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Abstract

burden.

Corpora amylacea (CA) and their murine analogs, periodic acid Schiff (PAS) granules, are age-related, carbohydrate-
rich structures that serve as waste repositories for aggregated proteins, damaged cellular organelles, and other cel-
lular debris. The structure, morphology, and suspected functions of CA in the brain imply disease relevance. Despite
this, the link between CA and age-related neurodegenerative diseases, particularly Alzheimer’s disease (AD), remains
poorly defined. We performed a neuropathological analysis of mouse PAS granules and human CA and correlated
these findings with AD progression. Increased PAS granule density was observed in symptomatic tau transgenic
mice and APOE knock-in mice. Using a cohort of postmortem AD brain samples, we examined CA in cognitively
normal and dementia patients across Braak stages with varying APOE status. We identified a Braak-stage dependent
bimodal distribution of CA in the dentate gyrus, with CA accumulating and peaking by Braak stages lI-lll, then steadily
declining with increasing tau burden. Refined analysis revealed an association of CA levels with both cognition and
APOE status. Finally, tau was detected in whole CA present in human patient cerebrospinal fluid, highlighting CA-
tau as a plausible prodromal AD biomarker. Our study connects hallmarks of the aging brain with the emergence of
AD pathology and suggests that CA may act as a compensatory factor that becomes depleted with advancing tau

Introduction

Corpora amylacea (CA) are spherical structures rang-
ing from approximately 10 to 50 pm in diameter that
are present in the central nervous system [1-3] and
other tissues (e.g., liver, prostate, skeletal muscle) where
they serve as putative waste disposal sites referred to
as wasteosomes [4]. CA are densely packed and organ-
ized in a concentric ring structure, primarily com-
posed of carbohydrates [5], but can contain cellular
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macromolecules, proteins, and even organelles within
this dense matrix, [6-8]. Periodic acid-Schiff (PAS)
granules are considered the murine analogs of CA,
however PAS granules are typically smaller (1-5 pm)
and their exact molecular composition and elimina-
tion pathways are not well understood [2]. Insights into
the putative role of human CA can be gleaned from
prior analysis of PAS granules in mice [9]. For example,
PAS granule density increases in response to neuroin-
flammatory stimuli including cerebral infection [10],
lipopolysaccharide (LPS) [11], oxidative stress [12],
familial Alzheimer’s disease (AD) transgene expression
[13], and natural aging [11, 14, 15], suggesting a protec-
tive role in maintaining normal brain homeostasis [16].
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We previously analyzed PAS granules in an aged panel
of mice and found them localized as distinct clusters
in the hippocampus of middle-aged (~ 12 months) and
older mice (>24 months) but were nearly undetectable
in young wild-type mice (<6 months) [17]. Moreover,
we found PAS granule density was elevated in early-
stage triple transgenic 3xTg-AD mouse brain harboring
both tau and beta-amyloid (AP) pathology.

How CA are involved in aging or age-related neuro-
degeneration is unclear. In our prior study, we consid-
ered that CA might harbor early-stage tau species that
has evaded prior detection but was implied via mass
spectrometry analysis of CA from human AD brain
tissue [18]. Using a series of highly specific immuno-
fluorescence approaches, we detected tau within mouse
PAS granules and human CA (CA-tau) [17], which had
distinct molecular and biochemical properties com-
pared to classic end-stage tau pathology. For example,
CA-tau is immunoreactive with the non-phosphoryla-
tion dependent Tau-1 antibody (indicating hypo-phos-
phorylation at this epitope), which was validated by
reduced immunoreactivity at the AT8 epitope (5202/
T205) [19]. This indicates that CA-tau is less detect-
able with ATS, the standard tau antibody used for AD
diagnostics. Staining CA with amyloid-binding dyes
(i.e., thioflavin-S, congo red) that typically label the
B-structure of mature neuro-fibrillary tangles (NFTs)
has produced inconsistent results [20-22], suggesting
possible heterogeneity of CA cargo. These unique his-
tological properties warranted a more thorough evalua-
tion of CA in AD brain tissue [2].

Our initial postmortem analysis of human control
and AD brain suggested tau-positive CA may decline
in AD brain, an indicator of reduced neuroprotection
through gradual CA depletion [17]. Here, we sought
to establish a link between CA/PAS granule formation
and accumulating tau burden in mice and human brain.
We identified accelerated PAS granule formation in
tau transgenic and APOE mouse models of AD pathol-
ogy, which prompted a detailed evaluation of CA in a
large panel of human AD brains. With advancing Braak
stage, we report a bimodal distribution of CA in the

Page 2 of 17

hippocampus of AD patients. These findings highlight
CA and their tau cargo as a new modality to evaluate
brain resilience and as a potential biomarker for AD
onset or progression.

Results

PAS granules in tauopathy and APOE mice

We previously reported that the formation of PAS gran-
ules, the murine analogs of CA, was accelerated in
6-month-old 3xTg-AD mice when compared to controls,
with their density peaking at approximately 10 months
and gradually plateauing until 24 months [17]. 3xTg-AD
mice harbor both human A and tau transgenes; how-
ever, even at an advanced age, they do not display overt
neuronal loss fully resembling AD-related neurodegener-
ation [23]. PAS granules are also elevated in a humanized
model of AP pathology [24], however, no reports have
investigated PAS granule dynamics in a symptomatic
tauopathy model of neurodegeneration, in which tau
pathology recapitulates advancing Braak stage in human
AD.

We analyzed PAS granule biogenesis in PS19 mice
overexpressing 1N4R human tau harboring the P301S
mutation, which generates hyperphosphorylated and thi-
oflavin-positive tau aggregates, leading to neuronal atro-
phy and cognitive deficits [25, 26]. Hippocampal sections
from 7 to 9 month-old PS19 and age-matched littermates
were analyzed with antibodies that detect astrocytes
(GFAP), phosphorylated tau (AT8), and a carbohydrate-
rich neoepitope within PAS granules (IgM). The exog-
enously applied IgM antibody isotype is recruited to
PAS granules and therefore serves as a robust PAS gran-
ule marker (Fig. 1A) [27, 28]. Quantification of confocal
images showed that PS19 mice harbored significantly
more hippocampal PAS granule density when compared
to non-transgenic littermate controls (Fig. 1B), which
paralleled the hallmark signs of astrogliosis (Fig. 1C) and
tau pathology (Fig. 1D) [29].

Considering both AP and tau pathology are sufficient
to induce PAS granule formation, we next considered
whether these structures correlated with APOE status,
the single most prominent genetic risk factor for AD. We

(See figure on next page.)

*p=0.0426 (male), 0.0343 (female)

Fig. 1 PAS granule density in tauopathy and AD risk mouse models. A Representative immunofluorescent confocal images of 8-11-month-old
wild-type control and age matched PS19 hippocampal sections stained with GFAP (red), AT8 (grey), and IgM (green). Nuclei labeled with

DAPI. 40 um thick coronal sections, scale bar =250 pm. B Comparison of PAS granule density (mm?) in 8-11-month-old wild-type control and
age-matched PS19 hippocampal sections. P=0.0292. C Comparison of GFAP intensity in 8-11-month-old wild-type control and aged matched
PS19 hippocampal sections. P=0.030. D Comparison of AT8 intensity in aged wild-type control and PS19 mice. p=0.0296. E Representative
immunofluorescent images of hippocampal sections from 6-month-old E3 and E4 mice stained with GFAP (red) and IgM (green). Nuclei labeled
with DAPI (blue). 40 um thick coronal sections, scale bar=20 um. F Comparison of PAS granule density (mm?3) in pooled 6-month-old APOF E2, E3,
and E4 mice. *p=10.0492, **p =0.0033. G Comparison of PAS granule density (mm?) in male and female 6-month-old APOF E2, E3, and E4 mice.
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considered this possibility because PAS granules and CA
are known to be closely associated with and likely gener-
ated within astrocytes [30, 31], cells that are increasingly
reactive in neurodegenerative diseases [32], naturally
aged mice [33], and human APOE E4 knock-in (KI) mod-
els [34]. We therefore assessed differences in PAS gran-
ule formation in an APOE mouse model using a recently
developed humanized line in which the mouse APOE
locus was replaced with human APOE E2, E3, or E4
(APOE-KI mice) and subsequently evaluated PAS gran-
ule formation in 6-month old animals [35]. Brain sections
were labeled with GFAP and IgM antibodies to detect
both astrocytes and PAS granules (Fig. 1E). Quantifica-
tion of immunofluorescence images showed increased
PAS granule density in APOE E4 compared to APOE E3
mice (Fig. 1F). Female APOE E2 mice also harbored sig-
nificantly fewer PAS granules than female APOE E4 mice,
a difference that was not similarly observed in males
(Fig. 1G). Overall, these data support the notion that PAS
granule accumulation can be linked to both AD risk and
accumulation of AD pathology in mice.

Bimodal CA density in AD

We next sought to determine whether CA follow simi-
larly distinct patterns in human brain. To determine CA
differences in human brain as a function of cognitive
decline and AD progression, we analyzed hippocampal
tissue from 124 brains spanning Braak stages I-VI. The
descriptions of all patient characteristics are shown in
Table 1. We focused our CA analysis exclusively on the
hippocampus for two main reasons. First, hippocampal
volume loss is associated with severity of AD pathology
and cognitive deficits [36]. Second, the hippocampus is a
focal point for tau spread into higher neocortical regions
and a putative zone of CA extrusion into the ventricles
and CSF [16]. A minimum of n=10 cases at each Braak
stage (I-VI scale) were immunostained with anti-phos-
phorylated tau (AT8) and counterstained with hematox-
ylin to mark CA while distinguishing them from nuclei
(Fig. 2A). We selected and scanned the dentate gyrus
(DG) as our main region of interest in proximity to the
hippocampal sulcus (Additional file 1: Figure S1A). The
analysis of CA abundance, as determined by CA counts
per mm?, showed a skewed distribution that was partially
normalized using a logarithmic scale (Additional file 2:
Fig. S1B, C).

When stratifying patients based on Braak stage, the
data revealed a bimodal CA distribution, in which
CA were sparse at early Braak (I) and late Braak stages
(V-VI), with a peak at Braak II-III (Fig. 2B, C, and see box
plot in Additional file 2: Fig. S1D). To further define the
association between CA and tau burden, we employed
a generalized linear model controlling for covariates of
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Table 1 Sample characteristics describing distributions of major
covariates encompassing n = 124 hippocampal patient tissue
samples in this study. Extended sample characteristics available
in Table 4.

Characteristic N=124
APOE allele
E2/E3 2 (1.6%)
E3/E3 87 (70%)
E3/E4 28 (23%)
E4/E4 7 (5.6%)
Age (years)
Mean (SD) 79 (13)
Median (IQR) 81 (69, 90)
Range 43,101
Sex
F 65 (52%)
M 59 (48%)
Ethnicity
AA 2 (1.6%)
Mult 1(0.8%)
W 121 (98%)
Cognitive status
Cognitively normal 32 (26%)
Mild impairment 7 (5.7%)
Dementia 84 (68%)
Not recorded 1
Braak stage (I-VI)
| 14 (11%)
I 21 (17%)
1l 17 (14%)
vV 23 (19%)
\ 19 (15%)
Vi 30 (24%)

age, sex, postmortem interval (PMI), APOE status, and
cognitive status (Table 2). The generalized linear model,
fitted with a gamma distribution and logarithmic link
function (Fig. 2C, see box plot in Additional file 2: Fig.
S1E), detected a significant relationship between Braak
stage and CA abundance (p=0.006). Multiple compari-
sons using the Bonferroni method detected a significant
difference in CA abundance between Braak III and V
(p=0.034) (Table 3).

CA dynamics at specific Braak stages

Given that our generalized linear model detected a sig-
nificant influence of Braak stage on CA levels with peak
accumulation at Braak II-III, we sub-stratified our analy-
sis based on Braak II as a critical threshold for CA abun-
dance peaks. Using a refined cohort, in which we omitted
statistically defined outliers determined by Grubb’s test
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(Additional file 3: Fig. S2, Q=0.05), 112/124 cases were
re-analyzed for CA at specific Braak stages (Fig. 3A). By
focusing on Braak stages with tau deposition in the hip-
pocampus (II-VI), Spearman’s nonparametric correlation
reproduced the negative relationship between CA and
Braak stage (Fig. 3B, r=—0.2164, *p=0.0297). Multiple
comparisons among Braak subgroups revealed significant
hippocampal CA differences when comparing Braak I vs.
II-1IT vs. IV-VI (Fig. 3C, p=0.0280). These distributions
suggest a critical window in which CA levels dynamically
change in the DG; early CA accumulation parallels the
appearance of tau pathology in Braak II-III, followed by
CA decline at Braak IV-VI as tau burden accumulates in
the hippocampus and propagates to cortical and neocor-
tical brain regions [37-39].

CA depletion in cognitively impaired and APOE E4 patients
We next examined whether the presence of both amyloid
and tau pathology correlated with CA using a compos-
ite score of AD neuropathological change on a 0-3 scale
(0=none, 1 =mild, 2=moderate, 3=severe) [40]. Spear-
man correlation of CA levels with AD neuropathological
score yielded a significant negative correlation (Addi-
tional file 4: Fig. S3A, r=—0.2728, p =0.0046), suggesting
that combined tau and amyloid co-pathology are asso-
ciated with declining CA within the DG. We next com-
pared CA levels between cognitively normal (CN) and
dementia (DM) patients within the critical Braak II-III
window, a point at which CA levels peak. We note that
this analysis employed an adequately powered sample
size of both CN and DM patients at Braak II-III. Within
this sample group, we observed significantly reduced CA
abundance in DM patients using two-way ANOVA and
multiple comparison tests (Fig. 3D). We also compared
CA levels in CN vs. DM patients at Braak IV, however no
significant differences were observed (Additional file 4:
Fig. S3B).

Given the above findings in APOE-KI mice that APOE
status influences PAS granule formation (Fig. 1E-G),
combined with previous reports that APOE E4 homozy-
gotes display increased hippocampal atrophy [41], we
next sought to determine if the presence of a single
APOE E4 allele impacts CA levels in AD patient brain. A
recent study of patients exposed to severe air pollution
found increased CA in young and middle-aged APOE E4
carriers compared to APOE E3 controls [42]. Although
our generalized model did not detect a significant influ-
ence of APOE allele on CA across all six Braak stages, we
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revisited the effect of APOE allele status using a stage-
specific analysis. Using our refined patient cohort, we
tested for gene dosage effect at Braak II and found that
APOE E3/E4 carriers are associated with significantly
lower CA compared to APOE E3/E3 carriers (Fig. 3E). No
other significant differences in CA with respect to APOE
status were detected at other Braak stages (Additional
file 4: Fig. S3C-D). These data indicate that APOE allele
variants may be linked to CA accumulation during early
stages of tau deposition.

Tau-immunoreactive CA are extruded into CSF

CA harbor Tau-1 (hypo-phosphorylated tau) and Tau5
(total tau) immunoreactive tau species in the brain that
we previously referred to as CA-tau [17]. Prior work sug-
gests that CA are extruded into the CSF before eventual
passage to the lymph nodes [16]. Therefore, we sought to
determine if the CA-tau identified in the brain becomes
extruded into CSE. We first evaluated CA in proximity
to the hippocampal sulcus and nearby ventricles. Inter-
estingly, in late Braak samples, CA were often envel-
oped by AT8-positive tau pathology at the glia limitans,
the outer surface of the brain parenchyma (Fig. 4A).
Indeed, we observed co-localization of CA (IgM reac-
tive) with markers of hypo-phosphorylated tau (Tau-1)
by confocal imaging (Fig. 4B). Next, we qualitatively sur-
veyed the presence of CA in CSF samples from healthy
control and AD patients. We enriched for CA using a
low-speed differential centrifugation protocol followed
by resuspension of CA-containing pellets, fixation on
slides, and immunostaining with Tau5 and IgM primary
antibodies, and in one control patient sample observed
numerous instances of Tau5" CA (Fig. 4C). As nega-
tive controls, CSF-enriched CA were not detected in the
absence of primary IgM antibodies (Additional file 5: Fig.
S4). Similarly, CSF-enriched CA were depleted by enzy-
matic digestion with amyloglucosidase, which removes
IgM-reactive carbohydrate moieties on the CA surface
[14, 43]. In these digested fractions, we observed par-
tially formed CA that were weakly IgM-immunoreactive
(Fig. 4D). CSE-enriched CA were not detected by micros-
copy in any AD patients within our cohort. These find-
ings suggest that CA-tau is detectable in human CSF and
could provide diagnostic or prognostic utility as a poten-
tial tauopathy biomarker, though we emphasize that
larger CSF sample cohorts (from AD and other tauopa-
thies) will be required for future quantitative biomarker
studies.

(See figure on next page.)

Fig. 2 Bimodal CA density in AD brain. A Brightfield scans of immunostained AT8% human postmortem tissue from patients with increasing Braak
stages (I-VI). Inset denotes representative images of spherical CA, which are denoted by black arrowheads, when present. Scale bar=200uM. B
Scatter plot of patient CA/mm? vs Braak stage (I-VI), linear scale. Blue line denotes mean, grey line denotes interquartile range. C Scatter plot of
patient CA/mm? vs Braak stage (I-VI), logarithmic scale. Blue line denotes mean, grey cloud denotes interquartile range
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Table 2 Generalized Linear Model fitted with Gamma
distribution and log link depicting average CA density by Braak
stage, controlling for age, PMI, APOE allele, cognitive status, and
sex

Characteristic Ratio of means 95% CI? p-value
Braak stage (I-V) 0.006

| — —

Il 1.72 0.73,3.90 0.2

Il 213 0.79,5.69 0.11

v 0.65 0.24,1.70 04

Y 0.52 0.19,1.38 0.2

\4 0.64 0.25,1.52 03
Age (years) 1.01 0.99,1.03 03
PMI (minutes) 1.00 1.00, 1.00 04
APOE allele (grouped) 013

E23/E33 - -

E34/E44 0.67 041,113 0.13
Cognitive status 04

Cognitively normal - -

Mild impairment 1.70 0.64,5.28 03

Dementia 1.59 0.80,3.15 0.2
Sex >09

F — —

M 1.01 0.64,1.59 >09

2 Cl=Confidence interval

Table 3 Multiple comparisons test of CA/mm? by Braak Stage
using Bonferroni method encompassing all hippocampal patient
tissues analyzed in this study

Comparison Adjusted p-value
lhvs| 1.000
lMvsl 1.000
Vs | 1.000
Vsl 1.000
VIivs | 1.000
sl 1.000
Vvsli 0.267
Vs i 0.082
Vivs i 0.211
Vvs il 0.105
Vs il 0.034
Vivs il 0.106
Vs IV 1.000
Vivs IV 1.000
VIvs IV 1.000
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Discussion

This study establishes a link between PAS granules and CA
with known hallmarks of AD, namely tau deposition and
symptomatic progression of AD. Our prior study identified
hippocampal granules (that we found to be synonymous
with PAS granules) present in aged and diseased mouse
models [9, 30]. While several APP-overexpressing mouse
models have now been shown to harbor PAS granules in
the molecular layer of the hippocampus [24, 44], studies had
not been conducted in tauopathy models, in which more
severe cognitive decline and neurodegeneration is frequently
observed.

Our analysis of PS19 tauopathy mice showed elevated,
not depleted, PAS granule density at advanced stages of
tau accumulation, which we note contrasts with the tra-
jectory of human CA at comparable stages of hippocam-
pal tau deposition. We also observed an increase in PAS
granule density within the hippocampus of APOE E4
knock-in mice when compared to age-matched APOE
E3 controls in the absence of tau pathology or neurode-
generation. PAS granules and CA are closely associated
with astrocytes [45] and, to a lesser extent microglia [17],
both of which are implicated in tau-mediated neurode-
generation [46, 47]. These results are consistent with PAS
granule formation as a compensatory stress response in
a wide spectrum of mouse models showing phenotypes
of accelerated aging (SAMP), inflammation (LPS), and
amyloid accumulation [11, 12, 24]. It is currently unclear
why PS19 mice show elevated PAS granule formation,
while their human counterpart (CA) become gradually
depleted with advancing Braak stage. Importantly, there
are key differences in the stress response between human
and murine astrocytes [48]. In addition, human AD brain
represents a synergy resulting from multiple co-pathol-
ogies that may not be adequately recapitulated in indi-
vidual APP, tau, or APOE mouse models, which could
impact PAS granule/CA dynamics [49, 50]. Supporting
this latter possibility, 3xTg mice harboring both amyloid
and tau show a peak PAS granule density at 10 month
old, which slowly tapered off until 24 months [17]. These
findings suggest that factors accelerating disease progres-
sion (e.g., tau seeding and propagation) could further
lead to a gradual decline in CA proteostasis (Fig. 5).

Using a panel of human AD brains, we found that
Braak II and Braak III patients exhibited the highest CA
burden in the DG, which then gradually diminished at
later Braak stages. Braak II is characterized by the propa-
gation of AT8" tau lesions into the entorhinal regions
and is the first stage during which tau lesions accumulate
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in the hippocampus [51]. Thus, the peak CA threshold
coincides with the first pathological manifestations of
tau in the hippocampus, aligning with findings that tau
distribution is a strong indicator of regional atrophy [52].
Our findings suggest that failed waste clearance is associ-
ated with CA dysfunction, an effect that is accelerated by
the presence of a single APOE E4 allele (Fig. 3E) [53]. This
is consistent with previous observations of elevated CA
in the olfactory bulb of young and middle-aged human
APOE E4 carriers exposed to environmental insult via air
pollution [42], and with our findings that CA are reduced
in a subset of demented APOE E4 individuals at Braak
stage II (the peak of CA density). If CA do indeed act as
a compensatory protective response to tau in AD, one
could predict that their accumulation signifies a stress
response that coincides with neuronal damage (Fig. 5).
Beyond tau, CA are likely responsive to other perturba-
tions within the brain, likely acting generally to elimi-
nate aggregated proteins, damaged organelles and other
factors [4, 18], and possibly microbial elements [18, 56],
implying broad relevance to neurological diseases [1, 14,
57, 58]. Indeed, CA accumulation or a related process,
astrocytic clasmatodendrosis, may occur in brains from
younger patients exposed to drug-induced stress [54, 55].

Like PAS granules, CA formation is thought to be cen-
tral to astrocytes, a prominent cell type in pial and sub-
pial zones proximal to the glia limitans [16, 59], where we
note the accumulation of AT8* structures in late-stage
AD patients (Fig. 4A and Table 4). Several studies have
noted CA in close proximity to aging-related tau astro-
gliopathy (ARTAG) [60, 61], characterized by AT8'
aggregated tau in soma and processes of astrocytes with
diverse morphological characteristics [62, 63]. Future
side-by-side comparisons using epitope and biochemical
profiling of CA-tau and glial tau in ARTAG could shed
light on the extent to which these two phenomena are
interrelated.

Overall, our study provides evidence that CA depletion
in AD is associated with key correlates of disease includ-
ing advancing tau burden, APOE status, and cognition
in AD patients. To determine the utility or feasibility of
CA as biomarkers or therapeutic targets, future efforts
are needed to delineate the mechanisms surrounding
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their generation, encapsulation of tau cargo, and clear-
ance. Rather than acting as a generic neuropathological
hallmark of aging, these findings ascribe new disease rel-
evance to CA, and support the development of quantita-
tive methods to detect CA in human brain and CSF as a
biomarker for AD, related tauopathies, and perhaps other
neurodegenerative diseases.

Materials and methods

Immunofluorescence staining (IF)—human tissue

For all qualitative IF analysis of human brain tissue sam-
ples, freshly cut sections were prepared from late stage
(Braak V=VI) AD and control patient tissues archived at
the UNC Brain Bank. Paraffin embedded tissue blocks
were sectioned at 7 uM thickness, adhered to slides, and
deparaffinized in xylene. Slides were rinsed in ethanol
and rehydrated (pure, 95%, 70%) in 1 X PBS. Sections
were boiled for 10 min and incubated in hot Vectastain
H-3300 citrate-based buffer for 30 min for antigen
retrieval. Sections were then rinsed in 1X TBS, and per-
meabilized for 50 min in 2% TBS-Triton X-100 at RT.
Blocking, primary, and secondary solutions matched
the donor species of secondary antibodies used; sec-
tions were blocked in 1X TBS with 2% goat serum for
50 min. Sections were then incubated with primary anti-
body in 0.1% sodium azide solution for 48 h at RT, thor-
oughly rinsed in 1X TBS three times, and incubated in
secondary antibody solution for 24 h at RT. DAPI stain-
ing was used to visualize nuclei. Primary antibodies and
dilutions: Tau-1 (Millipore, MAB3420, 1:1000), GFAP
1:1000, (Dako, GA524). Secondary antibody dilutions:
Alexa Fluor goat anti-mouse IgM p-chain specific 488,
1:200 (Thermofisher, A-21042), Alexa Fluor goat anti-
rabbit 568, 1:200 (Thermofisher, A-11011), Alexa Fluor
goat anti-mouse IgG1 specific 647, 1:200 (Thermofisher,
A-1240).

Immunofluorescence Staining (IF)—mouse tissue

Mice were deeply anesthetized and transcardially per-
fused with 1X PBS and 15 mL 4% Paraformaldehyde.
Brains were then post-fixed for 24—48 h in 4% PFA at 4 °C
and cryoprotected in 30% sucrose solution before sec-
tioning. Tissues were sectioned at 30-40 uM thickness

(See figure on next page.)

bar=500 um (top row), 10 um (bottom row)

Fig. 4 CA-tau structures are present in human CSF. A Representative brightfield image of CA in the hippocampal sulcus of AD patient tissue
section. Inset (dashed box) centered on a CA in the glia limitans ensheathed in AT8" processes on the edge of the parenchyma. Scale bar =50 um.
B Representative immunofluorescent confocal image of CA in the hippocampal sulcus of AD patient tissue section stained with GFAP (grey), Tau-1
(red), and IgM (green). Nuclei stained with DAPI (blue). Inset (dashed box) centered on Tau-T-immunoreactive CA in the glia limitans ensheathed

in GFAP* processes on the edge of the parenchyma. Scale bar =50 um. C Representative immunofluorescent confocal images of CSF containing
CA were stained with Tau5 IgG1 (red) and IgM (green) and subsequently imaged at 120x magnification. Scale bar=50 um (i) 20 um (ii-v).
Maximum intensity z-projection frames are shown in panels i and v, higher magnification inset frames are shown in panels ii-iv, and single plane
inset frames are shown in panels vi-viii. D Representative immunofluorescent confocal images of CA present in CSF that were pre-digested with
amylo-glucosidase were imaged at 20x magnification to detect Tau5 IgG1 (red) and IgM (green, brightness increased for visualization). Scale
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Fig. 4 (Seelegend on previous page.)
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Braak Stage (I-VI)

*
Models Analyzed in this Study

Animal Models Human Patients
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Fig. 5 Dentate CA depletion is associated with APOE E4 status and cognitive decline. Schematic describing correlation between Braak stage and
CA decline in the DG. CA accumulate in the dentate gyrus hilus proximal to the hippocampal sulcus, where they are extruded via the glia limitans.
CA harbor Tau-T-immunoreactive hypophosphorylated (not hyperphosphorylated) tau that may be released into the CSF. In both mouse models
of AD risk and tauopathy, PAS granule density is elevated (asterisks denote single time-point assessments of PAS granule density from this study).
In humans, CA levels (as determined by CA/mm?) are reduced in dementia patients and APOE E4 carriers at critical tau-seeding Braak stages when
compared to cognitively normal or APOE E4 non-carriers, respectively. Our model is consistent with the hypothesis that CA are protective against
the accumulation of AD pathology but become exhausted with increasing neuropathological burden in human brain

and stored at —20 °C. Immunofluorescence staining Pplate shaker. Sections were rinsed and permeabilized for
was conducted using a free-floating technique, rinsing 50 min in 2% TBS-Triton X-100 at RT. Blocking, primary,
in 1X TBS between all major steps, gently agitated on a  and secondary solutions matched the donor species of
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Table 4 Extended human sample characteristics from cases used in this study

Characteristic N=124

Dentate gyrus area (mm?)

Mean (SD) 94 (3.8
Median (IQR) 89(7.1,11.3)
Range 24,240
PMI (minutes)
Mean (SD) 770 (570)
Median (IQR) 680 (296, 1,068)
Range 30,2911
Not recorded 10
AD neuropathological score
None 14 (14%)
Mild 18 (18%)
Moderate 44 (45%)
Severe 22 (22%)
Not recorded 26
Amyloid angiopathy
None 50 (40%)
Mild 40 (32%)
Moderate 25 (20%)
Severe 9(7.3%)
Atherosclerosis
None 70 (56%)
Mild 26 (21%)
Moderate 21 (17%)
Severe 7 (5.6%)
Arteriosclerosis
None 86 (69%)
Mild 13 (10%)
Moderate 19 (15%)
Severe 6 (4.8%)
Hippocampal sclerosis (0= not observed/recorded, 1 = present)
0 112 (90%)
1 12(9.7%)
McKeith DLB (0= not observed/recorded, 1 = present)
0 96 (77%)
Amygdala 4(3.2%)
Brainstem 2 (1.6%)
Limbic 4 (3.2%)
Neocortex 18 (15%)
Infarction (0= not observed/recorded, 1 = present)
0 107 (86%)
1 17 (14%)
Hemorrhage (0= not observed/recorded, 1= present)
0 119 (96%)
1 5 (4.0%)

ARTAG (0= not observed/recorded, 1 = mild ARTAG)
0 113 (91%)
1 11 (8.9%)
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Table 4 (continued)
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Characteristic N=124

LATE: Limbic-PAR TDP-43 (0= not observed/recorded, 1= present)
0 114 (92%)
1 10 (8.1%)

AScore
0 11(11%)
1 18 (18%)
2 9(9.1%)
3 61 (62%)
Not recorded 25

A Score (Thal)
0 11 (11%)
1 12 (12%)
2 6 (6.1%)
3 9(9.1%)
4 37 (37%)
5 24 (24%)
Not recorded 25

B Score (Braak)
1 27 (27%)
2 35 (35%)
3 37 (37%)
Not recorded 25

C Score (CERAD)
0 23 (23%)
1 19 (19%)
2 35 (36%)
3 21 (21%)
Not recorded 26

secondary antibodies used; sections were blocked in 1X
TBS with 2% goat serum for 50 min each. Sections were
then incubated with primary antibody in 0.1% sodium
azide solution for 48 h at room temperature, thoroughly
rinsed, and incubated in secondary antibody solution
for 24 h at room temperature. DAPI staining was used
to visualize nuclei. Primary antibodies and dilutions:
Mouse IgM, kappa monoclonal MM-30, 1:1000 (Abcam,
ab18401), AT8 1:500 (Thermofisher, MN1020), GFAP
1:1000, (Dako, GA524). Secondary antibodies and dilu-
tions: Alexa Fluor goat anti-mouse IgM p-chain specific
488, 1:200 (Thermofisher, A-21042), Alexa Fluor goat
anti-rabbit 568 1:200 (Thermofisher, A-11011), Alexa
Fluor goat anti-mouse IgG1 specific 647, 1:200 (Ther-
mofisher, A-21240).

Immunohistochemical Staining (IHC)—Human tissue

For all IHC analysis of formalin fixed, paraffin embedded
tissues (7 =124 total cases), brain samples were acquired
from the Duke Bryan Brain Bank (Table 1), and samples
were sectioned at 8 pm thickness and adhered to slides.
Tissue sections were deparaffinized with xylene and
rinsed with ethanol (pure, 95%) prior to staining. Endog-
enous peroxidase activity was blocked via incubation
in 1.875% H202 in methanol for 8 min. Sections were
rinsed with 1X PBS, and blocked with 5% non-fat dry
milk in 0.05 M Tris buffer, Ph7.6 for 20 min at room tem-
perature. Sections were rinsed in deionized water three
times for two minutes each. Sections were incubated
for 45 min at 37° C with AT8 (Thermofisher, MN1020,
1:500) primary antibody, rinsed three times in deionized
water, and incubated for 30 min with Dako EnVision Dual
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Link System-HRP at 37 °C. Sections were again rinsed
in deionized water three times before development with
Dako DAB Solution (Agilent, K346811-2) for 5 min
before rinsing in tap water for 5 min. Counterstain was
applied with Fisherfinest Hematoxylin+ (220-100) for
25 s before an additional tap water rinse for 5 min. Blue-
ing of sections was achieved with ammoniacal water for
10 s before a final 3-min rinse in tap water. Sections were
dehydrated in serial graded ethanol rinses, cleared in
xylene and coverslipped with permount before scanning
and analysis.

Analysis of IHC sections

Neuropathological evaluations were performed by the
Duke Bryan Brain Bank, including Braak stage, AD com-
posite neuropathological score, age, postmortem inter-
val, cognitive status, sex, ethnicity, and APOE allele
status (Table 1). Composite neuropathological scoring
was assessed according to guidelines in Montine et al.
[40]. Tissue sections were immunostained with AT8 for
tau pathological staging as previously described [64] and
counterstained with hematoxylin to identify CA struc-
tures. All slides were scanned at the UNC Translational
Pathology Laboratories on a brightfield Scanscope AT2
at 40x magnification. Images were inspected for quality
and cropped to the hippocampal region in Aperio Imag-
escope; within this image, the dentate gyrus was traced as
the analysis region of interest, and area measured for CA
density calculation. CA were annotated and counted by
three independent investigators blinded to patient status.
To distinguish CA from smaller nuclei within regions of
interest, criterion for CA detection included low to mod-
erate hematoxylin staining intensity with a uniform or
concentric ring pattern and circularity.

Statistical analysis—PAS granules in tauopathy

and APOE-KI mice

The WT and PS19 animals were compared in terms of
PAS granule density, GFAP Intensity, and AT8 intensity
using an unpaired t-test, with a 5% significance level. The
overall difference in PAS granule density between APOE-
KI mice (E2, E3, E4) was assessed using an unpaired
t-test, with 5% significance level. Stratified analysis by sex
was also performed.

Statistical analysis—CA quantification

Summary statistics including mean, standard deviation,
median, interquartile range, and range were computed
for the continuous variables. Absolute and relative fre-
quencies were calculated for the categorical variables.
Box plots and scatter plots were constructed to assess the

Page 14 of 17

association between CA and Braak stage. Plots using the
log scale for the CA counts are also provided. The asso-
ciation between CA and Braak stage was then evaluated
using a generalized linear model with gamma distribu-
tion and log link function, controlling for age (years),
PMI (minutes), cognitive status, sex, and APOE allele.
Results are presented as mean ratios (MR) with confi-
dence intervals (CI). Multiple comparisons among Braak
stages are performed using the Bonferroni method. All
statistical analyses were performed in R version 4.0.2 (R
Core Team, 2020). Complete case analysis was consid-
ered, with P<0.05 determining statistical significance.

Immunofluorescence staining (IF)—human CSF

For qualitative IF analysis of CA present in CSF, human
control and AD patient CSF samples (n=2 patient
samples for each) were obtained from the University of
Miami Brain Bank, aliquoted, and stored at -80 °C. Ali-
quots (200 pl each) were centrifuged three times for
10 min at 700 g in 4 °C before fractionation for amylo-
glucosidase digestion and resuspended with 1X PBS
each time. Digested fractions were incubated with 10U
amyloglucosidase (Sigma, 9032-08-0) in phthalate buffer
(pH 5) for 24 h at 45 °C. Undigested fractions were incu-
bated at 4 °C for 24 h in phthalate buffer without amylo-
glucosidase. After digestion/incubation, fractions were
centrifuged three times for 10 min at 700 g in 4 °C and
resuspended with 1X PBS each time. Following the
final centrifugation, samples were extended on charged
Superfrost slides, air dried overnight, and fixed with
acetone for 10 min at 4 °C. Slides were then rinsed with
1X TBS three times for 5 min, before being permeabi-
lized with 1X TBS+2% Triton X-100 for 30 min at RT.
Slides were incubated with blocking buffer (1X TBS + 2%
Goat Serum) for 30 min at RT. Digested and undigested
fractions were incubated overnight at RT in blocking
buffer containing Tau5 (Ms IgGl, MAB361, Millipore)
at 1:200. Secondary only controls were instead incubated
in empty blocking buffer. All samples were then incu-
bated overnight at RT in secondary antibody solution
(blocking buffer) with Alexa-Fluor anti-mouse IgM 488
(Thermo, A-21042) at 1:200 and Alexa-Fluor anti-mouse
IgG1 (Thermo, Cat A-21240) at 1:200. Slides were cov-
erslipped in Fluoromount-G and dried overnight before
imaging at 60x magnification on an Olympus Fluoview
FV3000RS Confocal laser scanning microscope. Since
this was a qualitative analysis performed by immunofluo-
rescence microscopy (representative images are depicted
in Fig. 4C), additional sample numbers will be required
for future statistical comparisons between sample groups
(e.g., control vs. AD).
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Microscopy

Confocal images were captured on an Olympus
FV3000RS microscope using resonant, one-way scan-
ning. The following fluorophores were used: Alexa Fluor
405 (DAPI), Alexa Fluor 488, Alexa Fluor 568, Alexa
Fluor 594, Alexa Fluor 647. Laser intensities, gains, and
offsets were set at thresholds that reflect minimal fluores-
cence in respective control stains of sections incubated
with only blocking buffer and secondary antibodies for
each experiment. Imaging parameters were tailored for
each experimental application, but were kept consist-
ent between genotypes, adsorption pairs, and all other
respective experimental and control stains; sections
used for quantification of PAS granules were imaged at
20x magnification with 2 x zoom. For co-localization
analysis, human tissue sections were imaged at 20x
magnification with 3 x zoom. Phase separation ensured
that fluorescence spectra did not significantly overlap
(pairing: 405+ 568/594, 488-+647, when applicable).
High-resolution images for analysis of CA in CSF were
captured using 60 x magnification and 2 x zoom.

Supplementary Information

The online version contains supplementary material available at https://doi.
0rg/10.1186/540478-022-01409-5.

Additional file 1: Figure S1. CA analysis of AD cases spanning Braak
stages I-VI. A Representative brightfield images of full dentate gyrus
architecture in patient tissue samples from Braak I-VI. Inset (dashed box)
indicates sample region used in Fig. 2A. Scale bars =900 pm (|, IV), 500 (Ill)
400 pm (V), 600 pum (Il VI1).

Additional file 2: Figure S1.B CA/mm? distribution plot for all 124
patients included in this study showing a skewed distribution of patient
CA/mm?. C Logarithmic distribution plot of CA/mm? for all 124 included
in this study. D Box plot of CA/mm? vs Braak Stage using all 124 patients
included in this study. E Logarithmic box plot of CA/mm? vs Braak Stage
(I-V1) displaying all 124 patients included in this study.

Additional file 3: Figure S2. CA analysis of a refined AD cohort lacking
outliers. Scatter plot of refined patient cohort, CA Density vs Braak Stage
[, 11,111, 1V,V, and VI. (112 patients in black, 12 outliers identified by Grubb’s
test, Q=0.05, excluded patients in red). Statistically identified outliers
are depicted in the table. Pathological and demographic information for
outliers excluded from analysis, sorted by Braak stage. From left to right:
Alzheimer's neuropathological score, age, APOE allele, cognitive status,
post-mortem interval, sex, dentate gyrus area, CA numerical count, and
CA/mm?,

Additional file 4: Figure S3. CA analysis in a refined AD cohort illustrates
a correlation with cognition and APOE status. A Scatter plot of CA/mm? vs
AD Neuropathology score, ranked 0-3 (0=none, 1 =mild, 2=moderate,
3=severe) for 112 patients, 12 outliers excluded. Spearman r=-—0.2728,
*p =0.0046. B Plot of CA/mm? of cognitively normal and demented
patients at Braak Stages II, Ill, and IV. (112 patients, 12 outliers excluded).
*p=0.033 (Braak I), 0.021 (Braak Ill). C Plot of CA/mm? in E3/E3 vs E3/

E4 patients at Braak Stages |, II, IIl, IV, and V. (112 patients, 12 outliers
excluded). *p=0.0198. D Plot of CA/mm? in E3/E3 vs E3/E4 and E4/E4
patients at Braak stages IV, V and VI. (112 patients, 12 outliers excluded).

Additional file 5: Figure S4. The detection of human CA in CSF requires
primary IgM antibodies. A Shown is a secondary only control stain for
immunofluorescent detection of CA in human patient CSF. No CA are
detected in the absence of primary IgM antibody, though we note the
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detection of some non-specific debris. AlexaFluor anti-Ms IgG1 (red)
and Anti-Ms IgM (green, brightness increased for visualization). Scale
bar=100 um. Bottom row frames are insets from top row frames within
the dashed white compartment.
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