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Background: Clostridioides difficile Infection (CDI) is a healthcare-associated
diarrheal disease prevalent worldwide. A common diagnostic algorithm relies on
a two-step protocol that employs stool enzyme immunoassays (EIAs) to detect
the pathogen, and its toxins, respectively. Active CDI is deemed less likely when
the Toxin EIA result is negative, even if the pathogen-specific EIA is positive for C.
difficile. We recently reported, however, that low-toxin-producing C. difficile strains
recovered from Toxin-negative (‘discrepant’) clinical stool specimens can be fully
pathogenic, and cause lethality in a rodent CDI model. To document frequency of
discrepant CDI specimens, and evaluate C. difficile strain diversity, we performed
longitudinal surveillance at a Southern Arizona tertiary-care hospital.

Methods: Diarrheic stool specimens from patients with clinical suspicion of CDI
were obtained over an eight-year period (2015-2022) from all inpatient and
outpatient Units of a>600-bed Medical Center in Southern Arizona. Clinical
laboratory EIA testing identified C. difficile-containing specimens, and classified
them as Toxin-positive or Toxin-negative. C. difficile isolates recovered from the
stool specimens were DNA fingerprinted using an international phylogenetic
lineage assignment system (“ribotyping”). For select isolates, toxin abundance in
stationary phase supernatants of pure cultures was quantified via EIA.

Results: Of 8,910 diarrheic specimens that underwent diagnostic testing, 1733
(19.4%) harbored C. difficile. Our major findings were that: (1) C. difficile prevalence
and phylogenetic diversity was stable over the 8-year period; (2) toxigenic C.
difficile was recovered from 69% of clinically Tox-neg (‘discrepant’) specimens;
(3) the six most prevalent USA ribotypes were recovered in significant proportions
(>60%) from Tox-neg specimens; and (4) toxin—producing C. difficile recovered
from discrepant specimens produced less toxin than strains of the same ribotype
isolated from non-discrepant specimens.

Conclusion: Our study highlights the dominance of Toxin EIA-negative CDI
specimens in a clinical setting and the high frequency of known virulent ribotypes
in these specimens. Therefore, a careful reevaluation of the clinical relevance of
diagnostically-discrepant specimens particularly in the context of missed CDI
diagnoses and C. difficile persistence, is warranted.
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Introduction

Clostridioides difficile is a Gram-positive, spore-forming bacillus
that can produce up to three toxins that potentiate gastrointestinal
disease, typically antibiotic-associated, with symptoms ranging from
mild-moderate diarrhea to pseudomembranous colitis (1, 2). In the
United States, there are over 223,000 cases of C. difficile infection (CDI)
annually resulting in an economic burden exceeding $1 billion;
therefore, CDI is also one of the most prevalent healthcare-associated
infections (HAIs) in the USA (3). Certain phylogenetic lineages of
C. difficile (ribotypes; RTs), such as RT027 have been associated with
higher rates of recurrent infection, greater incidence of severe disease,
antibiotic resistance, and more frequent outbreaks (4). Prior studies
have shown ribotype diversity to be associated with geography, (5, 6),
and with healthcare-or community origin (7, 8). Therefore, phylogenetic
lineage assignment is useful for implicating CDI provenance, and
identifying potential clonal expansion of C. difficile strains that could
be indicative of disease outbreaks in healthcare settings.

There have been many CDI surveillance studies, but few have
tracked ribotype diversity over extended periods. Such studies may
be beneficial - in the United Kingdom, implementation of ribotype-
based surveillance revealed lower than expected CDI incidence as well
as a significant decrease in RT027 frequency (9, 10). The CDC’s
“Emerging Infections Program - Clostridioides difficile infection
surveillance” revealed a similar decrease in RT027 prevalence in the
United States, concomitant with the expansion of RT106, which is now
one of the most prevalent ribotypes (10, 11). In general, ribotype
diversity can be extremely dynamic (12, 13), and the emergence of a
ribotype in local, or national, contexts can be missed without longitudinal

Frontiers in Medicine

surveillance. In this study, we performed CDI surveillance and ribotyped
recovered isolates over an 8-year period in a single tertiary healthcare
setting with multiple in-patient hospital campuses and outpatient clinics.
Our study specifically focused on clinical microbiology laboratory
findings of CDI based on an enzyme immunoassay diagnostic protocol.

Methods
Specimen acquisition

Diarrheic stool specimens from patients with clinical suspicion of
CDI were obtained over an eight-year period (2015-2022) from
a>600-bed tertiary Medical Center in Southern Arizona. All
specimens were designated “to-be-discarded,” de-identified, and
frozen by the Microbiology Laboratory. This study was deemed not to
constitute human subjects research (NRDUC 1707612129) and was
thus exempt from full Institutional Review Board approval. These
specimens were subjected to a two-step diagnostic procedure that
utilized a glutamate dehydrogenase-specific enzyme immunoassay
(GDH-EIA) and a dual TcdA/TcdB-specific EIA (toxin EIA).

Recovery and identification of
Clostridioides difficile

The stool specimens were thawed, and an aliquot was plated onto
taurocholate-cefoxitin-cycloserine-fructose agar (TCCFA) in an
anaerobic chamber (Coy Laboratory Products, Grass Lake, MI,
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United States), and incubated at 37°C for 48h. A colony from the
TCCFA plate was re-struck to isolation on a new TCCFA plate and
grown under the same conditions for 24 h. An isolated colony from
the second TCCFA plate was propagated on Brain-Heart Infusion
(BHI) agar and incubated at 37°C anaerobically for 24 h. From this
plate, 1-3 colonies were used to inoculate 5mL of BHI broth and
incubated anaerobically overnight. The remaining bacteria from the
BHI plate were cryopreserved in 25% glycerol in BHI and stored
at -80°C.

Five ml of the overnight culture was centrifuged and resuspended
in ImL of Tris-EDTA buffer and processed for genomic DNA
extraction and ribotyping by the University of Arizona Genetics Core.
Ribotyping PCR products were separated by capillary electrophoresis,
and the lineage was identified by comparing the resulting
electropherogram to Webribo, an international C. difficile ribotyping
database (14). Ribotype assignment was considered ‘high-confidence’
based on the distance value <5 (14, 15).

Toxin quantitation

A previously published method was used to quantify toxin
production from C. difficile isolates (16). Briefly, C. difficile strains
were grown in 5mL BHI broth for 72h. The cultures were then
centrifuged, and cell-free supernatants clarified using 0.22 pm filters
(Argos Technologies, Elgin, IL, United States). Toxin amounts in 50 pL
of the supernatants were quantified using the Techlab® C. difficile Tox
A/B II'™™ EJA kit (Techlab, Blacksburg, VA, United States) per
manufacturer’s instructions, with absorbance measured at 450 nm.
Total protein concentration was quantified using the Pierce™ BCA
Protein Assay Kit (ThermoFisher Scientific, Waltham, MA,
United States), and toxin levels reported as absorbance at 450 nm/mg
total protein. All data were collected in biological triplicate. Toxin
status of the isolates was derived from the genotype (i.e., inferred from
ribotype) or actual quantitation of toxin.

Data analysis and visualization

Data analysis was performed and visualized in R Studios utilizing
the tidyverse, dplyr, lucid and treemapify libraries. XLSTAT was used
for statistical analyses. Student’s t-test, Mann-Whitney, and ANOVA
were used to determine statistical differences between groups. Linear
regression and goodness-of-fit was used to determine annual trends.
A p value <0.05 was considered the threshold for significance. Linear
regression was used to determine trends in annual ribotype frequency.

Results

9,109 diarrheic stool samples were submitted for C. difficile
diagnostic testing over an eight-year period (2015-2022) (Figure 1).
These specimens were received from 106 units in the Medical Center
spanning 5 inpatient and outpatient campuses. 8,910/9109 specimens
were subjected to a two-step diagnostic procedure that utilized a
glutamate dehydrogenase-specific enzyme immunoassay (GDH-EIA)
and a dual TcdA/TcdB-specific EIA (toxin EIA). C. difficile was
recovered from 1733 specimens for a raw overall specimen positivity
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of 19.45%. Overall, 692/1733 specimens (39.9%) had detectable stool
toxin (GDH+/Toxin+) and 1041/1733 specimens (60.1%) were stool
toxin-negative (GDH+/Toxin—; Figure 1). C. difficile recovery was
attempted from all clinical specimens, with at least one unique isolate
per specimen cup. Ribotype designation was used to infer toxigenic
potential since there is an association with ribotype and toxigenic
status (17). Only high-confidence ribotype assignments were included
in this study.

Of the 692 GDH+/Toxin+ specimens, C. difficile was successfully
recovered from 472 individual sample containers. This recovery rate
is similar to previously published reports, and inability to recover the
bacterium from the remaining specimens may reflect absence of viable
spores/vegetative cells. Using ribotype-based inference, 90.9% of these
strains (429/472) were classified as toxigenic C. difficile. A small
number of isolates (15/472; 3.2%) were classified as non-toxigenic. The
clinical test-positivity of their corresponding specimens could be due
to a false-positive EIA test result, or a co-occurring toxigenic C. difficile
strain(s); this was not further investigated. Ribotypes could not
be reliably assigned for 28 isolates.

For the 1,041 GDH+/Toxin- specimens, C. difficile was recovered
from 636 individual containers. Based on ribotype inference, 26.7%
(170/636) strains were non-toxigenic C. difficile. However, 69%
(439/636) strains were inferred to be toxigenic. Since these 439
toxigenic isolates were recovered from specimens testing negative on
a toxin EIA, we deemed those specimens to be “discrepant” relevant
to the diagnostic paradigm. Ribotypes could not be reliably assigned
for 27 isolates (Figure 1).

Ribotypes isolated from each specimen are reported in total
(Figure 2) as well as per annum (Figure 3). The six most prevalent
ribotypes isolated over the eight-year period (2015-2022), in
descending order, are RT027 (n=288), RT106 (n=111), RT014
(n=62), RT010 (n=56), RT076 (n1=49), and RT056 (1n=45). When
comparing the frequency of these ribotypes annually, the pattern
remains largely unchanged from year to year (Figure 3). RT027 was
the most prevalent ribotype isolated when a specimen was C. difficile-
positive, with RT106, typically, being the second most prevalent
(Figure 3). Importantly, during the entire surveillance period, and
based on the observation that specimens from units reporting multiple
CDIs always vyielded isolates of non-overlapping ribotypes,
we concluded that no major CDI outbreaks occurred in our
healthcare facility.

From 2017 onward, a C. difficile testing policy was instituted
wherein the GDH EIA and toxin EIA tests were employed as primary
diagnostic assays. During this period (2017-2022), we received a total
of 1,064 diarrheic GDH+ specimens of which 449 were toxin
EIA-positive, and 615 were toxin EIA-negative (Figure 4A).
Throughout the study period, the prevalence of the GDH+/Toxin—
specimens was either similar to (2020-2022), or greater than (2017-
2019), that of GDH+/Toxin+ specimens (Figure 4B). Overall,
we recovered 449 unique C. difficile isolates from GDH+/Toxin+
specimens, with 449 (96.7%) inferred as toxigenic via ribotyping.
Strikingly, 444/615 isolates from GDH+/Toxin-specimens (72.2%)
were also inferred as toxigenic. In a head-to-head comparison, there
was no statistical difference between the prevalence of toxigenic
strains recovered from toxin EIA-positive and toxin EIA-negative
specimens (Figure 4C; hatched black lines).

Next, we set out to establish whether specific toxigenic
C. difficile lineages were more likely to be classified as GDH+/
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FIGURE 1
Study design and diagnostic results. From 2015-2022, 8,910 samples were diagnostically assayed for C. difficile utilizing a GDH-EIA and TcdA/B-EIA.
692 specimens were positive for both EIA (GDH+/Toxin+) and 1,041 specimens were GDH+ but Toxin—. C. difficile was isolated from 636 of 1,041
GDH-+/Toxin— specimens and ribotyped. 170 specimens harbored non-toxigenic C. difficile, and 439 specimens harbored toxigenic C. difficile. These
439 specimens are considered discrepant, highlighted in red. Of the 692 GDH+/Toxin+ specimens, C. difficile isolates were isolated from 472 and
ribotyped. 429 specimens (90.9%) harbored toxigenic C. difficile, and 15 specimens (3.2%) harbored non-toxigenic C. difficile.

Toxin- during clinical stool testing (i.e., more likely to
be ‘discrepant’). Amongst the GDH+/Toxin-specimens, RT027
isolates were the least prevalent (26%), as compared with RT106
(60%), RT104 (64%), RT076 (71%), RT058 (63%) and RT002
(61%) (Figure 5A). The most prevalent ribotypes in this study,
with the exception of RT027, were more likely to be isolated from
toxin EIA-negative specimens than toxin EIA-positive specimens.
While these frequencies did vary year to year, no significant trend
in frequency changes was observed (Figure 5B).

Given that all our samples were from diarrheic patients,
we hypothesized that GDH+/Tox-specimens harbored toxigenic
C. difficile that expresses intoxicants at levels lower than those
detectable by the clinical toxin EIA. To assess this, we isolated
C. difficile from a subset of specimens spanning the 4 most
common ribotypes and used EIA to quantitate toxin abundance
in bacterial culture supernatants. Therefore, 5 unique isolates
from each of ribotypes RT027, RT106, RT002, and RT014
recovered from toxin EIA-negative specimens were compared
with 5 unique isolates from each of the ribotypes above, but
recovered from toxin EIA-positive specimens (Figure 6). Overall,
all isolates from GDH+/Toxin- specimens indeed produced
measurable toxin amounts, but close to the limit of detection of
the clinical EIA. On average, these isolates produced less toxin
than their counterparts of the same ribotype recovered from
GDH+/Toxin+ specimens.
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Discussion

The CDC’s Emerging Infections Program (EIP) as well as various
US healthcare facilities track and stratify CDI cases as having
healthcare-or community-onset. CDI is confirmed by detecting
TcdA and/or TedB in stool specimens using an EIA or a molecular
assay such as a nucleic acid amplification test (NAAT/PCR) for
tcdB. Binary toxin (CDT) is not utilized for diagnostic purposes as
the contribution of CDT to pathogenesis is not clear and the genes
are not uniformly present in C. difficile (18, 19). These approaches
allow for prospective and retrospective investigations wherein CDI
prevalence can be established with no additional testing. However,
CDI surveillance efforts do not routinely track ribotypes or other
molecular phylogeny. We posit that such efforts, particularly
ribotype identification, can provide an early alert of potential
outbreaks, define regional prevalence, track dispersal, and monitor
disease manifestation/association and treatment response(s) (4,
6, 20-24).

Few CDI surveillance studies have reported longitudinal ribotype
distributions, and the CDC has not reported U.S. national C. difficile
ribotype prevalence since 2018 (25). In their decade-long prospective
surveillance in Dublin, Skally et al. noted that the most prevalent
ribotypes, leading with RT014 and RT002, did not change annually
(26). Our study also reveals stable distribution of ribotypes in our
patient population/healthcare system over the eight-year surveillance
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RIBOTYPE DISTRIBUTION (2015 - 2022)
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FIGURE 2

Clostridioides difficile ribotype distribution during an 8-year prospective surveillance (2015-2022). Tree map of the most prevalent ribotypes, in color,
where the area of the box corresponds to the n-value. RT027 and RT106 were consistently the most common ribotypes per year. The non-toxigenic
ribotypes RT010 and RTO09 were the fourth and ninth most common ribotypes isolated from patient specimens.

2022 2021 2020 2019

OIDDI

QIO

B rT027 BlrT106 I rT002 __RTO14 [ rT056 . RTO76
FIGURE 3

Annual distribution of most common C. difficile ribotypes is largely invariant. Pie charts showing the prevalence of the six most common ribotypes
(RTO27, RT106, RTO02, RT014, RT056, and RTO76) in totality, per year. While the number of cases varied by year, the relative frequencies did not vary.
RT027 was consistently the most common ribotype isolated each year and RT106 was the second-most common ribotype, with the exception of 2020.
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FIGURE 4
Toxin EIA results do not predict C. difficile toxigenic potential. Comparisons of toxin EIA results and strain toxigenicity as inferred by ribotype. (A) Toxin
EIA-negative (peach) specimens were more numerous than toxin EIA-positive (green) specimens (615 vs. 449, respectively). (B) Annual distribution of
specimens by toxin EIA result. (C) Of the toxin EIA-positive specimens, 434/449 (96.7%) harbored toxigenic C. difficile with 15/449 (3.3%) harboring
non-toxigenic ribotypes. For the toxin EIA-negative specimens, 171/615 (27.8%) harbored non-toxigenic C. difficile but 444/615 (72.2%) specimens
harbored toxigenic C. difficile. There were more non-toxigenic strains in toxin EIA-negative specimens but there were similar numbers of toxigenic
C. difficile isolated from both groups (n.s. p>0.4; Mann—-Whitney).

period. This invariance in ribotype distribution provides additional
support for the technique’s usefulness in identifying potential
outbreaks, since unexpected changes in C. difficile phylogenetic
lineages can be easily detected. Indeed, Skally et al. identified
outbreaks by detecting the emergence of new ribotypes or the altered
frequency of existing ribotypes (26).

While largely invariant locally, there are geographical differences
in ribotype distribution that may be masked by national aggregate
data (27). The CDC EIP for C. difficile only tracks cases from 10 select
states in the U.S., and the reported ribotypes may not accurately reflect
regional observations in the rest of the country. For example, a
six-center surveillance study encompassing the states of Illinois,
Minnesota, New York, Montana, Massachusetts, and California
(N=939), as well as a Texas surveillance study (N=3,877) both
reported RT078 and RT255, respectively, as their most prevalent
ribotypes (13, 28). There was no geographical overlap between these
studies and the CDC EIP which did not include these two lineages in
the report’s 10 most-prevalent ribotypes list (11). Such findings
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underscore the importance of regional ribotyping efforts in addition
to those that report nationwide aggregates.

GDH+ stool specimens may be negative for the toxin EIA test
either because they harbor non-toxigenic C. difficile strains, or because
the amount of toxin in the stool sample is below the threshold of
detection in the clinical test. We have demonstrated that C. difficile
isolated from a subset of the latter group also produce lower levels of
toxin during in vitro culture and also in the rodent intestine, relative
to ribotype-matched isolates from GDH + Toxin+ specimens (16).
Nevertheless, such low-toxin C. difficile strains exhibited comparable
virulence to high-toxin strains in a hamster model of acute CDI (16).

From a clinical perspective, the significance and impact of
diagnostically-discrepant C. difficile continues to be debated (29—
32). The relative lower sensitivity of stool toxin EIA relative to
NAAT has been leveraged as a benefit in discriminating active CDI
from situations where C. difficile colonization is considered
incidental (even if the bacteria encode the toxins), or a minor
contributor to disease symptoms. However, Anikst et al., and
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FIGURE 5

Toxigenic C. difficile ribotypes are isolated from toxin EIA-negative specimens. (A) The percentage of toxin EIA-negative strains, compared to the total
number of strains, of the six most prevalent toxigenic ribotypes. Percentage values noted at top of bar. RTO27 was significantly less prevalent in toxin
EIA-negative specimens compared to the other five ribotypes (**#p < 0.001; ANOVA). However, 26% of RT027 isolates, and > 60% of other ribotypes,
were isolated from GDH+/Toxin— specimens. (B) Annual frequency of the 6 most common ribotypes, isolated from GDH+/Toxin— specimens.
Goodness-of-fit (R?) of a linear regression reported for each ribotype.
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FIGURE 6

Clostridioides difficile from discrepant and non-discrepant specimens produce the major intoxicants TcdA/B. Five strains from toxin EIA-positive and
toxin EIA-negative specimens each, belonging to four ribotypes (RT027, RT106, RT002, RT014), were assayed for toxin production. Bars represent
average toxin produced (ODusonm) per mg of protein. Irrespective of ribotype, all strains produced C. difficile toxin A/B; however, strains isolated from
discrepant specimens produced less toxin compared to strains from non-discrepant, toxin EIA-positive specimens. (*p < 0.05; t-test).

others, have reported that organism burden and stool toxin levels =~ asymmetrically, and since diagnostically toxin-negative specimens
were not significantly different between patients with and without  can harbor virulent C. difficile (24, 36-38), a deeper assessment of
severe diarrhea (30, 33-35). Since CDI affects patients pathogen phylogeny may be valuable. Currently, the presence of
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particular ribotypes (e.g., RT027) can be considered a predictor for
severe disease and recurrent CDI (39, 40) though others indicated
otherwise (41). Large-scale surveillance studies that correlate
ribotypes, among other factors, with patient outcomes will be able
to clarify this discordance.

Since reflex testing (to a NAAT) is generally not recommended
(42), the decision for CDI treatment when stool specimens are
GDH + Toxin-is delegated to clinician judgement (1). Concerningly,
Reigadas et al. reported that 12.7% of C. difficile infection cases would
be missed due to a lack of significant clinical suspicion (43). A lack of
clinical suspicion was previously shown to account for a three-fold
increase in CDI misdiagnosis in a meta-analysis of hospitals across 12
European countries (44). Skally et al. also noted that if a universal
testing scheme had not been adopted, most CDI cases in their
surveillance would have been undiagnosed (26). Mawer et al. further
reported that patients with diarrhea, and harboring toxigenic
C. difficile, but testing GDH+/Toxin-, contributed to >25% of
in-hospital CDI transmission (32).

Our current study, and other reports, highlight the potential scale
of this diagnostic gray area. Our findings indicate that up to 69% of the
GDH-+/Toxin-specimens nevertheless harbor toxigenic C. difficile.
Similarly, Akamatsu et al. reported toxigenic C. difficile to be present in
63.2% of GDH+/Toxin- specimens (45). The CDC estimates that
discrepant specimens (NAAT+/Toxin-) constitute 31% of the national
sampling set (25), although regional differences may be masked in
national averages. Since we recovered low-toxin strains from the four
most prevalent ribotypes also identified as USA-dominant in the
CDC’s EIP C. difficile surveillance (11), the need for heightened clinical
awareness regarding a GDH+/TOX-test result is warranted.

A particular strength of our study is the sample size since
specimens were collected throughout an 8-year period. These
numbers, and an unbiased ribotyping scheme, allowed us to determine
relative phylogenetic lineage variance on a year-to-year, even month-
to-month, basis. To our knowledge, our study is the first to elucidate
the ribotype distribution of discrepant CDI-suspicion stool specimens.
Except for RT027, the most prevalent USA ribotypes are more likely
to be isolated from GDH+/Toxin- specimens than GDH+/Toxin+
specimens. This is especially notable for rapidly-expanding ribotypes
such as RT106, since they can be extremely virulent despite producing
low amounts of toxin (15, 16).

Our study does have some limitations. Foremost is that 1-3
C. difficile colonies were used (per specimen), to assign ribotype. As
such, we cannot rule out the possibility of co-occurrence of multiple
C. difficile ribotypes in the original specimens. Previously published
work estimates that 5-10% of CDI specimens may harbor more than
one strain (46) but more recent work suggest this to be the case only
in 1.5% of the specimens (47). Another limitation is that our
specimens were obtained from a single healthcare center (albeit
with over 106 units and 5 inpatient and outpatient campuses);
specimens from other sites are necessary to generalize our local
ribotype distribution. Finally, no patient correlates were analyzed
during this surveillance. Thus, despite hospital Unit and collection
dates being unique throughout the study, we do not know how
many specimens were from repeat testing of the same patient.
Correlating patient outcomes, including disease severity,
progression and recurrence, to ribotype and diagnostic test results
will be a focus in future efforts.

Overall, this study robustly demonstrates the benefit of
prospective CDI surveillance. Our findings indicate that toxigenic
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C. difficile strains, including those belonging to outbreak-associated
ribotypes, are frequently isolated from toxin-negative specimens. A
modulated diagnostic paradigm, especially one that includes some
unbiased phylogeny, may be necessary in the future to accurately
detect toxigenic C. difficile and minimize clinical uncertainty.
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