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Abstract  

Multiple myeloma represents a complex hematological malignancy, characterized by its wide 
array of genetic and clinical events. The introduction of proteasome inhibitors, such as 
carfilzomib or bortezomib, into the therapeutic landscape has notably enhanced the quality 
of life and survival rates for patients suffering from this disease. Nonetheless, a significant 
obstacle in the long-term efficacy of this treatment is the inevitable development of 
resistance to PIs, posing a substantial challenge in managing the disease effectively. Our study 
investigates the molecular mechanisms behind carfilzomib resistance by analyzing multi-
omics profiles from four multiple myeloma cell lines: AMO-1, KMS-12-PE, RPMI-8226 and 
OPM-2, together with their carfilzomib-resistant variants. We uncovered a significant 
downregulation of metabolic pathways linked to strong mitochondrial dysfunction in resistant 
cells. Further examination of patient samples identified key genes - ABCB1, RICTOR, PACSIN1, 
KMT2D, WEE1 and GATM - potentially crucial for resistance, guiding us towards promising 
carfilzomib combination therapies to circumvent resistance mechanisms. The response 
profiles of tested compounds have led to the identification of a network of gene interactions 
in resistant cells. We identified two already approved drugs, benidipine and tacrolimus, as 
potential partners for combination therapy with carfilzomib to counteract resistance. This 
discovery enhances the clinical significance of our findings. 
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Introduction 
            Multiple myeloma (MM) is a highly heterogeneous hematological malignancy that is 
characterized by the accumulation of clonal plasma cells in the bone marrow leading to renal 
dysfunction, anemia, hypercalcemia and bone lesions [1, 2]. It is estimated that there will be 
35 780 new MM cases and 12 540 deaths in 2024 in the US [3]. Patients that have been 
diagnosed with the disease have the median age between 66 to 70 years and the frequency 
of cases diagnosed before the age of 30 does not exceed 0.3% [4]. 
            The survival of MM patients has been significantly improved over the last fifteen years 
[5, 6]. Proteasome inhibitor-based therapy approval underlies the advances in both disease 
outcome and overall survival. Bortezomib and its combinations have been approved for newly 
diagnosed MM patients, whereas carfilzomib-based therapy is approved for relapsed and 
refractory cases [6]. Despite steadily improving remission rates, the disease remains incurable 
with a major hurdle being either intrinsic or acquired resistance to the treatment [7]. 
            Being the first proteasome inhibitor approved for newly diagnosed patients, 
bortezomib has been extensively studied to reveal molecular mechanisms which underlie its 
therapy resistance. Genetic abnormalities, atypical metabolic activity, activation of signalling 
pathways are among the most prominent indications associated with the resistance [8-11]. 
These hints have led to identification of potential bortezomib combination partners that could 
overcome the resistance and resensitize the malignant cells to the proteasome inhibitor [12, 
13]. At the same time, a second-generation proteasome inhibitor, carfilzomib, has 
demonstrated its potential to induce cell death in the presence of bortezomib resistance [14, 
15]. In contrast to bortezomib, being an irreversible inhibitor, carfilzomib leads to more 
sustained inhibition of proteasome function. Its high efficacy and selectivity hold great 
promise for clinical applications which has been supported with positive indication from 
clinical trials for the newly diagnosed patients [16] (studies NCT01029054, NCT01980589 
registered at http://www.clinicaltrials.gov). Despite the explicit advantages, resistance to 
carfilzomib-based treatment has also been observed to be inevitable for the majority of 
patients. Several studies have revealed some mechanisms associated with carfilzomib 
resistance using individual cell line models of resistance[17, 18]; however, rigorous 
explanation remains elusive. 
 In this study, we explore the mechanisms of acquired carfilzomib resistance using 
multi-omics profiling in a panel of four isogenic cell models of carfilzomib resistance (AMO-1, 
KMS-12-PE, OPM-2, RPMI-8226). Integrated analyses of our basal transcriptome and 
proteome profiling in matched sensitive and resistant cell variants uncovers an amplification 
of certain chromosomal regions, elevation of genes/proteins playing role in calcium signalling 
and potential therapeutic targets that are predicted to have favorable safety characteristics. 
Our research also identifies metabolic pathway downregulation and mitochondrial 
dysfunction, validated through various functional assays. Extending the analysis to patient 
samples from the MMRF CoMMpass trial (version IA15) highlighted six genes: ABCB1, RICTOR, 
PACSIN1, KMT2D, WEE1 and GATM, contributing to the selection of inhibitors for drug 
sensitivity tests. Among potential combination partners for carfilzomib, approved drugs 
benidipine and tacrolimus showed promise, indicating a need for further investigation into 
their therapeutic efficacy. At the same time, the varied response profiles observed with 
several tested compounds, alongside their predicted target effects based on chemical 
structure, have led us to suggest a network of gene interactions as a potential target for drug 
development. 
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Materials and Methods 
All methods are reported in supplemental data. 

Results 
Integrated differential analysis revealed elevation of genes from specific chromosomal 
regions and identified potential targets for novel drug therapies 

 
We conducted differential expression analysis on gene expression from the cell lines, 

comparing resistant variants to wild type (Fig. 1A). Among 12422 genes analyzed, 2164 met 
the significance criteria (Table S1). Most of the significant genes were found to be upregulated 
in resistant cells (N=1152) with ABCB1, NRG4, ZDHHC15, RUNDC3B and SPP1 showing the 
highest logarithmic fold changes (logFC). A parallel analysis on protein abundance revealed 
significant differences in 25% of proteins (N=1563 out of 6124, Table S2), with the ABCB1 
displaying the most significant logFC, along with other proteins upregulated in resistant cell 
lines: SRI, MX1, EEF1A2, GBP1 and GBP2.  

Combining transcriptome and proteome analysis results narrowed down the list of 
significant findings to 455, with 444 genes/proteins showing consistent direction in their 
expression changes. Notably, ABCB1 emerged as the most distinct gene/protein among these 
findings (Fig. 1B), which is in line with previous reports [17, 19].  

We explored further the notable overexpression of ABCB1 in resistant cells and 
observed that the SRI gene, a close neighbor of ABCB1 on chromosome 7, was also 
significantly upregulated in these cells (Fig. 1B). Therefore, we extended our analysis to 
chromosomal regions containing at least 2 significant genes/proteins and considered the 
band and strand information. This led us to identify two chromosomal regions where the 
absolute median logFC at both the transcriptome and proteome levels exceeded one (Fig. 1C, 
D). Indeed, the 7q21.12 region on the negative strand, where ABCB1 is located, contains 6 
upregulated significant genes, including 3 significant proteins (ABCB1, SLC25A40 and SRI, Fig. 
1C). We confirmed the elevated expression of ABCB1 with Western blotting (Fig. S1) and 
investigated whether its pronounced upregulation could be attributed to an increase in gene 
copy numbers. Indeed, in three out of four cell lines examined (AMO-1, KMS-12-PE and OPM-
2, Fig. 1E), we identified at least three copies of the ABCB1.1 and ABCB1.2 isoforms. Notably, 
the KMS-12-PE cell line exhibited the highest copy number, whereas RPMI-8226 mirrored its 
wild-type variant closely. Another chromosomal region which was identified by our analysis 
as significant is 1p22.2 region on the negative strand with GBP1 and GBP2 standing out as 
remarkable genes within this area (Fig. 1D). These genes are part of the larger family of 
GTPases induced by interferon-gamma. High GBP2 expression correlates with a favourable 
prognosis in node-negative breast carcinoma patients [20], whereas GBP1 overexpression is 
linked to a poorer prognosis in oral squamous cell carcinoma cases [21]. At the same time, 
some studies highlighted a significant GBP-1 role in calcium homeostasis [22, 23].   

Yet, GBP1 is not the only gene/protein among the top significant ones that play role 
in calcium signalling. For example, SRI is a major player of calcium homeostasis - it regulates  
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Fig. 1 Integrated differential expression analysis key findings. A Carfilzomib dose-response curves for wild type 
and resistant cell lines with IC50 values indicated using dashed lines and numbers. B LogFC values for significant 
genes and proteins. The genes/proteins with the highest absolute logFC are annotated. C, D Two chromosomal 
regions with the highest number of significant genes/proteins and average absolute logFC > 1. The genes’ 
starting positions on the chromosome are marked with the dashed lines. The last dashed line stands for ending 
position of the corresponding gene. E Copy numbers for the two ABCB1 isoforms in wild type and resistant cell 
lines. F Heatmap displaying log10-transformed nTPM values for 34 upregulated genes/proteins across 79 
different cell types. 
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calcium channels and pumps, endoplasmic reticulum, and cytosolic calcium concentrations. 
Another protein, MYO6, is a reverse-direction motor protein which binds to calmodulin in its 
own unique way - through the neck region between motor and IQ domain (Fig. 1B). This 
interaction necessitates the C-terminal lobe of calmodulin to be bound with calcium, 
suggesting that a surge in calcium influx may drive MYO6's overexpression [24]. CLIC2 and 
GPD2 were also reported to participate in calcium signalling [25, 26].  

To identify potential targets with greater clinical relevance, we concentrated on 
significantly upregulated genes and proteins, investigating their expression across various cell 
types using data from the Human Protein Atlas (HPA,[27]). We analyzed 34 proteins, 
employing Euclidean distances for clustering, which we visualized through a heatmap (Fig. 
1F). A viable clinical drug candidate should ideally be both effective and safe, meaning it 
should minimally impact healthy cell populations. Our analysis revealed that the three 
proteins PIP4P2, LY9, and ABCB6 formed a distinct cluster characterized by considerably lower 
normalized transcript per million (nTPM) levels across cell types compared to other proteins. 
Specifically, LY9 exhibited its highest expression mostly in B-cells and plasma cells, with nTPM 
values of 244 and 102.5, respectively. PIP4P2 showed peak expression in distal tubular cells 
(nTPM = 49) and Hofbauer cells (nTPM = 48.4). Notably, ABCB6 displayed uniformly low 
expression in all cell types, remaining below 15 nTPM. Furthermore, we noticed that among 
the 34 proteins studied, five were plasma membrane proteins, including LY9 (Fig. S2A). Plasma 
membrane proteins have become a focal point of research due to their accessibility and 
critical roles in cellular communication and signaling [28, 29], positioning LY9 as a potential 
therapeutic target. In addition, PIP4P2, LY9, and ABCB6 rank among the top 10 proteins within 
the HPA annotated group with the highest average expression across both transcriptome and 
proteome levels, alongside two genes from the ABC family (ABCB1, ABCD1), AGL, MYLK, 
PTPRC, SLC25A40, and TCIRG1 (Fig. S2B). 

These results position LY9 as a promising therapeutic target (eg. for antibody drug 
conjugates), particularly given its potential for high safety. This assertion is supported by its 
predominant expression in plasma and B cells, coupled with its significant upregulation at 
both transcriptome and proteome levels in carfilzomib-resistant cell lines. Such a profile 
suggests that targeting LY9 could mitigate adverse effects on healthy cells while potentially 
combating malignant cells. 

Strong mitochondrial impairment and downregulation of metabolic pathways in resistant 
cells 

The integrated analysis highlighted several top downregulated genes/proteins (Fig. 1 
B), which were associated with mitochondrial function and metabolism. For instance, GATM, 
involved in creatine biosynthesis, converts arginine and glycine into guanidinoacetate, the 
immediate precursor of creatine. Another prominently downregulated gene, FABP6, 
belonging to the FABP family, participates in fatty acid uptake into cells and the formation of 
their cytosolic pool [30]. LIN28B plays a pivotal role in regulating cellular metabolism through 
the LIN28/let-7 pathway. LIN28/LIN28B binding to mRNA of glycolysis and mitochondrial 
oxidative phosphorylation enzymes promotes their translation [31]. The downregulation of 
these key players in metabolism prompted a closer examination of metabolic pathways and 
mitochondrial function in general. 

We validated the downregulation of metabolic pathways through gene/protein set 
enrichment analyses using cell lines. By integrating the transcriptomic and proteomic  



Fig. 2 Mitochondrial impairment in carfilzomib-resistant cell lines. A Common significant metabolic and 
signaling pathways from transcriptome and proteome enrichment analyses. Pathways showing the most 
substantial changes with respect to logarithmic fold change are annotated. B Pathways with the highest number 
of significant mitochondrial proteins, along with their sub pathways are visualized. Distribution of the logarithmic 
fold changes on gene and protein level for the sub-pathways are captured in the boxplots. The small pie chart 
indicates the localization of the proteins in the sub-mitochondrial compartments. C Representative microscope 
images and flow cytometry plots (D) to evaluate the mitochondrial functional state based on membrane 
potential of Mitoprobe JC-1 staining in paired wild type and resistant MM cells lines. The presence of red 
fluorescence signals, indicating the J-aggregated form of the JC-1 dye, marks healthy mitochondria with high 
membrane potential. Conversely, green fluorescence signifies low membrane potential or depolarized 
mitochondria. E Relative mitochondrial mass differences between wild type and carfilzomib-resistant cell lines 
based on MitoSpy Green fluorescence intensity.  
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datasets, we identified 96 significant pathways categorized as metabolic, signalling, or disease 
by KEGG (Tables S3, S4). Remarkably, most of these pathways exhibited consistent directional 
changes, with 80 out of 96 pathways showing alignment. Interestingly, a distinct separation 
in direction was observed when focusing on metabolic and signalling pathways. As depicted 
in Figure 2A, the upregulated pathways primarily belonged to the signalling group, while 
nearly all metabolic pathways were downregulated in resistant cells. This observation 
prompted us to annotate all significant genes/proteins from the integrated differential 
analysis based on their mitochondrial localization using MitoCarta3.0 [32].  

Through the MitoCarta annotation, we identified 57 proteins, along with their 
corresponding genes (consistent in direction), localized in mitochondria, predominantly in the 
matrix (Fig. 2B). The top pathways (N significant proteins/genes > 3) in which these proteins 
operate are visualized in Figure 2B. Most pathways showed downregulation, except for the 
small molecule transport, facilitated by ABC family genes and SLC25A40 (located at the ABCB1 
amplicon), and the tricarboxylic acid cycle (TCA), which was neutral with half of the genes 
being upregulated (IDH2 and MDH2) or downregulated (DLD and SUCLG2). 

Next, we assessed mitochondrial potential using the MitoProbe™ JC-1 assay kit and 
detected distinct difference observed between the wild-type and resistant variants through 
microscope images (Fig. 2C). Quantification of this disparity using the same kit via flow 
cytometry further highlighted the trend of the resistant cells: they consistently exhibited a 
notably reduced red fluorescence signal from the J-aggregated form of JC-1 dye, indicative of 
healthy mitochondria with high membrane potential, resulting in a significant difference in 
the red to green fluorescence ratio (Fig. 2D, S3). Additionally, we observed relative differences 
in mitochondrial mass between wild-type and resistant cell lines using the MitoSpy assay. 
Across all cell lines, there was consistently higher MitoSpy fluorescence intensity in wild-type 
cells, suggesting a lower mitochondrial content in the resistant variants (Fig. 2E). 

 Ultimately, we elected to further investigate lysosomal function in the cells, given the 
critical role of lysosomes in energy production and metabolic balance. We stained the cells 
with BioTracker™ 560 Orange Lysosome Dye and took the microscopy images. The disparity 
between the wild-type and resistant variants was not pronounced, with quantitative analysis 
revealing only a slight reduction in the average lysosomal intensity within the resistant cells 
(Fig. 3A, B). Additionally, we investigated the relative abundance of autophagic vacuoles. 
Except for KMS-12-PE cells, all cell lines exhibited higher basal and induced levels of 
autophagy in wild-type cells (Fig. 3C). 

The different effects of carfilzomib on mitochondria and lysosomes might indicate 
how complex the interactions are between the cell’s recycling and breakdown processes.  



 
Fig. 3 Lysosomal and autophagy assays findings for cell lines. A Microscopy images for cell 
lines stained with BioTracker™ 560 Orange Lysosome Dye. B Average lysosomal intensity in 
cytoplasm in cell lines. C Relative abundance of autophagic vacuoles in wild-type and resistant 
cell lines.  
 
 
Intrinsic and acquired carfilzomib resistance share common genes and pathways 
 
  We next aimed to translate our cell line findings via conducting a differential 
expression analysis on transcriptomic data obtained from patient samples. Despite 
contrasting only 6 resistant samples with 41 sensitive ones, we identified 306 significantly 
different genes, with 255 showing significant upregulation in resistant samples, notably 
including ABCB1 among the top positive genes (Fig. S4A, Table S5). The enrichment analyses 
revealed 42 significant pathways, with 19 upregulated in resistant samples (Fig. S4B, Table 
S6). Intriguingly, all significant metabolic pathways exhibited similar downregulation trends 
as observed in the cell lines. However, the number of significant genes encoding proteins 
localized in mitochondria was low (N=13). 

Our primary interest was to compare the analyses results between patient samples 
and cell lines. The overlap between significant genes/proteins in cell lines and patient 
samples, following similar direction of change, yielded 6 genes: ABCB1, PACSIN1, RICTOR, 
KMT2D, WEE1, and GATM. Notably, only GATM displayed significant downregulation in 
resistant cell lines/samples. The difference in ABCB1 expression was more pronounced in 
both cell lines and samples, while the other genes showed less dramatic changes (Fig. 4A, 
S4C). Interestingly, a combination of WEE-1 inhibitor, MK-1775, and bortezomib in sequential 
treatment resulted in more effective treatment than bortezomib alone [13]. 

Combining the gene/protein set enrichment findings with the patient samples', we 
identified 18 pathways consistent in direction (Fig. S4B): one metabolic pathway (carbon 
metabolism), 9 signalling pathways, and 8 disease pathways. Remarkably, dilated 
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cardiomyopathy and hypertrophic cardiomyopathy were among the shared pathways 
significantly upregulated in resistant cells suggesting altered expression of genes playing role 
in calcium signalling. This finding aligns with previous studies, where both events can be 
triggered by abnormal calcium handling within cardiac muscle cells during carfilzomib 
treatment [33, 34].  

Generally, the limited overlap observed between the cell lines and patient findings 
could be attributed to the different mechanisms underlying acquired and intrinsic resistance 
to carfilzomib. Acquired resistance, as anticipated, induces more extensive alterations in the 
cells. This distinction might reflect how cells adapt over time in response to prolonged 
exposure to the drug in contrast to intrinsic resistance, which is present from the beginning 
and might involve different mechanisms. 

 
Carfilzomib-resistant cells preserve sensitivity to bortezomib and counter resistance with 
specific combination partners 
 
 To counteract carfilzomib resistance, we identified a range of potential combination 
partners for carfilzomib. Our selection was reasoned by observed increases in the expression 
of genes/proteins involved in calcium homeostasis (eg. SRI, CLIC2, MYO6, GBP1, GBP2 and 
GPD2), leading us to incorporate various calcium signalling modulators: calcium channel 
blockers (such as benidipine, bepridil, and amlodipine besylate), inhibitors of 
calcium/calmodulin-dependent protein kinase II (KN-93, KN-62), a calcineurin inhibitor 
(tacrolimus), and a calcimimetic (cinacalcet). While the calcium/calmodulin-dependent 
protein kinase II inhibitors are not yet approved, the other drugs have been approved for 
various non-cancer related conditions, like hypertension and angina (Table S7).  

In response to significant RICTOR upregulation, observed through both cell line and 
patient studies, we also added the PI3K/mTOR inhibitors, omipalisib and gedatolisib. 
Additionally, we included adavosertib, a WEE1 inhibitor, three PKC inhibitors (enzastaurin, 
sotrastaurin, ruboxistaurin), chosen for the upregulation of PACSIN1, a crucial pathway 
mediator (Table S7). To target ABCB1 gene, we added first (verapamil, quinine and 
hydroquinine hydrobromide hydrate) and third generation of ABCB1 inhibitors (tariquidar 
and elacridar). Prior to inhibitors testing we confirmed upregulation of these four genes in 
cell lines with Western blotting (Fig. S1). Besides, hippo signalling pathway was the only 
druggable pathway which was upregulated in cell lines and patient study (Fig. S4B). Due to its 
potential to inhibit this pathway, EMT-inhibitor was added to the drug panel. 

Prior to initiating combination studies, we assessed the efficacy of bortezomib and 
ixazomib in both wild type and resistant cell lines as a matter of interest. The bortezomib's 
effectiveness in resistant cells was remarkably similar to that in sensitive cells, with only minor 
differences observed (Fig. 4B). Ixazomib showed a similar pattern in RPMI-8226 and OPM-2 
cell lines, whereas AMO-1 and KMS-12-PE resistant cell lines displayed a twofold increase in 
IC50 values compared to their wild type variants (Fig. 4C). Notably, these two cell lines also 
exhibited the highest resistance to carfilzomib. Despite belonging to the same class of 
proteasome inhibitors, resistance to one of them does not imply a similar resistance pattern 
to others. 

The combination studies yielded several key findings. Omipalisib stood out for its high 
efficacy both as a monotherapy and in combination with carfilzomib, achieving average area 
under the curve (AUC) values ranging from 51.7 to 56.94, suggesting its potential as an  



 
Fig. 4 Genes shared by intrinsic and acquired carfilzomib resistance analyses and drug sensitivity assay results. 
A Comparison of the normalized expression levels of common significant genes in wild type and sensitive cell 
lines. B Bortezomib and C ixazomib dose-response curves for wild type and resistant cell lines with IC50 values 
indicated with dashed lines and numbers. D Average AUC values for single and combination treatment with 
either 5 or 10 nM of carfilzomib (carf) in resistant cell lines. E Interaction network among significantly different 
genes identified through computational analysis and some of SEA-predicted drug targets. Genes with larger font 
sizes are significant at both the transcriptome and proteome levels, with upregulation indicated in red and 
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downregulation in blue. Genes in smaller font are significant in only one type of analysis. Genes marked in black 
are not significant; instead, they represent predicted targets of the drugs used in the experiments.  
 
 
effective single agent rather than a combination partner for carfilzomib (Fig. 4D, Table S8). 
Omipalisib was unique in surpassing the efficacy threshold both alone and when combined 
with 5nM of carfilzomib. Conversely, gedatolisib, another PI3K/mTOR inhibitor, was among 
the least effective, regardless of its use as a monotherapy or in combination. This difference 
in efficacy highlights potential variations in their action specificity and mechanisms despite 
targeting the same pathway. 

At the same time, six additional drugs surpassed the efficacy threshold (AUC>30) in 
combination with 10nM of carfilzomib: tariquidar (AUC=46.9), ruboxistaurin (AUC=38.8), 
benidipine (AUC=36.4), tacrolimus (AUC=33.2), enzastaurin (AUC =31.8), and KN-62 (AUC 
=30.7). Notably, ruboxistaurin and benidipine nearly met the efficacy threshold with 5 nM of 
carfilzomib, with the corresponding average AUC values being 27.1 and 27.2. Tariquidar, 
tacrolimus, ruboxistaurin, elacridar, and benidipine emerged as the top five drugs showing 
the greatest increase in efficacy when used in combination with 10 nM of carfilzomib versus 
their monotherapy. 

While ruboxistaurin displayed high average AUC values in combination with 
carfilzomib, the other PKC inhibitors, enzastaurin and sotrastaurin, were less effective. 
Indeed, enzastaurin demonstrated average potency, whereas sotrastaurin showed quite low 
efficacy (Fig. 4D, S5). Despite targeting the same biological pathway, the distinct mechanisms 
of action of these drugs could explain their varying efficacies. The secondary targets profiles 
suggested by SEA for these drugs were extensive, with ruboxistaurin and enzastaurin sharing 
a greater number of these targets (Fig. S6, Table S9). Sotrastaurin, on the other hand, was 
categorized separately from the other two, indicating a different range of secondary targets. 

Similarly, the EMT inhibitor-1, adavosertib, amlodipine besylate, bepridil and 
remaining ABCB1 inhibitors showed limited efficacy as monotherapies and in combination 
treatments. Conversely, when combined with carfilzomib, KN-93 and cinacalcet showed 
modest increases in effectiveness, yet these improvements were insufficient to meet the 
efficacy threshold. 

Driven by varied drug responses within similar classes, we utilized the ingenuity 
pathway analysis algorithm (IPA, [35]) on key genes/proteins identified in our cell line study 
along with SEA-predicted drug targets. This approach enabled us to identify a distinct cluster 
encompassing several major significant genes (Fig. 4E).  Majority of the MTOR-interacting 
genes were significantly downregulated in resistant cells, except for RICTOR. RICTOR acts as 
a major connector from the downregulated MTOR/BRAF network to the cluster of genes 
associated with calcium signalling. Although not all genes from the calcium/calmodulin-
dependent protein kinase (CAMK) family were marked as significant, they play an essential 
role in the network. Notably, CAMK2D is a key node, linking RICTOR, ABCB1, MYO6, and AGL 
with other family members and connecting to MYLK via the calmodulin (CALM) family 
proteins. Interestingly, MYLK is identified as a predicted target for three drugs—ruboxistaurin, 
enzastaurin, and benidipine—which are top candidates for combination therapy with 
carfilzomib based on our drug sensitivity assays. Ruboxistaurin, in particular, displayed the 
highest Tanimoto coefficient (TC) for MYLK, possibly correlating with its superior efficacy in 
combination with carfilzomib compared to sotrastaurin, which lacks MYLK as a predictive 
target and showed a less favourable sensitivity profile. Furthermore, ruboxistaurin is 
predicted to target all visualized CAMK family members shown in Fig. 4E (Fig. S6). We can 



hypothesize that CAMK family genes together with MYLK play significant role in survival 
mechanism of carfilzomib-resistant cells. 

 
Discussion 
 
MM is a complex blood cancer marked by the proliferation of abnormal plasma cells, leading 
to various complications and a poor prognosis [1-3]. However, advancements in treatments, 
particularly with proteasome inhibitors like bortezomib for newly diagnosed patients and 
carfilzomib as a second-line treatment, have significantly improved patient survival rates [6]. 
Despite these advances, resistance to carfilzomib is a growing concern, with the underlying 
mechanisms still not fully understood, indicating a need for continued research in this area. 

In this study we addressed carfilzomib resistance via establishing a comprehensive 
analysis of four carfilzomib-resistant cell lines: AMO-1, KMS-12PE, RPMI-8226, and OPM-2, 
and their wild type variants. When comparing gene expression in carfilzomib-resistant and 
wild-type cell lines, a substantial number of genes showed significant changes, predominantly 
upregulations including the ABCB1 gene (Fig. 1B). Proteomic analysis confirmed these results, 
with ABCB1 most significantly altered, and a combined analysis of transcriptomic and 
proteomic data highlighted 455 significant genes/proteins. We have also confirmed ABCB1 
amplification (Fig. 1C, E) in three out of four cell lines examined (AMO-1, KMS-12-PE and OPM-
2). While ABCB1 amplification have been reported previously to be associated with treatment 
resistance [36, 37], another amplified chromosomal region which was identified by our 
analysis as significant, 1p22.2 region on the negative strand with GBP1 and GBP2 genes (Fig. 
1D), has not been reported in this context before. However, several studies connect GBP1 
overexpression with treatment resistance in cancer [38-40]. 

ABCB1, also known as MDR1 (multidrug resistance protein 1), encodes an ATP-binding 
cassette transporter protein that plays a pivotal role in the development of drug resistance in 
multiple myeloma and other cancers [19, 41, 42]. ABCB1's function of expelling therapeutic 
drugs from cancer cells lowers their intracellular levels, reducing drug efficacy and enabling 
cancer cells to thrive even under treatment. The level of ABCB1 expression in multiple 
myeloma cells is a critical factor affecting treatment response and patient prognosis [43]. As 
a key player in drug resistance, ABCB1 has been the focus of therapeutic targeting efforts. 
Clinical trials have tested ABCB1 inhibitors intending to inhibit its drug efflux capability and 
enhance treatment effectiveness. However, the clinical advancement of ABCB1 inhibitors has 
faced challenges, including toxicity and the multifaceted nature of cancer drug resistance 
mechanisms [44]. 

In our study, we addressed carfilzomib resistance by looking beyond the direct 
inhibition of the ABCB1 gene. We explored safety profiles for the significantly elevated 
genes/proteins in resistant cell lines. PIP4P2, LY9, and ABCB6 were among the top safe 
proteins based on nTPM expression in various cell types (Fig. 1F). Besides, LY9 is also a plasma 
membrane protein, which makes him a promising target in monoclonal antibody research 
field.  

Our analysis has also revealed a range of downregulated genes and proteins linked to 
mitochondrial function and metabolism in resistant cell lines. Enrichment analysis showed a 
consistent downregulation in metabolic pathways, with an elevation in signalling pathways, 
suggesting a complex interplay between cellular metabolism, and signalling in resistance 
mechanisms (Fig. 2A, B). Detailed examination of mitochondrial function revealed that 
resistant cells exhibited decreased mitochondrial dynamics, including potential and mass (Fig. 



2C, D, E). Meanwhile, we observed significant upregulation of key TCA cycle enzymes MDH2, 
and IDH2 at both transcriptome and proteome levels. This upregulation suggests an increased 
reliance on the TCA cycle for energy production through the completion of glucose 
breakdown, generating vital molecules like ATP, NADH, and FADH2 [45, 46]. These findings, 
combined with RICTOR upregulation on gene and protein level, might indicate a 
compensatory increase in glycolytic activity to support metabolic needs amidst 
downregulated metabolic functions and mitochondrial impairment, warranting further 
investigation. 

We extended our study of carfilzomib resistance from cell lines to patient samples 
(MMRF CoMMpass clinical trial, Version IA15), revealing some consistent findings across both 
datasets, including a notable upregulation of ABCB1 in resistant samples and metabolic 
pathways similarly downregulated as in cell line analyses. A direct comparison between the 
patient and cell line data highlighted five additional genes – PACSIN1, RICTOR, KMT2D, WEE1 
and GATM (the only downregulated), which informed the selection of a set of inhibitors for 
subsequent drug sensitivity testing (Fig. 3A). 
 In our drug sensitivity testing results, omipalisib notably exceeded the efficacy 
threshold both as a monotherapy and in combination with carfilzomib, suggesting its 
potential as an effective single agent. Conversely, gedatolisib showed limited efficacy, 
underscoring the complexity of targeting the PI3K/mTOR pathway. When assessing the 
effectiveness of PKC inhibitors in combination with carfilzomib, ruboxistaurin emerged as 
highly effective, in contrast to enzastaurin and sotrastaurin, which demonstrated reduced 
potency, particularly sotrastaurin which exhibited the lowest efficacy. While omipalisib and 
ruboxistaurin are still in clinical trials, approved drugs like benidipine, a vasodilator for 
hypertension and angina, and tacrolimus, an immunosuppressant preventing organ rejection, 
emerged as promising carfilzomib partners, meriting further investigation into their combined 
therapeutic potential (Fig. 3D). 

We applied the IPA algorithm to analyze key genes and proteins identified in our cell 
line studies along with SEA-predicted drug targets. This analysis revealed a distinct cluster of 
significant genes (Fig. 4E). Notably, while most MTOR-interacting genes were significantly 
downregulated in resistant cells, RICTOR was an exception, serving as a critical link between 
the downregulated MTOR/BRAF network and genes involved in calcium signaling. 

The CAMK family, though not entirely marked as significant, plays an essential role in 
this network. CAMK2D links RICTOR, ABCB1, MYO6, and AGL with other family members, and 
extending to MYLK through CALM family proteins. MYLK is a target for three drugs—
ruboxistaurin, enzastaurin, and benidipine—that are top candidates for combination therapy 
with carfilzomib. Ruboxistaurin stands out, showing the highest TC for MYLK, correlating with 
its stronger efficacy in combination with carfilzomib compared to sotrastaurin, which lacks 
MYLK as a target and showed poorer response. Ruboxistaurin is also predicted to interact with 
all CAMK family members illustrated in Fig. 4E (Fig. S6). Benidipine has both MYLK and ABCB1 
among its predicted targets included at the network. Based on the network findings, drug 
sensitivity assay results and SEA-predicted targets, it is not straightforward to conclude 
whether targeting ABCB1 leads to higher inhibition of resistant cells than targeting of MYLK 
or CAMK family members. 

A major limitation of this study is the difficulty in obtaining patient samples for 
studying acquired resistance to carfilzomib, as it’s mainly used in second-line treatment, 
complicating access to pre- and post-therapy samples. Nonetheless, we managed to find 
samples where carfilzomib was administered as first-line treatment, aligning some findings 



with our cell line research. We speculate that exploring samples with acquired carfilzomib 
resistance might reveal more commonalities, offering further insights into carfilzomib 
resistance mechanisms. At the same time, despite the limited data, our analysis has generated 
a substantial number of hypotheses that warrant further exploration. These findings could 
potentially uncover significant insights and guide future research directions in the field of MM 
treatment. 

 
Data availability 
The datasets generated during and/or analyzed during the current study are available from 
the Supplemental Tables. RNA-seq and TMT proteomics data have been deposited to the 
PRIDE repository. The MM patients clinical and transcriptomic data are available at the MMRF 
CoMMpass clinical trial data portal (version IA15). 
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