

1 **Radiation dermatitis in the hairless mouse model mimics human radiation dermatitis**

2

3 Jessica Lawrence<sup>1,2,3,4\*</sup>, Davis Seelig<sup>1,2</sup>, Kimberly Demos-Davies<sup>1</sup>, Clara Ferreira<sup>3</sup>, Yanan Ren<sup>5,6</sup>,  
4 Li Wang<sup>5</sup>, Sk. Kayum Alam<sup>5</sup>, Rendong Yang<sup>5,6</sup>, Alonso Guedes<sup>1</sup>, Angela Craig<sup>1,2,7</sup>, Luke H.  
5 Hoeppner<sup>2,5\*</sup>

6 <sup>1</sup>Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of  
7 Minnesota, 1365 Gortner Ave, St Paul MN 55108, USA

8 <sup>2</sup>Masonic Cancer Center, University of Minnesota, 425 East River Parkway, Minneapolis MN,  
9 55455, USA

10 <sup>3</sup>Department of Radiation Oncology, Medical School, University of Minnesota, 516 Delaware St  
11 SE, Minneapolis MN 55455, USA

12 <sup>4</sup>Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of  
13 California, Davis, Davis CA 95616, USA

14 <sup>5</sup>The Hormel Institute, University of Minnesota, 801 16<sup>th</sup> Ave NE, Austin MN 55912, USA

15 <sup>6</sup>Department of Urology, Northwestern University, 303 E Superior Street, Chicago IL 60611, USA

16 <sup>7</sup>Hennepin Healthcare Research Institute, 701 Park Ave, Suite S3, Minneapolis MN 55415, USA

17

18

19 \*Corresponding authors:

20 Jessica Lawrence: [jlawrence@ucdavis.edu](mailto:jlawrence@ucdavis.edu)

21 Luke Hoeppner: [hoepp005@umn.edu](mailto:hoepp005@umn.edu)

22

23 Keywords: translational, dermatitis, radiation, skin, inflammation, TGF- $\beta$ 1

24 **Abstract:**

25 Over half of all people diagnosed with cancer receive radiation therapy. Moderate to severe  
26 radiation dermatitis occurs in most human radiation patients, causing pain, aesthetic distress, and  
27 a negative impact on tumor control. No effective prevention or treatment for radiation dermatitis  
28 exists. The lack of well-characterized, clinically relevant animal models of human radiation  
29 dermatitis contributes to the absence of strategies to mitigate radiation dermatitis. Here, we  
30 establish and characterize a hairless SKH-1 mouse model of human radiation dermatitis by  
31 correlating temporal stages of clinical and pathological skin injury. We demonstrate that a single  
32 ionizing radiation treatment of 30 Gy using 6 MeV electrons induces severe clinical grade 3 peak  
33 toxicity at 12 days, defined by marked erythema, desquamation and partial ulceration, with  
34 resolution occurring by 25 days. Histopathology reveals that radiation-induced skin injury features  
35 temporally unique inflammatory changes. Upregulation of epidermal and dermal TGF- $\beta$ 1 and  
36 COX-2 protein expression occurs at peak dermatitis, with sustained epidermal TGF- $\beta$ 1  
37 expression beyond resolution. Specific histopathological variables that remain substantially high  
38 at peak toxicity and early clinical resolution, including epidermal thickening, hyperkeratosis and  
39 dermal fibroplasia/fibrosis, serve as specific measurable parameters for in vivo interventional  
40 preclinical studies that seek to mitigate radiation-induced skin injury.

41

42

43 **Introduction**

44 Radiation therapy is integral for control of many tumors and is prescribed for more than 50% of  
45 cancer patients in the United States<sup>[1-3]</sup>. Approximately 95% of cancer patients receiving radiation  
46 therapy will develop moderate to severe radiation-induced dermatitis or “radiation burn”, with  
47 effects ranging from dry desquamation and erythema to moist desquamation and full thickness  
48 ulceration<sup>[4-9]</sup>. Not only does it cause pain, anxiety, and disruption of quality of life during and  
49 following treatment, its severity correlates to the likelihood of the development of chronic effects  
50 like fibrosis, telangiectasia, ulceration, and necrosis<sup>[6,9]</sup>. In some patients, radiation dermatitis is  
51 sufficiently severe to limit the therapeutic dose administered for tumor control or will lead to a  
52 break in treatment, which compromises local control and survival<sup>[8-12]</sup>. Each day that radiation is  
53 delayed decreases tumor control and increases mortality, thus it is prudent for patients to remain  
54 on schedule without interruptions<sup>[13-15]</sup>. With the combination of radiation therapy and targeted  
55 drugs like cetuximab that cause a skin rash, moderate to severe radiation dermatitis occurs at a  
56 higher incidence and for a longer duration compared to radiation therapy alone<sup>[16-19]</sup>. Even with  
57 routine adoption of advanced radiotherapy techniques like intensity modulated radiation therapy  
58 (IMRT), radiation dermatitis remains common and causes treatment delays in up to 50% of  
59 patients<sup>[20,21]</sup>.

60 There is no effective prevention or treatment for radiation dermatitis<sup>[7,11,22-31]</sup>. The most  
61 widely adopted recommendation is for patients with dermatitis to keep the site clean using dilute  
62 soap and water and allow wound healing to occur<sup>[9,16,32]</sup>. The molecular pathogenesis of radiation  
63 dermatitis is incompletely understood, and irradiated skin is rarely sampled repeatedly to evaluate  
64 signaling pathways. A major factor contributing to our limited molecular understanding is the lack  
65 of an optimized animal model of radiation dermatitis that provides comprehensive information  
66 regarding the spectrum of inflammation and pain that occurs. Animal models are essential for the  
67 advancement of novel agents targeted for use in the human cancer patient, thus it is prudent to  
68 have a well-defined model that translates favorably to the clinic. Previous rodent radiation

69 dermatitis studies have suffered significant shortcomings, including variations in mouse strain,  
70 anatomical site and field size irradiated, radiation dosing details, radiation equipment, monitoring,  
71 and output measures<sup>[33-37]</sup>. These factors contribute to an inability to effectively repeat, improve  
72 upon, or compare experimental approaches. Outbred SKH-1 mice are the most commonly used  
73 mouse strain for dermatologic studies<sup>[38]</sup> and have been widely used to study cutaneous effects  
74 of UVB irradiation<sup>[39-45]</sup>. This strain represents an emerging model to evaluate dermatitis following  
75 ionizing radiation used for therapeutic purposes in oncology<sup>[33,46,47]</sup>. Hairless mice are ideal  
76 because their wound healing has been well characterized, and their skin mimics human  
77 sebaceous skin most affected by radiation dermatitis<sup>[38,48]</sup>. The objective of this study was  
78 therefore to characterize development of radiation-induced skin injury in an SKH-1 mouse model,  
79 highlighting distinct temporal stages of clinical and/or pathologic injury. The findings reported here  
80 provide a platform on which to objectively evaluate cellular signals contributing to these distinct  
81 stages, such that effective mitigators can be developed to reduce the severity, duration, and/or  
82 discomfort associated with radiation dermatitis.

83

## 84 **Results**

### 85 **Radiation-induced clinical dermatitis occurs following 30 Gy irradiation.**

86 An initial pilot dose escalation study was performed to optimize the 30 Gy radiation dose used to  
87 induce dermatitis. SKH-1 mice were initially treated and evaluated for the development of acute  
88 dermatitis following a single dose of 15 Gy, 20 Gy, 25 Gy and 30 Gy (Supplementary Fig 1). A  
89 single treatment of 30 Gy using 6 MeV electrons was sufficient to induce severe (grade 3) toxicity  
90 12 days (d) with resolution by 28d. A single fraction of 30 Gy radiation delivered with 6 MeV  
91 electrons induced severe clinical radiation skin injury (Fig. 1), defined by marked erythema,  
92 desquamation and partial ulceration. Radiation dermatitis grade significantly ( $p<0.0001$ )  
93 increased until peak toxicity with partial resolution by the end of the study period. Mean grade at  
94 peak toxicity on day 12 ( $2.56 \pm 0.18$ ) was significantly higher ( $p<0.0001$ ) than all other timepoints

95 evaluated (Table 1). Mean grade at resolution at day 22 ( $0.56 \pm 0.24$ ) was not significantly  
96 different than mean grade at baseline, 2 hours, and 5 days.

97

98 **Temporally unique histopathologic skin inflammatory changes, including epidermal**  
99 **thickening, hyperkeratosis, and dermal fibroplasia/fibrosis contribute to radiation-induced**  
100 **injury.**

101 There were distinct histopathological changes over time with increasing total inflammatory score  
102 by day 12 that partially resolved by day 22 (Fig. 2). Histopathologic scores at 12 days and 22 days  
103 after irradiation were significantly higher than scores within unirradiated skin and within irradiated  
104 skin at 2 hours and 5 days (Table 2).

105 Significant changes in almost all histopathologic measures of inflammation were observed  
106 12 days following irradiation, compared to control and subacute (2h) samples (Figure 3). Scores  
107 for epidermal ulceration, epidermal thickening, hyperkeratosis, glandular loss, dermal  
108 fibroplasia/fibrosis, dermal mononuclear, mastocytic, and neutrophilic inflammation, and  
109 hypodermal inflammation were significantly increased. Scores for hyperkeratosis (Fig. 3C),  
110 glandular loss (Fig. 3D), and dermal fibroplasia/fibrosis (Fig. 3E) remained significantly increased  
111 compared to unirradiated control 22d after irradiation. While specific inflammatory changes at 5d  
112 were not significantly different than control skin samples, increased glandular loss along with  
113 dermal mononuclear and neutrophilic inflammation were observed at 5d relative to unirradiated  
114 controls. Except for dermal pyogranulomatous inflammation, inflammatory scores significantly  
115 correlated to clinical grade (Table 3). Total inflammatory score, epidermal thickening,  
116 hyperkeratosis, and dermal fibroplasia/fibrosis strongly ( $r > 0.80$ ) and positively correlated to  
117 clinical grade.

118

119 **Increased epidermal and dermal TGF- $\beta$ 1 and COX-2 protein expression occur at peak**  
120 **dermatitis, with sustained epidermal TGF- $\beta$ 1 expression beyond clinical resolution of peak**  
121 **toxicity.**

122 TGF- $\beta$ 1 plays roles in mediation and regulation of acute skin injury, cutaneous wound healing,  
123 and chronic fibrosis<sup>[49,50]</sup>. Therefore, we evaluated epidermal and dermal TGF- $\beta$ 1 expression in  
124 unirradiated (N=8) and irradiated (N=4-6 per time point) skin samples. Mean epidermal and  
125 dermal TGF- $\beta$ 1 immunoreactivity scores significantly increased at day 12 compared to  
126 unirradiated samples (Fig. 4A-C). Increased epidermal TGF- $\beta$ 1 protein expression was sustained  
127 until at least 22 days following irradiation (Fig. 4A). Mean dermal TGF- $\beta$ 1 protein expression  
128 (3.75) at day 12 was similar to mean expression at day 22 (3.50). However, day 22 was not  
129 significantly different than mean control TGF- $\beta$ 1 protein expression (p = 0.0506).

130 Because COX-2 plays a central role in a broad range of inflammatory processes in the  
131 skin, including hyperalgesia and edema<sup>[51]</sup>, we evaluated COX-2 expression with the dermis and  
132 epidermis in irradiated (N=4-6 per time point) and control samples (N=6) (Fig. 5A-C). Epidermal  
133 and dermal COX-2 immunoreactivity scores were significantly higher at day 12 compared to  
134 unirradiated samples (Fig. 5A-B).

135

## 136 **Discussion**

137 The hairless SKH-1 mouse strain is commonly used in translational dermatologic studies, and it  
138 is an ideal model for use in interventional studies where observations of inflammatory skin  
139 changes may be obscured by hair and pigment<sup>[33,38,46,48]</sup>. The findings presented here describe a  
140 method of inducing robust radiation-induced dermatitis in the SKH-1 mouse, and the results  
141 highlight distinct temporal epidermal and dermal histopathologic changes that correlate to clinical  
142 radiation dermatitis grade. Clinical grading schemes, such as our modified CTCAE v5.0, provide  
143 a standardized approach to treatment-related adverse events and are important endpoint  
144 measures for studies that impact radiation-induced toxicity<sup>[52]</sup>. Clinical grading is derived through

145 standard, manual observations over time. The histopathologic changes that occur after irradiated  
146 skin are variable, may occur prior to clinical changes, and may be present despite apparent  
147 resolution. Understanding the specific inflammatory tissue changes underlying increasing clinical  
148 grade may improve the use and importance placed on clinical grade. In this study, nearly all  
149 histopathologic variables assessed significantly correlated to clinical dermatitis grade, which was  
150 highest at day 12 and 22. We examined a total inflammatory score that was comprised of discrete  
151 histopathologic insults to skin, as well as the individual histopathologic changes within the total  
152 score. Increased epidermal thickening, hyperkeratosis, and dermal fibroplasia/fibrosis most  
153 strongly correlated to increased clinical grade. Of these, hyperkeratosis and dermal  
154 fibroplasia/fibrosis were also significantly higher at day 12 and day 22 compared to unirradiated  
155 skin. Glandular deficiency was an additional histopathologic measure of radiation-induced injury  
156 that remained significantly high at day 22. Although not significantly different than baseline, early  
157 histopathologic changes were observed 5 days after irradiation, including glandular loss,  
158 monocytic and neutrophilic inflammation.

159 The skin barrier acts as a critical protector for the body against external environmental  
160 hazards. Recent data has shown that up to 66% of cancer patients have at least one non-cancer  
161 related co-morbidity, while 50% have multiple co-morbidities<sup>[53]</sup>, with the highest prevalence in  
162 lower socio-economic groups<sup>[53-55]</sup>. Common co-morbidities like hypertension, diabetes and heart  
163 disease are associated with unique skin conditions that affect skin integrity and healing<sup>[56,57]</sup>.  
164 Maintenance of skin integrity and barrier function is therefore of incredible importance, because  
165 the skin is the first line of protection against microbes, toxins, sunlight and other external  
166 exposures<sup>[58]</sup>. Glandular loss has been recently shown to impair the skin barrier in SKH-1 mice  
167 treated with 20-40 Gy to the hindlimb<sup>[46,47]</sup>. Glandular loss was seen as early as 4 days following  
168 40 Gy, and within 6 days following 20-30 Gy<sup>[46]</sup>. Our findings of glandular loss prior to clinical  
169 dermatitis, although not significantly different than unirradiated skin when assessed by our 5-point  
170 histopathologic scale, align with these prior reports. Importantly, our data show that glandular loss

171 develops early and remains significantly impacted beyond initial clinical recovery of dermatitis.  
172 Potential therapeutic interventions that preserve dermal sebaceous glands during and after  
173 irradiation may improve skin integrity and promote healing. Clinical grade moderately correlated  
174 with glandular loss, and additional measures may be beneficial for amelioration of pre-clinical  
175 changes.

176 Increasing epidermal thickening and hyperkeratosis were strongly correlated to increasing  
177 clinical grade in our SKH-1 model. These epidermal changes occur secondary to the inflammatory  
178 cascade that occurs following irradiation, and they are well recognized in the irradiated skin of  
179 cancer patients <sup>[6,8]</sup>. Epidermal damage and structural keratin changes, together with the  
180 preceding inflammatory signals, disrupt the skin barrier and can foster dysbiosis and chronic  
181 inflammation that further perpetuates skin injury <sup>[59]</sup>. Interestingly, a recent study identified early  
182 epidermal thickening and hyperkeratosis in human skin-equivalent tissue models following single  
183 fractions of either 2 Gy or 10 Gy delivered with 6 MeV electrons, similar to our radiation delivery  
184 method <sup>[60]</sup>. This study utilized optical coherence tomography with subsequent histology to confirm  
185 visual findings and may provide a non-invasive means of measuring these two features in future  
186 radiation studies seeking to mitigate radiation dermatitis.

187 Because TGF- $\beta$ 1 is a key mediator of tissue repair following injury and subsequent tissue  
188 fibrosis after irradiation, studies have suggested considering TGF- $\beta$ 1 in the evaluation of early  
189 radiation dermatitis and its healing process <sup>[61-63]</sup>. In our SKH-1 radiation dermatitis model, dermal  
190 fibroplasia and fibrosis strongly correlated to clinical grade. Our data also demonstrated an early  
191 increase in TGF- $\beta$ 1 expression within the epidermis and dermis, with sustained high expression  
192 in the former at the end of the study period, when the mean clinical dermatitis grade was close to  
193 baseline (mean 0.56). This sustained TGF- $\beta$ 1 expression in SKH-1 mice is similar to prior reports  
194 in other murine strains to describe early, robust and long-term TGF- $\beta$ 1 mRNA expression  
195 following 50 Gy irradiation <sup>[64,65]</sup>. This also mirrors data in humans demonstrating significantly  
196 upregulated TGF- $\beta$ 1 mRNA expression following preoperative radiation treatment <sup>[66]</sup>. TGF- $\beta$ 1

197 signaling regulates wound repair in irradiated skin by stimulating fibroblast, neutrophil and  
198 macrophage infiltration, which our 5 day histopathologic data support. Of note, recent studies  
199 have shown that Smad3-null mice have faster healing, reduced inflammation, and reduced early  
200 scarring within irradiated skin compared to mice with intact Smad3<sup>[62,67]</sup>. Smad3 is a critical  
201 downstream mediator of TGF- $\beta$ 1 signaling that mediates several repair processes in skin,  
202 including inflammation, induction of epithelial-to-mesenchymal transdifferentiation, keratinocyte  
203 migration, and granulation tissue formation<sup>[62,63,67]</sup>. Data supports use of SKH-1 mice as an  
204 appealing model for preclinical investigation of inhibitors of TGF- $\beta$ 1-Smad3 signaling to reduce  
205 dermatitis severity and duration. Inhibiting this pathway may have dual benefit, as TGF- $\beta$ 1-Smad3  
206 signaling is implicated in the induction and maintenance of therapeutic resistance for some breast  
207 cancers<sup>[68]</sup>.

208 The role of COX-2 within the skin and its inflammatory responses is varied. COX-2 has  
209 received attention as a therapeutic target by which to mitigate dermatitis in the past because it is  
210 pro-inflammatory, pro-angiogenic and associated with pain<sup>[69]</sup>. Several studies investigating SKH-  
211 1 mice have highlighted that COX-2 mediates UVB-irradiation induced inflammatory responses in  
212 the skin<sup>[39-42,70]</sup>. One study reported reduced skin damage following irradiation in female C3H/He  
213 mice following treatment with a highly selective COX-2 inhibitor<sup>[71]</sup>. A randomized controlled trial  
214 failed to demonstrate reduced radiation dermatitis with the use of highly COX-2 selective drugs  
215<sup>[72]</sup>. Increased epidermal and dermal COX-2 expression was noted at the time of severe dermatitis  
216 (day 12) compared to unirradiated skin samples. It is important to note that mice evaluated in our  
217 studies received 1-4 doses of carprofen, a COX-2 inhibitor, beginning on day 11 or 12 once daily  
218 to reduce lameness and pain associated with limb dermatitis. This was an ethical decision that  
219 aligned with our institutional policies to maintain animal welfare. It is possible that epidermal and  
220 dermal COX-2 protein expression from the day 12 and day 22 skin samples were dampened by  
221 systemic administration of carprofen, and expression may have been higher in its absence.

222 Because COX-2 mediates a host of pro-inflammatory and pro-nociceptive signals, evaluation of  
223 COX-2 within SKH-1 skin in future studies may be beneficial.

224 Radiation therapy is prescribed for more than 50% of the 1.8 million cancer patients in the US  
225 <sup>[1,2,73,74]</sup>. Clinical signs of radiation dermatitis range from dry desquamation and erythema to moist  
226 desquamation and full thickness ulceration <sup>[4-9]</sup>. Its severity correlates with chronic effects like  
227 fibrosis, telangiectasia, hyperpigmentation, and necrosis <sup>[6,9]</sup>. Acute dermatitis causes pain and  
228 anxiety, while disrupting quality of life <sup>[75]</sup>. In people of color, the severity of acute dermatitis <sup>[76]</sup> and  
229 the impact of chronic skin changes like hyperpigmentation are particularly detrimental to quality  
230 of life <sup>[77]</sup>. Severe radiation dermatitis leads to cancer treatment interruptions in some patients,  
231 which significantly reduces tumor control and survival <sup>[8-15]</sup>. Despite technological advances, such  
232 as intensity modulated radiation therapy, dermatitis causes treatment delays in up to 50% of  
233 patients <sup>[20,21]</sup>. Management of radiation dermatitis is costly and often requires specialty symptom  
234 management due to skin effects <sup>[78,79]</sup>. Data suggests that nursing encounters, cost of wound care  
235 consumables, and direct nursing costs could all be significantly reduced with implementation of  
236 strategies to reduce acute radiation skin toxicities <sup>[80]</sup>. There is no effective prevention or treatment  
237 for radiation dermatitis <sup>[7,22-31]</sup>. Despite prior studies, the most widely adopted recommendation is  
238 to keep irradiated skin clean and allow wound healing to occur <sup>[9,16,32,81,82]</sup>.

239 Our data describing radiation-induced skin injury in the SKH-1 model is also useful beyond  
240 the context of therapeutic exposures. Cutaneous injuries can develop in normal human skin  
241 following a wide variety of radiation exposures, including nuclear device fallout, nuclear energy  
242 accidents, nuclear testing, medical exposures, and industrial overexposures <sup>[83-86]</sup>. Indeed, skin  
243 damage is the most common radiation injury in humans <sup>[87]</sup>. Important lessons from victims of  
244 nuclear disasters (i.e., atomic bombings of Hiroshima and Nagasaki, the Chernobyl nuclear  
245 accident) highlight the array of clinical manifestations of skin injury, the lack of effective treatment  
246 or pain management for resulting dermatitis, and the negative impact of injured skin on the  
247 likelihood of fatal systemic complications <sup>[88,89]</sup>. Additionally, medical exposures can result from

248 diagnostic procedures or therapeutic exposures for treatment<sup>[79,85,90,91]</sup>. Over one million cases of  
249 diagnostic fluoroscopy-guided interventions occur annually in the US, and the frequency of  
250 complex interventional procedures that require longer radiation exposures have increased<sup>[92]</sup>.

251 There is a clear clinical need to effectively mitigate radiation dermatitis, with implications for  
252 human health beyond medical and therapeutic radiation exposures. Our studies support the  
253 inclusion of the SKH-1 mouse as a preclinical model for radiation-induced dermatitis, as  
254 histopathologic features like glandular loss and TGF- $\beta$ 1 protein expression may serve as endpoint  
255 measures following intervention. Clinical dermatitis grading in SKH-1 mice correlates well to  
256 histopathologic variables associated with epidermal and dermal injury. Specific histopathologic  
257 measures that remained significantly high at peak toxicity and at early resolution, namely  
258 epidermal thickening, hyperkeratosis and dermal fibroplasia/fibrosis, may be used to as distinct  
259 target variables to evaluate in future studies using SKH-1 mice to mitigate radiation-induced skin  
260 injury.

261

## 262 **Methods**

263 *Mice:* 11-12 week old female SKH-1 mice were purchased (Charles River Laboratories) and used  
264 for all experiments. All experiments were approved by and performed in accordance with the  
265 Institutional Animal Care and Use Committee (IACUC Protocol #1808-36331A). Mice were  
266 housed in a group of 4 or 5 animals and were randomly assigned to housing upon arrival at the  
267 institution by Research Animal Resources staff. Mice were euthanized by carbon dioxide  
268 proceeded by exsanguination following the Institution's IACUC Criteria for Carbon Dioxide  
269 Euthanasia Guidelines.

270

271 *Radiation:* Mice were immobilized with ketamine (100 mg/kg) and xylazine (2 mg/kg) administered  
272 intraperitoneally 2-5 minutes prior to irradiation. All anesthetic events were overseen or carried  
273 out by a veterinarian with laboratory animal expertise. An initial pilot dose escalation study was

274 performed to determine the target radiation dose to induce significant grade 3 dermatitis. Upon  
275 heavy sedation, mice were treated with a single dose of 15 Gy, 20 Gy, 25 Gy or 30 Gy. Following  
276 determination of 30 Gy as the target dose for all experiments, mice were treated with 30 Gy  
277 radiation to the skin surface using 6 MeV electrons with a custom 2 x 2 cm cutout (Varian iX,  
278 Varian Medical Systems, Inc, Palo Alto CA). Skin over the right proximal hindlimb was targeted in  
279 all mice. Skin over the left hindlimb served as a control. Tissue equivalent bolus (1 cm) was placed  
280 on the surface of the skin to provide sufficient dose build-up to the level of the skin with source-  
281 to-surface distance of 100 cm. Dose delivered to irradiated (right hindlimb) and unirradiated skin  
282 (left hindlimb) was verified via radiochromic film dosimetry (GAFchromic™) to ensure the dose  
283 was delivered as prescribed.<sup>[93]</sup> Following irradiation, dermatitis was graded daily using a modified  
284 Common Toxicity Criteria for Adverse Events (CTCAE v5.0) (Supplementary Table 1) <sup>[52]</sup>.  
285 Because dermatitis was associated with pain and lameness, and pain was not an endpoint tested,  
286 we adhered to our institutional policy to maintain animal welfare and mice were treated with  
287 subcutaneous (Zoetis, Kalamazoo, MI) at a dosage of 5 mg/kg every 24 hours for 1-4 days  
288 beginning on day 11-12.

289  
290 *Histopathology:* To characterize pathologic changes over time, skin and subcutaneous  
291 histopathology were evaluated in unirradiated (control) skin from the left hindlimb and at 2 hours  
292 (h), 5 days (d), 12d, and 22d post irradiation. These time points were considered representative  
293 of acute injury (2h) early induction (5d), peak toxicity (12d), and initial resolution (22d) of radiation  
294 dermatitis. Skin from unirradiated and irradiated sites from each mouse was collected immediately  
295 following euthanasia. Skin was fixed in 10% neutral buffered formalin for 24h and subsequently  
296 embedded in paraffin wax. Four-micron tissue sections were deparaffinized in xylene and  
297 subsequently rehydrated in graded alcohol. Slides were stained with Harris Modified Hematoxylin  
298 with acetic acid (EXPREDIA, Kalamazoo, MI, Cat# 7221). The slides were dipped first into acid  
299 water (0.15% HCL, Acros Organics, Fair Lawn, Cat# NJAC124210010 ), followed by running tap

300 water, and finally in ammonium water (2.8% of ammonium hydroxide 28-30%, Newcomer Supply,  
301 Middleton, WI, Cat# 1006A). The slides were counterstained with Eosin (Leica Biosystems, Deer  
302 Park, IL, Cat# 3801600). The slides were dehydrated in graded alcohol and xylene before  
303 coverslip-mounted using permount mounting media (Leica Biosystems, Deer Park, IL, Cat#  
304 3801731). Hematoxylin and eosin (H&E)-stained sections were evaluated by a board-certified  
305 veterinary pathologist [American College of Veterinary Pathologists (ACVP)] on a 5-point scale  
306 for epidermal ulceration, epidermal thickening, hyperkeratosis, glandular loss, dermal fibrosis /  
307 fibroplasia, dermal inflammation (including pyogranulomatous inflammation, monocytic  
308 inflammation, mastocytic inflammation, and neutrophilic inflammation) and hypodermal  
309 inflammation according to a modified version of a previous publication<sup>[94]</sup>. For each parameter,  
310 severity was defined as: 1 = minimally detectable, 2 = mild, 3 = moderate, 4 = marked and 5 =  
311 severe. A total inflammatory score comprised the sum of each histopathologic parameter score,  
312 with a maximum score of 50. Treatment-associated dermal inflammation was considered against  
313 the background of strain-associated follicle-centric inflammation in the control, unirradiated skin  
314 samples.

315

316 *Immunohistochemistry:*

317 To further characterize inflammatory pathways activated after radiation, sections of irradiated and  
318 unirradiated skin were immunostained for cyclooxygenase-2 (COX-2) and transforming growth  
319 factor- $\beta$ 1 (TGF- $\beta$ 1). For both COX-2 and TGF-B1 IHC, 4  $\mu$ m formalin-fixed, paraffin-embedded  
320 tissue sections were deparaffinized and rehydrated, followed by antigen retrieval using either a  
321 high pH EDTA solution (COX-2) or a low pH citrate buffer (TGF-B1). After quenching endogenous  
322 peroxidase, immunohistochemistry was performed using one of two rabbit polyclonal primary  
323 antibodies (COX-2, Biocare, CRM-306 and TGF-B1, Invitrogen, PA1-29032) that were incubated  
324 for 30 minutes at room temperature. The antibodies were diluted at 1:200 and 1:100, respectively.  
325 Antibody binding was detected using the Rabbit Envision (Dako) secondary antibody kit.

326 Diaminobenzidine was used as the chromogen and Mayer's Hematoxylin (Dako) was used as the  
327 counterstain. Primary antibodies were substituted with appropriate negative control IgG for  
328 negative control slides. Samples were evaluated by a single pathologist and given a quantitative  
329 immunoreactivity score based on percentage of keratinocytes (epidermal samples) or nucleated  
330 cells (dermal samples) staining positive. Immunoreactivity scores were defined as: 0 = no staining  
331 detected, 1 = 0-25% cells (keratinocytes or nucleated cells) with positive immunostaining, 2 = 26-  
332 50% of cells with positive immunostaining, 3 = 51-75% of cells with positive immunostaining, and  
333 4 = 76-100% of cells with positive immunostaining.

334

335 *Statistical Analysis:* Commercially available software (Prism v10; GraphPad Software, Inc., San  
336 Diego CA) was used to evaluate data. Descriptive data was reported as mean  $\pm$  standard error  
337 of the mean (SEM). Grade and histopathological variables were assessed for normality  
338 differences in grade and histopathological variables over time was determined using one-way  
339 analysis of variance (ANOVA) with Tukey's multiple comparison test or Kruskal Wallis with Dunn's  
340 multiple comparison test. Correlations between grade and histopathological variables were  
341 assessed using Spearman rank-order correlation coefficient ( $r_s$ ). Correlations were categorized  
342 as strong if  $r_s=0.8-1.0$ , moderate if  $r_s=0.4-0.8$  and weak if  $r_s=0.1-0.4$ . Statistical significance was  
343 set at  $p<0.05$ .

344

345 References

346 1 DeVita, V. T., Jr. Progress in cancer management. Keynote address. *Cancer* **51**, 2401-  
347 2409 (1983).

348 2 Miller, K. D. *et al.* Cancer treatment and survivorship statistics, 2016. *CA: a cancer journal*  
349 *for clinicians* **66**, 271-289 (2016). <https://doi.org/10.3322/caac.21349>

350 3 Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2019. *CA Cancer J Clin* **69**, 7-34  
351 (2019). <https://doi.org/10.3322/caac.21551>

352 4 Elliott, E. A. *et al.* Phase III Trial of an emulsion containing trolamine for the prevention of  
353 radiation dermatitis in patients with advanced squamous cell carcinoma of the head and  
354 neck: results of Radiation Therapy Oncology Group Trial 99-13. *J Clin Oncol* **24**, 2092-  
355 2097 (2006). <https://doi.org/10.1200/JCO.2005.04.9148>

356 5 Hickok, J. T., Morrow, G. R., Roscoe, J. A., Mustian, K. & Okunieff, P. Occurrence,  
357 severity, and longitudinal course of twelve common symptoms in 1129 consecutive  
358 patients during radiotherapy for cancer. *J Pain Symptom Manage* **30**, 433-442 (2005).  
359 <https://doi.org/10.1016/j.jpainsympman.2005.04.012>

360 6 Hymes, S. R., Strom, E. A. & Fife, C. Radiation dermatitis: clinical presentation,  
361 pathophysiology, and treatment 2006. *J Am Acad Dermatol* **54**, 28-46 (2006).  
362 <https://doi.org/10.1016/j.jaad.2005.08.054>

363 7 Rosenthal, A., Israilevich, R. & Moy, R. Management of Acute Radiation Dermatitis: A  
364 Review of the Literature and Proposal for Treatment Algorithm. *J Am Acad Dermatol*  
365 (2019). <https://doi.org/10.1016/j.jaad.2019.02.047>

366 8 Ryan, J. L. Ionizing radiation: the good, the bad, and the ugly. *J Invest Dermatol* **132**, 985-  
367 993 (2012). <https://doi.org/10.1038/jid.2011.411>

368 9 Singh, M., Alavi, A., Wong, R. & Akita, S. Radiodermatitis: A Review of Our Current  
369 Understanding. *Am J Clin Dermatol* **17**, 277-292 (2016). [https://doi.org/10.1007/s40257-016-0186-4](https://doi.org/10.1007/s40257-<br/>370 016-0186-4)

371 10 Dorr, W. & Hendry, J. H. Consequential late effects in normal tissues. *Radiother Oncol* **61**,  
372 223-231 (2001).

373 11 McQuestion, M. Evidence-based skin care management in radiation therapy: clinical  
374 update. *Semin Oncol Nurs* **27**, e1-17 (2011). <https://doi.org/10.1016/j.soncn.2011.02.009>

375 12 Salvo, N. *et al.* Prophylaxis and management of acute radiation-induced skin reactions: a  
376 systematic review of the literature. *Curr Oncol* **17**, 94-112 (2010).

377 13 Ho, A. S. *et al.* Quantitative survival impact of composite treatment delays in head and  
378 neck cancer. *Cancer* **124**, 3154-3162 (2018). <https://doi.org/10.1002/cncr.31533>

379 14 Withers, H. R., Taylor, J. M. & Maciejewski, B. The hazard of accelerated tumor clonogen  
380 repopulation during radiotherapy. *Acta Oncol* **27**, 131-146 (1988).

381 15 Graboyes, E. M. *et al.* Association of Treatment Delays With Survival for Patients With  
382 Head and Neck Cancer: A Systematic Review. *JAMA Otolaryngol Head Neck Surg* (2018).  
383 <https://doi.org/10.1001/jamaoto.2018.2716>

384 16 Bernier, J. *et al.* Consensus guidelines for the management of radiation dermatitis and  
385 coexisting acne-like rash in patients receiving radiotherapy plus EGFR inhibitors for the  
386 treatment of squamous cell carcinoma of the head and neck. *Annals of oncology : official  
387 journal of the European Society for Medical Oncology / ESMO* **19**, 142-149 (2008).  
388 <https://doi.org/10.1093/annonc/mdm400>

389 17 Giro, C. *et al.* High rate of severe radiation dermatitis during radiation therapy with  
390 concurrent cetuximab in head and neck cancer: results of a survey in EORTC institutes.  
391 *Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology  
392 and Oncology* **90**, 166-171 (2009). <https://doi.org/10.1016/j.radonc.2008.09.007>

393 18 Pryor, D. I. *et al.* Enhanced toxicity with concurrent cetuximab and radiotherapy in head  
394 and neck cancer. *Radiotherapy and oncology : journal of the European Society for  
395 Therapeutic Radiology and Oncology* **90**, 172-176 (2009).  
396 <https://doi.org/10.1016/j.radonc.2008.09.018>

397 19 Walsh, L. *et al.* Toxicity of cetuximab versus cisplatin concurrent with radiotherapy in  
398 locally advanced head and neck squamous cell cancer (LAHNSCC). *Radiotherapy and*  
399 *oncology : journal of the European Society for Therapeutic Radiology and Oncology* **98**,  
400 38-41 (2011). <https://doi.org/10.1016/j.radonc.2010.11.009>

401 20 Bonomo, P. *et al.* Management of severe bio-radiation dermatitis induced by radiotherapy  
402 and cetuximab in patients with head and neck cancer: emphasizing the role of calcium  
403 alginate dressings. *Supportive care in cancer : official journal of the Multinational*  
404 *Association of Supportive Care in Cancer* (2018). <https://doi.org/10.1007/s00520-018-4606-2>

406 21 Kawamura, M. *et al.* A scoring system predicting acute radiation dermatitis in patients with  
407 head and neck cancer treated with intensity-modulated radiotherapy. *Radiat Oncol* **14**, 14  
408 (2019). <https://doi.org/10.1186/s13014-019-1215-2>

409 22 Bostrom, A., Lindman, H., Swartling, C., Berne, B. & Bergh, J. Potent corticosteroid cream  
410 (mometasone furoate) significantly reduces acute radiation dermatitis: results from a  
411 double-blind, randomized study. *Radiotherapy and oncology : journal of the European*  
412 *Society for Therapeutic Radiology and Oncology* **59**, 257-265 (2001).

413 23 Fisher, J. *et al.* Randomized phase III study comparing Best Supportive Care to Biafine  
414 as a prophylactic agent for radiation-induced skin toxicity for women undergoing breast  
415 irradiation: Radiation Therapy Oncology Group (RTOG) 97-13. *International journal of*  
416 *radiation oncology, biology, physics* **48**, 1307-1310 (2000).

417 24 Heggie, S. *et al.* A Phase III study on the efficacy of topical aloe vera gel on irradiated  
418 breast tissue. *Cancer Nurs* **25**, 442-451 (2002).

419 25 Hemati, S. *et al.* Topical silver sulfadiazine for the prevention of acute dermatitis during  
420 irradiation for breast cancer. *Support Care Cancer* **20**, 1613-1618 (2012).  
421 <https://doi.org/10.1007/s00520-011-1250-5>

422 26 Liguori, V., Guillemin, C., Pesce, G. F., Mirimanoff, R. O. & Bernier, J. Double-blind,  
423 randomized clinical study comparing hyaluronic acid cream to placebo in patients treated  
424 with radiotherapy. *Radiotherapy and oncology : journal of the European Society for  
425 Therapeutic Radiology and Oncology* **42**, 155-161 (1997).

426 27 Maddocks-Jennings, W., Wilkinson, J. M. & Shillington, D. Novel approaches to  
427 radiotherapy-induced skin reactions: a literature review. *Complement Ther Clin Pract* **11**,  
428 224-231 (2005). <https://doi.org/10.1016/j.ctcp.2005.02.001>

429 28 Miller, R. C. *et al.* Mometasone furoate effect on acute skin toxicity in breast cancer  
430 patients receiving radiotherapy: a phase III double-blind, randomized trial from the North  
431 Central Cancer Treatment Group N06C4. *International journal of radiation oncology,  
432 biology, physics* **79**, 1460-1466 (2011). <https://doi.org/10.1016/j.ijrobp.2010.01.031>

433 29 Roy, I., Fortin, A. & Laroche, M. The impact of skin washing with water and soap during  
434 breast irradiation: a randomized study. *Radiother Oncol* **58**, 333-339 (2001).

435 30 Wells, M. *et al.* Does aqueous or sucralfate cream affect the severity of erythematous  
436 radiation skin reactions? A randomised controlled trial. *Radiother Oncol* **73**, 153-162  
437 (2004). <https://doi.org/10.1016/j.radonc.2004.07.032>

438 31 Williams, M. S. *et al.* Phase III double-blind evaluation of an aloe vera gel as a prophylactic  
439 agent for radiation-induced skin toxicity. *International journal of radiation oncology,  
440 biology, physics* **36**, 345-349 (1996).

441 32 Bensadoun, R. J. *et al.* Daily baseline skin care in the prevention, treatment, and  
442 supportive care of skin toxicity in oncology patients: recommendations from a multinational  
443 expert panel. *Cancer Manag Res* **5**, 401-408 (2013).  
444 <https://doi.org/10.2147/CMAR.S52256>

445 33 Hu, J. J. *et al.* Complementary and alternative medicine in reducing radiation-induced skin  
446 toxicity. *Radiation and environmental biophysics* **53**, 621-626 (2014).  
447 <https://doi.org/10.1007/s00411-014-0540-y>

448 34 Meimeti, E. *et al.* Topical Treatment of Skin Injury Inflicted in Mice by X-Ray Irradiation.  
449 *Skin Pharmacol Physiol* **31**, 175-183 (2018). <https://doi.org/10.1159/000487404>

450 35 Nakagami, Y. & Masuda, K. A novel Nrf2 activator from microbial transformation inhibits  
451 radiation-induced dermatitis in mice. *J Radiat Res* **57**, 567-571 (2016).  
452 <https://doi.org/10.1093/jrr/rrw039>

453 36 Ning, S. *et al.* Mitigation of radiation-induced dermatitis by activation of aldehyde  
454 dehydrogenase 2 using topical alda-1 in mice. *Radiation research* **178**, 69-74 (2012).

455 37 Park, J. H. *et al.* Effect of photobiomodulation therapy on radiodermatitis in a mouse  
456 model: an experimental animal study. *Lasers Med Sci* **36**, 843-853 (2021).  
457 <https://doi.org/10.1007/s10103-020-03123-x>

458 38 Benavides, F., Oberyszyn, T. M., VanBuskirk, A. M., Reeve, V. E. & Kusewitt, D. F. The  
459 hairless mouse in skin research. *J Dermatol Sci* **53**, 10-18 (2009).  
460 <https://doi.org/10.1016/j.jdermsci.2008.08.012>

461 39 Athar, M. *et al.* Ultraviolet B(UVB)-induced cox-2 expression in murine skin: an  
462 immunohistochemical study. *Biochem Biophys Res Commun* **280**, 1042-1047 (2001).  
463 <https://doi.org/10.1006/bbrc.2000.4201>

464 40 Byun, S. *et al.* Src kinase is a direct target of apigenin against UVB-induced skin  
465 inflammation. *Carcinogenesis* **34**, 397-405 (2013). <https://doi.org/10.1093/carcin/bgs358>

466 41 Pal, H. C., Athar, M., Elmets, C. A. & Afaq, F. Fisetin inhibits UVB-induced cutaneous  
467 inflammation and activation of PI3K/AKT/NFkappaB signaling pathways in SKH-1 hairless  
468 mice. *Photochem Photobiol* **91**, 225-234 (2015). <https://doi.org/10.1111/php.12337>

469 42 Ruzicka, T., Walter, J. F. & Printz, M. P. Changes in arachidonic acid metabolism in UV-  
470 irradiated hairless mouse skin. *J Invest Dermatol* **81**, 300-303 (1983).  
471 <https://doi.org/10.1111/1523-1747.ep12519287>

472 43 Singh, A., Willems, E., Singh, A., Ong, I. M. & Verma, A. K. Ultraviolet radiation-induced  
473 differential microRNA expression in the skin of hairless SKH1 mice, a widely used mouse

474 model for dermatology research. *Oncotarget* **7**, 84924-84937 (2016).  
475 <https://doi.org/10.18632/oncotarget.12913>

476 44 Voigt, A. Y. *et al.* Microbiome modulates immunotherapy response in cutaneous  
477 squamous cell carcinoma. *Exp Dermatol* **32**, 1624-1632 (2023).  
478 <https://doi.org/10.1111/exd.14864>

479 45 Hartono, S. P. *et al.* Vascular Endothelial Growth Factor as an Immediate-Early Activator  
480 of Ultraviolet-Induced Skin Injury. *Mayo Clin Proc* **97**, 154-164 (2022).  
481 <https://doi.org/10.1016/j.mayocp.2021.08.018>

482 46 Jang, W. H. *et al.* In vivo characterization of early-stage radiation skin injury in a mouse  
483 model by two-photon microscopy. *Sci Rep* **6**, 19216 (2016).  
484 <https://doi.org/10.1038/srep19216>

485 47 Jang, H. *et al.* Impaired Skin Barrier Due to Sebaceous Gland Atrophy in the Latent Stage  
486 of Radiation-Induced Skin Injury: Application of Non-Invasive Diagnostic Methods. *Int J  
487 Mol Sci* **19** (2018). <https://doi.org/10.3390/ijms19010185>

488 48 Avci, P. *et al.* Animal models of skin disease for drug discovery. *Expert Opin Drug Discov*  
489 **8**, 331-355 (2013). <https://doi.org/10.1517/17460441.2013.761202>

490 49 de Andrade, C. B. V. *et al.* Radiotherapy-Induced Skin Reactions Induce Fibrosis  
491 Mediated by TGF-beta1 Cytokine. *Dose Response* **15**, 1559325817705019 (2017).  
492 <https://doi.org/10.1177/1559325817705019>

493 50 Yu, Z. *et al.* Tissue fibrosis induced by radiotherapy: current understanding of the  
494 molecular mechanisms, diagnosis and therapeutic advances. *Journal of translational  
495 medicine* **21**, 708 (2023). <https://doi.org/10.1186/s12967-023-04554-0>

496 51 Lee, J. L., Mukhtar, H., Bickers, D. R., Kopelovich, L. & Athar, M. Cyclooxygenases in the  
497 skin: pharmacological and toxicological implications. *Toxicol Appl Pharmacol* **192**, 294-  
498 306 (2003). [https://doi.org/10.1016/s0041-008x\(03\)00301-6](https://doi.org/10.1016/s0041-008x(03)00301-6)

499 52 Institute, N. C. (ed DCTD Division of Cancer Treatment & Diagnosis) (2017).

500 53 Fowler, H. *et al.* Comorbidity prevalence among cancer patients: a population-based  
501 cohort study of four cancers. *BMC Cancer* **20**, 2 (2020). <https://doi.org/10.1186/s12885-019-6472-9>

502 54 Simon, M. S. *et al.* A Review of Research on Disparities in the Care of Black and White  
503 Patients With Cancer in Detroit. *Front Oncol* **11**, 690390 (2021).  
504 <https://doi.org/10.3389/fonc.2021.690390>

505 55 Afshar, N., English, D. R. & Milne, R. L. Factors Explaining Socio-Economic Inequalities  
506 in Cancer Survival: A Systematic Review. *Cancer Control* **28**, 10732748211011956  
507 (2021). <https://doi.org/10.1177/10732748211011956>

508 56 Hojman, L. & Karsulovic, C. Cardiovascular Disease-Associated Skin Conditions. *Vasc  
509 Health Risk Manag* **18**, 43-53 (2022). <https://doi.org/10.2147/VHRM.S343319>

510 57 Mendes, A. L., Miot, H. A. & Haddad, V. J. Diabetes mellitus and the skin. *An Bras  
511 Dermatol* **92**, 8-20 (2017). <https://doi.org/10.1590/abd1806-4841.20175514>

512 58 Bryant, R. A. & Rolstad, B. S. Examining threats to skin integrity. *Ostomy Wound Manage*  
513 **47**, 18-27 (2001).

514 59 Beck, L. A. *et al.* Type 2 Inflammation Contributes to Skin Barrier Dysfunction in Atopic  
515 Dermatitis. *JID Innov* **2**, 100131 (2022). <https://doi.org/10.1016/j.xjidi.2022.100131>

516 60 Bromberger, L. *et al.* Radiation-induced alterations in multi-layered, in-vitro skin models  
517 detected by optical coherence tomography and histological methods. *PLoS one* **18**,  
518 e0281662 (2023). <https://doi.org/10.1371/journal.pone.0281662>

519 61 Ewan, K. B. *et al.* Transforming growth factor-beta1 mediates cellular response to DNA  
520 damage in situ. *Cancer research* **62**, 5627-5631 (2002).

521 62 Flanders, K. C. *et al.* Interference with transforming growth factor-beta/ Smad3 signaling  
522 results in accelerated healing of wounds in previously irradiated skin. *The American  
523 journal of pathology* **163**, 2247-2257 (2003). [https://doi.org/10.1016/s0002-9440\(10\)63582-1](https://doi.org/10.1016/s0002-9440(10)63582-1)

526 63 Flanders, K. C. Smad3 as a mediator of the fibrotic response. *Int J Exp Pathol* **85**, 47-64  
527 (2004). <https://doi.org/10.1111/j.0959-9673.2004.00377.x>

528 64 Randall, K. & Coggle, J. E. Expression of transforming growth factor-beta 1 in mouse skin  
529 during the acute phase of radiation damage. *International journal of radiation biology* **68**,  
530 301-309 (1995). <https://doi.org/10.1080/09553009514551231>

531 65 Randall, K. & Coggle, J. E. Long-term expression of transforming growth factor TGF beta  
532 1 in mouse skin after localized beta-irradiation. *International journal of radiation biology*  
533 **70**, 351-360 (1996). <https://doi.org/10.1080/095530096145085>

534 66 Koerdт, S. *et al.* An expression analysis of markers of radiation-induced skin fibrosis and  
535 angiogenesis in wound healing disorders of the head and neck. *Radiat Oncol* **10**, 202  
536 (2015). <https://doi.org/10.1186/s13014-015-0508-3>

537 67 Flanders, K. C. *et al.* Mice lacking Smad3 are protected against cutaneous injury induced  
538 by ionizing radiation. *The American journal of pathology* **160**, 1057-1068 (2002).  
539 [https://doi.org/10.1016/S0002-9440\(10\)64926-7](https://doi.org/10.1016/S0002-9440(10)64926-7)

540 68 Chihara, Y. *et al.* A small-molecule inhibitor of SMAD3 attenuates resistance to anti-HER2  
541 drugs in HER2-positive breast cancer cells. *Breast Cancer Res Treat* **166**, 55-68 (2017).  
542 <https://doi.org/10.1007/s10549-017-4382-6>

543 69 Toloczko-Iwaniuk, N., Dziemianczyk-Pakiela, D., Nowaszewska, B. K., Celinska-  
544 Janowicz, K. & Miltyk, W. Celecoxib in Cancer Therapy and Prevention - Review. *Curr  
545 Drug Targets* **20**, 302-315 (2019). <https://doi.org/10.2174/1389450119666180803121737>

546 70 An, K. P. *et al.* Cyclooxygenase-2 expression in murine and human nonmelanoma skin  
547 cancers: implications for therapeutic approaches. *Photochem Photobiol* **76**, 73-80 (2002).  
548 [https://doi.org/10.1562/0031-8655\(2002\)076<0073:ceimah>2.0.co;2](https://doi.org/10.1562/0031-8655(2002)076<0073:ceimah>2.0.co;2)

549 71 Liang, L. *et al.* Celecoxib reduces skin damage after radiation: selective reduction of  
550 chemokine and receptor mRNA expression in irradiated skin but not in irradiated

551                   mammary           tumor.           *Am J Clin Oncol*           **26**,           S114-121           (2003).

552                   <https://doi.org/10.1097/01.COC.0000074149.95710.40>

553   72           Ghasemi, A., Danesh, B., Yazdani-Charati, J. & Hosseinimehr, S. J. Randomized Double-blind Placebo-controlled Trial of Celecoxib for the Prevention of Skin Toxicity in Patients

554                   Receiving Radiation Therapy for Breast Cancer. *Antiinflamm Antiallergy Agents Med Chem* **17**, 57-67 (2018). <https://doi.org/10.2174/1871523017666180411162114>

557   73           Siegel, R. L., Miller, K. D. & Jemal, A. Cancer Statistics, 2017. *CA Cancer J Clin* **67**, 7-30 (2017). <https://doi.org/10.3322/caac.21387>

559   74           Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer Statistics, 2021. *CA Cancer J Clin* **71**, 7-33 (2021). <https://doi.org/10.3322/caac.21654>

561   75           Fuzissaki, M. A., Paiva, C. E., de Oliveira, M. A., Canto, P. P. L. & Maia, Y. C. P. The

562                   impact of radiodermatitis on breast cancer patients' quality of life during treatment: a

563                   prospective cohort study. *J Pain Symptom Manage* (2019).

564                   <https://doi.org/10.1016/j.jpainsympman.2019.03.017>

565   76           Wright, J. L. *et al.* Racial variations in radiation-induced skin toxicity severity: data from a

566                   prospective cohort receiving postmastectomy radiation. *International journal of radiation*

567                   oncology,           biology,           physics           **90**,           335-343           (2014).

568                   <https://doi.org/10.1016/j.ijrobp.2014.06.042>

569   77           Maymone, M. B. C. *et al.* The impact of skin hyperpigmentation and hyperchromia on

570                   quality of life: A cross-sectional study. *J Am Acad Dermatol* **77**, 775-778 (2017).

571                   <https://doi.org/10.1016/j.jaad.2017.05.009>

572   78           Lee, J. *et al.* Patient-reported symptoms of radiation dermatitis during breast cancer

573                   radiotherapy: a pilot study. *Qual Life Res* **26**, 1713-1719 (2017).

574                   <https://doi.org/10.1007/s11136-017-1526-4>

575   79           Balter, S. & Miller, D. L. Patient skin reactions from interventional fluoroscopy procedures.

576                   *AJR Am J Roentgenol* **202**, W335-342 (2014). <https://doi.org/10.2214/AJR.13.12029>

577 80 Blades, R., Chan, R., Yates, P. & McPhail, S. in *Oncology Nursing Society (ONS) Annual*  
578 *Congress.*

579 81 Haruna, F., Lipsett, A. & Marignol, L. Topical Management of Acute Radiation Dermatitis  
580 in Breast Cancer Patients: A Systematic Review and Meta-Analysis. *Anticancer Res* **37**,  
581 5343-5353 (2017). <https://doi.org/10.21873/anticanres.11960>

582 82 Lucey, P. *et al.* Practice patterns for the prophylaxis and treatment of acute radiation  
583 dermatitis in the United States. *Support Care Cancer* **25**, 2857-2862 (2017).  
584 <https://doi.org/10.1007/s00520-017-3701-0>

585 83 Iddins, C. J., DiCarlo, A. L., Ervin, M. D., Herrera-Reyes, E. & Goans, R. E. Cutaneous  
586 and local radiation injuries. *J Radiol Prot* **42** (2022). <https://doi.org/10.1088/1361-6498/ac241a>

588 84 Christensen, D. M., Parillo, S. J., Glassman, E. S. & Sugarman, S. L. Management of  
589 ionizing radiation injuries and illnesses, part 2: nontherapeutic radiologic/nuclear  
590 incidents. *J Am Osteopath Assoc* **114**, 383-389 (2014).  
591 <https://doi.org/10.7556/jaoa.2014.075>

592 85 Balter, S., Hopewell, J. W., Miller, D. L., Wagner, L. K. & Zelefsky, M. J. Fluoroscopically  
593 guided interventional procedures: a review of radiation effects on patients' skin and hair.  
594 *Radiology* **254**, 326-341 (2010). <https://doi.org/10.1148/radiol.2542082312>

595 86 Fisher, R. F. *et al.* AAPM Medical Physics Practice Guideline 12.a: Fluoroscopy dose  
596 management. *J Appl Clin Med Phys* **23**, e13526 (2022).  
597 <https://doi.org/10.1002/acm2.13526>

598 87 Wei, K. C. *et al.* An innovative targeted therapy for fluoroscopy-induced chronic radiation  
599 dermatitis. *J Mol Med (Berl)* **100**, 135-146 (2022). <https://doi.org/10.1007/s00109-021-02146-3>

601 88 Gottlober, P. *et al.* The outcome of local radiation injuries: 14 years of follow-up after the  
602 Chernobyl accident. *Radiation research* **155**, 409-416 (2001).  
603 [https://doi.org/10.1667/0033-7587\(2001\)155\[0409:toolri\]2.0.co;2](https://doi.org/10.1667/0033-7587(2001)155[0409:toolri]2.0.co;2)

604 89 Kiang, J. G. & Ledney, G. D. Skin injuries reduce survival and modulate corticosterone,  
605 C-reactive protein, complement component 3, IgM, and prostaglandin E 2 after whole-  
606 body reactor-produced mixed field (n + gamma-photons) irradiation. *Oxid Med Cell  
607 Longev* **2013**, 821541 (2013). <https://doi.org/10.1155/2013/821541>

608 90 Bray, F. N., Simmons, B. J., Wolfson, A. H. & Nouri, K. Acute and Chronic Cutaneous  
609 Reactions to Ionizing Radiation Therapy. *Dermatol Ther (Heidelb)* **6**, 185-206 (2016).  
610 <https://doi.org/10.1007/s13555-016-0120-y>

611 91 Denham, J. W. & Hauer-Jensen, M. The radiotherapeutic injury--a complex 'wound'.  
612 *Radiother Oncol* **63**, 129-145 (2002).

613 92 Benjamin, E. J. *et al.* Heart Disease and Stroke Statistics-2019 Update: A Report From  
614 the American Heart Association. *Circulation* **139**, e56-e528 (2019).  
615 <https://doi.org/10.1161/CIR.0000000000000659>

616 93 Baghani, H. R. *et al.* Dosimetric evaluation of Gafchromic EBT2 film for breast  
617 intraoperative electron radiotherapy verification. *Phys Med* **31**, 37-42 (2015).  
618 <https://doi.org/10.1016/j.ejmp.2014.08.005>

619 94 Reisman, S. A. *et al.* Topical application of RTA 408 lotion activates Nrf2 in human skin  
620 and is well-tolerated by healthy human volunteers. *BMC Dermatol* **15**, 10 (2015).  
621 <https://doi.org/10.1186/s12895-015-0029-7>

622

623

624

625

626

627 **Acknowledgements**

628 This work was supported by funding from the Department of Veterinary Clinical Sciences and  
629 The Hormel Institute at the University of Minnesota. The authors would like to thank Jessica  
630 Coffey and Amy Morgan for their support for data acquisition.

631

632 **Author contributions**

633 Conceptualization and design: JL, DS, LH  
634 Development of methodology: JL, DS, AC, CF, AG, LH  
635 Data acquisition: JL, DS, AC, CF, KDD  
636 Data analysis: JL, DS, AC, CF, YR, LW, SKA, RY, LH  
637 Writing and primary revision: JL, DS, AG, LH  
638 Review & secondary revision: all authors (JL, DS, AC, CF, KDD, AG, YR, LW, SKA, RY, LH)  
639 read, provided secondary revision, and approved the submitted manuscript.

640

641 **Data availability statement**

642 All data generated or analyzed during this study are included in this published article and its  
643 Supplementary Information files.

644

645 **Competing Interests Statement**

646 The authors declare no competing interests.

647

648 **Figure legends**

649 Figure 1. Temporal development of radiation-induced dermatitis in SKH-1 mice. Radiation  
650 dermatitis significantly ( $p < 0.0001$ ) increases in severity following 30 Gy single fraction irradiation  
651 to the right hindlimb skin in 11-12 week old SKH-1 mice ( $N = 9-10/\text{group}$ ). Representative photos  
652 of the right hindlimb (A) are shown following 30 Gy radiation delivered with 6 MeV electrons in  
653 comparison to unirradiated skin. Mean grade significantly increased at peak toxicity on day 12 (B)  
654 with partial resolution by day 22. Data are presented as the mean  $\pm$  SEM at each defined timepoint  
655 following irradiation. Significant ( $p < 0.05$ ) differences are shown following Kruskal-Wallis with  
656 Dunn's multiple comparison analysis.

657

658 Figure 2. Radiation-induced dermatitis is characterized by measurable inflammatory changes  
659 over time. (A) Representative H&E images of radiation-induced skin pathology over time following  
660 irradiation 30 Gy single fraction irradiation prescribed to the skin of the right hindlimb/hip. (B) Total  
661 inflammatory score is represented as individual values and mean  $\pm$  SEM for control skin from the  
662 left hindlimb (LH) and for irradiated skin from the right hindlimb ( $N=5$  per time point) at designated  
663 time points following irradiation. The  $p$  value was calculated following one-way ANOVA.

664

665 Figure 3. Radiation induced significant changes in most histopathologic measures of inflammation  
666 at the time of peak clinical toxicity on day 12. Mean scores for measured histopathologic variables,  
667 including epidermal ulceration (A), epidermal thickening (B), hyperkeratosis (C), glandular loss  
668 (D), dermal fibroplasia/fibrosis (E), dermal pyogranulomatous inflammation (F), dermal  
669 mononuclear inflammation (G), dermal mastocytic inflammation (H), dermal neutrophilic  
670 inflammation (I) and hypodermal inflammation (J), and shown from the unirradiated control left  
671 hindlimb (LH) skin and from irradiated skin over time. Data are presented as individual values and  
672 mean  $\pm$  SEM, with  $p$  values in lowercase on the graph representing Kruskal-Wallis analysis.  
673 Comparative  $p$  values in uppercase between bars were calculated by performing Dunn's multiple

674 variable post-test analysis (N=5 per timepoint). Significant values between timepoints are  
675 highlighted with the bar; p values represent Kruskal-Wallis results while P values represent  
676 Dunn's post-hoc results.

677

678 Figure 4. TGF- $\beta$ 1 immunoreactivity in irradiated skin from SKH-1 mice. Mean epidermal (A) and  
679 dermal (B) TGF- $\beta$ 1 immunoreactivity scores in unirradiated control skin (N=8) and irradiated skin  
680 (N=4-6) at designated time points after treatment. Data are presented as individual values and  
681 mean  $\pm$  SEM, with p values in lowercase on the graph representing Kruskal-Wallis analysis.  
682 Comparative p values in uppercase between bars were calculated by performing Dunn's multiple  
683 variable post-test analysis (N=5 per timepoint). Significant values between timepoints are  
684 highlighted with the bar; p values represent Kruskal-Wallis results while P values represent  
685 Dunn's post-hoc results. (C) Representative tissue samples show normal positive TGF- $\beta$ 1  
686 immunohistochemical staining, represented as brown staining within the cellular cytoplasm, within  
687 the unirradiated dermis and epidermis. Progressively increased TGF- $\beta$ 1 expression is  
688 demonstrated over time, with peak staining at day 12 and 22.

689

690 Figure 5. COX-2 immunoreactivity in irradiated skin from SKH-1 mice. Mean epidermal (A) and  
691 dermal (B) COX-2 immunoreactivity scores in unirradiated control skin (N=8) and irradiated skin  
692 (N=4-6) at defined time points. Data are presented as individual values and mean  $\pm$  SEM, with p  
693 values in lowercase on the graph representing Kruskal-Wallis analysis. Comparative p values in  
694 uppercase between bars were calculated by performing Dunn's multiple variable post-test  
695 analysis (N=5 per timepoint). Significant values between timepoints are highlighted with the bar;  
696 p values represent Kruskal-Wallis results while P values represent Dunn's post-hoc results. (C)  
697 Representative tissue samples show normal positive COX-2 immunohistochemical staining,  
698 represented as brown staining within the cellular cytoplasm, within the unirradiated dermis and

699 epidermis. Progressively increased COX-2 expression is demonstrated over time, with peak  
700 staining at day 12 and 22.

701 **Tables**

702

703 **Table 1.** Radiation dermatitis grade over time in 11-12 week old SKH-1 mice (N=9-10 per time

704 point) following 30 Gy radiation to the skin of the right proximal hindlimb.

| Time | Mean grade $\pm$ SEM |
|------|----------------------|
| 0h   | 0.00 $\pm$ 0         |
| 2h   | 0.00 $\pm$ 0         |
| 5d   | 0.00 $\pm$ 0         |
| 12d  | 2.56 $\pm$ 0.18      |
| 22d  | 0.56 $\pm$ 0.24      |

705

706

707 **Table 2:** Significant differences in total inflammatory score in skin of SKH-1 mice at designated

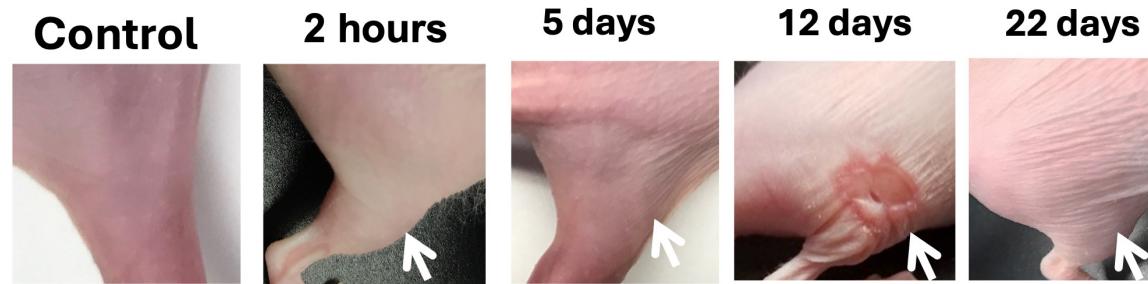
708 time points (N=5 per group) following 30 Gy radiation.

|     | 2h | 5d | 12d     | 22d     |
|-----|----|----|---------|---------|
| 0h  | ns | ns | <0.0001 | <0.0001 |
| 2h  |    | ns | <0.0001 | <0.0001 |
| 5d  |    |    | <0.0001 | 0.0020  |
| 12d |    |    |         | <0.0001 |

709

ns represents “not significant” with p value > 0.05.

710


711 **Table 3:** Clinical dermatitis grade significantly (p<0.05) and positively correlated to the total

712 inflammatory score as well as to most individual histopathological features assessed.

| Variable                         | r <sub>s</sub> | p value |
|----------------------------------|----------------|---------|
| Total inflammatory score         | 0.7988         | <0.0001 |
| Epidermal ulceration             | 0.4605         | 0.0205  |
| Epidermal thickening             | 0.9612         | <0.0001 |
| Hyperkeratosis                   | 0.8356         | <0.0001 |
| Glandular loss                   | 0.7636         | <0.0001 |
| Dermal fibroplasia/fibrosis      | 0.8477         | <0.0001 |
| Dermal mononuclear inflammation  | 0.7643         | <0.0001 |
| Dermal mastocytic inflammation   | 0.6382         | 0.0006  |
| Dermal neutrophilic inflammation | 0.7303         | <0.0001 |
| Hypodermal inflammation          | 0.5015         | 0.0107  |

713

714



A

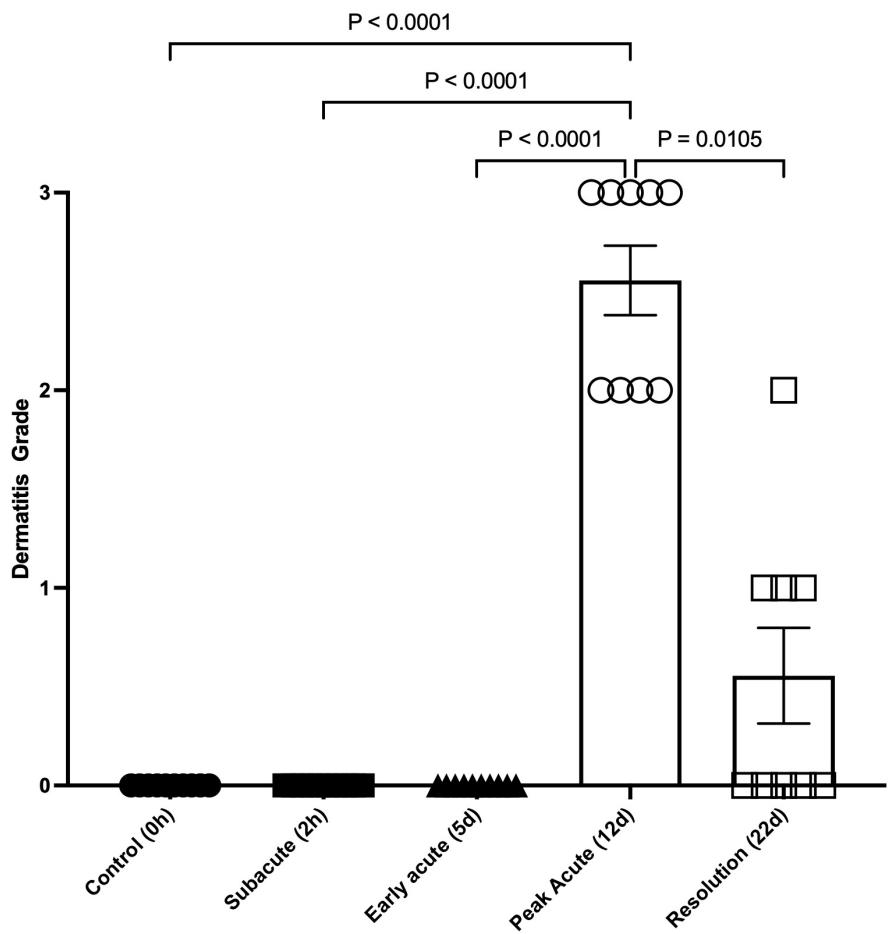
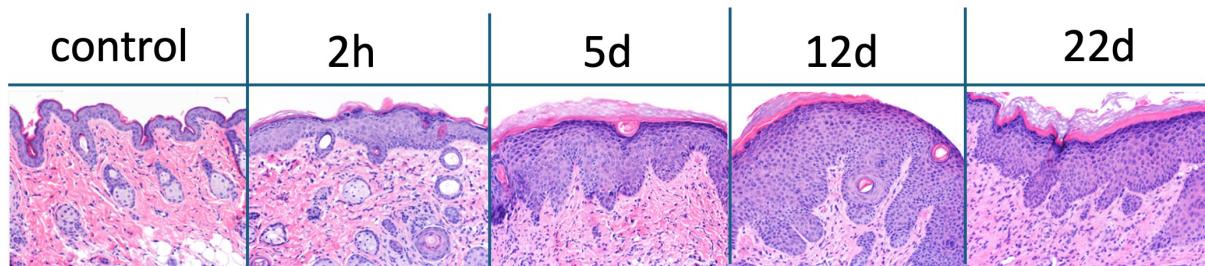




Figure 1



A

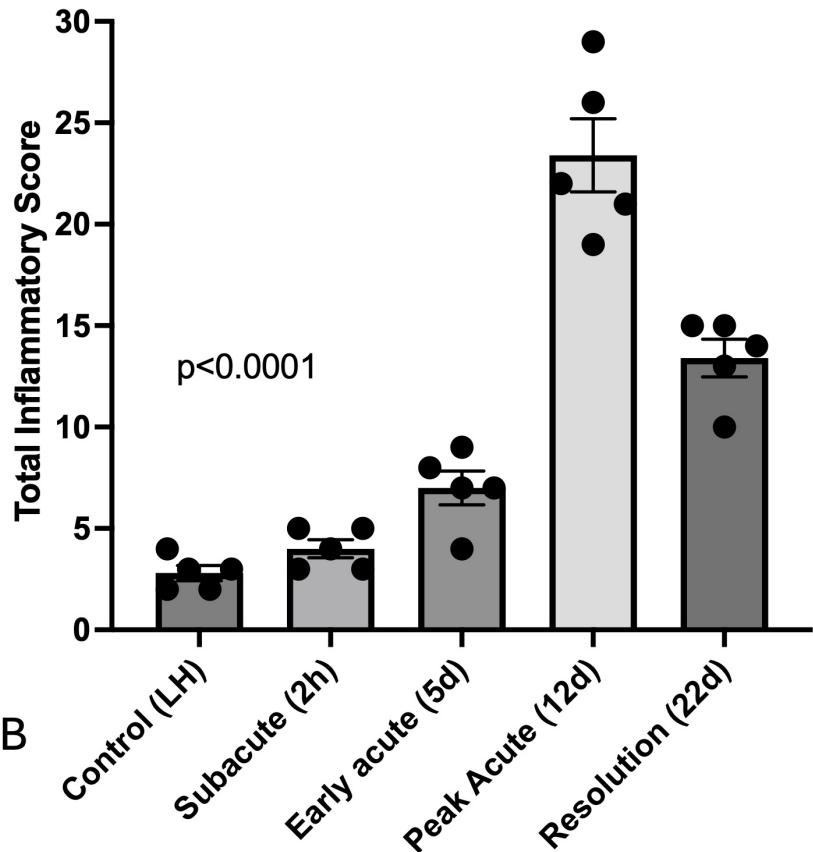



Figure 2

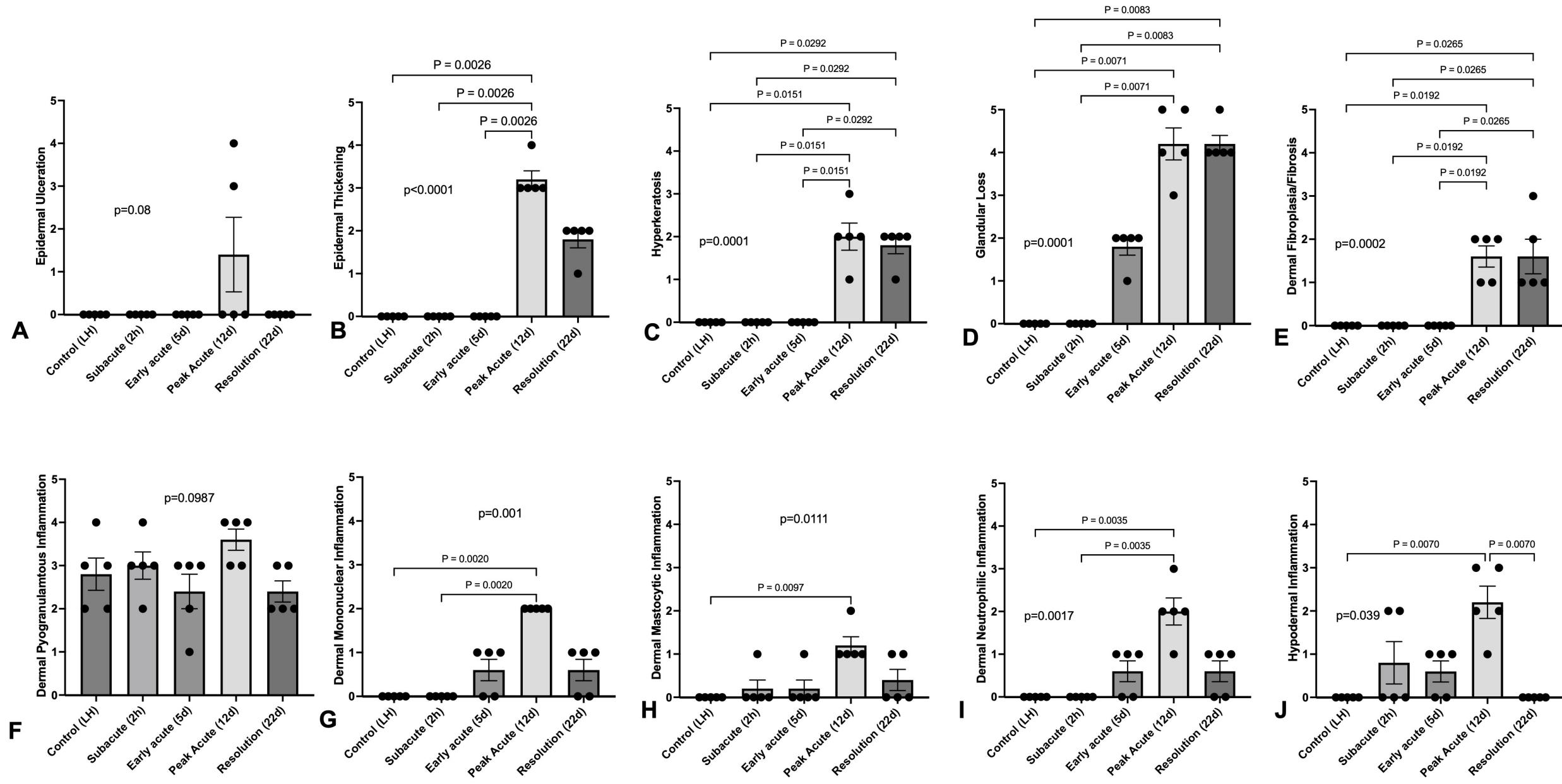
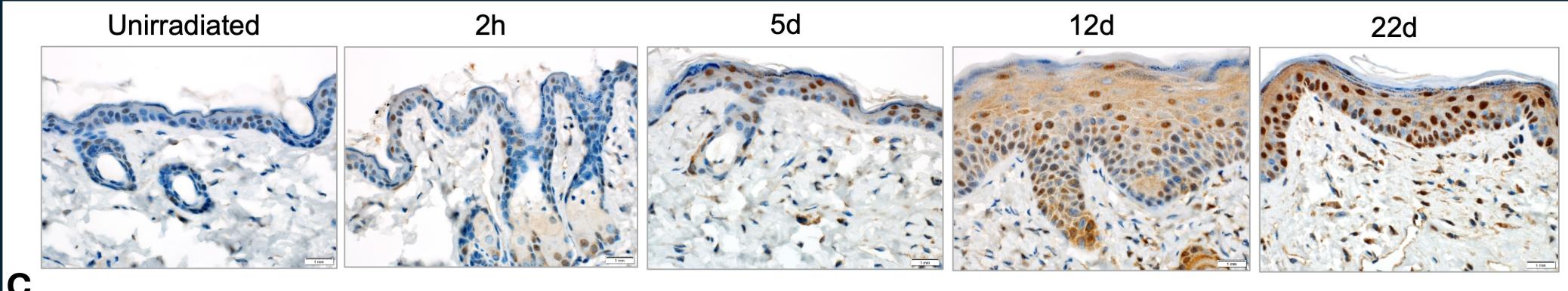
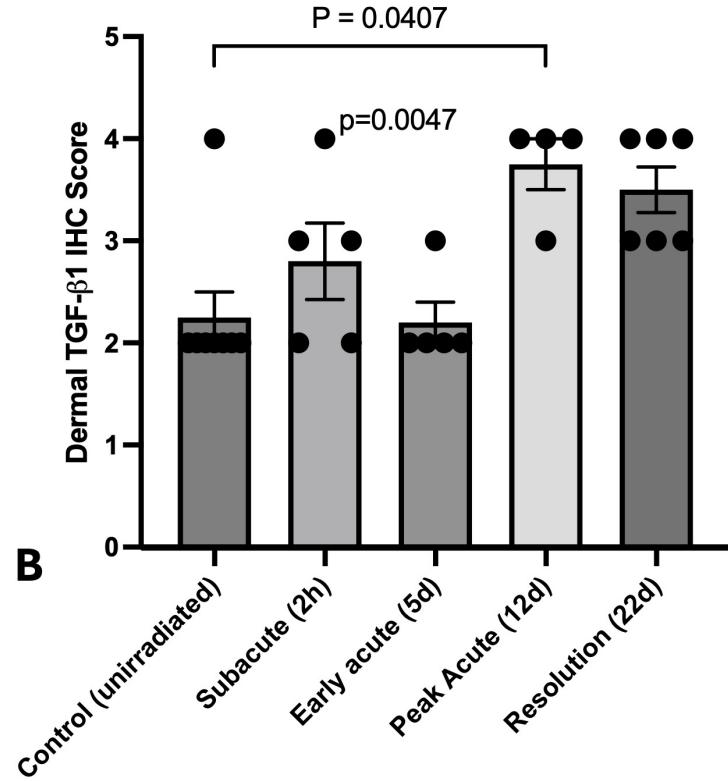
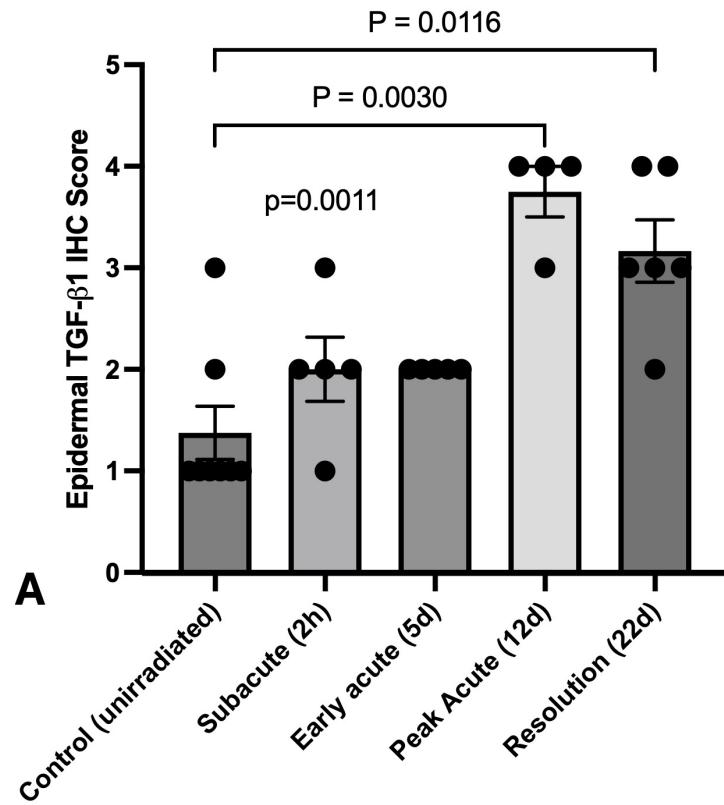
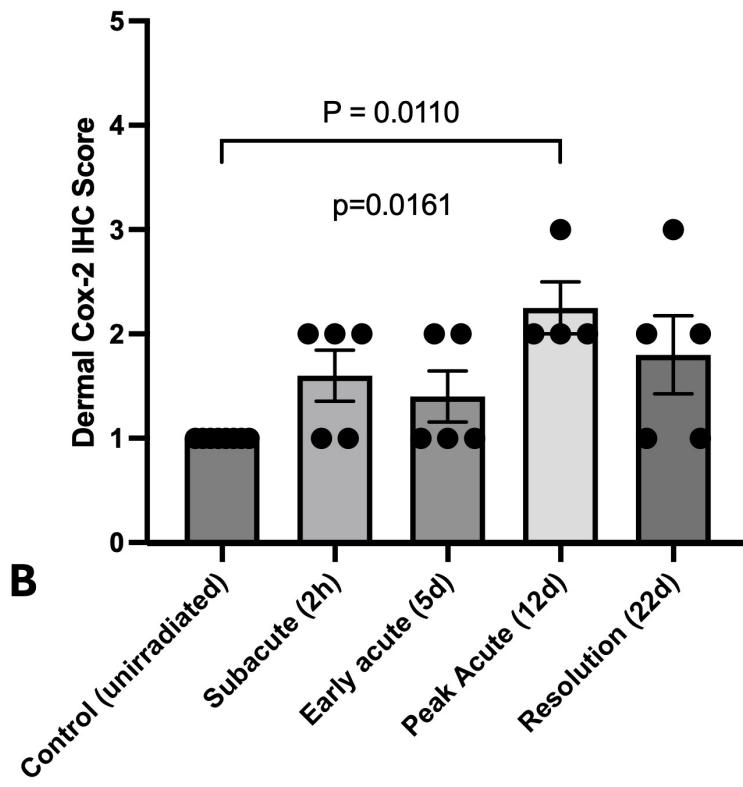
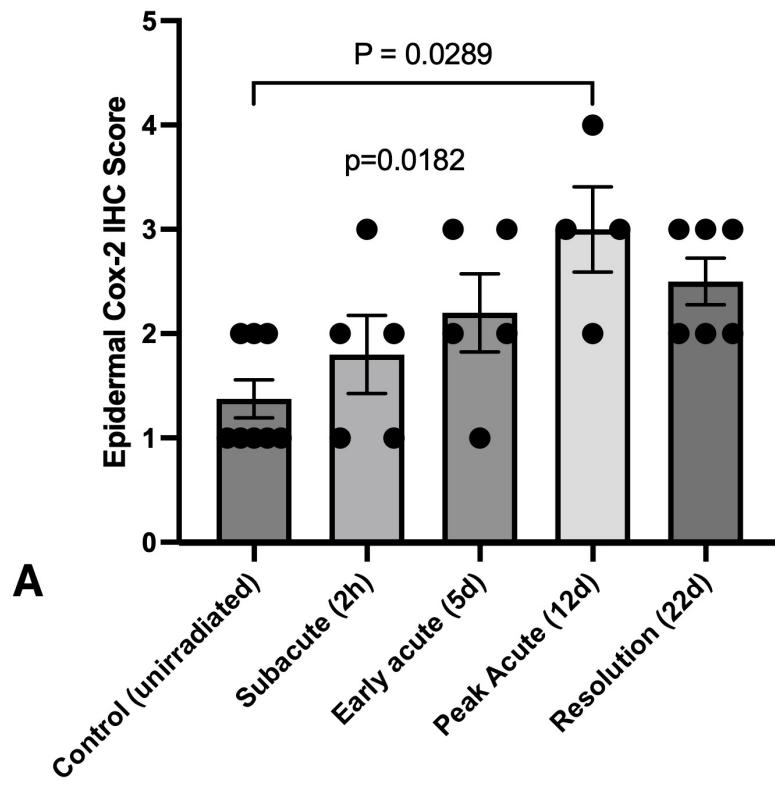
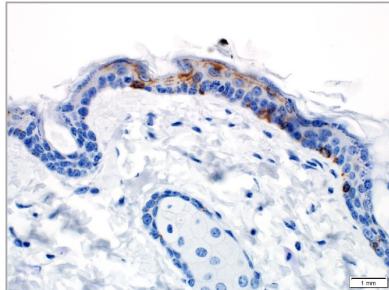
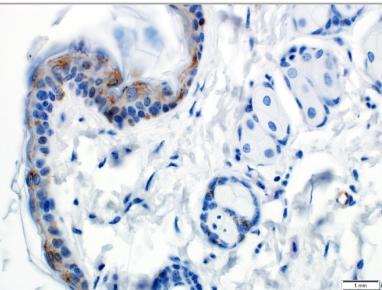
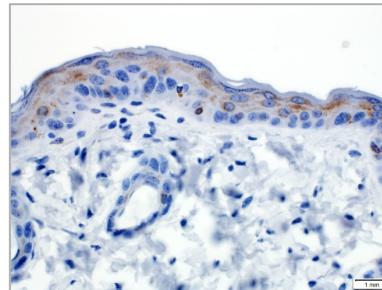



Figure 3

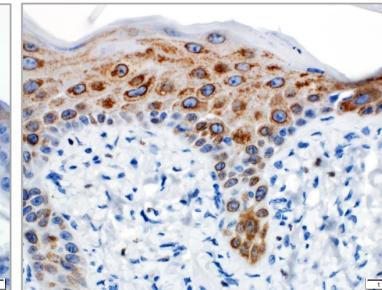









Figure 4

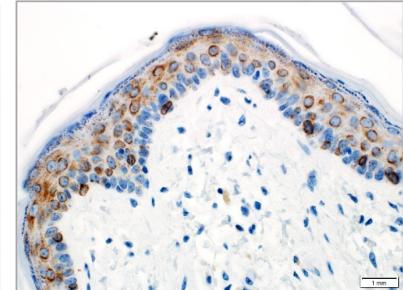



Unirradiated




2h




5d



12d



22d



**C**

Figure 5