropies
133 (gesture or speech) indicates absence of overlap in response sets. Conversely, significant
134 overlap, denoted by a considerable number of shared responses between gesture and
135 speech datasets, leads to a noticeable discrepancy between joint entropy and the sum of
136 gesture and speech entropies. This quantification of gesture-speech overlap was
137 operationalized by subtracting the joint entropy of gesture-speech from the combined
138 entropies of gesture and speech, indexed by Mutual Information (MI) (see **Appendix Table**
139 **2C**). Elevated MI values thus signify substantial overlap, indicative of a robust mutual
140 interaction between gesture and speech. The quantitative information for each stimulus,
141 including gesture entropy, speech entropy, joint entropy, and MI are displayed in **Appendix**
142 **Table 3.**

143 To accurately assess whether entropy/MI corresponds to stepped neural changes, the
144 current study aggregated neural responses (Non-invasive brain stimulation (NIBS) inhibition
145 effect or ERP amplitude) with identical entropy or MI values prior to conducting correlational
146 analyses.

147 **Experimental procedure**

148 Adopting a semantic priming paradigm of gestures onto speech^{16,32}, speech onset was set to
149 be at the DP of each accompanying gesture. An irrelevant factor of gender congruency (e.g.,
150 a man making a gesture combined with a female voice) was created^{27,28,39}. This involved
151 aligning the gender of the voice with the corresponding gender of the gesture in either a
152 congruent (e.g., male voice paired with a male gesture) or incongruent (e.g., male voice
153 paired with a female gesture) manner. This approach served as a direct control mechanism,
154 facilitating the investigation of the automatic and implicit semantic interplay between gesture
155 and speech³⁹. In light of previous findings indicating a distinct TMS-disruption effect on the
156 semantic congruency of gesture-speech interactions²⁸, both semantically congruent and
157 incongruent pairs were included in Experiment 1 and Experiment 2. Experiment 3, conversely,

158 exclusively utilized semantically congruent pairs to elucidate ERP metrics indicative of
159 nuanced semantic progression.

160 Gesture–speech pairs were presented randomly using Presentation software
161 (www.neurobs.com). Participants underwent Experiment 1, comprising 480 gesture-speech
162 pairs, across three separate sessions spaced one week apart for each participant. In each
163 session, participants received one of three stimulation types (Anodal, Cathodal, or Sham).
164 Experiment 2 consisted of 800 pairs and was conducted across 15 blocks over three days,
165 with one week between sessions. The order of stimulation site and time window (TW) was
166 counterbalanced using a Latin square design. Experiment 3, comprising 80 gesture-speech
167 pairs, was completed in a single-day session. Participants were asked to look at the screen
168 but respond with both hands as quickly and accurately as possible merely to the gender of the
169 voice they heard. The RT and the button being pressed were recorded. The experiment
170 started with a fixation cross presented on the center of the screen, which lasted for 0.5-1.5
171 sec.

172

173 **Experiment 1: HD-tDCS protocol and data analysis**

174 HD-tDCS protocol employed a constant current stimulator (The Starstim 8 system) delivering
175 stimulation at an intensity of 2000mA. A 4 * 1 ring-based electrode montage was utilized,
176 comprising a central electrode (stimulation) positioned directly over the target cortical area
177 and four return electrodes encircling it to provide focused stimulation. For targeting the left
178 IFG at Montreal Neurological Institute (MNI) coordinates (-62, 16, 22), electrode F7 was
179 selected as the optimal cortical projection site⁴⁰, with the four return electrodes placed on
180 AF7, FC5, F9, and FT9. For stimulation of the pMTG at coordinates (-50, -56, 10), TP7 was
181 identified as the cortical projection site⁴⁰, with return electrodes positioned on C5, P5, T9, and
182 P9. The stimulation parameters included a 20-minute duration with a 5-second fade-in and
183 fade-out for both Anodal and Cathodal conditions. The Sham condition involved a 5-second
184 fade-in followed by only 30 seconds of stimulation, then 19'20 minutes of no stimulation, and
185 finally a 5-second fade-out (**Figure 1B**). Stimulation was controlled using NIC software, with
186 participants blinded to the stimulation conditions.

187 All incorrect responses (702 out of the total number of 24960, 2.81% of trials) were
188 excluded. To eliminate the influence of outliers, a 2SD trimmed mean for every participant in
189 each session was also calculated. Our present analysis focused on Pearson correlations
190 between the interruption effects of HD-tDCS (active tDCS minus sham tDCS) on the semantic
191 congruency effect (difference in reaction time between semantic incongruent and semantic
192 congruent pairs) and the variables of gesture entropy, speech entropy, or MI. This
193 methodology seeks to determine whether the neural activity within the left IFG and pMTG is
194 gradually affected by varying levels of gesture and speech information during integration, as
195 quantified by entropy and MI.

196

197 **Experiment 2: TMS protocol and data analysis**

198 At an intensity of 50% of the maximum stimulator output, double-pulse TMS was delivered via
199 a 70 mm figure-eight coil using a Magstim Rapid² stimulator (Magstim, UK) over either the left
200 IFG in TW3 (-40~0 ms in relative to speech identification point (IP)) and TW6 (80~120 ms,) or
201 the left pMTG in TW1 (-120 ~ -80 ms), TW2 (-80 ~ -40 ms) and TW7 (120~160 ms). Among
202 the TWs that covering the period of gesture-speech integration, those that showed a TW-
203 selective disruption of gesture-speech integration were selected²⁸ (**Figure 1C**).

204 High-resolution (1 × 1 × 0.6 mm) T1-weighted MRI scans were obtained using a Siemens
205 3T Trio/Tim Scanner for image-guided TMS navigation. Frameless stereotaxic procedures
206 (BrainSight 2; Rogue Research) allowed real-time stimulation monitoring. To ensure precision,
207 individual anatomical images were manually registered by identifying the anterior and
208 posterior commissures. Subject-specific target regions were defined using trajectory markers
209 in the MNI coordinate system. Vertex was used as control.

210 All incorrect responses (922 out of the total number of 19200, 4.8% of trials) were
211 excluded. We focused our analysis on Pearson correlations of the TMS interruption effects
212 (active TMS minus vertex TMS) of the semantic congruency effect with the gesture entropy,
213 speech entropy or MI. By doing this, we can determine how the time-sensitive contribution of
214 the left IFG and pMTG to gesture–speech integration was affected by gesture and speech
215 information distribution. FDR correction was applied for multiple comparisons.

216 **Experiment 3: Electroencephalogram (EEG) recording and data analysis**

217 EEG were recorded from 48 Ag/AgCl electrodes mounted in a cap according to the 10-20
218 system⁴¹, amplified with a PORTI-32/MREFA amplifier (TMS International B.V., Enschede,
219 NL) and digitized online at 500 Hz (bandpass, 0.01-70 Hz). EEGLAB, a MATLAB toolbox, was
220 used to analyze the EEG data⁴². Vertical and horizontal eye movements were measured with
221 4 electrodes placed above the left eyebrow, below the left orbital ridge and at bilateral
222 external canthus. All electrodes were referenced online to the left mastoid. Electrode
223 impedance was maintained below 5 KΩ. The average of the left and right mastoids was used
224 for re-referencing. A high-pass filter with a cutoff of 0.05 Hz and a low-pass filter with a cutoff
225 of 30 Hz were applied. Semi-automated artifact removal, including independent component
226 analysis (ICA) for identifying components of eye blinks and muscle activity, was performed
227 (**Figure 1D**). Participants with rejected trials exceeding 30% of their total were excluded from
228 further analysis.

229 All incorrect responses were excluded (147 out of 1760, 8.35% of trials). To eliminate the
230 influence of outliers, a 2 SD trimmed mean was calculated for every participant in each
231 condition. Data were epoched from the onset of speech and lasted for 1000 ms. To ensure a
232 clean baseline with no stimulus presented, a 200 ms pre-stimulus baseline correction was
233 applied before gesture onset.

234 To objectively identify the time windows of activated components, grand-average ERPs at
235 electrode Cz were compared between the higher ($\geq 50\%$) and lower ($< 50\%$) halves for gesture
236 entropy (**Figure 5A1**), speech entropy (**Figure 5B1**), and MI (**Figure 5C1**). Consequently,
237 four ERP components were predetermined: the P1 effect observed within the time window of
238 0-100 ms^{33,34}, the N1-P2 effect observed between 150-250ms^{33,34}, the N400 within the
239 interval of 250-450ms^{19,34,35}, and the LPC spanning from 550-1000ms^{36,37}. Additionally, seven
240 regions-of-interest (ROIs) were defined in order to locate the modulation effect on each ERP
241 component: left anterior (LA): F1, F3, F5, FC1, FC3, and FC5; left central (LC): C1, C3, C5,
242 CP1, CP3, and CP5; left posterior (LP): P1, P3, P5, PO3, PO5, and O1; right anterior (RA):
243 F2, F4, F6, FC2, FC4, and FC6; right central (RC): C2, C4, C6, CP2, CP4, and CP6; right
244 posterior (RP): P2, P4, P6, PO4, PO6, and O2; and midline electrodes (ML): Fz, FCz, Cz, Pz,

245 Oz, and CPz⁴³.

246 Subsequently, cluster-based permutation tests⁴⁴ in Fieldtrip was further used to determine
247 the significant clusters of adjacent time points and electrodes of ERP amplitude between the
248 higher and lower halves of gesture entropy, speech entropy and MI, respectively. The
249 electrode-level type I error threshold was set to 0.025. Cluster-level statistic was estimated
250 through 5000 Monte Carlo simulations, where the cluster-level statistic is the sum of T-values
251 for each stimulus within a cluster. The cluster-level type I error threshold was set to 0.05.
252 Clusters with a p-value less than the critical alpha-level are considered to be conditionally
253 different.

254 Paired t-tests were conducted to compare the lower and upper halves of each information
255 model for the averaged amplitude within each ROI or cluster across the four ERP time
256 windows, separately. Pearson correlations were calculated between each model value and
257 each averaged ERP amplitude in each ROI or cluster, individually. False discovery rate (FDR)
258 correction was applied for multiple comparisons.

259

260 **Results**

261 **Experiment 1: Modulation of left pMTG and IFG engagement by gradual changes in 262 gesture-speech semantic information**

263 In the IFG, one-way ANOVA examining the effects of three tDCS conditions (Anodal,
264 Cathodal, or Sham) on semantic congruency (RT (semantic incongruent) – RT (semantic
265 congruent)) demonstrated a significant main effect of stimulation condition ($F(2, 75) = 3.673$,
266 $p = 0.030$, $\eta^2 = 0.089$). Post hoc paired t-tests indicated a significantly reduced semantic
267 congruency effect between the Cathodal condition and the Sham condition ($t(26) = -3.296$, p
268 = 0.003, 95% CI = [-11.488, 4.896]) (**Figure 3A left**). Subsequent Pearson correlation
269 analysis revealed that the reduced semantic congruency effect was progressively associated
270 with the MI, evidenced by a significant correlation between the Cathodal-tDCS effect
271 (Cathodal-tDCS minus Sham- tDCS) and MI ($r = -0.595$, $p = 0.007$, 95% CI = [-0.995, -0.195])
272 (**Figure 3B**).

273 Similarly, in the pMTG, a one-way ANOVA assessing the effects of three tDCS conditions

274 on semantic congruency also revealed a significant main effect of stimulation condition ($F(2,$
275 $75) = 3.250, p = 0.044, \eta^2 = 0.080$). Subsequent paired t-tests identified a significantly
276 reduced semantic congruency effect between the Cathodal condition and the Sham condition
277 ($t(25) = -2.740, p = 0.011, 95\% \text{ CI} = [-11.915, 6.435]$) (**Figure 3A right**). Moreover, a
278 significant correlation was observed between the Cathodal-tDCS effect and MI ($r = -0.457, p =$
279 $0.049, 95\% \text{ CI} = [-0.900, -0.014]$) (**Figure 3B**). RTs of congruent and incongruent trials of IFG
280 and pMTG in each of the stimulation conditions were shown in **Appendix Table 4A**.

281
282 **Experiment 2: Time-sensitive modulation of left pMTG and IFG engagements by**
283 **gradual changes in gesture-speech semantic information**
284 A 2 (TMS effect: active - Vertex) \times 5 (TW) ANOVA on semantic congruency revealed a
285 significant interaction between TMS effect and TW ($F(3.589, 82.538) = 3.273, p = 0.019, \eta^2 =$
286 0.125). Further t-tests identified a significant TMS effect over the pMTG in TW1 ($t(23) = -3.068, p = 0.005, 95\% \text{ CI} = [-6.838, 0.702]$), TW2 ($t(23) = -2.923, p = 0.008, 95\% \text{ CI} = [-6.490, 0.644]$), and TW7 ($t(23) = -2.005, p = 0.047, 95\% \text{ CI} = [-5.628, 1.618]$). In contrast, a
287 significant TMS effect over the IFG was found in TW3 ($t(23) = -2.335, p = 0.029, 95\% \text{ CI} = [-5.928, 1.258]$), and TW6 ($t(23) = -4.839, p < 0.001, 95\% \text{ CI} = [-7.617, -2.061]$) (**Figure 4A**).
288 Raw RTs of congruent and incongruent trials were shown in **Appendix Table 4B**.

289 Additionally, a significant negative correlation was found between the TMS effect (a more
290 negative TMS effect represents a stronger interruption of the integration effect) and speech
291 entropy when the pMTG was inhibited in TW2 ($r = -0.792, p = 0.004, 95\% \text{ CI} = [-1.252, -0.331]$). Meanwhile, when the IFG activity was interrupted in TW6, a significant negative
292 correlation was found between the TMS effect and gesture entropy ($r = -0.539, p = 0.014, 95\% \text{ CI} = [-0.956, -0.122]$), speech entropy ($r = -0.664, p = 0.026, 95\% \text{ CI} = [-1.255, -0.073]$),
293 and MI ($r = -0.677, p = 0.001, 95\% \text{ CI} = [-1.054, -0.300]$) (**Figure 4B**).

294
295
296
297
298
299
300 **Experiment 3: Temporal modulation of P1, N1-P2, N400 and LPC components by**
301 **gradual changes in gesture-speech semantic information**
302 Topographical maps illustrating amplitude differences between the lower and higher halves of
303 speech entropy demonstrate a central-posterior P1 amplitude (0-100 ms, **Figure 5B2**

304 **middle**). Aligning with prior findings³³, the paired t-tests demonstrated a significantly larger P1
305 amplitude within the ML ROI ($t(22) = 2.510, p = 0.020$, 95% confidence interval (CI) = [1.66,
306 3.36]) when contrasting stimuli with higher 50% speech entropy against those with lower 50%
307 speech entropy (**Figure 5B2 left**). Subsequent correlation analyses unveiled a significant
308 increase in the P1 amplitude with the rise in speech entropy within the ML ROI ($r = 0.609, p =$
309 0.047, 95% CI = [0.039, 1.179], **Figure 5B2 right**). Furthermore, a cluster of neighboring
310 time-electrode samples exhibited a significant contrast between the lower 50% and higher
311 50% of speech entropy, revealing a P1 effect spanning 16 to 78 ms at specific electrodes
312 (FC2, FCz, C1, C2, Cz, and CPz, **Figure 5B3 middle**) ($t(22) = 2.754, p = 0.004$, 95%
313 confidence interval (CI) = [1.65, 3.86], **Figure 5B3 left**), with a significant correlation with
314 speech entropy ($r = 0.636, p = 0.035$, 95% CI = [0.081, 1.191], **Figure 5B3 right**).

315 Additionally, topographical maps comparing the lower 50% and higher 50% gesture
316 entropy revealed a frontal N1-P2 amplitude (150-250 ms, **Figure 5A2 middle**). In accordance
317 with previous findings on bilateral frontal N1-P2 amplitude³³, paired t-tests displayed a
318 significantly larger amplitude for stimuli with lower 50% gesture entropy than with higher 50%
319 entropy in both ROIs of LA ($t(22) = 2.820, p = 0.011$, 95% CI = [2.21, 3.43]) and RA ($t(22) =$
320 2.223, $p = 0.038$, 95% CI = [1.56, 2.89]) (**Figure 5A2 left**). Moreover, a negative correlation
321 was found between N1-P2 amplitude and gesture entropy in both ROIs of LA ($r = -0.465, p =$
322 0.039, 95% CI = [-0.87, -0.06]) and RA ($r = -0.465, p = 0.039, 95% CI = [-0.88, -0.05]$) (**Figure**
323 **5A2 right**). Additionally, through a cluster-permutation test, the N1-P2 effect was identified
324 between 184 to 202 ms at electrodes FC4, FC6, C2, C4, C6, and CP4 (**Figure 5A3 middle**)
325 ($t(22) = 2.638, p = 0.015$, 95% CI = [1.79, 3.48], (**Figure 5A3 left**)), exhibiting a significant
326 correlation with gesture entropy ($r = -0.485, p = 0.030, 95% CI = [-0.91, -0.06]$, **Figure 5A3**
327 **right**).

328 Furthermore, in line with prior research⁴⁵, a left-frontal N400 amplitude (250-450 ms) was
329 discerned from topographical maps of both gesture entropy (**Figure 5A4 middle**) and MI
330 (**Figure 5C2 middle**). Notably, a larger N400 amplitude in the LA ROI was consistently
331 observed for stimuli with lower 50% values compared to those with higher 50% values, both
332 for gesture entropy ($t(22) = 2.455, p = 0.023$, 95% CI = [1.95, 2.96], **Figure 5A4 left**) and MI
333 ($t(22) = 3.00, p = 0.007$, 95% CI = [2.54, 3.46], **Figure 5C2 left**). Concurrently, a negative

334 correlation was noted between the N400 amplitude and both gesture entropy ($r = -0.480, p =$
335 $0.032, 95\% \text{ CI} = [-0.94, -0.03]$, **Figure 5A4 right**) and MI ($r = -0.504, p = 0.028, 95\% \text{ CI} = [-$
336 $0.97, -0.04]$, **Figure 5C2 right**) in the LA ROI.

337 The identified clusters with the N400 effect for gesture entropy (282 – 318 ms at
338 electrodes FC1, FCz, C1, and Cz, **Figure 5A5 middle**) ($t(22) = 2.828, p = 0.010, 95\% \text{ CI} =$
339 $[2.02, 3.64]$, **Figure 5A5 left**) exhibited significant correlation between the N400 amplitude
340 and gesture entropy ($r = -0.445, p = 0.049, 95\% \text{ CI} = [-0.88, -0.01]$, **Figure 5A5 right**).
341 Similarly, the cluster with the N400 effect for MI (294 – 306 ms at electrodes F1, F3, Fz, FC1,
342 FC3, FCz, and C1, **Figure 5C3 middle**) ($t(22) = 2.461, p = 0.023, 95\% \text{ CI} = [1.62, 3.30]$,
343 **Figure 5C3 left**) also exhibited significant correlation ($r = -0.569, p = 0.011, 95\% \text{ CI} = [-0.98, -$
344 $0.16]$, **Figure 5C5 right**).

345 Finally, consistent with previous findings³³, an anterior LPC effect (550-1000 ms) was
346 observed in topographical maps comparing stimuli with lower and higher 50% speech entropy
347 (**Figure 5B4 middle**). The reduced LPC amplitude was evident in the paired t-tests
348 conducted in ROIs of LA ($t(22) = 2.614, p = 0.016, 95\% \text{ CI} = [1.88, 3.35]$); LC ($t(22) = 2.592, p$
349 $= 0.017, 95\% \text{ CI} = [1.83, 3.35]$); RA ($t(22) = 2.520, p = 0.020, 95\% \text{ CI} = [1.84, 3.24]$); and ML
350 ($t(22) = 2.267, p = 0.034, 95\% \text{ CI} = [1.44, 3.10]$) (**Figure 5B4 left**). Simultaneously, a marked
351 negative correlation with speech entropy was evidenced in ROIs of LA ($r = -0.836, p = 0.001,$
352 $95\% \text{ CI} = [-1.26, -0.42]$); LC ($r = -0.762, p = 0.006, 95\% \text{ CI} = [-1.23, -0.30]$); RA ($r = -0.774, p$
353 $= 0.005, 95\% \text{ CI} = [-1.23, -0.32]$) and ML ($r = -0.730, p = 0.011, 95\% \text{ CI} = [-1.22, -0.24]$)
354 (**Figure 5B4 right**). Additionally, a cluster with the LPC effect (644 - 688 ms at electrodes Cz,
355 CPz, P1, and Pz, **Figure 5B5 middle**) ($t(22) = 2.754, p = 0.012, 95\% \text{ CI} = [1.50, 4.01]$,
356 **Figure 5B5 left**) displayed a significant correlation with speech entropy ($r = -0.699, p = 0.017,$
357 $95\% \text{ CI} = [-1.24, -0.16]$, **Figure 5B5 right**).

358

359 **Discussion**

360 Through mathematical quantification of gesture and speech information using entropy and
361 mutual information (MI), we examined the functional pattern and dynamic neural structure
362 underlying multisensory semantic integration. Our results, for the first time, unveiled a

363 progressive inhibition of IFG and pMTG by HD-tDCS as the degree of gesture-speech
364 interaction, indexed by MI, advanced (**Experiment 1**). Additionally, the gradual neural
365 engagement was found to be time-sensitive and staged, as evidenced by the selectively
366 interrupted time windows (**Experiment 2**) and the distinct correlated ERP components
367 (**Experiment 3**), which were modulated by top-down gesture constrain (gesture entropy) and
368 bottom-up speech. These findings significantly expand our understanding of the cortical
369 foundations of statistically regularized multisensory semantic information.

370 It is widely acknowledged that a single, amodal system mediates the interactions among
371 perceptual representations of different modalities^{11,12,46}. Moreover, observations have
372 suggested that semantic dementia patients experience increasing overregularization of their
373 conceptual knowledge due to the progressive deterioration of this amodal system⁴⁷.
374 Consequently, a graded function and structure of the transmodal 'hub' representational
375 system has been proposed^{12,48,49}. In line with this, through the use of NIBS techniques such
376 as HD-tDCS and TMS, the present study provides compelling evidence that the integration
377 hubs of gesture and speech, namely the pMTG and IFG, function in a graded manner. This is
378 supported by the progressive inhibition effect observed in these brain areas as the entropy
379 and mutual information of gesture and speech advances.

380 Moreover, by dividing the potential integration period into eight TWs relative to the
381 speech IP and administering inhibitory double-pulse TMS across each TW, the current study
382 attributed the gradual TMS-selective regional inhibition to distinct information sources. In the
383 early pre-lexical TW2 of gesture-speech integration, the suppression effect observed in the
384 pMTG was correlated with speech entropy. Conversely, in the later post-lexical TW6, the IFG
385 interruption effect was influenced by both gesture entropy, speech entropy, and their MI. A
386 dual-stage pMTG-IFG-pMTG neurocircuit loop during gesture-speech integration has been
387 proposed previous²⁸. As an extension, the present study unveils a staged accumulation of
388 engagement within the neurocircuit linking the transmodal regions of pMTG and IFG, arising
389 from distinct contributors of information.

390 Furthermore, we disentangled the sub-processes of integration with high-temporal ERPs,
391 when representations of gesture and speech were variously presented. Early P1-N1 and P2
392 sensory effects linked to perception and attentional processes^{34,50} was comprehended as a

393 reflection of the early audiovisual gesture-speech integration in the sensory-perceptual
394 processing chain⁵¹. Note that a semantic priming paradigm was adopted here to create a top-
395 down prediction of gesture over speech. The observed positive correlation of the P1 effect
396 with speech entropy and the negative correlation of the N1-P2 effect with gesture entropy
397 suggest that the early interaction of gesture-speech information was modulated by both top-
398 down gesture prediction and bottom-up speech processing. Additionally, the lexico-semantic
399 effect of the N400 and the LPC were differentially mediated by top-down gesture prediction,
400 bottom-up speech encoding and their interaction: the N400 was negatively correlated with
401 both the gesture entropy and MI, but the LPC was negatively correlated only with the speech
402 entropy. Nonetheless, activation of representation is modulated progressively. The input
403 stimuli would activate a dynamically distributed neural landscape, the state of which
404 constructs gradually as measured by entropy and MI and correlates with the
405 electrophysiological signals (N400 and LPC) which indicate the change of lexical
406 representation. Consistent with recent account in multisensory information processing^{4,52}, our
407 findings further confirm that the changed activation pattern can be induced from directions of
408 both top-down and bottom-up gesture-speech processing.

409 Considering the close alignment of the ERP components with the TWs of TMS effect, it is
410 reasonable to speculate the ERP components with the cortical involvements (**Figure 6**).
411 Consequently, referencing the recurrent neurocircuit connecting the left IFG and pMTG for
412 semantic unification⁵³, we extended the previously proposed two-stage gesture-speech
413 integration circuit²⁸ into sequential steps. First, bottom-up speech processing mapping
414 acoustic signal to its lexical representation was performed from the STG/S to the pMTG. The
415 larger speech entropy was, the greater effort was made during the matching of the acoustic
416 input with its stored lexical representation, thus leading to a larger involvement of the pMTG
417 at pre-lexical stage (TW2) and a larger P1 effect (**Figure 6①**). Second, the gesture
418 representation was activated in the pMTG and further exerted a top-down modulation over the
419 phonological processing of speech in the STG/S⁵⁴. The higher certainty of gesture, a larger
420 modulation of gesture would be made upon speech, as indexed by a smaller gesture entropy
421 with an enhanced N1-P2 amplitude (**Figure 6②**). Third, information was relayed from the
422 pMTG to the IFG for sustained activation, during which a semantic constraint from gesture

423 has been made on the semantic retrieval of speech. Greater TMS effect over the IFG at post-
424 lexical stage (TW6) accompanying with a reduced N400 amplitude were found with the
425 increase of gesture entropy, when the representation of gesture was wildly distributed and the
426 constrain over the following speech was weak (**Figure 6③**). Fourth, the activated speech
427 representation was compared with that of the gesture in the IFG. At this stage, the larger
428 overlapped neural populations activated by gesture and speech as indexed by a larger MI, a
429 greater TMS disruption effect of the IFG and a reduced N400 amplitude indexing easier
430 integration and less semantic conflict were observed (**Figure 6④**). Last, the activated speech
431 representation would disambiguate and reanalyze the semantic information that was stored in
432 the IFG and further unify into a coherent comprehension in the pMTG^{17,55}. The more uncertain
433 information being provided by speech, as indicated by an increased speech entropy, a
434 stronger reweighting effect was made over the activated semantic information, resulting in a
435 strengthened involvement of the IFG as well as a reduced LPC amplitude (**Figure 6⑤**).

436 Note that the sequential cortical involvement and ERP components discussed above are
437 derived from a deliberate alignment of speech onset with gesture DP, creating an artificial
438 priming effect with gesture semantically preceding speech. Caution is advised when
439 generalizing these findings to the spontaneous gesture-speech relationships, although
440 gestures naturally precede speech⁵⁶.

441 Limitations exist. ERP components and cortical engagements were linked through
442 intermediary variables of entropy and MI. Dissociations were observed between ERP
443 components and cortical engagement. Importantly, there is no direct evidence of the brain
444 structures underpinning the corresponding ERPs, necessitating clarification in future studies.
445 Additionally, not all influenced TWs exhibited significant associations with entropy and MI.
446 While HD-tDCS and TMS may impact functionally and anatomically connected brain
447 regions^{43,44}, the graded functionality of every disturbed period is not guaranteed. Caution is
448 warranted in interpreting the causal relationship between NIBS inhabitation effects and
449 information-theoretic metrics (entropy and MI). Finally, the current study incorporated a
450 restricted set of entropy and MI measures. The generalizability of the findings should be
451 assessed in future studies using a more extensive range of matrices.

452 In summary, utilizing information-theoretic complexity metrics such as entropy and mutual
453 information (MI), our study demonstrates that multisensory semantic processing, involving
454 gesture and speech, gives rise to dynamically evolving representations through the interplay
455 between gesture-primed prediction and speech presentation. This process correlates with the
456 progressive engagement of the pMTG-IFG-pMTG circuit and various ERP components.
457 These findings significantly advancing our understanding of the neural mechanisms
458 underlying multisensory semantic integration.

WITHDRAWN
see manuscript DOI for details

459 **Acknowledgments**

460 This research was supported by grants from the STI 2030—Major Projects 2021ZD0201500,
461 the National Natural Science Foundation of China (31822024, 31800964), the Scientific
462 Foundation of Institute of Psychology, Chinese Academy of Sciences (E2CX3625CX), and the
463 Strategic Priority Research Program of Chinese Academy of Sciences (XDB32010300).

464

465 **Author contributions**

466 Conceptualization, W.Y.Z. and Y.D.; Investigation, W.Y.Z. and Z.Y.L.; Formal Analysis, W.Y.Z.
467 and Z.Y.L.; Methodology, W.Y.Z. and Z.Y.L.; Validation, Z.Y.L. and X.L.; Visualization, W.Y.Z.
468 and Z.Y.L. and X.L.; Funding Acquisition, W.Y.Z. and Y.D.; Supervision, Y.D.; Project
469 administration, Y.D.; Writing – Original Draft, W.Y.Z.; Writing – Review & Editing, W.Y.Z.,
470 Z.Y.L., X.L., and Y.D.

471

472 **Competing interests**

473 The authors declare no competing interests.

474

475 **References**

476 1. Damasio, H., Grabowski, T.J., Tranel, D., Hichwa, R.D., and Damasio, A.R. (1996). A
477 neural basis for lexical retrieval. *Nature* *380*, 499-505. DOI 10.1038/380499a0.

478 2. Patterson, K., Nestor, P.J., and Rogers, T.T. (2007). Where do you know what you
479 know? The representation of semantic knowledge in the human brain. *Nature*
480 *Reviews Neuroscience* *8*, 976-987. 10.1038/nrn2277.

481 3. Brennan, J.R., Stabler, E.P., Van Wagenen, S.E., Luh, W.M., and Hale, J.T. (2016).
482 Abstract linguistic structure correlates with temporal activity during naturalistic
483 comprehension. *Brain and Language* *157*, 81-94. 10.1016/j.bandl.2016.04.008.

484 4. Benetti, S., Ferrari, A., and Pavani, F. (2023). Multimodal processing in face-to-face
485 interactions: A bridging link between psycholinguistics and sensory neuroscience.
486 *Front Hum Neurosci* *17*, 1108354. 10.3389/fnhum.2023.1108354.

487 5. Armeni, K., Willems, R.M., and Frank, S.L. (2017). Probabilistic language models in
488 cognitive neuroscience: Promises and pitfalls. *Neurosci Biobehav R* *83*, 579-588.
489 10.1016/j.neubiorev.2017.09.001.

490 6. Leonard, M.K., Bouchard, K.E., Tang, C., and Chang, E.F. (2015). Dynamic encoding
491 of speech sequence probability in human temporal cortex. *Journal of Neuroscience*
492 *35*, 7203-7214. 10.1523/JNEUROSCI.4100-14.2015.

493 7. Goldstein, A., Zada, Z., Buchnik, E., Schain, M., Price, A., Aubrey, B., Nastase, S.A.,
494 Feder, A., Emanuel, D., Cohen, A., et al. (2022). Shared computational principles for
495 language processing in humans and deep language models. *Nature Neuroscience* *25*,
496 369-+. 10.1038/s41593-022-01026-4.

497 8. Heilbron, M., Armeni, K., Schoffelen, J.-M., Hagoort, P., and de Lange, F.P. (2022). A
498 hierarchy of linguistic predictions during natural language comprehension. *P Natl
499 Acad Sci USA* *119*, e2201968119-e2201968119. 10.1073/pnas.2201968119.

500 9. Kuperberg, G.R., and Jaeger, T.F. (2016). What do we mean by prediction in
501 language comprehension? *Lang Cogn Neurosci* *31*, 32-59.
502 10.1080/23273798.2015.1102299.

503 10. Ralph, M.A.L. (2014). Neurocognitive insights on conceptual knowledge and its
504 breakdown. *Philos T R Soc B* *369*. ARTN 20120392 10.1098/rstb.2012.0392.

505 11. Rogers, T.T., Ralph, M.A.L., Garrard, P., Bozeat, S., McClelland, J.L., Hodges, J.R.,
506 and Patterson, K. (2004). Structure and deterioration of semantic memory: A
507 neuropsychological and computational investigation. *Psychological Review* *111*, 205-
508 235. 10.1037/0033-295x.111.1.205.

509 12. Ralph, M.A.L., Jefferies, E., Patterson, K., and Rogers, T.T. (2017). The neural and
510 computational bases of semantic cognition. *Nature Reviews Neuroscience* *18*, 42-55.
511 10.1038/nrn.2016.150.

512 13. Holler, J., and Levinson, S.C. (2019). Multimodal language processing in human
513 communication. *Trends in Cognitive Sciences* *23*, 639-652.
514 10.1016/j.tics.2019.05.006.

515 14. Hostetter, A., and Mainela-Arnold, E. (2015). Gestures occur with spatial and Motoric
516 knowledge: It's more than just coincidence. *Perspectives on Language Learning and
517 Education* *22*, 42-49. doi:10.1044/lle22.2.42.

518 15. McNeill, D. (2005). *Gesture and thought* (University of Chicago Press).

519 10.7208/chicago/9780226514642.001.0001.

520 16. Kendon, A. (1997). Gesture. *Annu Rev Anthropol* *26*, 109-128.
10.1146/annurev.anthro.26.1.109.

521 17. Hagoort, P. (2005). On broca, brain, and binding: a new framework. *Trends in Cognitive Sciences* *9*, 416-423. 10.1016/j.tics.2005.07.004.

522 18. Hagoort, P., Hald, L., Bastiaansen, M., and Petersson, K.M. (2004). Integration of word meaning and world knowledge in language comprehension. *Science* *304*, 438-441. 10.1126/science.1095455.

523 19. Ozyurek, A., Willems, R.M., Kita, S., and Hagoort, P. (2007). On-line integration of semantic information from speech and gesture: Insights from event-related brain potentials. *J Cognitive Neurosci* *19*, 605-616. 10.1162/jocn.2007.19.4.605.

524 20. Willems, R.M., Ozyurek, A., and Hagoort, P. (2009). Differential roles for left inferior frontal and superior temporal cortex in multimodal integration of action and language. *Neuroimage* *47*, 1992-2004. 10.1016/j.neuroimage.2009.05.066.

525 21. Drijvers, L., Jensen, O., and Spaak, E. (2021). Rapid invisible frequency tagging reveals nonlinear integration of auditory and visual information. *Human Brain Mapping* *42*, 1138-1152. 10.1002/hbm.25282.

526 22. Drijvers, L., and Ozyurek, A. (2018). Native language status of the listener modulates the neural integration of speech and iconic gestures in clear and adverse listening conditions. *Brain and Language* *177*, 7-17. 10.1016/j.bandl.2018.01.003.

527 23. Drijvers, L., van der Plas, M., Ozyurek, A., and Jensen, O. (2019). Native and non-native listeners show similar yet distinct oscillatory dynamics when using gestures to

541 access speech in noise. *Neuroimage* 194, 55-67. 10.1016/j.neuroimage.2019.03.032.

542 24. Holle, H., and Gunter, T.C. (2007). The role of iconic gestures in speech

543 disambiguation: ERP evidence. *J Cognitive Neurosci* 19, 1175-1192.

544 10.1162/jocn.2007.19.7.1175.

545 25. Kita, S., and Ozyurek, A. (2003). What does cross-linguistic variation in semantic

546 coordination of speech and gesture reveal?: Evidence for an interface representation

547 of spatial thinking and speaking. *J Mem Lang* 48, 16-32. 10.1016/S0749-

548 596x(02)00505-3.

549 26. Bernardis, P., and Gentilucci, M. (2006). Speech and gesture share the same

550 communication system. *Neuropsychologia* 44, 178-190.

551 10.1016/j.neuropsychologia.2005.05.007.

552 27. Zhao, W.Y., Riggs, K., Schindler, I., and Holle, H. (2018). Transcranial magnetic

553 stimulation over left inferior frontal and posterior temporal cortex disrupts gesture-

554 speech integration. *Journal of Neuroscience* 38, 1891-1900. 10.1523/Jneurosci.1748-

555 17.2017.

556 28. Zhao, W., Li, Y., and Du, Y. (2021). TMS reveals dynamic interaction between inferior

557 frontal gyrus and posterior middle temporal gyrus in gesture-speech semantic

558 integration. *The Journal of Neuroscience*, 10356-10364. 10.1523/jneurosci.1355-

559 21.2021.

560 29. Shannon, C.E. (1948). A mathematical theory of communication. *Bell Syst Tech J* 27,

561 379-423. 10.1002/j.1538-7305.1948.tb01338.x.

562 30. Tremblay, P., Deschamps, I., Baroni, M., and Hasson, U. (2016). Neural sensitivity to

563 syllable frequency and mutual information in speech perception and production.

564 *Neuroimage* 136, 106-121. 10.1016/j.neuroimage.2016.05.018.

565 31. Bikson, M., Inoue, M., Akiyama, H., Deans, J.K., Fox, J.E., Miyakawa, H., and

566 Jefferys, J.G.R. (2004). Effects of uniform extracellular DC electric fields on

567 excitability in rat hippocampal slices. *J Physiol-London* 557, 175-190.

568 10.1113/jphysiol.2003.055772.

569 32. Pitcher, D., Walsh, V., Yovel, G., and Duchaine, B. (2007). TMS evidence for the

570 involvement of the right occipital face area in early face processing. *Current Biology*

571 17, 1568-1573. 10.1016/j.cub.2007.07.063.

572 33. Federmeier, K.D., Mai, H., and Kutas, M. (2005). Both sides get the point:

573 hemispheric sensitivities to sentential constraint. *Memory & Cognition* 33, 871-886.

574 10.3758/bf03193082.

575 34. Kelly, S.D., Kravitz, C., and Hopkins, M. (2004). Neural correlates of bimodal speech

576 and gesture comprehension. *Brain and Language* 89, 253-260. 10.1016/s0093-

577 934x(03)00335-3.

578 35. Wu, Y.C., and Coulson, S. (2005). Meaningful gestures: Electrophysiological indices

579 of iconic gesture comprehension. *Psychophysiology* 42, 654-667. 10.1111/j.1469-

580 8986.2005.00356.x.

581 36. Fritz, I., Kita, S., Littlemore, J., and Krott, A. (2021). Multimodal language processing:

582 How preceding discourse constrains gesture interpretation and affects gesture

583 integration when gestures do not synchronise with semantic affiliates. *J Mem Lang*

584 117, 104191. 10.1016/j.jml.2020.104191.

585 37. Gunter, T.C., and Weinbrenner, J.E.D. (2017). When to take a gesture seriously: On
586 how we use and prioritize communicative cues. *J Cognitive Neurosci* *29*, 1355-1367.
587 10.1162/jocn_a_01125.

588 38. Oldfield, R.C. (1971). The assessment and analysis of handedness: the Edinburgh
589 inventory. *Neuropsychologia* *9*, 97-113. 10.1016/0028-3932(71)90067-4.

590 39. Kelly, S.D., Creigh, P., and Bartolotti, J. (2010). Integrating speech and iconic
591 gestures in a Stroop-like task: Evidence for automatic processing. *Journal of*
592 *Cognitive Neuroscience*
593 *22*, 683-694. 10.1162/jocn.2009.21254.

594 40. Koessler, L., Maillard, L., Benhadid, A., Vignal, J.P., Felblinger, J., Vespignani, H.,
595 and Braun, M. (2009). Automated cortical projection of EEG sensors: Anatomical
596 correlation via the international 10-10 system. *Neuroimage* *46*, 64-72.
597 10.1016/j.neuroimage.2009.02.006.

598 41. Nuwer, M.R., Comi, G., Emerson, R., Fuglsang-Frederiksen, A., Guerit, J.M., Hinrichs,
599 H., Ikeda, A., Luccas, F.J., and Rappelsberger, P. (1999). IFCN standards for digital
600 recording of clinical EEG. *The International Federation of Clinical Neurophysiology.*
601 *Electroencephalogr Clin Neurophysiol Suppl* *52*, 11-14. 10.1016/S0013-
602 4694(97)00106-5.

603 42. Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of
604 single-trial EEG dynamics including independent component analysis. *J Neurosci*
605 *Methods* *134*, 9-21. 10.1016/j.jneumeth.2003.10.009.

606 43. Habets, B., Kita, S., Shao, Z.S., Ozyurek, A., and Hagoort, P. (2011). The Role of

607 Synchrony and Ambiguity in Speech-Gesture Integration during Comprehension. J
608 Cognitive Neurosci 23, 1845-1854. 10.1162/jocn.2010.21462.

609 44. Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J.-M. (2011). FieldTrip: Open
610 Source Software for Advanced Analysis of MEG, EEG, and Invasive
611 Electrophysiological Data. Computational Intelligence and Neuroscience 2011,
612 156869. 10.1155/2011/156869.

613 45. Kutas, M., and Federmeier, K.D. (2011). Thirty Years and Counting: Finding Meaning
614 in the N400 Component of the Event-Related Brain Potential (ERP). Annual Review
615 of Psychology, Vol 62 62, 621-647. 10.1146/annurev.psych.093008.131123.

616 46. Noppeney, U. (2021). Perceptual Inference, Learning, and Attention in a Multisensory
617 World. Annual Review of Neuroscience, Vol 44, 2021 44, 449-473. 10.1146/annurev-
618 neuro-100120-085519.

619 47. Rogers, T.T., Hodges, J.R., Ralph, M.A.L., and Patterson, K. (2003). Object
620 recognition under semantic impairment: The effects of conceptual regularities on
621 perceptual decisions. Lang Cognitive Proc 18, 625-662.
622 10.1080/01690960344000053.

623 48. Krieger-Redwood, K., Wang, X., Souter, N., Gonzalez Alam, T.R.d.J., Smallwood, J.,
624 Jackson, R.L., and Jefferies, E. (2024). Graded and sharp transitions in semantic
625 function in left temporal lobe. Brain and Language 251, 105402.
626 <https://doi.org/10.1016/j.bandl.2024.105402>.

627 49. Plaut, D.C. (2002). Graded modality-specific specialisation in semantics: A
628 computational account of optic aphasia. Cognitive Neuropsychology 19, 603-639.

629 10.1080/02643290244000112.

630 50. Fadiga, L., Craighero, L., and Olivier, E. (2005). Human motor cortex excitability
631 during the perception of others' action. *Current Opinion in Neurobiology* *15*, 213-218.

632 10.1016/j.conb.2005.03.013.

633 51. Giard, M.H., and Peronnet, F. (1999). Auditory-visual integration during multimodal
634 object recognition in humans: A behavioral and electrophysiological study. *J*
635 *Cognitive Neurosci* *11*, 473-490. 10.1162/089892999563544.

636 52. Trujillo, J.P., and Holler, J. (2023). Interactionally Embedded Gestalt Principles of
637 Multimodal Human Communication. *Perspect Psychol Sci* *18*, 1136-1159.

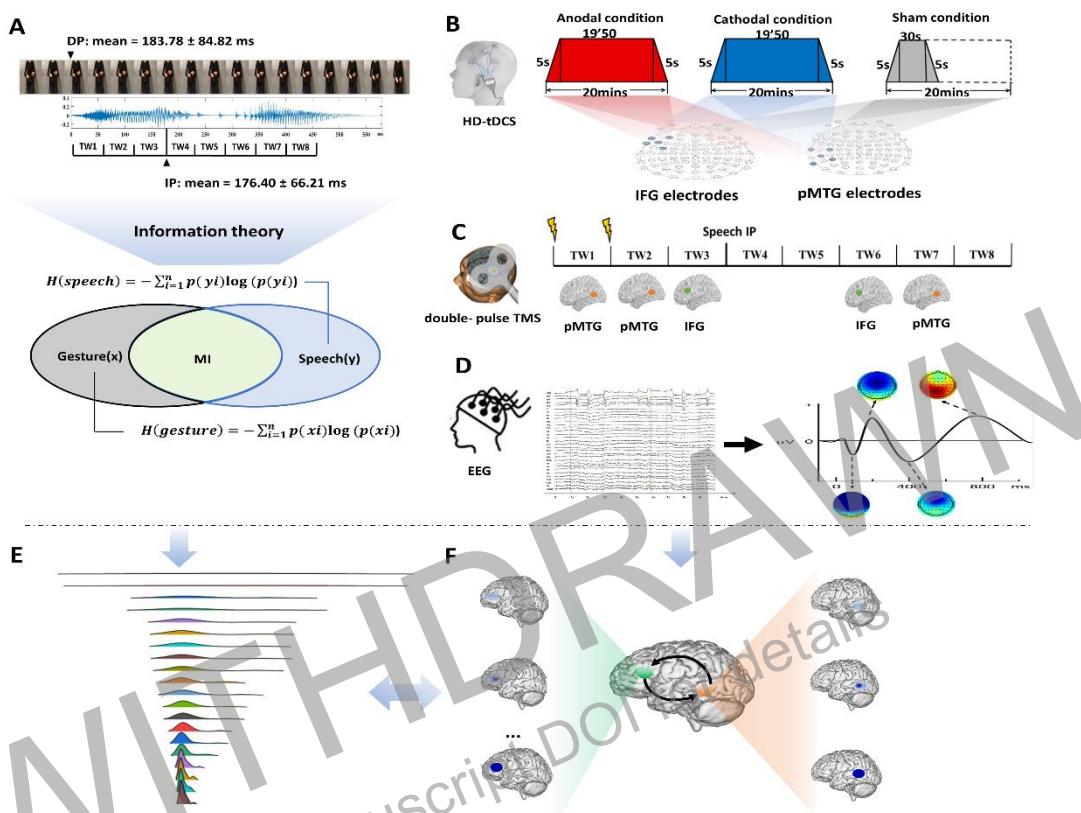
638 10.1177/17456916221141422.

639 53. Hagoort, P. (2013). MUC (Memory, Unification, Control) and beyond. *Frontiers in*
640 *Psychology* *4*, 416. 10.3389/fpsyg.2013.00416.

641 54. Bizley, J.K., Maddox, R.K., and Lee, A.K.C. (2016). Defining auditory-visual objects:
642 Behavioral tests and physiological mechanisms. *Trends in Neurosciences* *39*, 74-85.

643 10.1016/j.tins.2015.12.007.

644 55. Tesink, C.M.J.Y., Petersson, K.M., van Berkum, J.J.A., van den Brink, D., Buitelaar,
645 J.K., and Hagoort, P. (2009). Unification of speaker and meaning in language
646 comprehension: An fMRI study. *J Cognitive Neurosci* *21*, 2085-2099.


647 10.1162/jocn.2008.21161.

648 56. McNeill, D. (1992). *Hand and mind : what gestures reveal about thought* (University of
649 Chicago Press). 10.2307/1576015.

650

651

WITHDRAWN
see manuscript DOI for details

652

653 **Figure 1. Experimental design, and stimulus characteristics.**

654 **(A) Experimental stimuli.** Twenty gestures were paired with 20 relevant speech stimuli. Two
655 gating studies were executed to define the minimal length of each gesture and speech
656 required for semantic identification, namely, the discrimination point (DP) of gesture and the
657 identification point (IP) of speech. Overall, a mean of 183.78 ms (SD = 84.82) was found for
658 the DP of gestures and the IP of speech was 176.40 ms (SD = 66.21). The onset of speech
659 was set at the gesture DP. Responses for each item were assessed utilizing information-
660 theoretic complexity metrics to quantify the information content of both gesture and speech
661 during integration, employing entropy and MI.

662 **(B) Procedure of Experiment 1.** HD-tDCS, including Anodal, Cathodal, or Sham conditions,
663 was administered to the IFG or pMTG) using a 4 * 1 ring-based electrode montage. Electrode
664 F7 targeted the IFG, with return electrodes placed on AF7, FC5, F9, and FT9. For pMTG
665 stimulation, TP7 was targeted, with return electrodes positioned on C5, P5, T9, and P9.
666 Sessions lasted 20 minutes, with a 5-second fade-in and fade-out, while the Sham condition
667 involved only 30 seconds of stimulation.

668 **(C) Procedure of Experiment 2.** Eight time windows (TWs, duration = 40 ms) were
669 segmented in relative to the speech IP. Among the eight TWs, five (TW1, TW2, TW3, TW6,
670 and TW7) were chosen based on the significant results in our prior study²⁸. Double-pulse
671 TMS was delivered over each of the TW of either the pMTG or the IFG.

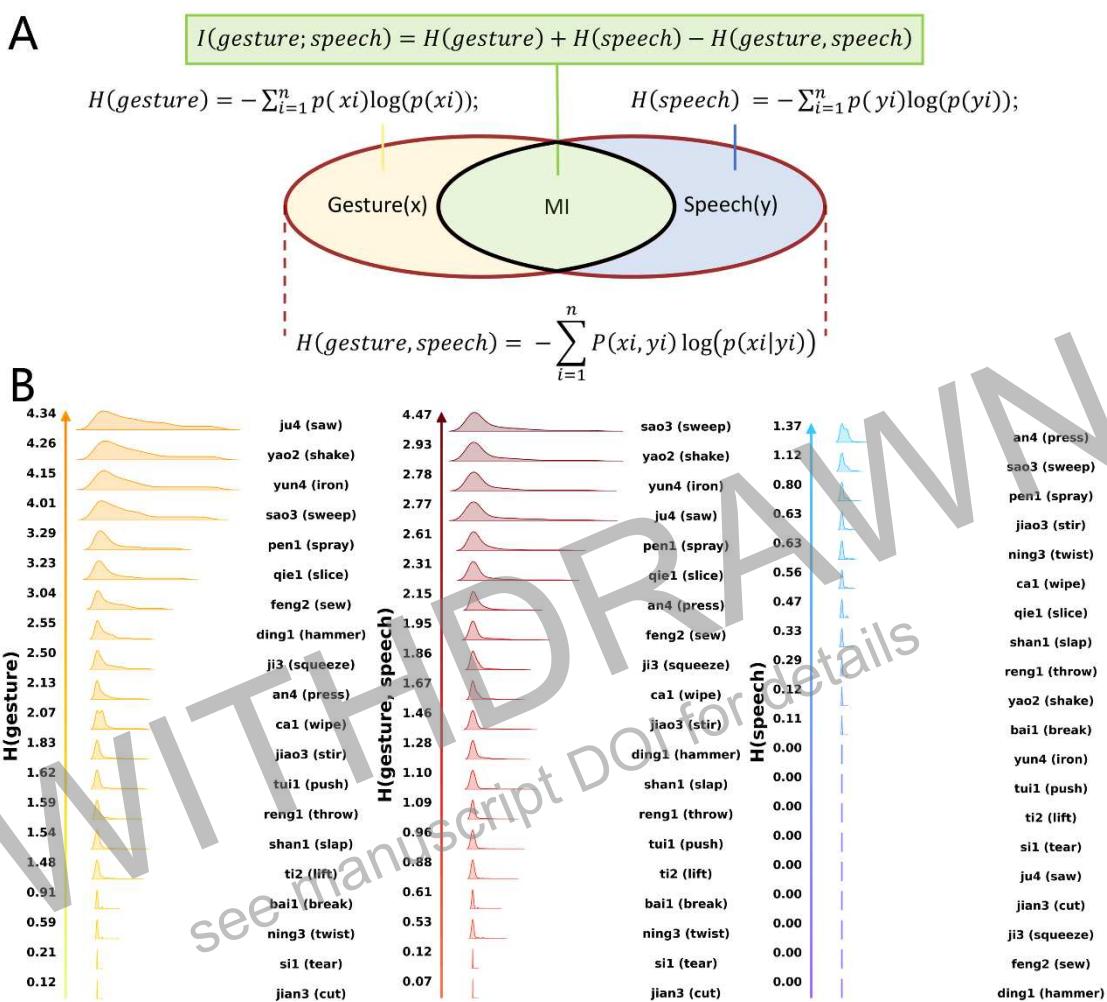
672 **(D) Procedure of Experiment 3.** Semantically congruent gesture-speech pairs were
673 presented randomly with Electroencephalogram (EEG) recorded simultaneously. Epochs
674 were time locked to the onset of speech and lasted for 1000 ms. A 200 ms pre-stimulus
675 baseline correction was applied before the onset of gesture stoke. Various elicited

676 components were hypothesized.

677 **(E-F) Proposed gradations in cortical engagements during gesture-speech information**

678 **changes.** Stepwise variations in the quantity of gesture and speech information during

679 integration, as characterized by information theory metrics **(E)**, are believed to be


680 underpinned by progressive neural engagement within the IFG-pMTG gesture-speech

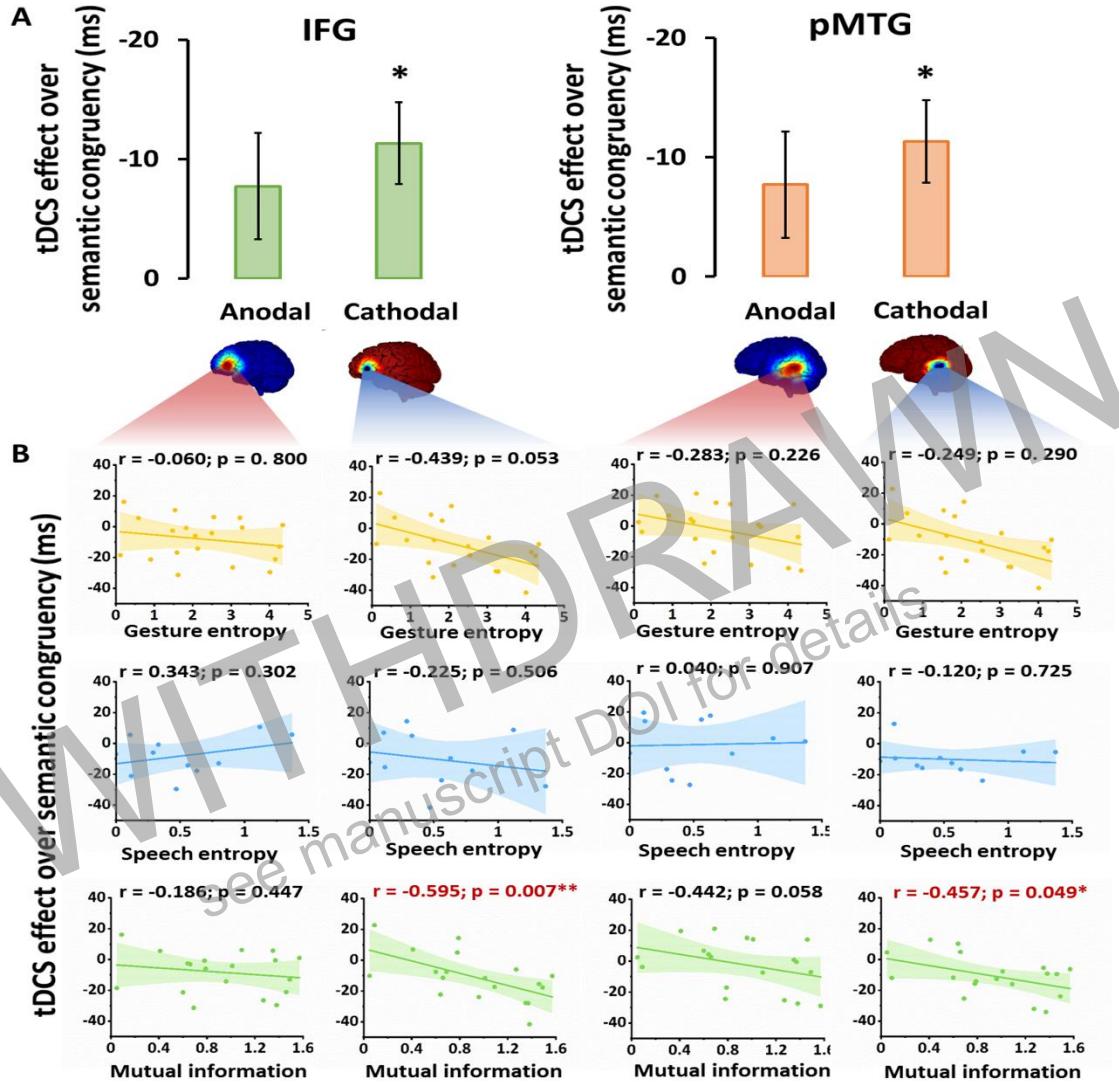
681 integration circuit **(F)**.

682

683

WITHDRAWN
see manuscript DOI for details

684

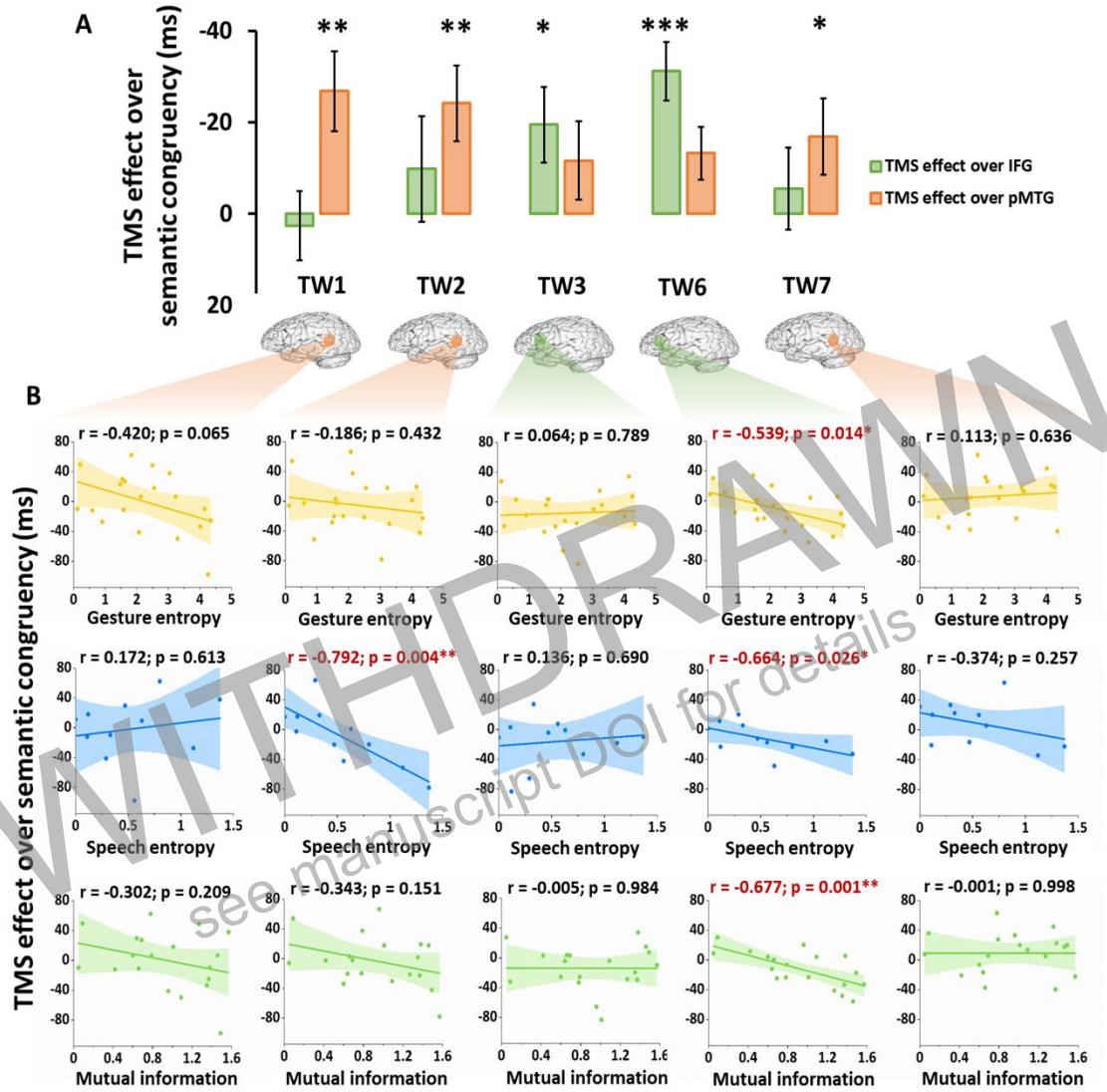

685

686

687 **Figure 2. Quantification formulas (A) and distributions of each stimulus in Shannon's**
688 **entropy (B).**

689 Two separate pre-tests ($N = 30$) were conducted to assign a single verb for describing each of
690 the isolated 20 gestures and 20 speech items. Responses provided for each item were
691 transformed into Shannon's entropy using a relative quantification formula. Gesture (**B left**)
692 and speech (**B right**) entropy quantify the randomness of gestural or speech information,
693 representing the uncertainty of probabilistic representation activated when a specific stimulus
694 occurs. Joint entropy (**B middle**) captures the widespread nature of the two sources of
695 information combined. Mutual information (MI) was calculated as the difference between joint
696 entropy with gesture entropy and speech entropy combined (**A**), thereby capturing the overlap
697 of gesture and speech and representing semantic integration.

698

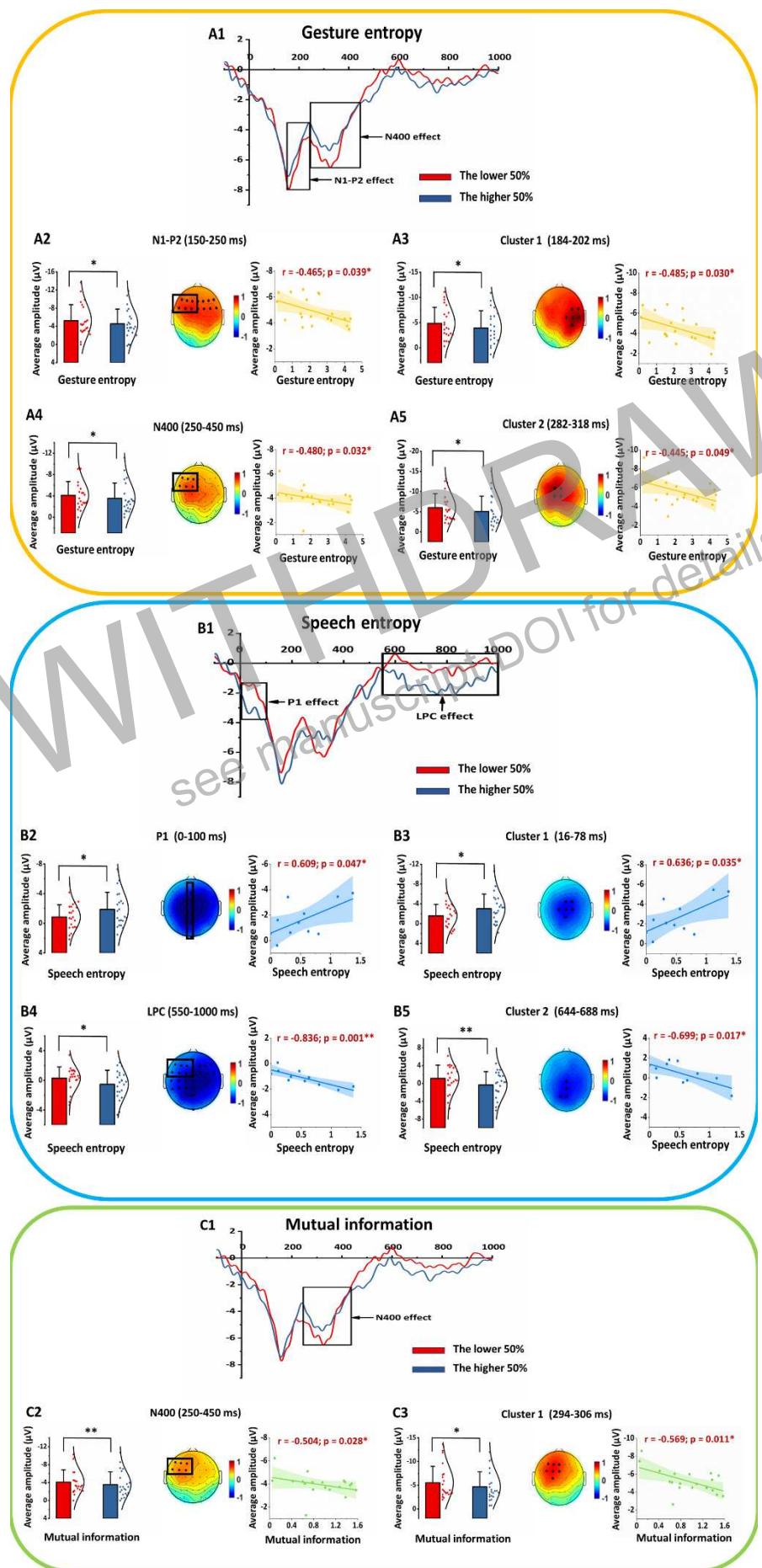

699

700 **Figure 3. tDCS effect over semantic congruity.**

701 (A) tDCS effect was defined as active-tDCS minus sham-tDCS. The semantic congruity
702 effect was calculated as the reaction time (RT) difference between semantically incongruent
703 and semantically congruent pairs.

704 (B) Correlations of the tDCS effect over the semantic congruity effect with three information
705 models (gesture entropy, speech entropy and MI) are displayed with best-fitting regression
706 lines. Significant correlations are marked in red. * $p < 0.05$, ** $p < 0.01$ after FDR correction.

707

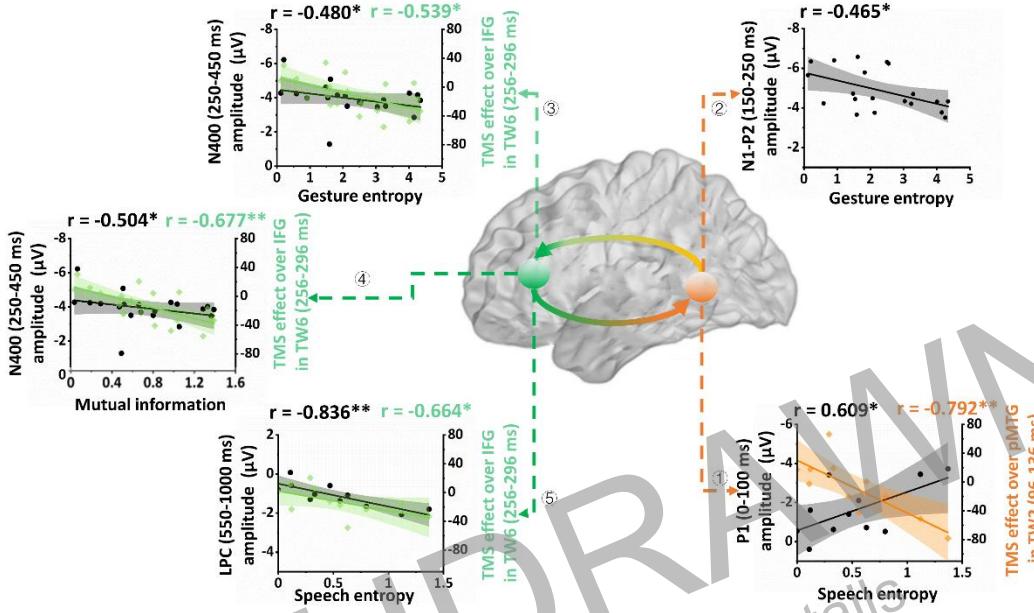

708

709 **Figure 4. TMS effect over semantic congruency.**

710 (A) TMS effect was defined as active-TMS minus vertex-TMS. The semantic congruency
711 effect was calculated as the reaction time (RT) difference between semantically incongruent
712 and semantically congruent pairs.

713 (B) Correlations of the TMS effect over the semantic congruency effect with three information
714 models (gesture entropy, speech entropy and MI) are displayed with best-fitting regression
715 lines. Significant correlations are marked in red. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$ after
716 FDR correction.

717



719 **Figure 5. ERP results of gesture entropy (A), speech entropy (B) or MI (C).**

720 Four ERP components were identified from grand-average ERPs at the Cz electrode,
721 contrasting trials with the lower 50% (red lines) and the higher 50% (blue lines) of gesture
722 entropy, speech entropy or MI (**Top panels**). Clusters of adjacent time points and electrodes
723 were subsequently identified within each component using a cluster-based permutation test
724 (**Bottom right**). Topographical maps depict amplitude differences between the lower and
725 higher halves of each information model, with significant ROIs or electrode clusters
726 highlighted in black. Solid rectangles delineating the ROIs that exhibited the maximal
727 correlation and paired t-values (**Bottom left**). T-test comparisons with normal distribution
728 lines and correlations with best-fitting regression lines are calculated and illustrated between
729 the average ERP amplitude within the rectangular ROI (**Bottom left**) or the elicited clusters
730 (**Bottom right**) and the three information models individually. * p < 0.05, ** p < 0.01 after FDR
731 correction.

732

WITHDRAWN
see manuscript DOI for details

733

734 **Figure 6. Progressive processing stages of gesture-speech information within the**
735 **pMTG-IFG loop.**

736 Correlations between the TMS disruption effect of pMTG and IFG with three information
737 models are represented by the orange line and the green lines, respectively. Black lines
738 denote the strongest correlations of ROI averaged ERP components with three information
739 models. * $p < 0.05$, ** $p < 0.01$ after FDR correction.

740

741 **Appendix Table 1. Gesture description and paring with incongruent and congruent**
742 **speech.**

Gesture	Description	Congruent speech	Incongruent speech
an4 (press)	press button	an4 (press)	yun4 (iron)
bai1 (break)	break chopsticks	bai1 (break)	yao2 (shake)
ca1 (wipe)	wipe desk	ca1 (wipe)	reng1 (throw)
ding1 (hammer)	hammer nail	ding1 (hammer)	tui1 (push)
feng2 (sew)	sew cloth	feng2 (sew)	ti2 (lift)
ji3 (squeeze)	squeeze sponge	ji3 (squeeze)	si1 (tear)
jian3 (cut)	cut paper	jian3 (cut)	sao1 (sweep)
jiao3 (stir)	stir flour	jiao3 (stir)	shan1 (slap)
ju4 (saw)	saw wood	ju4 (saw)	ning3 (twist)
ning3 (twist)	twist towel	ning3 (twist)	ju4 (saw)
pen1 (spray)	spray water	pen1 (spray)	qie1 (slice)
qie1 (slice)	slice fruit	qie1 (slice)	pen1 (spray)
reng1 (throw)	throw ball	reng1 (throw)	ca1 (wipe)
shan1 (slap)	slap face	shan1 (slap)	jiao3 (stir)
sao1 (sweep)	sweep floor	sao1 (sweep)	jian3 (cut)
si1 (tear)	tear paper	si1 (tear)	ji3 (squeeze)
ti2 (lift)	lift basket	ti2 (lift)	feng2 (sew)
tui1 (push)	push door	tui1 (push)	ding1 (hammer)
yao2 (shake)	shake bag	yao2 (shake)	bai1 (break)
yun4 (iron)	iron cloth	yun4 (iron)	an4 (press)

743

744

745 **Appendix Table 2. Examples of 'an4 (press)' for the calculation of speech entropy,
746 gesture entropy and mutual information (MI)**

747

748 **Table 2A:** Calculation of speech entropy for 'an4.wav (press)'

Answer	Number	$p(yi)$
a	1	0.016666667
an	33	0.55
e	1	0.016666667
en	23	0.383333333
eng	2	0.033333333

Equation: $-\sum_{i=1}^n p(yi) \log(p(yi))$

749

750 **Table 2B:** Calculation of gesture entropy for 'an4.avi (press)'

Answer	Number	$p(xi)$
dian	6	0.1
bp	1	0.016666667
chuo	2	0.033333333
dain	1	0.016666667
an	33	0.55
diao	1	0.016666667
en	1	0.016666667
hua	1	0.016666667
shu	3	0.05
zhi	11	0.183333333

Equation: $-\sum_{i=1}^n p(xi) \log(p(xi))$

751

752 **Table 2C:** Calculation of MI for 'an4.avi (press) + an4.wav (press)'

Answer	Number	$p(xi,yi)$
a	1	0.008333333
an	66	0.55
bp	1	0.008333333
chuo	2	0.016666667
dain	1	0.008333333
dian	6	0.05
diao	1	0.008333333
e	1	0.008333333
en	24	0.2
eng	2	0.016666667
hua	1	0.008333333
shu	3	0.025
zhi	11	0.091666667

Equation:

$$-\sum_{i=1}^n p(xi) \log(p(xi)) - \sum_{i=1}^n p(yi) \log(p(yi)) - \{-\sum_{i=1}^n p(xi,yi) \log(p(xi|yi))\}$$

753

754

755 **Appendix Table 3. Quantitative information for each stimulus.**

756

Stimuli	Gesture entropy	Speech entropy	Joint entropy	Mutual information
an4 (press)	2.13	1.37	2.15	1.35
bai1 (break)	0.91	0.11	0.61	0.41
ca1 (wipe)	2.07	0.56	1.67	0.96
ding1 (hammer)	2.55	0.00	1.28	1.27
feng2 (sew)	3.04	0.00	1.95	1.09
ji3 (squeeze)	2.50	0.00	1.86	0.64
jian3 (cut)	0.12	0.00	0.07	0.05
jiao3 (stir)	1.83	0.63	1.46	1.01
ju4 (saw)	4.34	0.00	2.77	1.57
ning3 (twist)	0.59	0.63	0.53	0.69
pen1 (spray)	3.29	0.80	2.61	1.49
qie1 (slice)	3.23	0.47	2.31	1.38
reng1 (throw)	1.59	0.29	1.09	0.79
sao1 (sweep)	4.01	1.12	4.47	0.66
shan1 (slap)	1.54	0.33	1.10	0.78
si1 (tear)	0.21	0.00	0.12	0.09
ti2 (lift)	1.48	0.00	0.88	0.60
tui1 (push)	1.62	0.00	0.96	0.66
yao2 (shake)	4.26	0.12	2.93	1.46
yun4 (iron)	4.15	0.00	2.78	1.37

757

758

759 **Appendix Table 4. Raw RT of semantic congruent (Sc) and semantic incongruent (Si)**
760 **in Experiment 1 and Experiment 2.**

761

762 **Table 4A: RT of Sc and Si in three HD-tDCS stimulation conditions for IFG and pMTG**

763

		Anodal		Cathodal		Sham	
		Sc (ms) (Rt±SE)	Si (ms) (Rt±SE)	Sc (ms) (Rt±SE)	Si(ms) (Rt±SE)	Sc (ms) (Rt±SE)	Si(ms) (Rt±SE)
	tDCS over IFG	521.95 ±13.41	537.46 ±15.05	518.41 ±11.95	530.33 ±13.01	513.96 ±14.40	537.46 ±15.53
	tDCS over pMTG	531.94 ±11.43	553.61 ±13.43	531.88 ±11.43	545.08 ±11.97	545.08 ±11.97	569.57 ±14.32

768

769

770

771

772 **Table 4B: RT of Sc and Si in each time window (TW) for IFG, pMTG, and Vertex**
773

	TW1		TW2		TW3		TW6		TW7	
	Sc (ms) (Rt±SE)	Si (ms) (Rt±SE)	Sc (ms) (Rt±SE)	Si(ms) (Rt±SE)	Sc (ms) (Rt±SE)	Si(ms) (Rt±SE)	Sc(ms) (Rt±SE)	Si(ms) (Rt±SE)	Sc (ms) (Rt±SE)	Si(ms) (Rt±SE)
TMS over Vertex	507.20 ±12.36	527.06 ±13.44	499.09 ±13.17	534.59 ±15.20	497.65 ±13.99	525.93 ±13.31	497.93 ±13.91	534.46 ±15.85	502.78 ±13.45	524.65 ±11.72
TMS over IFG	485.11 ±13.80	507.56 ±15.05	486.00 ±13.48	511.71 ±16.01	499.03 ±14.26	507.87 ±15.03	503.21 ±15.32	508.58 ±15.99	490.92 ±14.84	507.38 ±15.71
TMS over pMTG	498.16 ±15.77	504.78 ±15.10	500.52 ±16.35	510.24 ±16.45	498.42 ±15.26	509.74 ±15.89	497.32 ±15.57	514.01 ±15.87	497.54 ±16.82	502.57 ±16.08