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Library size can undermine accurate molecular and phenotypic subtyping in spatial transcriptomics data. 
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Abstract: In an era where transcriptomics-based subtyping, phenotyping and mechanistic understanding is 

increasingly being driven by state-of-the-art spatially resolved transcriptomic (ST) technologies, it is 

imperative that researchers, journals, and funders do all they can to ensure that as a community we are 

interpreting these exciting data as accurately as possible with awareness of their limitations. In this short 

report, we highlight one potential bias in ST data that could undermine accurate interpretation of 

transcriptional signatures, providing the field with an opportunity to identify and avoid this issue prior to 

release of new mechanistic findings. This issue is particularly relevant for platforms that produce some of 

the most granular and high-resolution spatial information at single cell (and sub-cellular) resolution, with 

the compromise of a reduced transcriptome panel of genes (Figure 1A).  

Background: As ST technologies are still in the early competition stages of development, subject to rapid 

release and obsolescence, the range of available platforms will continue to evolve1 before reaching a 

stabilised state. Alongside this expansion, benchmarking studies are objectively assessing the range and 

dynamics of gene expression across platforms2-4 with their performances/stats being comprehensively 

reviewed5. As recently described, its particularly important to process spatial data in a way that considers 

library size.6 To complement the need for specific normalisation protocols due to reduced library size, we 

believe that the field must also ensure that the biological interpretation of existing transcriptional 

signatures/subtypes in the same reduced gene panels remains faithful to the same mechanistic signalling 

or clinical features they represent in non-spatial data.  

This is particularly important at this point in time, as ST data offers the opportunity to uncover even more 

novel and “seen-for-the-first-time” mechanistic insight afforded by the complex spatial data points at 
multiple resolution scales; including cellular neighbourhoods, single-cells, subcellular RNA localisation. Any 

deviation in mechanistic meaning of even the most well-validated and routinely used signatures/subtypes 

at this stage will therefore lead to exponential levels of misunderstanding. 

Potential issue with interpreting existing gene signatures within ST studies: While ST platforms will 

continue to expand the gene panels they offer, mechanistic biologists that seek single cell resolution must 

accept the compromise that anywhere up to 95% of the transcriptome may not be represented on current 

ST panels (Figure 1B), an example of this is the ~1000 gene panel available on the Nanostring CosMx 

platform. Although existing transcriptional signature/subtype scores, developed from full transcriptome 

bulk and/or single cell data, can still be enumerated in individual cells from a ST dataset, the ability to 

interpret these signatures scores in the same way in a reduced transcriptome panel compared to what they 

would be in a whole transcriptome dataset, remains understudied.  

Examples using existing data:  To test concordance of outputs that would be obtained using a condensed 

ST panel compared to a wider full transcriptome panel, we performed an assessment of single epithelial 

cell transcriptional scores from an independent scRNAseq cohort. Using these data, we performed a 

comparison of outputs from the full (reference) signature scores to those derived when using only the genes 

on a condensed ST panel. The example below offers a typical situation, where single cell scoring with one 

of the iCMS transcriptional signatures7 is performed using whole transcriptome data (labelled ‘full’) and 

when filtered to only include genes currently offered on the standard CosMx 1000 gene panel (labelled 

‘CosMx’).  
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Comparing the iCMS3 up signature scores derived from the full transcriptome (which includes all n=74 

iCMS3 up genes) to the score that would be derived using only the genes present on the CosMx reduced 

panel (which includes only n=16 iCMS3 up genes), reveals an overall general correlation of the scores (R = 

0.79; p < 2.2x10-16). Importantly however, despite population-wide correlation, given the spread of the data 

there are numerous cases where cells switch from being identical scores in one technology, to remarkably 

extreme opposites in the genes provided in the other technology. In a clear example of this issue, we 

selected pairs of cells that provide remarkably similar iCMS3 scores when using the full iCMS3 up signature, 

as they will have been described in the original iCMS study, yet when assessed using the reduced gene panel 

available in the CosMx, these cells would be classified as having the most extreme opposite top/bottom 

scores.  

This can lead researchers to interpret these data in entirely opposing directions to the originally intended 

mechanistic meaning, as outputs for these cells would be classified as either having almost exactly the same 

biological phenotype if profiled using a full transcriptome panel, or the most extreme and entirely opposing 

biologies if profiled using the 1000 gene CosMx panel (Figure 1C, 1D).  

 

What is the reason for this: This discordance arises as a signature/subtype score summarises all gene 

expression values within that specific signature, and while these two cells/samples have the same iCMS3 

up full transcriptome signature score, it is via elevation of entirely different combinations of signature 

genes, as revealed by their unique patterns of gene expression and extreme signature enrichment rank in 

the genes present on the CosMx platform (1000 gene panel) coloured in red (Figure 1E). When this 

alternating pattern of individual gene expression overlaps with the genes that are represented/excluded 

on the CosMx panel, as above, the outputs are severely altered.  

Furthermore, when we select all cells with a full transcriptome iCMS3 up score around the population 

median (4047.994 +/- 1% expression units, n=628 cells), although these cells all have similar full iCMS3 

scores, when we assessed their complementary CosMx iCMS3 up scores in parallel, they ranged across the 

full spectrum, from the highest 4.9% to the lowest 0.8% of all cells in this cohort (Figure 1F; lowest score: 

149.02554 [375/44458 samples with a score ≤ 149.02554]), (highest score: 9905.982 [2194/44458 samples 

with a score ≥ 9905.982]).  

From these, we next selected the top and bottom n=100 subsets of these cells ranked by CosMx score 

(Figure 1F) and examined in detail the individual gene expression values of the iCMS3 signature genes. 

These data were stratified according to whether they were represented solely within the full gene list (non-

CosMx) or also on the CosMx panel, which reveal that while these cells/samples all would be classified as 

having the same iCMS3 up score in a scRNAseq experiment, the expression patterns of the genes on the 

CosMx panel are highly distinct, leading to a discordant CosMx result (Figure 1G).  
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Figure 1. Visualisation of the iCMS3 up signature A: Schematic overview of enrichment using a full gene panel versus a reduced 

panel. B: Overlap between the genes represented on the CosMx and Xenium gene panels. C: Correlation between the single sample 

scores of the full iCMS3 up signature (74 genes) and the 15 genes from the signature represented on the CosMx platform. Two samples 

are highlighted which have a similar iCMS3 up enrichment for the full signature (CRC-JSC-S06: 4535.746; SMC16: 4265.263) but 

extreme enrichments for the signature composed only of the genes present on the CosMx array (CRC-JSC-S06: 301.0396; SMC16: 

11430.593). Median (4047.994) shown by red line. D: Visualisation of the rank of each sample across for the full (CRC-JSC-S06: position 

25872/44458; SMC16: position 23907/44458) and CosMx (CRC-JSC-S06: position 513/44458; SMC16: position 44241/44458) 

signature enrichment. E: Heatmap showing the relative enrichment of each gene with the iCMS3 up signature for each sample, with 

the genes present on the CosMx array in red. F: Subset of samples (n=628) +/-1% of the median (4007.514 – 4088.474), with the top 

100 and bottom 100 samples for CosMx enrichment in red. G: Heatmap of the top 100 and bottom 100 samples (shown in red in F) 

for CosMx enrichment with a full iCMS3 up enrichment around the median. The samples are arranged by the rank of each sample for 

CosMx signature enrichment, with the sum of the genes within the iCMS3 up signature present on the array (CosMx [n=16]) and those 

not present on the array (Non CosMx [n=58]) overlaid as barplots.  
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Bias in this current study: By using the same source data, altering only the number of genes included, we 

have selected favourable conditions for identifying similarities across these two axes. Therefore, our study 

will almost certainly underestimate discordance, as it avoids well-documented differences between 

sequencing and normalisation methods particularly in reduced library size panels.6 To highlight the more 

extreme effect of applying signatures which have been developed independently of the discovery data, we 

conducted the same analyses in the MYC and PRC signatures8, which form the basis of our recently 

published PDS molecular subtypes.9 Despite a strong overall correlation (Figure 2A,C) samples with a 

median full signature again span almost the entire range of CosMx scores (Figure 2B,D). The extreme effect 

of the specific subset of genes present on the CosMx array has on the enrichment score compared to 

considering the full signature is also illustrated using the MYC and PRC signatures (Supplementary Figure 

1). In addition, single cell data will be biased towards exclusion of necrotic or broken/ruptured cells10 which 

may remain present in spatial data. Therefore, there is likely to be much more variability between 

subtype/signature interpretation from ST and non-ST data than documented here. While this current 

situation may seem like it is championing the use of wider panel region-of-origin methods, like 10X 

Genomics VISIUM or Nanostring GeoMx, such approaches must themselves continue to ensure that 

interpretation of signature scores are viewed based on confounding lineages11 or biologically 

heterogeneous pools of phenotypically distinct lineages9,12 compounded by biased region of interest 

selection strategies.13 
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Moving forward: We reside within an era where molecular information from even the most advanced 

profiling technologies is easier and cheaper to generate than ever before. As such, new insights into cancer 

mechanisms that examine individual genes or multiple signalling pathways at an incredibly high resolution 

are routinely being published, which, with informed interpretation, can reveal new understanding of the 

molecular events underpinning tumour initiation, progression, and response to treatment.  

As we move towards imaging-based transcriptomic assessment, a trade off exists between gene panel 

number and tissue imaging time. The current coverage of genes for standard panels will no doubt continue 

to increase, but this sits at ~400 genes for single cell-specific ST approaches (Xenium [10x Genomics]) and 

currently ~1000 genes (CosMx [Nanostring]) as standard (~6000 genes recently launched), with up to 

~18,000 genes for the regions-of-interest ST options (GeoMx [Nanostring]) or unbiased whole 

transcriptome (Visium, Visium HD [10x Genomics]. Importantly however, with these latter approaches you 

lose specificity of the cell type being profiled or the heterogeneity in regions compared to cell-specific 

technologies. Although large 18,000 gene panels at a single-cell spatially orientated resolution are on the 

horizon, as it stands, ST data either provides wide transcriptome in non-specific cells, or more reduced 

transcriptomes in specific cells. Until there is full transcriptomic coverage, data presented here indicates 

that existing signature/subtype results derived from current reduced transcriptome ST panels should not 

be immediately interpreted as providing the same mechanistic understanding of signatures/subtypes from 

other benchmarked methods.  

We believe this issue may go unnoticed in some studies, as many of the most commonly used 

algorithms/tools will still produce a signature/subtype score regardless of how many of the template genes 

are present, as they simply “ignore” genes from a specific signature that are not present in a dataset14. 

There are remarkable advantages of using signatures/subtypes and pathway scores to represent intricate 

multi-gene cascades, particularly coupled with the resolution of ST data. However, as demonstrated above, 

in their current form they may not always represent the same phenotypic cascades in ST data. In the interim 

we have developed SpatialExploreR, (https://mallsid.shinyapps.io/spatialexplorer/), an online resource  

that enables users to assess the impact the reduced gene panel (CosMx) has on the enrichment of a suite 

of commonly used transcriptional signatures and subtypes. This resource can be used via any web browser, 

to interrogate the data and signatures we have described here, however, as we have also released the code 

underpinning the resource, users can embed any other datasets and/or signatures relevant to their own 

field for similar testing. 

In an attempt to find a surrogate for signature enrichment in the limited CosMx gene panel we correlated 

the enrichment score per sample with all genes represented on the panel (n=960), but neither the single 

most correlated gene, nor the sum of the top five most correlated genes improve upon the correlation 

observed with the reduced signature enrichment (Supplementary Figure 2). Therefore our findings strongly 

support the development of a new wave of experimentally validated signatures designed specifically for 

spatial phenotypic characterisation.  

 

Figure 2. Visualisation of the signatures underlying PDS biology.  A: Correlation between the single sample 

enrichment of the full MYC (291 genes) and the 9 genes from the signature represented on the CosMx platform. 

Median (6616.096) marked by the red line. B: Subset of samples (n=1426) +/-1% of the median (6549.935 - 

6682.257), with the top 100 and bottom 100 samples for CosMx MYC enrichment in red.  C: Correlation between 

the single sample enrichment of the full PRC (395 genes) and the 42 genes from the signature represented on 

the CosMx platform. Median (498.9944) marked by the red line. B: Subset of samples (n=591) +/-1% of the 

median (494.0045 – 503.9843), with the top 100 and bottom 100 samples for CosMx PRC enrichment in red. 

https://mallsid.shinyapps.io/spatialexplorer/
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Overall, the field is at a crossroads, where generation of high-resolution data continues rapidly and at scale, 

however the intricacy of the molecular information and the diverse analytical methods required have 

created a critical bottleneck for non-programmers to interpret these data,13 which now demands 

specialised computational skills and expertise. Although funders have invested significant resources in 

generating large-scale molecular datasets, the value and impact of these resources are limited if only a 

small subset of researchers and clinicians have the necessary computational skills to analyse and interpret 

the data effectively. Given the complexity of these technologies, their widespread use must also be coupled 

with commitments from funders for substantially more support for data-driven early career researchers 

(ECRs), as these ECRs are the ones who have the skills and expertise to analyse the data effectively and 

most importantly to interpret these findings accurately. 

 

Total words: 1955 
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Methods: 

Data Processing: The processed count expression matrix for epithelial cells and corresponding epithelial 

metadata were downloaded through the Synapse under accession code syn268440717. The count 

expression matrix for tumour epithelial cells (n = 44458) was normalized using SCTransfrom in the Seurat R 

package15 (v.4.3.0.1) with variable.features.n = 26078 to account for all genes.  

Gene lists: The iCMS genesets were downloaded from the original publication7. The MYC and PRC 

signatures detailed with the PDS molecular classification16 were downloaded from the original source8. A 

signature collection was created for all genes within the signature (full signature) and those which 

overlapped with genes (n = 960; default Nanostring exprMat file) on the CosMx gene panel (CosMx 

signature). 

Single Sample Geneset Enrichment: Single sample GSEA scores were calculated per cell for each signature 

using the enrichIt function in the escape R package 17(v1.8.0) with groups = 1000, cores = 2, and min.size=5. 

Correlation: The gene expression matrix was filtered to only include the genes represented on the CosMx 

panel. The correlation between the MYC, PRC and iCMS up ssGSEA scores for the full signature were 

calculated for each gene using the cor.test function with method = pearson in the stats R package (4.2.3).  

Data visualisation: Data visualisations was processed using R (v4.2.3) in RStudio. Packages used included 

VennDiagram (v1.7.3), ggpubr (v0.6.0), ggplot2 (v3.5.0), circlize (v0.4.15) and ComplexHeatmap (v2.14.0). 

Pearson’s correlation was calculated with in the ggpubr (v0.6.0) R package.  

SpatialExploreR shiny application: The shiny-based web application was built on using list of shinyapps 

related R packages, including shiny (v1.8.1.1), shinydashboard (v0.7.2), shinydashboardPlus (v2.0.4), 

shinyWidgets (v0.8.6), shinyjs (v2.1.0) and shinycssloaders (v1.0.0). Other R packages for data visualisation 

includes, ggplot2 (v3.5.1), plotly (v4.10.4), ComplexHeatmap (v2.18.0), and InteractiveComplexHeatmap 

(v1.10.0). 

Code for all results in GitHub: All the scripts, including for the ShinyApp will be deposited during review 

process. 
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Supplementary Figures: 

 

 

 

 

 

Supplementary Figure 1. Contribution of genes within MYC and PRC signatures to overall sample enrichment.  

A: Heatmap of the top 100 and bottom 100 samples (shown in red in Figure 3B) for CosMx enrichment with a 

full MYC enrichment around the median. The samples are arranged by the rank of each sample for CosMx 

signature enrichment, with the sum of the genes within the MYC signature present on the array (CosMx [n=282]) 

and those not present on the array (Non CosMx [n=9]) overlaid as barplots. B: Heatmap of the top 100 and 

bottom 100 samples (shown in red in Figure 3D) for CosMx enrichment with a full PRC enrichment around the 

median. The samples are arranged by the rank of each sample for CosMx signature enrichment, with the sum of 

the genes within the PRC signature present on the array (CosMx [n=353]) and those not present on the array 

(Non CosMx [n=42]) overlaid as barplots.  
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Supplementary Figure 2: Correlation between signature enrichment and genes on CosMx. The most correlated 

gene (A-C) and the sum of the top five most correlated genes (D-F) are correlated against the single sample 

enrichment score of the full iCMS up (A,D), MYC (B,E) and PRC (C,F). 






