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Library size can undermine accurate molecular and phenotypic subtyping in spatial transcriptomics data.
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Abstract: In an era where transcriptomics-based subtyping, phenotyping and mechanistic understanding is
increasingly being driven by state-of-the-art spatially resolved transcriptomic (ST) technologies, it is
imperative that researchers, journals, and funders do all they can to ensure that as a community we are
interpreting these exciting data as accurately as possible with awareness of their limitations. In this short
report, we highlight one potential bias in ST data that could undermine accurate interpretation of
transcriptional signatures, providing the field with an opportunity to identify and avoid this issue prior to
release of new mechanistic findings. This issue is particularly relevant for platforms that produce some of
the most granular and high-resolution spatial information at single cell (and sub-cellular) resolution, with
the compromise of a reduced transcriptome panel of genes (Figure 1A).

Background: As ST technologies are still in the early competition stages of development, subject to rapid
release and obsolescence, the range of available platforms will continue to evolve! before reaching a
stabilised state. Alongside this expansion, benchmarking studies are objectively assessing the range and
dynamics of gene expression across platforms?* with their performances/stats being comprehensively
reviewed®. As recently described, its particularly important to process spatial data in a way that considers
library size.® To complement the need for specific normalisation protocols due to reduced library size, we
believe that the field must also ensure that the biological interpretation of existing transcriptional
signatures/subtypes in the same reduced gene panels remains faithful to the same mechanistic signalling
or clinical features they represent in non-spatial data.

This is particularly important at this point in time, as ST data offers the opportunity to uncover even more
novel and “seen-for-the-first-time” mechanistic insight afforded by the complex spatial data points at
multiple resolution scales; including cellular neighbourhoods, single-cells, subcellular RNA localisation. Any
deviation in mechanistic meaning of even the most well-validated and routinely used signatures/subtypes
at this stage will therefore lead to exponential levels of misunderstanding.

Potential issue with interpreting existing gene signatures within ST studies: While ST platforms will
continue to expand the gene panels they offer, mechanistic biologists that seek single cell resolution must
accept the compromise that anywhere up to 95% of the transcriptome may not be represented on current
ST panels (Figure 1B), an example of this is the ~1000 gene panel available on the Nanostring CosMx
platform. Although existing transcriptional signature/subtype scores, developed from full transcriptome
bulk and/or single cell data, can still be enumerated in individual cells from a ST dataset, the ability to
interpret these signatures scores in the same way in a reduced transcriptome panel compared to what they
would be in a whole transcriptome dataset, remains understudied.

Examples using existing data: To test concordance of outputs that would be obtained using a condensed
ST panel compared to a wider full transcriptome panel, we performed an assessment of single epithelial
cell transcriptional scores from an independent scRNAseq cohort. Using these data, we performed a
comparison of outputs from the full (reference) signature scores to those derived when using only the genes
on a condensed ST panel. The example below offers a typical situation, where single cell scoring with one
of the iCMS transcriptional signatures’ is performed using whole transcriptome data (labelled ‘full’) and
when filtered to only include genes currently offered on the standard CosMx 1000 gene panel (labelled
‘CosMXx’).
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Comparing the iCMS3 up signature scores derived from the full transcriptome (which includes all n=74
iCMS3 up genes) to the score that would be derived using only the genes present on the CosMx reduced
panel (which includes only n=16 iCMS3 up genes), reveals an overall general correlation of the scores (R =
0.79; p < 2.2x10%%). Importantly however, despite population-wide correlation, given the spread of the data
there are numerous cases where cells switch from being identical scores in one technology, to remarkably
extreme opposites in the genes provided in the other technology. In a clear example of this issue, we
selected pairs of cells that provide remarkably similar iCMS3 scores when using the full iCMS3 up signature,
as they will have been described in the original iCMS study, yet when assessed using the reduced gene panel
available in the CosMx, these cells would be classified as having the most extreme opposite top/bottom
scores.

This can lead researchers to interpret these data in entirely opposing directions to the originally intended
mechanistic meaning, as outputs for these cells would be classified as either having almost exactly the same
biological phenotype if profiled using a full transcriptome panel, or the most extreme and entirely opposing
biologies if profiled using the 1000 gene CosMx panel (Figure 1C, 1D).

What is the reason for this: This discordance arises as a signature/subtype score summarises all gene
expression values within that specific signature, and while these two cells/samples have the same iCMS3
up full transcriptome signature score, it is via elevation of entirely different combinations of signature
genes, as revealed by their unique patterns of gene expression and extreme signature enrichment rank in
the genes present on the CosMx platform (1000 gene panel) coloured in red (Figure 1E). When this
alternating pattern of individual gene expression overlaps with the genes that are represented/excluded
on the CosMx panel, as above, the outputs are severely altered.

Furthermore, when we select all cells with a full transcriptome iCMS3 up score around the population
median (4047.994 +/- 1% expression units, n=628 cells), although these cells all have similar full iCMS3
scores, when we assessed their complementary CosMx iCMS3 up scores in parallel, they ranged across the
full spectrum, from the highest 4.9% to the lowest 0.8% of all cells in this cohort (Figure 1F; lowest score:
149.02554 [375/44458 samples with a score < 149.02554]), (highest score: 9905.982 [2194/44458 samples
with a score >9905.982]).

From these, we next selected the top and bottom n=100 subsets of these cells ranked by CosMx score
(Figure 1F) and examined in detail the individual gene expression values of the iCMS3 signature genes.
These data were stratified according to whether they were represented solely within the full gene list (non-
CosMx) or also on the CosMx panel, which reveal that while these cells/samples all would be classified as
having the same iCMS3 up score in a scRNAseq experiment, the expression patterns of the genes on the
CosMx panel are highly distinct, leading to a discordant CosMx result (Figure 1G).
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Figure 1. Visualisation of the iCMS3 up signature A: Schematic overview of enrichment using a full gene panel versus a reduced
panel. B: Overlap between the genes represented on the CosMx and Xenium gene panels. C: Correlation between the single sample
scores of the full iCMS3 up signature (74 genes) and the 15 genes from the signature represented on the CosMx platform. Two samples
are highlighted which have a similar iCMS3 up enrichment for the full signature (CRC-JSC-S06: 4535.746; SMC16: 4265.263) but
extreme enrichments for the signature composed only of the genes present on the CosMx array (CRC-JSC-S06: 301.0396;, SMC16:
11430.593). Median (4047.994) shown by red line. D: Visualisation of the rank of each sample across for the full (CRC-JSC-S06: position
25872/44458; SMC16: position 23907/44458) and CosMx (CRC-JSC-S06: position 513/44458; SMC16: position 44241/44458)
signature enrichment. E: Heatmap showing the relative enrichment of each gene with the iCMS3 up signature for each sample, with
the genes present on the CosMx array in red. F: Subset of samples (n=628) +/-1% of the median (4007.514 — 4088.474), with the top
100 and bottom 100 samples for CosMx enrichment in red. G: Heatmap of the top 100 and bottom 100 samples (shown in red in F)
for CosMx enrichment with a full iCMS3 up enrichment around the median. The samples are arranged by the rank of each sample for
CosMx signature enrichment, with the sum of the genes within the iCMS3 up signature present on the array (CosMx [n=16]) and those
not present on the array (Non CosMx [n=58]) overlaid as barplots.
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Bias in this current study: By using the same source data, altering only the number of genes included, we
have selected favourable conditions for identifying similarities across these two axes. Therefore, our study
will almost certainly underestimate discordance, as it avoids well-documented differences between
sequencing and normalisation methods particularly in reduced library size panels.® To highlight the more
extreme effect of applying signatures which have been developed independently of the discovery data, we
conducted the same analyses in the MYC and PRC signatures®, which form the basis of our recently
published PDS molecular subtypes.® Despite a strong overall correlation (Figure 2A,C) samples with a
median full signature again span almost the entire range of CosMx scores (Figure 2B,D). The extreme effect
of the specific subset of genes present on the CosMx array has on the enrichment score compared to
considering the full signature is also illustrated using the MYC and PRC signatures (Supplementary Figure
1). In addition, single cell data will be biased towards exclusion of necrotic or broken/ruptured cells'® which
may remain present in spatial data. Therefore, there is likely to be much more variability between
subtype/signature interpretation from ST and non-ST data than documented here. While this current
situation may seem like it is championing the use of wider panel region-of-origin methods, like 10X
Genomics VISIUM or Nanostring GeoMx, such approaches must themselves continue to ensure that
interpretation of signature scores are viewed based on confounding lineages'! or biologically
heterogeneous pools of phenotypically distinct lineages®!? compounded by biased region of interest

selection strategies.?
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Figure 2. Visualisation of the signatures underlying PDS biology. A: Correlation between the single sample
enrichment of the full MYC (291 genes) and the 9 genes from the signature represented on the CosMx platform.
Median (6616.096) marked by the red line. B: Subset of samples (n=1426) +/-1% of the median (6549.935 -
6682.257), with the top 100 and bottom 100 samples for CosMx MYC enrichment in red. C: Correlation between
the single sample enrichment of the full PRC (395 genes) and the 42 genes from the signature represented on
the CosMx platform. Median (498.9944) marked by the red line. B: Subset of samples (n=591) +/-1% of the
median (494.0045 —503.9843), with the top 100 and bottom 100 samples for CosMx PRC enrichment in red.

Moving forward: We reside within an era where molecular information from even the most advanced
profiling technologies is easier and cheaper to generate than ever before. As such, new insights into cancer
mechanisms that examine individual genes or multiple signalling pathways at an incredibly high resolution
are routinely being published, which, with informed interpretation, can reveal new understanding of the
molecular events underpinning tumour initiation, progression, and response to treatment.

As we move towards imaging-based transcriptomic assessment, a trade off exists between gene panel
number and tissue imaging time. The current coverage of genes for standard panels will no doubt continue
to increase, but this sits at ~400 genes for single cell-specific ST approaches (Xenium [10x Genomics]) and
currently ~1000 genes (CosMx [Nanostring]) as standard (~6000 genes recently launched), with up to
~18,000 genes for the regions-of-interest ST options (GeoMx [Nanostring]) or unbiased whole
transcriptome (Visium, Visium HD [10x Genomics]. Importantly however, with these latter approaches you
lose specificity of the cell type being profiled or the heterogeneity in regions compared to cell-specific
technologies. Although large 18,000 gene panels at a single-cell spatially orientated resolution are on the
horizon, as it stands, ST data either provides wide transcriptome in non-specific cells, or more reduced
transcriptomes in specific cells. Until there is full transcriptomic coverage, data presented here indicates
that existing signature/subtype results derived from current reduced transcriptome ST panels should not
be immediately interpreted as providing the same mechanistic understanding of signatures/subtypes from
other benchmarked methods.

We believe this issue may go unnoticed in some studies, as many of the most commonly used
algorithms/tools will still produce a signature/subtype score regardless of how many of the template genes
are present, as they simply “ignore” genes from a specific signature that are not present in a dataset!.
There are remarkable advantages of using signatures/subtypes and pathway scores to represent intricate
multi-gene cascades, particularly coupled with the resolution of ST data. However, as demonstrated above,
in their current form they may not always represent the same phenotypic cascades in ST data. In the interim
we have developed SpatialExploreR, (https://mallsid.shinyapps.io/spatialexplorer/), an online resource
that enables users to assess the impact the reduced gene panel (CosMx) has on the enrichment of a suite
of commonly used transcriptional signatures and subtypes. This resource can be used via any web browser,
to interrogate the data and signatures we have described here, however, as we have also released the code
underpinning the resource, users can embed any other datasets and/or signatures relevant to their own
field for similar testing.

In an attempt to find a surrogate for signature enrichment in the limited CosMx gene panel we correlated
the enrichment score per sample with all genes represented on the panel (n=960), but neither the single
most correlated gene, nor the sum of the top five most correlated genes improve upon the correlation
observed with the reduced signature enrichment (Supplementary Figure 2). Therefore our findings strongly
support the development of a new wave of experimentally validated signatures designed specifically for
spatial phenotypic characterisation.
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Overall, the field is at a crossroads, where generation of high-resolution data continues rapidly and at scale,
however the intricacy of the molecular information and the diverse analytical methods required have
created a critical bottleneck for non-programmers to interpret these data,’* which now demands
specialised computational skills and expertise. Although funders have invested significant resources in
generating large-scale molecular datasets, the value and impact of these resources are limited if only a
small subset of researchers and clinicians have the necessary computational skills to analyse and interpret
the data effectively. Given the complexity of these technologies, their widespread use must also be coupled
with commitments from funders for substantially more support for data-driven early career researchers
(ECRs), as these ECRs are the ones who have the skills and expertise to analyse the data effectively and
most importantly to interpret these findings accurately.

Total words: 1955
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Methods:

Data Processing: The processed count expression matrix for epithelial cells and corresponding epithelial
metadata were downloaded through the Synapse under accession code syn26844071’. The count
expression matrix for tumour epithelial cells (n = 44458) was normalized using SCTransfrom in the Seurat R
package?® (v.4.3.0.1) with variable.features.n = 26078 to account for all genes.

Gene lists: The iCMS genesets were downloaded from the original publication’. The MYC and PRC
signatures detailed with the PDS molecular classification'® were downloaded from the original source®. A
signature collection was created for all genes within the signature (full signature) and those which
overlapped with genes (n = 960; default Nanostring exprMat file) on the CosMx gene panel (CosMx
signature).

Single Sample Geneset Enrichment: Single sample GSEA scores were calculated per cell for each signature
using the enrichlit function in the escape R package *’(v1.8.0) with groups = 1000, cores = 2, and min.size=5.

Correlation: The gene expression matrix was filtered to only include the genes represented on the CosMx
panel. The correlation between the MYC, PRC and iCMS up ssGSEA scores for the full signature were
calculated for each gene using the cor.test function with method = pearson in the stats R package (4.2.3).

Data visualisation: Data visualisations was processed using R (v4.2.3) in RStudio. Packages used included
VennDiagram (v1.7.3), ggpubr (v0.6.0), ggplot2 (v3.5.0), circlize (v0.4.15) and ComplexHeatmap (v2.14.0).
Pearson’s correlation was calculated with in the ggpubr (v0.6.0) R package.

SpatialExploreR shiny application: The shiny-based web application was built on using list of shinyapps
related R packages, including shiny (v1.8.1.1), shinydashboard (v0.7.2), shinydashboardPlus (v2.0.4),
shinyWidgets (v0.8.6), shinyjs (v2.1.0) and shinycssloaders (v1.0.0). Other R packages for data visualisation
includes, ggplot2 (v3.5.1), plotly (v4.10.4), ComplexHeatmap (v2.18.0), and InteractiveComplexHeatmap
(v1.10.0).

Code for all results in GitHub: All the scripts, including for the ShinyApp will be deposited during review
process.
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Supplementary Figure 1. Contribution of genes within MYC and PRC signatures to overall sample enrichment.
A: Heatmap of the top 100 and bottom 100 samples (shown in red in Figure 3B) for CosMx enrichment with a
full MYC enrichment around the median. The samples are arranged by the rank of each sample for CosMx
signature enrichment, with the sum of the genes within the MYC signature present on the array (CosMx [n=282])
and those not present on the array (Non CosMx [n=9]) overlaid as barplots. B: Heatmap of the top 100 and
bottom 100 samples (shown in red in Figure 3D) for CosMx enrichment with a full PRC enrichment around the
median. The samples are arranged by the rank of each sample for CosMx signature enrichment, with the sum of
the genes within the PRC signature present on the array (CosMx [n=353]) and those not present on the array
(Non CosMx [n=42]) overlaid as barplots.
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enrichment score of the full iCMS up (A,D), MYC (B,E) and PRC (C,F).
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