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Background: Clostridioides di�cile Infection (CDI) is a healthcare-associated 

diarrheal disease prevalent worldwide. A common diagnostic algorithm relies on 

a two-step protocol that employs stool enzyme immunoassays (EIAs) to detect 

the pathogen, and its toxins, respectively. Active CDI is deemed less likely when 

the Toxin EIA result is negative, even if the pathogen-specific EIA is positive for C. 

di�cile. We recently reported, however, that low-toxin-producing C. di�cile strains 

recovered from Toxin-negative (‘discrepant’) clinical stool specimens can be fully 

pathogenic, and cause lethality in a rodent CDI model. To document frequency of 

discrepant CDI specimens, and evaluate C. di�cile strain diversity, we performed 

longitudinal surveillance at a Southern Arizona tertiary-care hospital.

Methods: Diarrheic stool specimens from patients with clinical suspicion of CDI 

were obtained over an eight-year period (2015–2022) from all inpatient and 

outpatient Units of a� >� 600-bed Medical Center in Southern Arizona. Clinical 

laboratory EIA testing identified C. di�cile-containing specimens, and classified 

them as Toxin-positive or Toxin-negative. C. di�cile isolates recovered from the 

stool specimens were DNA fingerprinted using an international phylogenetic 

lineage assignment system (“ribotyping”). For select isolates, toxin abundance in 

stationary phase supernatants of pure cultures was quantified via EIA.

Results: Of 8,910 diarrheic specimens that underwent diagnostic testing, 1733 

(19.4%) harbored C. di�cile. Our major findings were that: (1) C. di�cile prevalence 

and phylogenetic diversity was stable over the 8-year period; (2) toxigenic C. 

di�cile was recovered from 69% of clinically Tox-neg (‘discrepant’) specimens; 

(3) the six most prevalent USA ribotypes were recovered in significant proportions 

(>60%) from Tox-neg specimens; and (4) toxin–producing C. di�cile recovered 

from discrepant specimens produced less toxin than strains of the same ribotype 

isolated from non-discrepant specimens.

Conclusion: Our study highlights the dominance of Toxin EIA-negative CDI 

specimens in a clinical setting and the high frequency of known virulent ribotypes 

in these specimens. Therefore, a careful reevaluation of the clinical relevance of 

diagnostically-discrepant specimens particularly in the context of missed CDI 

diagnoses and C. di�cile persistence, is warranted.
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Introduction

Clostridioides di�cile is a Gram-positive, spore-forming bacillus 
that can produce up to three toxins that potentiate gastrointestinal 
disease, typically antibiotic-associated, with symptoms ranging from 
mild–moderate diarrhea to pseudomembranous colitis (1, 2). In the 
United States, there are over 223,000 cases of C. di�cile infection (CDI) 
annually resulting in an economic burden exceeding $1 billion; 
therefore, CDI is also one of the most prevalent healthcare-associated 
infections (HAIs) in the USA (3). Certain phylogenetic lineages of 
C. di�cile (ribotypes; RTs), such as RT027 have been associated with 
higher rates of recurrent infection, greater incidence of severe disease, 
antibiotic resistance, and more frequent outbreaks (4). Prior studies 
have shown ribotype diversity to be associated with geography, (5, 6), 
and with healthcare-or community origin (7, 8). �erefore, phylogenetic 
lineage assignment is useful for implicating CDI provenance, and 
identifying potential clonal expansion of C. di�cile strains that could 
be indicative of disease outbreaks in healthcare settings.

�ere have been many CDI surveillance studies, but few have 
tracked ribotype diversity over extended periods. Such studies may 
be bene�cial - in the United Kingdom, implementation of ribotype-
based surveillance revealed lower than expected CDI incidence as well 
as a signi�cant decrease in RT027 frequency (9, 10). �e CDC’s 
“Emerging Infections Program – Clostridioides di�cile infection 
surveillance” revealed a similar decrease in RT027 prevalence in the 
United States, concomitant with the expansion of RT106, which is now 
one of the most prevalent ribotypes (10, 11). In general, ribotype 
diversity can be extremely dynamic (12, 13), and the emergence of a 
ribotype in local, or national, contexts can be missed without longitudinal 

surveillance. In this study, we performed CDI surveillance and ribotyped 
recovered isolates over an 8-year period in a single tertiary healthcare 
setting with multiple in-patient hospital campuses and outpatient clinics. 
Our study speci�cally focused on clinical microbiology laboratory 
�ndings of CDI based on an enzyme immunoassay diagnostic protocol.

Methods

Specimen acquisition

Diarrheic stool specimens from patients with clinical suspicion of 
CDI were obtained over an eight-year period (2015–2022) from 
a > 600-bed tertiary Medical Center in Southern Arizona. All 
specimens were designated “to-be-discarded,” de-identi�ed, and 
frozen by the Microbiology Laboratory. �is study was deemed not to 
constitute human subjects research (NRDUC 1707612129) and was 
thus exempt from full Institutional Review Board approval. �ese 
specimens were subjected to a two-step diagnostic procedure that 
utilized a glutamate dehydrogenase-speci�c enzyme immunoassay 
(GDH-EIA) and a dual TcdA/TcdB-speci�c EIA (toxin EIA).

Recovery and identification of 
Clostridioides di�cile

�e stool specimens were thawed, and an aliquot was plated onto 
taurocholate-cefoxitin-cycloserine-fructose agar (TCCFA) in an 
anaerobic chamber (Coy Laboratory Products, Grass Lake, MI, 
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United States), and incubated at 37°C for 48 h. A colony from the 
TCCFA plate was re-struck to isolation on a new TCCFA plate and 
grown under the same conditions for 24 h. An isolated colony from 
the second TCCFA plate was propagated on Brain-Heart Infusion 
(BHI) agar and incubated at 37°C anaerobically for 24 h. From this 
plate, 1–3 colonies were used to inoculate 5 mL of BHI broth and 
incubated anaerobically overnight. �e remaining bacteria from the 
BHI plate were cryopreserved in 25% glycerol in BHI and stored 
at –80°C.

Five ml of the overnight culture was centrifuged and resuspended 
in 1 mL of Tris-EDTA bu�er and processed for genomic DNA 
extraction and ribotyping by the University of Arizona Genetics Core. 
Ribotyping PCR products were separated by capillary electrophoresis, 
and the lineage was identi�ed by comparing the resulting 
electropherogram to Webribo, an international C. di�cile ribotyping 
database (14). Ribotype assignment was considered ‘high-con�dence’ 
based on the distance value ≤5 (14, 15).

Toxin quantitation

A previously published method was used to quantify toxin 
production from C. di�cile isolates (16). Brie�y, C. di�cile strains 
were grown in 5 mL BHI broth for 72 h. �e cultures were then 
centrifuged, and cell-free supernatants clari�ed using 0.22 μm �lters 
(Argos Technologies, Elgin, IL, United States). Toxin amounts in 50 μL 
of the supernatants were quanti�ed using the Techlab® C. di�cile Tox 
A/B II™ EIA kit (Techlab, Blacksburg, VA, United  States) per 
manufacturer’s instructions, with absorbance measured at 450 nm. 
Total protein concentration was quanti�ed using the Pierce™ BCA 
Protein Assay Kit (�ermoFisher Scienti�c, Waltham, MA, 
United States), and toxin levels reported as absorbance at 450 nm/mg 
total protein. All data were collected in biological triplicate. Toxin 
status of the isolates was derived from the genotype (i.e., inferred from 
ribotype) or actual quantitation of toxin.

Data analysis and visualization

Data analysis was performed and visualized in R Studios utilizing 
the tidyverse, dplyr, lucid and treemapify libraries. XLSTAT was used 
for statistical analyses. Student’s t-test, Mann–Whitney, and ANOVA 
were used to determine statistical di�erences between groups. Linear 
regression and goodness-of-�t was used to determine annual trends. 
A p value <0.05 was considered the threshold for signi�cance. Linear 
regression was used to determine trends in annual ribotype frequency.

Results

9,109 diarrheic stool samples were submitted for C. di�cile 
diagnostic testing over an eight-year period (2015–2022) (Figure 1). 
�ese specimens were received from 106 units in the Medical Center 
spanning 5 inpatient and outpatient campuses. 8,910/9109 specimens 
were subjected to a two-step diagnostic procedure that utilized a 
glutamate dehydrogenase-speci�c enzyme immunoassay (GDH-EIA) 
and a dual TcdA/TcdB-speci�c EIA (toxin EIA). C. di�cile was 
recovered from 1733 specimens for a raw overall specimen positivity 

of 19.45%. Overall, 692/1733 specimens (39.9%) had detectable stool 
toxin (GDH+/Toxin+) and 1041/1733 specimens (60.1%) were stool 
toxin-negative (GDH+/Toxin–; Figure 1). C. di�cile recovery was 
attempted from all clinical specimens, with at least one unique isolate 
per specimen cup. Ribotype designation was used to infer toxigenic 
potential since there is an association with ribotype and toxigenic 
status (17). Only high-con�dence ribotype assignments were included 
in this study.

Of the 692 GDH+/Toxin+ specimens, C. di�cile was successfully 
recovered from 472 individual sample containers. �is recovery rate 
is similar to previously published reports, and inability to recover the 
bacterium from the remaining specimens may re�ect absence of viable 
spores/vegetative cells. Using ribotype-based inference, 90.9% of these 
strains (429/472) were classi�ed as toxigenic C. di�cile. A small 
number of isolates (15/472; 3.2%) were classi�ed as non-toxigenic. �e 
clinical test-positivity of their corresponding specimens could be due 
to a false-positive EIA test result, or a co-occurring toxigenic C. di�cile 
strain(s); this was not further investigated. Ribotypes could not 
be reliably assigned for 28 isolates.

For the 1,041 GDH+/Toxin– specimens, C. di�cile was recovered 
from 636 individual containers. Based on ribotype inference, 26.7% 
(170/636) strains were non-toxigenic C. di�cile. However, 69% 
(439/636) strains were inferred to be  toxigenic. Since these 439 
toxigenic isolates were recovered from specimens testing negative on 
a toxin EIA, we deemed those specimens to be “discrepant” relevant 
to the diagnostic paradigm. Ribotypes could not be reliably assigned 
for 27 isolates (Figure 1).

Ribotypes isolated from each specimen are reported in total 
(Figure 2) as well as per annum (Figure 3). �e six most prevalent 
ribotypes isolated over the eight-year period (2015–2022), in 
descending order, are RT027 (n = 288), RT106 (n = 111), RT014 
(n = 62), RT010 (n = 56), RT076 (n = 49), and RT056 (n = 45). When 
comparing the frequency of these ribotypes annually, the pattern 
remains largely unchanged from year to year (Figure 3). RT027 was 
the most prevalent ribotype isolated when a specimen was C. di�cile-
positive, with RT106, typically, being the second most prevalent 
(Figure 3). Importantly, during the entire surveillance period, and 
based on the observation that specimens from units reporting multiple 
CDIs always yielded isolates of non-overlapping ribotypes, 
we  concluded that no major CDI outbreaks occurred in our 
healthcare facility.

From 2017 onward, a C. di�cile testing policy was instituted 
wherein the GDH EIA and toxin EIA tests were employed as primary 
diagnostic assays. During this period (2017–2022), we received a total 
of 1,064 diarrheic GDH+ specimens of which 449 were toxin 
EIA-positive, and 615 were toxin EIA-negative (Figure  4A). 
�roughout the study period, the prevalence of the GDH+/Toxin– 
specimens was either similar to (2020–2022), or greater than (2017–
2019), that of GDH+/Toxin+ specimens (Figure  4B). Overall, 
we  recovered 449 unique C. di�cile isolates from GDH+/Toxin+ 
specimens, with 449 (96.7%) inferred as toxigenic via ribotyping. 
Strikingly, 444/615 isolates from GDH+/Toxin-specimens (72.2%) 
were also inferred as toxigenic. In a head-to-head comparison, there 
was no statistical di�erence between the prevalence of toxigenic 
strains recovered from toxin EIA-positive and toxin EIA-negative 
specimens (Figure 4C; hatched black lines).

Next, we  set out to establish whether specific toxigenic 
C. difficile lineages were more likely to be classified as GDH+/
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Toxin– during clinical stool testing (i.e., more likely to 
be ‘discrepant’). Amongst the GDH+/Toxin-specimens, RT027 
isolates were the least prevalent (26%), as compared with RT106 
(60%), RT104 (64%), RT076 (71%), RT058 (63%) and RT002 
(61%) (Figure 5A). The most prevalent ribotypes in this study, 
with the exception of RT027, were more likely to be isolated from 
toxin EIA-negative specimens than toxin EIA-positive specimens. 
While these frequencies did vary year to year, no significant trend 
in frequency changes was observed (Figure 5B).

Given that all our samples were from diarrheic patients, 
we hypothesized that GDH+/Tox-specimens harbored toxigenic 
C. difficile that expresses intoxicants at levels lower than those 
detectable by the clinical toxin EIA. To assess this, we isolated 
C. difficile from a subset of specimens spanning the 4 most 
common ribotypes and used EIA to quantitate toxin abundance 
in bacterial culture supernatants. Therefore, 5 unique isolates 
from each of ribotypes RT027, RT106, RT002, and RT014 
recovered from toxin EIA-negative specimens were compared 
with 5 unique isolates from each of the ribotypes above, but 
recovered from toxin EIA-positive specimens (Figure 6). Overall, 
all isolates from GDH+/Toxin– specimens indeed produced 
measurable toxin amounts, but close to the limit of detection of 
the clinical EIA. On average, these isolates produced less toxin 
than their counterparts of the same ribotype recovered from 
GDH+/Toxin+ specimens.

Discussion

�e CDC’s Emerging Infections Program (EIP) as well as various 
US healthcare facilities track and stratify CDI cases as having 
healthcare-or community-onset. CDI is con�rmed by detecting 
TcdA and/or TcdB in stool specimens using an EIA or a molecular 
assay such as a nucleic acid ampli�cation test (NAAT/PCR) for 
tcdB. Binary toxin (CDT) is not utilized for diagnostic purposes as 
the contribution of CDT to pathogenesis is not clear and the genes 
are not uniformly present in C. di�cile (18, 19). �ese approaches 
allow for prospective and retrospective investigations wherein CDI 
prevalence can be established with no additional testing. However, 
CDI surveillance e�orts do not routinely track ribotypes or other 
molecular phylogeny. We  posit that such e�orts, particularly 
ribotype identi�cation, can provide an early alert of potential 
outbreaks, de�ne regional prevalence, track dispersal, and monitor 
disease manifestation/association and treatment response(s) (4, 
6, 20–24).

Few CDI surveillance studies have reported longitudinal ribotype 
distributions, and the CDC has not reported U.S. national C. di�cile 
ribotype prevalence since 2018 (25). In their decade-long prospective 
surveillance in Dublin, Skally et al. noted that the most prevalent 
ribotypes, leading with RT014 and RT002, did not change annually 
(26). Our study also reveals stable distribution of ribotypes in our 
patient population/healthcare system over the eight-year surveillance 

FIGURE 1

Study design and diagnostic results. From 2015–2022, 8,910 samples were diagnostically assayed for C. di�cile utilizing a GDH-EIA and TcdA/B-EIA. 

692 specimens were positive for both EIA (GDH+/Toxin+) and 1,041 specimens were GDH+ but Toxin–. C. di�cile was isolated from 636 of 1,041 

GDH+/Toxin– specimens and ribotyped. 170 specimens harbored non-toxigenic C. di�cile, and 439 specimens harbored toxigenic C. di�cile. These 

439 specimens are considered discrepant, highlighted in red. Of the 692 GDH+/Toxin+ specimens, C. di�cile isolates were isolated from 472 and 

ribotyped. 429 specimens (90.9%) harbored toxigenic C. di�cile, and 15 specimens (3.2%) harbored non-toxigenic C. di�cile.
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FIGURE 2

Clostridioides di�cile ribotype distribution during an 8-year prospective surveillance (2015–2022). Tree map of the most prevalent ribotypes, in color, 

where the area of the box corresponds to the n-value. RT027 and RT106 were consistently the most common ribotypes per year. The non-toxigenic 

ribotypes RT010 and RT009 were the fourth and ninth most common ribotypes isolated from patient specimens.

FIGURE 3

Annual distribution of most common C. di�cile ribotypes is largely invariant. Pie charts showing the prevalence of the six most common ribotypes 

(RT027, RT106, RT002, RT014, RT056, and RT076) in totality, per year. While the number of cases varied by year, the relative frequencies did not vary. 

RT027 was consistently the most common ribotype isolated each year and RT106 was the second-most common ribotype, with the exception of 2020.
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FIGURE 4

Toxin EIA results do not predict C. di�cile toxigenic potential. Comparisons of toxin EIA results and strain toxigenicity as inferred by ribotype. (A) Toxin 

EIA-negative (peach) specimens were more numerous than toxin EIA-positive (green) specimens (615 vs. 449, respectively). (B) Annual distribution of 

specimens by toxin EIA result. (C) Of the toxin EIA-positive specimens, 434/449 (96.7%) harbored toxigenic C. di�cile with 15/449 (3.3%) harboring 

non-toxigenic ribotypes. For the toxin EIA-negative specimens, 171/615 (27.8%) harbored non-toxigenic C. di�cile but 444/615 (72.2%) specimens 

harbored toxigenic C. di�cile. There were more non-toxigenic strains in toxin EIA-negative specimens but there were similar numbers of toxigenic  

C. di�cile isolated from both groups (n.s. p� >� 0.4; Mann–Whitney).

period. �is invariance in ribotype distribution provides additional 
support for the technique’s usefulness in identifying potential 
outbreaks, since unexpected changes in C. di�cile phylogenetic 
lineages can be  easily detected. Indeed, Skally et  al. identi�ed 
outbreaks by detecting the emergence of new ribotypes or the altered 
frequency of existing ribotypes (26).

While largely invariant locally, there are geographical di�erences 
in ribotype distribution that may be masked by national aggregate 
data (27). �e CDC EIP for C. di�cile only tracks cases from 10 select 
states in the U.S., and the reported ribotypes may not accurately re�ect 
regional observations in the rest of the country. For example, a 
six-center surveillance study encompassing the states of Illinois, 
Minnesota, New  York, Montana, Massachusetts, and California 
(N = 939), as well as a Texas surveillance study (N = 3,877) both 
reported RT078 and RT255, respectively, as their most prevalent 
ribotypes (13, 28). �ere was no geographical overlap between these 
studies and the CDC EIP which did not include these two lineages in 
the report’s 10 most-prevalent ribotypes list (11). Such �ndings 

underscore the importance of regional ribotyping e�orts in addition 
to those that report nationwide aggregates.

GDH+ stool specimens may be negative for the toxin EIA test 
either because they harbor non-toxigenic C. di�cile strains, or because 
the amount of toxin in the stool sample is below the threshold of 
detection in the clinical test. We have demonstrated that C. di�cile 
isolated from a subset of the latter group also produce lower levels of 
toxin during in vitro culture and also in the rodent intestine, relative 
to ribotype-matched isolates from GDH + Toxin+ specimens (16). 
Nevertheless, such low-toxin C. di�cile strains exhibited comparable 
virulence to high-toxin strains in a hamster model of acute CDI (16).

From a clinical perspective, the signi�cance and impact of 
diagnostically-discrepant C. di�cile continues to be debated (29–
32). �e relative lower sensitivity of stool toxin EIA relative to 
NAAT has been leveraged as a bene�t in discriminating active CDI 
from situations where C. di�cile colonization is considered 
incidental (even if the bacteria encode the toxins), or a minor 
contributor to disease symptoms. However, Anikst et  al., and 
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others, have reported that organism burden and stool toxin levels 
were not signi�cantly di�erent between patients with and without 
severe diarrhea (30, 33–35). Since CDI a�ects patients 

asymmetrically, and since diagnostically toxin-negative specimens 
can harbor virulent C. di�cile (24, 36–38), a deeper assessment of 
pathogen phylogeny may be valuable. Currently, the presence of 

FIGURE 5

Toxigenic C. di�cile ribotypes are isolated from toxin EIA-negative specimens. (A) The percentage of toxin EIA-negative strains, compared to the total 

number of strains, of the six most prevalent toxigenic ribotypes. Percentage values noted at top of bar. RT027 was significantly less prevalent in toxin 

EIA-negative specimens compared to the other five ribotypes (***p� <� 0.001; ANOVA). However, 26% of RT027 isolates, and� >� 60% of other ribotypes, 

were isolated from GDH+/Toxin– specimens. (B) Annual frequency of the 6 most common ribotypes, isolated from GDH+/Toxin– specimens. 

Goodness-of-fit (R2) of a linear regression reported for each ribotype.

FIGURE 6

Clostridioides di�cile from discrepant and non-discrepant specimens produce the major intoxicants TcdA/B. Five strains from toxin EIA-positive and 

toxin EIA-negative specimens each, belonging to four ribotypes (RT027, RT106, RT002, RT014), were assayed for toxin production. Bars represent 

average toxin produced (OD450nm) per mg of protein. Irrespective of ribotype, all strains produced C. di�cile toxin A/B; however, strains isolated from 

discrepant specimens produced less toxin compared to strains from non-discrepant, toxin EIA-positive specimens. (*p� <� 0.05; t-test).
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particular ribotypes (e.g., RT027) can be considered a predictor for 
severe disease and recurrent CDI (39, 40) though others indicated 
otherwise (41). Large-scale surveillance studies that correlate 
ribotypes, among other factors, with patient outcomes will be able 
to clarify this discordance.

Since re�ex testing (to a NAAT) is generally not recommended 
(42), the decision for CDI treatment when stool specimens are 
GDH + Toxin-is delegated to clinician judgement (1). Concerningly, 
Reigadas et al. reported that 12.7% of C. di�cile infection cases would 
be missed due to a lack of signi�cant clinical suspicion (43). A lack of 
clinical suspicion was previously shown to account for a three-fold 
increase in CDI misdiagnosis in a meta-analysis of hospitals across 12 
European countries (44). Skally et al. also noted that if a universal 
testing scheme had not been adopted, most CDI cases in their 
surveillance would have been undiagnosed (26). Mawer et al. further 
reported that patients with diarrhea, and harboring toxigenic 
C. di�cile, but testing GDH+/Toxin-, contributed to ≥25% of 
in-hospital CDI transmission (32).

Our current study, and other reports, highlight the potential scale 
of this diagnostic gray area. Our �ndings indicate that up to 69% of the 
GDH+/Toxin-specimens nevertheless harbor toxigenic C. di�cile. 
Similarly, Akamatsu et al. reported toxigenic C. di�cile to be present in 
63.2% of GDH+/Toxin– specimens (45). �e CDC estimates that 
discrepant specimens (NAAT+/Toxin–) constitute 31% of the national 
sampling set (25), although regional di�erences may be masked in 
national averages. Since we recovered low-toxin strains from the four 
most prevalent ribotypes also identi�ed as USA-dominant in the 
CDC’s EIP C. di�cile surveillance (11), the need for heightened clinical 
awareness regarding a GDH+/TOX-test result is warranted.

A particular strength of our study is the sample size since 
specimens were collected throughout an 8-year period. �ese 
numbers, and an unbiased ribotyping scheme, allowed us to determine 
relative phylogenetic lineage variance on a year-to-year, even month-
to-month, basis. To our knowledge, our study is the �rst to elucidate 
the ribotype distribution of discrepant CDI-suspicion stool specimens. 
Except for RT027, the most prevalent USA ribotypes are more likely 
to be isolated from GDH+/Toxin– specimens than GDH+/Toxin+ 
specimens. �is is especially notable for rapidly-expanding ribotypes 
such as RT106, since they can be extremely virulent despite producing 
low amounts of toxin (15, 16).

Our study does have some limitations. Foremost is that 1–3 
C. di�cile colonies were used (per specimen), to assign ribotype. As 
such, we cannot rule out the possibility of co-occurrence of multiple 
C. di�cile ribotypes in the original specimens. Previously published 
work estimates that 5–10% of CDI specimens may harbor more than 
one strain (46) but more recent work suggest this to be the case only 
in 1.5% of the specimens (47). Another limitation is that our 
specimens were obtained from a single healthcare center (albeit 
with over 106 units and 5 inpatient and outpatient campuses); 
specimens from other sites are necessary to generalize our local 
ribotype distribution. Finally, no patient correlates were analyzed 
during this surveillance. �us, despite hospital Unit and collection 
dates being unique throughout the study, we  do not know how 
many specimens were from repeat testing of the same patient. 
Correlating patient outcomes, including disease severity, 
progression and recurrence, to ribotype and diagnostic test results 
will be a focus in future e�orts.

Overall, this study robustly demonstrates the bene�t of 
prospective CDI surveillance. Our �ndings indicate that toxigenic 

C. di�cile strains, including those belonging to outbreak-associated 
ribotypes, are frequently isolated from toxin-negative specimens. A 
modulated diagnostic paradigm, especially one that includes some 
unbiased phylogeny, may be necessary in the future to accurately 
detect toxigenic C. di�cile and minimize clinical uncertainty.
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