

1 **Title:**

2 **Long-term efficacy of adoptive cell therapy is determined by host**
3 **CD8⁺ T cells and undermined by lymphodepleting preconditioning**

4

5

6 **Author list:**

7 Diego Figueroa¹, Juan Pablo Vega¹, Andrés Hernández-Oliveras¹, Felipe Gálvez-
8 Cancino^{1,2}, Felipe Ardiles¹, Felipe Flores⁴, Sofía Hidalgo¹, Ximena López¹, Hugo
9 Gonzalez^{1,3}, Fabiola Osorio⁴, Vincenzo Borgna^{1,5,6,*}, Alvaro Lladser^{1,6,*}.

10

11 **Affiliations and footnotes:**

12 ¹Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia &
13 Vida. Santiago, Chile.

14 ²Immune Regulation and Tumor Immunotherapy Group, Cancer Immunology Unit,
15 Research Department of Haematology, UCL Cancer Institute, London WC1E 6DD, UK.

16 ³Department of Anatomy, University of California San Francisco, CA, USA.

17 ⁴Laboratory of Immunology and Cellular Stress, Facultad de Medicina, Universidad de
18 Chile, Santiago, Chile.

19 ⁵Servicio de Urología, Hospital Barros Luco Trudeau, Santiago, Chile.

20 ⁶Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.

21 *Correspondence to vincenzo.borgna@uss.cl (V.B.), alvaro.lladser@uss.cl (A.L.);

22 **Abstract**

23 Adoptive T cell therapy (ACT) has demonstrated remarkable efficacy in treating
24 hematological cancers. However, its efficacy against solid tumors remains limited and the
25 emergence of cancer cells that lose expression of targeted antigens often promotes
26 resistance to ACT. Importantly, the mechanisms underlying effective and durable ACT-
27 mediated tumor control are incompletely understood. Here, we show that adoptive
28 transfer of TCR-transgenic CD8⁺ T cells eliminates established murine melanoma tumors,
29 with concomitant accumulation of tumor-infiltrating CD8⁺ T cells exhibiting both
30 progenitor-exhausted and terminally-differentiated phenotypes. Interestingly, host CD8⁺
31 T cells contributed to ACT-mediated elimination of primary tumors and rejected ACT-
32 resistant melanoma cells lacking the targeted antigen. Mechanistically, ACT induced
33 TNF- α - and cross-presenting dendritic cell-dependent tumor accumulation of
34 endogenous CD8⁺ T cells and effective tumor elimination. Importantly, although
35 lymphodepleting preconditioning enhanced ACT-mediated tumor elimination, it abrogated
36 host antitumor immunity and protection against ACT-resistant melanoma cells.
37 Enrichment of transcriptional signatures associated with TNF- α signaling, cross-
38 presenting dendritic cells and tumor-specific CD8⁺ T cells in human melanoma tumors
39 correlated with favorable responses to ACT and increased survival. Our findings reveal
40 that long-term efficacy of ACT is determined by the interplay between transferred and
41 endogenous CD8⁺ T cells and is undermined by lymphodepleting preconditioning, which
42 ultimately favors ACT resistance.

43

44 **Key words:** Adoptive T cell therapy, melanoma, CD8⁺ T cells, dendritic cells, TNF- α ,
45 antitumor immunity, lymphodepleting preconditioning, solid tumors.

46

47

48 **INTRODUCTION**

49 Antitumor immunity is largely mediated by tumor-specific CD8⁺ T cells, which are
50 activated in the lymph nodes by migratory conventional type 1 dendritic cells (cDC1)
51 cross-presenting tumor antigen-derived peptides onto major histocompatibility complex
52 (MHC) class I molecules (1–3). CD8⁺ T cells that recognize tumor antigen/MHC-I
53 complexes through their T cell receptor (TCR), proliferate, and differentiate into cytotoxic
54 CD8⁺ T cells that then migrate to tumors, where they recognize target cancer cells and
55 kill them by releasing cytotoxic molecules, such as perforin, granzymes and granulysin
56 (4). In addition, they also secrete effector cytokines, such as IFN- γ and TNF- α , which
57 promote antigen presentation on target cells and activate myeloid cells, including
58 macrophages and DCs (5,6). In the tumor microenvironment, chronic TCR stimulation
59 induces a dysfunctional differentiation program in tumor-specific CD8⁺ T cells, known as
60 T cell exhaustion, which is characterized by the expression of the transcription factor TOX
61 and multiple inhibitory receptors, such as PD-1 (7,8). Exhausted CD8⁺ T cells comprise
62 at least two functionally distinct populations: progenitor-exhausted (Tpex) and terminally-
63 differentiated (Tdif) cells (9,10). The Tpex subset expresses the transcription factor TCF-
64 1, has self-renewal potential, and upon antigen-mediated TCR activation, give rise to Tdif
65 cells. The latter up-regulate cytotoxic molecules and the inhibitory receptor TIM-3, but
66 lack TCF-1 and self-renewal potential (9). In addition, both Tpex and Tdif populations
67 acquire a tissue-resident transcriptional program that allows them to adapt and establish
68 in different microenvironment (10). Accumulating evidence indicates that an effective
69 antitumor immunity relies on the concerted action of both Tpex (PD1⁺TOX⁺TCF-1⁺GzmB⁻
70 TIM3⁻) and Tdif (PD1^{high}TOX⁺TCF-1⁻GzmB⁺TIM3⁺) cells (11–13). Interestingly, better
71 clinical outcomes depend on the ability of Tpex cells to lead the tumor accumulation of
72 Tdif cells (14). All these studies provide evidence supporting that the Tpex pool is
73 important for long-term establishment in tumors, whereas Tdif cells are critical for exerting
74 cytotoxic antitumor activity.

75

76 Adoptive cell therapy (ACT), which consists of the infusion of autologous tumor-specific
77 T cells expanded *ex vivo*, has emerged as a novel treatment for hematological cancers

78 and has shown promise in the treatment of solid tumors (15). ACT using tumor-infiltrating
79 lymphocytes (TILs) has been shown to induce therapeutic activity with curative potential
80 in patients with melanoma and other solid tumors (16,17). However, the implementation
81 of reproducible TIL therapies remains challenging due to the low frequency, dysfunctional
82 state, and limited proliferation of tumor-reactive T cells (18). On the other hand, ACT
83 strategies using peripheral blood-derived T cells genetically engineered to express tumor-
84 specific TCR or chimeric antigen receptors (CAR) have overcome these limitations and
85 have demonstrated potent antitumor responses (19,20). CAR-T cell immunotherapies
86 have shown remarkable success in patients with different hematological cancers,
87 including subtypes of leukemia, lymphoma, and myeloma (21,22) Currently, six different
88 CAR-T cell immunotherapies are approved by the F.D.A. for hematologic cancers but
89 none for solid tumors (23). TCR-based ACTs have been tested in clinical studies for
90 almost two decades, showing safety and promising antitumor responses in patients with
91 metastatic melanoma and other solid tumors (24). Despite significant advances in the
92 field, most cancer patients with solid tumors fail to respond to ACT or develop resistance
93 through different mechanisms. An important factor contributing to ACT efficacy is the
94 persistence of transferred T cells *in vivo* (25). Consequently, strategies aimed at
95 improving T cell persistence have been extensively used. Non-myeloablative
96 lymphodepletion as a preconditioning regimen, such as chemotherapy and/or radiation,
97 is an integral part of currently used clinical protocols. Such regimens favor the
98 engraftment of transferred T cells, probably by attenuating the competition between
99 infused and endogenous T cells for cytokines and a niche (26). In addition, the
100 appearance of mutant tumor cells that lack the expression of targeted antigens is a major
101 mechanism of resistance to ACT (27–29). Antigen loss can occur due to several
102 mechanisms ranging from genetic to post-translational alterations (30,31)(32). In this
103 scenario, the immune system acts as a selective pressure that leads to the selection of
104 tumor cell clones with decreased immunogenicity, e.g. lacking the target antigen (33,34).

105

106 Emerging evidence indicates that stimulating the host immune system can help to
107 overcome these mechanisms of ACT resistance (35). In fact, combining ACT with
108 oncolytic viruses, Toll-like receptor agonists and/or DC activators, that expand

109 endogenous tumor-specific CD8⁺ T cells can provide long-lasting tumor protection and
110 overcome the appearance of antigen-loss escape variants (36,37). However, whether
111 transferred T cells can intrinsically engage the participation of endogenous antitumor T
112 cells to promote effective elimination of primary tumors and provide long-lasting immunity
113 against ACT-resistant tumor cells remains unknown. Here, we show that ACT with TCR-
114 transgenic CD8⁺ T cells engage the participation of endogenous CD8⁺ T cells exhibiting
115 tumor-specific phenotypes to effectively reject established syngeneic melanoma tumors
116 in mice. Moreover, ACT-promoted host CD8⁺ T cell immunity protected against
117 rechallenge with ACT-resistant melanoma cells lacking the targeted antigen.
118 Mechanistically, ACT induced TNF- α - and cross-presenting dendritic cell-dependent
119 tumor accumulation of endogenous CD8⁺ T cells and effective tumor elimination.
120 Interestingly, preexistence of transcriptional signatures associated with TNF- α signaling,
121 cross-presenting DCs and tumor-specific CD8⁺ T cells in human melanoma tumors
122 correlated with favorable responses to ACT and increased survival. Our findings reveal a
123 TNF- α - and cDC1-dependent interplay between transferred and endogenous CD8⁺ T
124 cells that determines the efficacy of ACT to eradicate solid tumors and provide long-term
125 antitumor immunity, which is undermined by lymphodepleting preconditioning, ultimately
126 favoring acquired resistance to ACT.

127

128

129

130

131 **RESULTS**

132

133 **Effective ACT promotes tumor accumulation of endogenous CD8⁺ T cells**
134 **exhibiting Tpex and Tdif phenotypes**

135 We established an ACT model consisting of intravenous administration of *in vitro*-
136 activated OTI TCR-transgenic CD8⁺ T cells to mice bearing B16F10-OTI melanoma
137 tumors (~50-200 mm³) engineered to express the ovalbumin-derived epitope OTI
138 (SIINFEKL) (38) (Fig. 1a). In this setting, tumors were efficiently eliminated within
139 approximately ten days, providing long-term survival (Fig. 1b, c). To understand the
140 mechanisms underlying the effective antitumor immunity observed in this ACT model, we
141 analyzed the tumor cell infiltrates by flow cytometry three days after adoptive transfer,
142 which correspond to the regression phase of tumor growth. We analyzed the frequencies
143 and phenotypes of endogenous (CD45.1⁻) and transferred (CD45.1⁺) CD8⁺ T cells (Fig.
144 1d). We observed that ACT increased total CD45⁺ hematopoietic cells in tumors (Fig. 1d).
145 Within the CD45⁺ cell population, we observed a prominent accumulation of endogenous
146 CD8⁺ T cells, as compared to untreated controls (Fig. 1d, e). In particular, we observed
147 an accumulation of PD-1⁺GzmB⁻ and PD-1⁺GzmB⁺ subpopulations (Fig. 1d, e), which
148 correspond to progenitor exhausted (Tpex) and terminally differentiated (Tdif) phenotypes
149 of tumor-reactive CD8⁺ T cells, respectively (11). In addition, Tpex cells expressed TCF1
150 and TOX1, whereas Tdif cells expressed TOX-1 and TIM3 (Fig. 1f). Transferred OTI cells
151 displayed an effector phenotype characterized by intermediate levels of PD-1 and
152 granzyme B, as well as low levels of TOX-1 and TCF-1 (Fig. 1f), as compared to
153 endogenous subsets (39,40). These results show that effective ACT promotes
154 accumulation of tumor-resident CD8⁺ T cells, including both Tpex (PD1⁺, GzmB⁻, TCF1⁺,
155 TOX⁺ and TIM3⁻) and Tdif subsets (PD1⁺, GzmB⁺, TCF1⁻, TOX⁺ and TIM3⁺), which have
156 been shown to mediate antitumor immunity and predict favorable response to
157 immunotherapy (12). In contrast, a suboptimal ACT protocol that initially reduces tumor
158 growth but is not able to eliminate tumors, did not increase the frequencies of endogenous
159 CD8⁺ T cells (Supplementary Fig. 1). These observations led us to hypothesize that ACT

160 engages the participation of endogenous tumor-specific CD8⁺ T cells to mediate effective
161 tumor control.

162

163 **Endogenous CD8⁺ T cells contribute to ACT-mediated elimination of primary
164 tumors and reject ACT-resistant melanoma cells**

165 We investigated the contribution of host immune system to ACT-mediated tumor
166 control using complementary approaches. First, we tested the ability of ACT to control
167 tumor growth in RAGKO mice, which lack mature T and B cells (Supplementary Fig. 2a).
168 In these mice, tumors grew faster than in immunocompetent wild-type mice, and ACT
169 failed to control tumor growth (Supplementary Fig 2b, c), arguing that endogenous T
170 and/or B cells are required for the antitumor effects of ACT. To confirm the contribution
171 of endogenous T cells in immunocompetent mice, we tested ACT in mice treated with
172 FTY720 (Fig. 2a), which prevented circulation (data not shown) and tumor accumulation
173 of endogenous T cells without affecting tumor infiltration of transferred CD8⁺ T cells (Fig.
174 2b, c) (41). We observed that ACT was unable to control tumor growth in FTY720-treated
175 mice (Fig. 2d, e), indicating that endogenous T cells play a key role in the efficacy of ACT.
176 To evaluate whether host CD8⁺ T cells are directly involved in supporting the antitumor
177 effects of ACT, mice were treated with anti-CD8 depleting antibodies prior to the adoptive
178 transfer (Fig. 3a), which efficiently eliminate CD8⁺ T cells (Fig. 3b, c). Interestingly, ACT
179 was not able to control tumor growth efficiently in mice depleted of endogenous CD8⁺ T
180 cells, and the protection in terms of survival was completely abolished (Fig. 3d, e). In
181 contrast, CD4⁺ T cell depletion did not impair the ability of ACT to reject tumors (data not
182 shown). To assess the ability of host antitumor immunity to reject ACT-resistant
183 melanoma cells, mice that had eliminated B16F10-OTI melanoma tumors were
184 rechallenged in the opposite flank with wild-type B16F10 cells (Fig. 3f). As hypothesized,
185 most of these mice were protected (Fig. 3g, h), and this protection was abolished when
186 CD8⁺ T cells were depleted prior to rechallenge (Fig. 3g, h), indicating that effective ACT
187 promotes long-term CD8⁺ T cell-mediated host immunity against other melanoma
188 antigens, a phenomenon known as antigen spreading. This response is relevant for
189 controlling tumor cells that lose the expression of the targeted antigen, a well-documented

190 mechanism of ACT resistance leading to disease progression (42). Taken together, these
191 results highlight the ability of ACT to engage the participation of endogenous CD8⁺ T cells
192 to collectively provide potent and broad long-lasting antitumor immunity.

193

194 **ACT induces TNF- α - and cross-presenting dendritic cell-dependent tumor
195 accumulation of endogenous CD8⁺ T cells and effective tumor elimination**

196 To investigate the mechanism underlying the interplay between transferred and
197 endogenous CD8⁺ T cells, we examined the involvement of TNF- α , an effector cytokine
198 that is known to promote innate and adaptive antitumor immune responses (43). For this
199 purpose, anti-TNF- α blocking antibody was administered starting one day before ACT
200 (Fig. 4a). As expected, TNF- α blockade prevented ACT-induced tumor accumulation of
201 endogenous CD8⁺ T cells exhibiting Tpex and Tdif phenotypes (Fig. 4b) and significantly
202 reduced the elimination of primary tumors and mouse survival (Fig. 4c). These results
203 suggest that TNF- α may promote tumor accumulation of endogenous CD8⁺ T cells via
204 activation of cross-presenting cDC1, which present tumor-derived antigens to tumor-
205 specific CD8⁺ T cells in draining lymph nodes (44,45). Hence, we analyzed DCs in tumors
206 and draining lymph nodes (Fig. 4a; Supplementary Fig. 3) and observed that upon ACT,
207 tumor-infiltrating cDC1 were decreased (Fig. 4d) but exhibited higher maturation levels
208 (frequencies of PDL1^{high}, CD86^{high} and CD86^{high}PDL1^{high} cDC1) (Fig. 4e). These effects
209 were impeded in mice treated with anti-TNF- α antibody (Fig. 4d, e), suggesting that ACT
210 promotes maturation and migration to draining lymph nodes of cDC1 in a TNF- α -
211 dependent manner. As expected, ACT induced a TNF- α -dependent increase in the
212 frequency of migratory cDC1 in draining lymph nodes (Fig. 4f), particularly those
213 exhibiting a higher maturation phenotype CD86^{high}PDL1^{high} (Fig. 4g). To address the
214 participation of cDC1 in the expansion of endogenous CD8⁺ T cells, we used the
215 Langerin-DTR mice that express the human diphtheria toxin receptor (DTR) and the
216 enhanced green fluorescent protein (EGFP) genes under the control of langerin (CD207)
217 promoter (46). In this transgenic mouse model, DTR and EGFP are expressed at different
218 levels among different DC subsets (Supplementary Fig. 4a), allowing the depletion of
219 tissue-migratory and lymph node-resident cDC1s, as well as Langerhans cells after

220 diphtheria toxin (DTx) administration (Supplementary Fig. 4b, c). In these mice, depletion
221 of tumor cDC1 was not efficient, which likely reflects their relatively low DTR expression
222 (Supplementary Fig. 4a) and ensures the trafficking of transferred effector T cells to
223 tumors (47). In Lang-DTR mice that started receiving DTx administrations one day prior
224 to adoptive transfer (Fig. 5a), we observed that OTI CD8⁺ T cells efficiently infiltrated
225 tumors (Fig. 5b), however, ACT was unable to promote tumor accumulation of
226 endogenous CD8⁺ T cells displaying Tpex and Tdif phenotypes, as compared to wild-type
227 mice (Fig. 5b). Accordingly, ACT induced a transient antitumor effect in Lang-DTR mice
228 but the majority of tumors progressed (Fig. 5c) in contrast to complete protection
229 observed in wild-type mice (Fig. 5d). Taken together, these results demonstrate that
230 effective ACT induces a TNF- α - and cDC1-dependent accumulation of intratumoral
231 endogenous CD8⁺ T cells and tumor elimination.

232

233 **Lymphodepleting preconditioning enhances ACT-mediated tumor
234 elimination, but abrogates long-term host antitumor immunity.**

235 Next, we assessed the significance of the interplay between transferred and endogenous
236 CD8⁺ T cells in a clinically relevant setting. We studied the effects of lymphodepleting
237 preconditioning, which is a component part of ACT protocols in the clinic, in our mouse
238 ACT model. To this end, we administered two doses of cyclophosphamide (Cy) in
239 consecutive days prior to ACT, which approximates clinical practice and has been widely
240 used in the literature (48) (Fig. 6a). As expected, we observed that Cy induced a marked
241 depletion of immune CD45⁺ cells (data not shown), including endogenous CD8⁺ T cells
242 (Fig. 6b, c). Despite this, lymphodepleting preconditioning promoted the expansion of
243 transferred OTI CD8⁺ T cells, resulting in efficient elimination of primary tumors, leading
244 to complete responses in most mice tested (Fig. 6b-e). Furthermore, using a suboptimal
245 ACT protocol, Cy also led to expansion of transferred cells and promoted tumor rejection
246 in nearly all mice (Fig. 6b-e), indicating that lymphodepleting preconditioning contributes
247 to effective control of primary tumors in these settings. To evaluate the impact of
248 lymphodepleting preconditioning in the long-term protection against ACT-resistant
249 melanoma cells, mice were rechallenged with B16F10 cells. Despite initial tumor control,

250 mice treated with Cy and either optimal or suboptimal ACT protocol were unable to reject
251 the rechallenge with B16F10 cells (Fig. 6f, g), indicating that lymphodepleting
252 preconditioning has a detrimental effect on host antitumor immunity. These findings
253 demonstrate that ACT promotes host antitumor immunity, which is severely compromised
254 by lymphodepleting preconditioning regimen

255

256 **cDC1, TNF- α signaling, Tpex and Tdif gene signatures positively associate
257 with favorable clinical response to ACT and overall survival in human melanoma**

258 Next, to investigate whether these findings might be relevant in humans, we
259 analyzed publicly available datasets of melanoma patients receiving ACT for which tumor
260 bulk RNAseq and clinical response (RECIST) data were available (49). Consistent with
261 our findings in mice, the cDC1 gene signature was enriched in tumors of patients showing
262 favorable clinical responses to ACT, including complete (CR) and partial (PR) responses,
263 whereas it was down-regulated in patients with progressive (PD) and stable (SD) disease
264 (Fig. 7a). In contrast, cDC2 and cDC3 signatures were enriched only in PR and not in CR
265 patients. Non-specific signatures for active DC (acDC) or immature DC (immDC) showed
266 no significant enrichment in PR or CR patients. These results show that among the
267 different DC signatures, cDC1 is specifically associated with complete clinical response
268 to ACT. The TNF- α -signaling gene signature was strongly associated with PR but weakly
269 associated with CR, probably reflecting a far more complex network of signaling pathways
270 involved in protective antitumor responses. Interestingly, Tpex and particularly Tdif gene
271 signatures were enriched in patients who responded favorably to ACT, association that
272 was stronger for CR patients (Fig. 7a). Also, we analyzed an immune gene signature
273 upregulated in melanoma patients with immunotherapy resistance (ImmuneRes) (50),
274 which was enriched in non-responder patients and decreased in responder patients.
275 Finally, we investigated whether cDC1, TNF- α signaling, Tdif and Tpex gene signatures
276 were associated with better survival in a larger cohort of patients with cutaneous skin
277 melanoma (SKCM) from The Cancer Genome Atlas (TCGA) database. Higher expression
278 levels of all these signatures were associated with longer survival. In contrast, high
279 expression of the immune resistance signature showed a negative association with

280 patient survival (Fig. 7b). These results support our findings in mouse models and suggest
281 that cDC1, TNF- α signaling, Tpex and Tdif cells in tumors are indeed critical for the
282 efficacy of ACT and the survival of melanoma patients.

283

284

285 **DISCUSSION**

286 The reasons for the relatively poor efficacy and development of resistance of ACT
287 in solid tumors are not yet clear (51). Here, we show that effective ACT engage the
288 participation of endogenous CD8 $^{+}$ T cells to achieve potent and durable antitumor
289 immunity. Using mouse models, we observed that adoptively transferred TCR-transgenic
290 CTLs promoted a TNF- α - and cDC1-dependent expansion of host CD8 $^{+}$ T cells exhibiting
291 Tpex and Tdif phenotypes. Furthermore, we demonstrated that endogenous CD8 $^{+}$ T cells
292 are required for efficient elimination of primary melanoma tumors and rejection of ACT-
293 resistant melanoma cells lacking the expression of the targeted antigen, which represent
294 a major mechanism of ACT resistance is the emergence of antigen-loss mutants that
295 escape immune recognition by ACT leading to cancer progression (27,42,52). Our
296 findings also highlight the dual role of lymphodepleting preconditioning regimens which
297 are used in the majority of ACT clinical protocols, including radiotherapy and
298 chemotherapies such as cyclophosphamide and fludarabine (53). On the one hand, they
299 can promote primary tumor elimination by promoting the expansion of transferred cells,
300 as such regimens eliminate endogenous lymphocytes, reducing competition for niche and
301 cytokines (54). On the other hand, lymphodepleting conditioning depletes endogenous
302 tumor-reactive CD8 $^{+}$ T cells and other immune cells that support antitumor immunity, which is
303 critical to combat ACT-resistant cancer cells. Our study uncovers a novel mechanism
304 through which ACT mediates effective and durable tumor control and may underlie a
305 major mechanism of acquired resistance to ACT in the clinic. Also, this study also may
306 help to design optimized ACT protocols with improved efficacy for solid tumors.

308

309

310 Our work highlights the importance of the host immune system in the efficacy of
311 ACT, which is emerging as a novel concept in the field. It was recently shown that optimal
312 CAR-T cell activity relies on host IFN- γ -mediated signaling in a syngeneic mouse model
313 of Burkitt-like lymphoma (55). Particularly, it was observed that CD4 $^{+}$ CAR-T cells
314 promoted endogenous tumor-reactive CD8 $^{+}$ T cell responses, although their contribution
315 to tumor elimination was not addressed (55). In contrast to this study, we provide evidence
316 that TNF- α signaling plays a critical role in this ACT-host immunity crosstalk, which
317 represents a novel mechanism. In line with this, a recent study showed that TNF- α
318 produced by transferred CD8 $^{+}$ T cells was associated with better clinical responses to
319 TCR-based ACT in metastatic melanoma patients (56). We also showed that TNF- α
320 promoted ACT-induced maturation and migration to lymph nodes of cDC1, as well as
321 tumor accumulation of endogenous Tpex and Tdif CD8 $^{+}$ T cells, resulting in enhanced
322 tumor protection. This is consistent with the ability of CD8 $^{+}$ T cell-produced TNF- α to
323 promote DC maturation in the context of viral infections (5) and with the role of migratory
324 cDC1s carrying tumor-derived antigens to prime tumor-specific CD8 $^{+}$ T cells in draining
325 lymph nodes (3). Indeed, we show that migratory and/or lymph node-resident cDC1s were
326 needed for tumor accumulation of endogenous Tpex and Tdif CD8 $^{+}$ T cells and ACT
327 efficacy, which is consistent with studies reporting that cDC1s maintain tumor-specific
328 Tpex cells in tumor-draining lymph nodes, which then migrate to the tumor, where they
329 differentiate into Tdif cells to sustain effective antitumor immunity (57–59). Our
330 observations in mice align with analyses in RNAseq datasets from melanoma patients,
331 where we found that TNF- α signaling, cDC1, Tpex and Tdif gene signatures in tumors
332 positively correlate with therapeutic responses to ACT and overall survival. Taken
333 together, our results support a key role of TNF- α and cDC1 in mediating the interplay
334 between transferred and endogenous CD8 $^{+}$ T cells to achieve long-lasting protective
335 immunity against solid tumors.

336

337 This study offers new insights into the crosstalk between adoptively transferred
338 CD8 $^{+}$ T cells and the host immune system, which can be harnessed to improve the

339 efficacy of ACTs against solid tumors. Consistent with this, some groups have combined
340 ACT with strategies that activate and/or expand DCs, such as oncolytic viruses, TLR
341 agonists, and DC activators (including FLT3L and CD40L). These strategies have been
342 shown to broaden host antitumor T cell immunity and protect against antigen-loss escape
343 variants (36,37,60). In contrast to these studies, we unveiled the intrinsic ability of
344 transferred CD8⁺ T cells to mediate TNF- α -dependent cDC1 activation and tumor
345 accumulation of endogenous Tpex and Tdif CD8⁺ T cells, which collectively provide
346 robust and long-term antitumor immunity. Our findings also support the use of targeted
347 lymphodepleting preconditioning regimens that specifically eliminate dispensable or
348 suppressive cell populations, such as Tregs, while sparing host antitumor T cells and
349 cDC1s that may lead to more effective ACTs against solid tumors. In summary, this study
350 demonstrates the multifaceted role of the host immune system in determining the efficacy
351 of ACT. Therefore, a comprehensive understanding of the interplay between the
352 transferred cells and the host immune system is crucial to achieve the full potential of
353 ACT and improve patient outcomes.

354

355 **MATERIALS AND METHODS**

356 **Study Design**

357 The overall objective of the study was to test the hypothesis that endogenous CD8⁺
358 T cells play a key role in ACT-mediated tumor eradication. Using different mouse models,
359 we evaluated the requirement of endogenous T cells for tumor elimination induced by
360 adoptive transfer of *in vitro* activated OTI CD8⁺ T cells. The frequencies and phenotype
361 of endogenous and adoptively transferred tumor-infiltrating T cell populations were
362 analyzed by flow cytometry. Sample size was determined via a priori power analysis
363 based on means and SDs estimated from pilot experiments and previous experience. All
364 mice were randomized before treatment initiation, studies were terminated at a defined
365 end point as indicated or when tumor volume reached 1500 mm³, and evaluation of tumor
366 volume was blinded when possible.

367

368 **Animals**

369 C57BL/6J wild-type (CD45.2), B6.129S7-*Rag1*^{tm1Mom}/J (RAG1KO), C57BL/6-
370 Tg(*TcraTcrb*)1100Mjb/J (OT-I), CBy.SJL(B6)-*Ptprc*^a/J (CD45.1), B6.129S2-
371 *Cd207*^{tm3(DTR/GFP)Mal}/J (Langerin-DTR) mice were purchased from Jackson Laboratories.
372 Mice were kept at the animal facility of Fundación Ciencia & Vida and maintained
373 according to the “Guide to Care and Use of Experimental Animals, Canadian Council on
374 Animal Care”. This study was carried out in accordance with the recommendations of the
375 “Guidelines for the Welfare and use of Animals in cancer research, Committee of the
376 National Cancer Research Institute”. All procedures complied with all relevant ethical
377 regulations for animal research and were approved by the “Comité de Bioética y
378 Bioseguridad” of Fundación Ciencia & Vida. Blinding or randomization strategies were
379 done whenever possible, no animals were excluded from the analysis, and male and
380 female mice were used indistinctly. Mice were allocated randomly in the different
381 experimental procedures.

382

383 **Cell lines**

384 Mouse melanoma cell line B16F10 (ATCC CLR-6475) was obtained from American Type
385 Culture Collection. B16F10-OTIx5-ZsGreen (B16F10-OTI) cells were generated by
386 lentiviral transduction of B16F10 cell line with the pLVX-OTIx5-ZsGreen vector encoding
387 the OTI epitope minigene fused to ZsGreen (38). B16F10-OTI cell line was cultured in
388 complete RPMI 1640 (ThermoFisher Scientific, ref 61870-036) media, supplemented with
389 penicillin, streptomycin (ThermoFisher Scientific, ref 15140122), non-essential amino
390 acids (ThermoFisher Scientific, ref 11140050), sodium pyruvate (ThermoFisher Scientific,
391 ref 11360070) and 10% of heat-inactivated fetal bovine serum (ThermoFisher Scientific,
392 ref 10437010) in a humidified incubator at 37 °C with 5% CO₂. Cell line was routinely
393 tested for mycoplasma contamination.

394

395 **Tumor challenge**

396 Mice were injected intradermally in the lower flank with 50 μ L of PBS containing 1×10^6
397 of tumor cells. Tumor growth was monitored by measuring perpendicular tumor diameters
398 with calipers. Tumor volume was calculated using the following formula: $V = (D \times d^2)/2$
399 where V is the volume (mm^3), D is the larger diameter (mm), and d is the smaller diameter
400 (mm). Mice were sacrificed when moribund or when the mean tumor diameter was
401 $\geq 15\text{mm}$, according to the approved ethical protocol.

402

403 **Adoptive Cell Therapy**

404 To generate OTI-specific CD8 $^+$ T cells for ACT, splenocytes from OTI mice were cultured
405 in RPMI 1640 supplemented media containing 2 $\mu\text{g}/\text{mL}$ of SIINFEKL peptide, 100 UI/mL
406 of recombinant human IL-2 (rhIL-2; Biolegend, ref 589108) and 50 μM of 2-
407 mercaptoethanol (Merck, ref M3148) and expanded daily for 96 hrs. Seven days after
408 tumor challenge, when tumors reached a size of $\sim 50\text{-}200 \text{ mm}^3$, mice were intravenously
409 injected with 1×10^6 (optimal) or 0.5×10^6 (suboptimal) activated OTI CD8 $^+$ T cells in 100
410 μL of sterile PBS (ThermoFisher Scientific, ref 10010023).

411

412 **FTY720 treatment, antibody administration, lymphodepleting preconditioning 413 regimen with cyclophosphamide and DC depletion**

414 To block T cell circulation, 25 μg of FTY720 (Sigma-Aldrich, ref SML0700) was injected
415 intraperitoneally every three days starting one day after the tumor challenge. To deplete
416 CD8 $^+$, one day after the tumor challenge, mice were intraperitoneally injected with three
417 doses of 20 μg of rat monoclonal anti-CD8 α antibody (BioXCell, clone YTS169.4, ref
418 BE0117) on consecutive days. Lymphodepleting preconditioning regimen prior to ACT
419 was performed by two intraperitoneal doses of 300 mg/kg cyclophosphamide (Sigma-
420 Aldrich, ref. PHR1404) on day 4 and 6 after tumor challenge. TNF- α blockade was
421 assessed by intraperitoneal injections of 500 μg of anti-TNF- α (Bioxcell, clone XT.11, ref
422 BE0058) every other day starting one day before ACT. To deplete cDC1s, Langerin-DTR
423 mice received 1 μg of diphtheria toxin (Sigma-Aldrich, ref D0564 1MG) by intravenous

424 injection in the tail vein three days after the tumor challenge and continuously maintained
425 doses of 0.35 µg intraperitoneally every 3 days.

426

427 **Preparation of tissue cell suspensions**

428 Tumors, inguinal lymph nodes and skin samples were excised, cut in small fragments
429 and mechanically disaggregated. Samples were resuspended in 1 mL RPMI 1640
430 medium (ThermoFisher Scientific, ref 61870-036) containing 5 mg/mL of collagenase type
431 IV (Gibco, ref 17104019) and 5 µg/mL of DNase I (AppliChem, ref A3778,0010) and
432 incubated for 60 (tumors) or 30 (lymph nodes and skin) min at 37 °C with shaking.
433 Samples were then resuspended in 1 mL of supplemented of RPMI 1640 medium
434 (ThermoFisher Scientific, ref 61870-036) containing 5 µg/mL of DNase I (AppliChem, ref
435 A3778,0010) and incubated for 5 min at 4°C. Skin pieces were mechanically
436 disaggregated using microscope slides with ground edges (Sail Brand, ref 7105). Single
437 cell suspensions were obtained using a 70µm cell strainer (BD Falcon, ref 352350). For
438 the analysis of tumor DCs, CD45 magnetic positive selection (MACS, Miltenyi ref 130-
439 052-301) was used to enrich hematopoietic cells.

440

441 **Surface, intracellular and intranuclear staining for flow cytometry**

442 Single cell suspensions were incubated for 10 min with the TruStain fcX (Biolegend, clone
443 93, ref 101320). For surface staining, cell suspensions were incubated with the antibodies
444 for 20 minutes at 4°C followed by two washes with PBS. Cells were then fixed and
445 permeabilized for intracellular and intranuclear staining using the eBioscience
446 FOXP3/transcription factor staining kit (Invitrogen, ref 00-5523-00), followed by
447 intranuclear staining. Monoclonal antibodies specific for mouse molecules were
448 purchased from Biolegend: CD45-FITC (clone 30-F11), CD279/PD1-PE (clone 29f.1a12),
449 CD64-PEDazzle (X54-5/7.1) CD8a -PerCP (clone 53-7.6), PerCP-CD3 (17A2), PerCP-
450 B220 (RA3-6B2), CD45.1-PE/Cy7 (clone A20), CD366/TIM3-PE/Cy7 (clone RMT3-23),
451 PDL1-PE/Cy7 (10F.9G2), CD45.2-APC/Cy7 (clone 104), MHCII-APC/Cy7 (m5/114.15.2),
452 CD3-Brilliant Violet 421 (clone 17A2), CD45.1-Brilliant Violet 421 (clone A20),

453 CD279/PD1-Brilliant Violet 421 (clone 29f.1a12), CD24-Brilliant Violet 421 (M1/69),
454 CD366/TIM3-Brilliant Violet 605 (RMT3-23), Ly6C-Brilliant Violet 605 (HK1.4), CD8-
455 Brilliant Violet 650 (53-6.7), XCR1-Brilliant Violet 650 (ZET), CD11c-Brilliant Violet 711
456 (N418), CD11b-Brilliant Violet 785 (M1/70). BD Biosciences: CD86-PE (clone GL1). Cell
457 signaling technology: TCF1/TCF7-AF488 (clone C63D9). Miltenyi Biotec: TOX-APC
458 (REA473) and Invitrogen: Granzyme B-APC (clone GB11), Granzyme B-PE-TexasRed
459 (clone GB11). Viability dye was made with ZombieAqua (Biolegend ref 423101). Samples
460 were acquired in a BD FACSCanto II cytometer or BD FACSaria III (BD Bioscience), and
461 data were analyzed using FlowJo version 10.8.1 (Tree Star, Inc.).

462

463 **Gene set enrichment analysis**

464 To explore whether gene signatures correlate with clinical response in patients under
465 ACT, we performed a Gene Set Enrichment Analysis (GSEA). Normalized gene
466 expression matrix and clinical data were downloaded from the Gene Expression Omnibus
467 (accession number GSE100797) (49). Patients were divided according to RECIST
468 criteria: complete response (CR), partial response (PR), stable disease (SD), and
469 progressive disease (PD). Signatures were obtained and manually curated from
470 previously reported single-cell RNA-seq data and signature databases (11,50,61–64). For
471 enrichment analysis, we used the GSEA software (Broad Institute, v4.2.3), with 1000
472 permutations, and gene set as permutation type (65) Plot was generated with ggplot2
473 (v3.4).

474

475 **TCGA survival analysis**

476 To determine whether gene signatures correlate with patients' survival, we analyzed The
477 Cancer Genome Atlas – Skin Cutaneous Melanoma cohort. Expression and clinical data
478 were downloaded from the Xena Browser (UCSC) (Goldman et al. 2020). For each
479 signature, we calculated the mean $\log_2(\text{FPKM-uq} + 1)$. Patients with inconsistent
480 expression and clinical data were filtered. Survival analysis was performed with the
481 "survival" package (v3.4). Patients were divided in high and low according to the gene

482 signature optimal cut point determined with the maximally selected rank statistics method.
483 Kaplan-Meier survival curves were drawn with the “survminer” package (v3.2). All
484 analyses were carried out in R environment (v4.1.1). A $p < 0.05$ was considered as
485 statistically significant.

486

487 **Statistical analyses**

488 Statistical analyses were performed using Graphpad Prism software (Graphpad Software
489 Inc.). Mann-Whitney unpaired test was performed between relevant groups. Statistical
490 analysis for tumor growth was performed using two-way ANOVA Bonferroni post-hoc test.
491 Error bars in the figures indicate the mean plus SEM. Survival analysis was done by
492 Kaplan-Meier curve with a Log-rank test. Overall p value < 0.05 was considered
493 statistically significant; * $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$ and **** $p \leq 0.0001$.

494

495 **Acknowledgements:**

496 **Funding:**

497 Centro Científico y Tecnológico de Excelencia Ciencia & Vida, FB210008 from ANID -
498 Agencia Nacional de Investigación y Desarrollo (AL, VB, HG).
499 FONDECYT grants 1212070 (AL), 11190897 (VB), 3220741 (AHO), 3220788 (SH),
500 3240458 (DF), and 3240490 (XL) from ANID - Agencia Nacional de Investigación y
501 Desarrollo.

502 PhD Scholarship 21180968 (DF) from ANID - Agencia Nacional de Investigación y
503 Desarrollo.

504

505 **Author Contributions:**

506 Conceptualization: DF, AL

507 Methodology: DF, FGC, AHO, and FF

508 Investigation: DF, FGC, AHO, JPV, SH, FA, FF, and XL

509 Funding acquisition: HG, VB, AL

510 Project administration: VB, AL

511 Supervision: FO, VB, AL

512 Writing – original draft: DF, AL,

513 Writing – review & editing: DF, FGC, AHO, FO, AL,

514

515 **Competing Interests:** The authors declare no competing interests.

516

517 **Data and materials availability:** All data are available in the main text or the

518 supplementary materials.

519 **FIGURE LEGENDS**

520

521 **Figure 1. ACT induces rejection of melanoma tumors and tumor accumulation of**
522 **endogenous CD8⁺ T cells with Tpex and Tdif phenotypes.**

523 C57BL/6 mice bearing B16F10-OTI tumors received i.v. transfer of 1x10⁶ *in vitro* activated
524 OTI CD8⁺ T cells (ACT). Untreated mice (No therapy) were used as controls. **a**
525 Experimental scheme. **b-c** Individual tumor growth (**b**) and Kaplan-Meier (**c**) curves for
526 each group: No therapy (black curves), and ACT (blue curves). **d-f** Tumor infiltrates were
527 analyzed by flow cytometry three days after ACT. **d** Left panels: Representative dot plots
528 displaying the frequencies of endogenous (square, CD45.1⁻) and transferred (ellipse, OTI
529 CD45.1⁺) CD8⁺ T cells in live CD45⁺ cells. Middle panels: Representative dot plots
530 displaying the expression of PD-1 and granzyme B in endogenous CD8⁺ T cells and the
531 frequencies of the different subpopulations defined in each quadrant: PD-1⁺ GzmB⁻
532 (Tpex), PD-1⁺ GzmB⁻ (Tdif), PD-1⁻ GzmB⁻ and PD-1⁻ GzmB⁺. Right panels:
533 Representative dot plots displaying the expression of PD-1 and granzyme B in transferred
534 OTI CD8⁺ T cells. **e** Quantifications of CD45⁺ cells as a percentage of total live cells, as
535 well as transferred OTI, total endogenous, Tpex (PD-1⁺ GzmB⁻) and Tdif (PD-1⁺ GzmB⁺)
536 CD8⁺ T cells as a percentage of CD45⁺ cells. **f** Representative dot plots displaying PD-1
537 and GzmB expression in endogenous CD8⁺ T cells and OTI cells. Histograms show the
538 expression of TCF-1, TOX and TIM3 in the different subpopulations defined in each
539 quadrant: Endogenous PD-1⁺ GzmB⁻ (Tpex, red), Endogenous PD-1⁺ GzmB⁻ (Tdif, blue),
540 Endogenous PD-1⁻ GzmB⁻ (green) and transferred OTI cells (orange). (**c**) Kaplan-Meier
541 curve shows survival of each condition of two independent experiment n=9-10. *p <0.05,
542 **p <0.01, ***p ≤ 0.001, and ****p ≤ 0.0001 by Log-rank Mantel-Cox test. (**e**) Pooled data
543 from two independent experiments, n = 8 per group. Bars are the mean ± SEM. *p<0.05,
544 **p< 0.01, ***p< 0.001 by Mann-Whitney unpaired.

545

546 **Figure 2. Endogenous T cells are required for ACT-induced tumor protection.**

547 WT C57BL/6 mice bearing B16F10-OTI tumors received i.p. injections of FTY720 every
548 three days starting one day after the tumor challenge, then where i.v. transfer with 1×10^6
549 *in vitro* activated OTI CD8⁺ T cells (ACT). **a** Experimental scheme. **b-c** Tumor infiltrating
550 lymphocytes were analyzed by flow cytometry three days after ACT. **b** Representative
551 dot plots displaying the frequencies of endogenous (square, CD45.1⁻) and transferred
552 (ellipse, OTI CD45.1⁺) CD8⁺ T cells in live CD45⁺ cells for each group: No therapy, ACT,
553 No therapy + FTY720 and ACT + FTY720. **c** Relative (on CD45⁺ cells) and absolute
554 quantifications of transferred OTI (upper panel) and endogenous (lower panel) CD8⁺ T
555 cells for each group: No therapy (black bars), ACT (blue bars), No therapy + FTY720
556 (grey bars), ACT + FTY720 (red bars). **d-e** Individual tumor growth (**d**) and Kaplan-Meier
557 (**e**) curves for each group: No therapy (black curves), ACT (blue curves), No therapy +
558 FTY720 (gray curves), ACT + FTY720 (red curves). **(c)** Pooled data from two independent
559 experiments, n=9-10 per group. Bars are the mean \pm SEM. **p <0.05, **p <0.01, ***p \leq
560 0.001, and ****p \leq 0.0001 by Mann-Whitney unpaired test. **(e)** Results from two
561 independent experiment n=8-10. *p <0.05, **p <0.01, ***p \leq 0.001, and ****p \leq 0.0001 by
562 Log-rank Mantel-Cox test.

563

564 **Figure 3. Endogenous CD8⁺ T cells are essential for ACT efficacy.** C57BL/6 mice
565 bearing B16F10-OTI tumors received i.v. transfer of 1×10^6 *in vitro* activated OTI CD8⁺ T
566 cells (ACT). Untreated mice (No therapy) were used as controls. Some groups of mice
567 received three i.p. daily doses of anti-CD8 antibodies starting one day after tumor
568 challenge. **a** Experimental timeline. **b-c** Tumor infiltrates were analyzed by flow cytometry
569 three days after ACT. **b** Representative dot plots displaying the frequencies of
570 endogenous (square, CD45.1⁻) and transferred (ellipse, OTI CD45.1⁺) CD8⁺ T cells in live
571 CD45⁺ cells for each group: No therapy, ACT and ACT + anti-CD8. **c** Quantification of
572 transferred OTI (left panel) and endogenous (right panel) CD8⁺ T cells as the percentage
573 of CD45⁺ cells for each group: No therapy (black bars), ACT (blue bars), ACT + anti-CD8
574 (red bars). **d-e** Individual tumor growth (**d**) and Kaplan-Meier (**e**) curves for each group:
575 No therapy (black curves), ACT (blue curves), and ACT + anti-CD8 (red curves). Mice
576 that rejected B16F10-OTI tumors after ACT received or did not receive three i.p. daily
577 doses of anti-CD8 and 5 days later were i.d. rechallenged with 1×10^6 of B16F10 WT cell
578 lines in the opposite flank. **f** Experimental timeline **g-h** Individual tumor growth (**g**) and
579 Kaplan-Meier curves (**h**) for tumor re-challenged groups: Control (black curves) ACT (blue
580 curves) and ACT + anti-CD8 (red curves). (**c**) one experiments, n=5-6 per group. Bars
581 are the mean \pm SEM. **p <0.05, **p <0.01, ***p \leq 0.001, and ****p \leq 0.0001 by Mann-
582 Whitney unpaired test. (**d-e**) Data from three independent experiments n=11-12 and (**h**)
583 from one experiment n=4-6. *p <0.05, **p <0.01, ***p \leq 0.001, and ****p \leq 0.0001 by Log-
584 rank Mantel-Cox test.

585

586 **Figure 4. ACT induces TNF- α -dependent tumor accumulation of endogenous CD8 $^{+}$**
587 **T cells and cDC1 maturation and migration to draining lymph nodes.** C57BL/6 mice
588 bearing B16F10-OTI tumors received i.v. transfer of 1×10^6 *in vitro* activated OTI CD8 $^{+}$ T
589 cells (ACT). Untreated mice (No therapy) were used as controls. One group of ACT-
590 treated mice received anti-TNF- α antibody i.p. every other day, starting one day before
591 ACT. **a** Experimental design. **b** Quantification of tumor-infiltrating transferred OTI CD8 $^{+}$ T
592 cells, endogenous CD8 $^{+}$ T cells, Tpex and Tdif cells on CD45 $^{+}$ cells of all condition
593 analyzed by flow cytometry three days after ACT. **c** Tumor growth and Kaplan-Meier
594 curves for each group: No therapy (black curves), ACT (blue curves) and ACT + anti-
595 TNF- α (Red curves). **d-g** Tumors (**d, e**) and draining lymph nodes (**f, g**) were analyzed
596 by flow cytometry three days after ACT for each group: No therapy, ACT, ACT + anti-
597 TNF- α . **d** Representative dot plots and their respective quantification displaying the
598 frequencies of tumor-infiltrating cDC1 (ellipse, CD24 $^{+}$ XCR1 $^{+}$) within CD45 $^{+}$ /Lin $^{-}$
599 /MHCII $^{+}$ CD11c $^{+}$ cells. **e** Histograms showing CD86 and PDL1 expression in tumor-
600 infiltrating cDC1, and frequency quantifications of CD86 $^{\text{hi}}$ PDL1 $^{\text{hi}}$ cDC1 for each group:
601 No therapy (black bars), ACT (blue bars), ACT + anti-TNF- α (red bars). **f** Representative
602 dot plots and their respective quantification displaying the frequencies of resident (CD8 α^{+}
603 and MHC class II $^{+}$) and migratory (CD8 α^{-} and MHC class II $^{\text{high}}$) cDC1 within CD45 $^{+}$ /Lin $^{-}$
604 /MHCII $^{+}$ CD11c $^{+}$ /CD11b $^{-}$ XCR1 $^{+}$ in tumor-draining lymph nodes. **g** Histograms showing the
605 expression of CD86 and PDL1 in migratory cDC1, and frequency quantifications of CD86 $^{\text{hi}}$
606 PDL1 $^{\text{hi}}$ cDC1. **(b)** Pooled data of two independent experiments, n=8 per group. Bars are
607 the mean \pm SEM. **p <0.05, **p <0.01, ***p \leq 0.001, and ****p \leq 0.0001 by Mann-Whitney
608 unpaired test. **(c)** Kaplan-Meier curve shows survival of each condition of two
609 independent experiment n=8-9. *p <0.05, **p <0.01, ***p \leq 0.001, and ****p \leq 0.0001 by
610 Log-rank Mantel-Cox test. **(d-g)** Pooled data from three independent experiments, n =
611 10-12 per group. Bars are the mean \pm SEM. **p <0.05, **p <0.01, ***p \leq 0.001, and ****p
612 \leq 0.0001 by Mann-Whitney unpaired test.

613

614 **Figure 5. Tumor accumulation of endogenous CD8⁺ T cells and tumor elimination**
615 **induced by ACT require cDC1.** C57BL/6 and Langerin-DTR mice bearing B16F10-OTI
616 tumors received i.v. transfer of 1×10^6 *in vitro* activated OTI CD8⁺ T cells (ACT). Untreated
617 mice (No therapy) were used as controls. Langerin-DTR mice received diphtheria toxin
618 (DTx) every three days starting four days before the ACT. **a** Experimental timeline. **b**
619 Quantifications of OTI, total endogenous, Tpex (PD-1⁺ GzmB⁻) and Tdif (PD-1⁺ GzmB⁺)
620 CD8⁺ T cells as a percentage of CD45⁺ cells in tumors analyzed by flow cytometry three
621 days after ACT for each group: No therapy (C57BL/6 WT mice: black bars; Lang-DTR
622 mice: grey bars) and ACT (C57BL/6 WT mice: blue bars; Lang-DTR mice: red bars). **c-d**
623 Individual tumor growth (**c**) and Kaplan-Meier (**d**) curves for each group: No therapy
624 (C57BL/6 WT mice: black curves) and ACT (C57BL/6 WT mice: blue curves; Lang-DTR
625 mice: red curves). (**b**) Pooled data from two independent experiments, $n = 9-10$ per group.
626 Bars are the mean \pm SEM. ** $p < 0.05$, ** $p < 0.01$, *** $p \leq 0.001$, and **** $p \leq 0.0001$ by Mann-
627 Whitney unpaired test. (**d**) Kaplan-Meier curve shows survival from two independent
628 experiment $n=9-10$. * $p < 0.05$, ** $p < 0.01$, *** $p \leq 0.001$, and **** $p \leq 0.0001$ by Log-rank
629 Mantel-Cox test.

630

631 **Figure 6. Lymphodepleting preconditioning enhances ACT-mediated tumor**
632 **elimination, but abrogates long-term host antitumor immunity.** C57BL/6 mice were
633 intradermally challenged with 1×10^6 B16F10-OTI, then mice received two doses of 300
634 mg/kg cyclophosphamide (Cy) on days 4 and 6 after tumor challenge as a preconditioning
635 lymphodepleting regimen. One day later, mice received i.v. transfer of 1×10^6 or 0.5×10^6
636 *in vitro* activated OTI CD8⁺ T cells as optimal and suboptimal ACT models, respectively.
637 Subsequently, all mice that rejected tumors after ACT were rechallenged with 1×10^6
638 B16F10-WT in the opposite flank. Tumor growth and survival were analyzed every other
639 day. **a** Experimental timeline. **b-c** Representative dot plots displaying the frequencies of
640 endogenous (square, CD45.1⁻) and transferred (ellipse, OTI CD45.1⁺) CD8⁺ T cells in live
641 CD45⁺ cells for each group: No therapy, ACT, No therapy + Cy, ACT + Cy, Suboptimal
642 ACT and Suboptimal ACT + Cy **(c)** Relative (on CD45⁺ cells) and absolute quantification
643 of transferred OTI and endogenous CD8⁺ T cells for each group shown in b. **d-e** Individual
644 tumor growth (**d**) and Kaplan-Meier (**e**) curves for each group: No therapy (black curves),
645 ACT (blue curves) and suboptimal ACT (purple curves) in non-lymphodepleted mice, and
646 No therapy (gray curves), ACT (red curves) and suboptimal ACT (green curves) in
647 lymphodepleted mice with 300 mg/kg of Cy. **f-g** Individual tumor growth (**f**) and Kaplan-
648 Meier (**g**) curves of B16F10-WT rechallenged mice for each group: ACT (blue curves) in
649 non-lymphodepleted, and ACT (red curves) and suboptimal ACT (green curves) in
650 lymphodepleted mice with 300 mg/kg of Cy. Bars are the mean \pm SEM. **p < 0.05, **p
651 < 0.01, ***p \leq 0.001, and ****p \leq 0.0001 by Mann-Whitney unpaired test. **(e)** Kaplan-Meier
652 curve showing the survival from two independent experiments, n=4-10 and **(g)** from one
653 experiment, n=5-7. p < 0.05, **p < 0.01, ***p \leq 0.001, and ****p \leq 0.0001 by log-rank
654 Mantel-Cox test

655

656 **Figure 7. cDC1, TNF- α signaling, Tpex and Tdif gene signatures are positively**
657 **associated with clinical responses to ACT and overall survival in melanoma**
658 **patients.** To explore the association between gene signatures and melanoma patients' 659 outcome, we analyzed gene expression data from patients under ACT, and from TCGA-
660 SKCM cohort. **a** GSEA analysis in patients under ACT. Patients are divided according to
661 RECIST clinical response. PD: progressive disease (n = 5); SD: stable disease (n = 10);
662 PR: partial response (n = 5); CR: complete response (n = 5). To obtain the enrichment
663 score, each RECIST response was compared against the others. NES: normalized
664 enrichment score. An FDR < 0.05 (-log₁₀ > 1.3) was considered as statistically significant.
665 **b** Kaplan – Meier plots showing the overall survival analysis of TCGA-SKCM patients (n
666 = 323) divided according to the high (red) and low (blue) expression levels of the indicated
667 signature. p values were obtained with Log – rank test. p < 0.05 was considered as
668 statistically significant.

669

670 **SUPPLEMENTARY FIGURES**

671

672 **Supplementary Figure 1. Suboptimal ACT does not promote tumor accumulation**
673 **of endogenous CD8 T cells and lead to tumor progression.** C57BL/6 mice bearing
674 B16F10-OTI tumors received i.v. transfer of 0.5×10^6 *in vitro* activated OTI CD8⁺ T cells as
675 a Suboptimal ACT. Untreated mice (No therapy) were used as controls. **a** Experimental
676 scheme. **b-c** Individual tumor growth (**b**) and Kaplan-Meier (**c**) curves for each group: No
677 therapy (black curves) and Suboptimal ACT (red curves). **d-e** Tumor infiltrates were
678 analyzed by flow cytometry three days after ACT. **d** Left panels: Representative dot plots
679 displaying the frequencies of endogenous (square, CD45.1⁻) and transferred (ellipse, OTI
680 CD45.1⁺) CD8⁺ T cells in live CD45⁺ cells. Middle panels: Representative dot plots
681 displaying the expression of PD-1 and granzyme B in endogenous CD8⁺ T cells and the
682 frequencies of the different subpopulations defined in each quadrant: PD-1⁺ GzmB⁻
683 (Tpex), PD-1⁺ GzmB⁻ (Tdif), PD-1⁻ GzmB⁻ and PD-1⁻ GzmB⁺. Right panels:
684 Representative dot plots displaying the expression of PD-1 and granzyme B in transferred
685 OTI CD8⁺ T cells. **e** Quantifications of CD45⁺ cells as a percentage of total live cells,
686 transferred OTI, total endogenous, Tpex (PD-1⁺ GzmB⁻) and Tdif (PD-1⁺ GzmB⁺) CD8⁺ T
687 cells as a percentage of CD45⁺ cells. (**e**) Pooled data from two independent experiments,
688 n = 8 per group. Bars are the mean \pm SEM. *p<0.05, **p< 0.01, ***p< 0.001 by Mann-
689 Whitney unpaired.

690

691 **Supplementary Figure 2. Protection induced by ACT relies on mature/adaptative**
692 **endogenous immune system.** RAG1 KO mice bearing B16F10-OTI tumors received i.v.
693 transfer of 1×10^6 *in vitro* activated OTI CD8⁺ T cells (ACT). WT untreated mice (No
694 therapy) were used as controls. **a** Experimental timeline. **b-c** Individual tumor growth (**b**)
695 and Kaplan-Meier (**c**) curves for each group: No therapy WT mice (black curves) No
696 therapy RAG1 KO mice (grey curves) and ACT RAG1 KO mice (red curves). (**c**) Results
697 from two independent experiment n=9-10. *p <0.05, **p <0.01, ***p ≤ 0.001, and ****p ≤
698 0.0001 by Log-rank Mantel-Cox test.

699

700 **Supplementary Figure 3. Dendritic cell analysis by flow cytometry in tumor and**
701 **draining lymph nodes.** CD45⁺ cells from tumor and draining lymph node of B16F10-OTI
702 melanoma tumors bearing mice were isolated and staining for flow cytometry analysis. **a**
703 Gating strategy to define tumor-infiltrating type 1 and 2 dendritic cells. **b** Gating strategy
704 to define infiltrating draining lymph node resident and migratory type 1 and 2 dendritic
705 cells.

706

707 **Supplementary Figure 4. Analysis of dendritic cells from skin, tumor and draining**
708 **lymph nodes in Langerin-DTR mice.** Lang-DTR mice were intradermally challenged
709 with 1×10^6 B16F10-OTI melanoma tumor cells, then mice received intravenously 1 μ g of
710 DTx and three days later tumor, skin and draining lymph node were processed to analyze
711 EGFP-langerin expressing dendritic cells and Langerhans cells. **a** Representative
712 histogram showing the expression of EGFP-Langerin in cDC1 and Langerhans cells
713 across the different analyzed tissues in control untreated DTx B16F10-OTI tumor bearing
714 LANG-DTR mice. **b** Representative pseudocolor dot-plot and frequencies of cDC1 and
715 Langerhans cells in the different tissues in untreated control and DTx treated LANG-DTR
716 mice. **c** Quantification of cDC1 in tumor on CD45 $^+$ cells, migratory and resident cDC1 in
717 draining lymph node on Live cells, cDC1 and Langerhans cells in skin on CD45 $^+$ cells. **(c)**
718 Pool of two independent experiments, n = 4-7 per group. Bars are the mean \pm SEM. **p
719 <0.05 , **p <0.01 , ***p ≤ 0.001 , and ****p ≤ 0.0001 by Mann-Whitney unpaired test.

720

721 **REFERENCES**

- 722 1. Maier B, Leader AM, Chen ST, Tung N, Chang C, LeBerichel J, et al. A
723 conserved dendritic-cell regulatory program limits antitumour immunity. *Nature*.
724 2020 Apr 9;580(7802):257–62.
- 725 2. Ruhland MK, Roberts EW, Cai E, Mujal AM, Marchuk K, Beppler C, et al.
726 Visualizing Synaptic Transfer of Tumor Antigens among Dendritic Cells. *Cancer*
727 *Cell*. 2020 Jun 8;37(6):786-799.e5.
- 728 3. Broz ML, Binnewies M, Boldajipour B, Nelson AE, Pollack JL, Erle DJ, et al.
729 Dissecting the Tumor Myeloid Compartment Reveals Rare Activating Antigen-
730 Presenting Cells Critical for T Cell Immunity. *Cancer Cell*. 2014 Nov
731 10;26(5):638–52.
- 732 4. Russell JH, Ley TJ. Lymphocyte-mediated cytotoxicity. Vol. 20, *Annual Review of*
733 *Immunology*. 2002. p. 323–70.
- 734 5. Ariotti S, Hogenbirk MA, Dijkgraaf FE, Visser LL, Hoekstra ME, Song JY, et al.
735 Skin-resident memory CD8+ T cells trigger a state of tissue-wide pathogen alert.
736 *Science* (1979). 2014 Oct 3;346(6205):101–5.
- 737 6. Schenkel JM, Fraser KA, Beura LK, Pauken KE, Vezys V, Masopust D. Resident
738 memory CD8 t cells trigger protective innate and adaptive immune responses.
739 *Science* (1979). 2014 Oct 3;346(6205):98–101.
- 740 7. Khan O, Giles JR, McDonald S, Manne S, Ngiow SF, Patel KP, et al. TOX
741 transcriptionally and epigenetically programs CD8+ T cell exhaustion. *Nature*
742 [Internet]. 2019 Jul 11 [cited 2021 Apr 14];571(7764):211–8. Available from:
743 <https://www.nature.com/articles/s41586-019-1325-x>
- 744 8. Sekine T, Perez-Potti A, Nguyen S, Gorin JB, Wu VH, Gostick E, et al. TOX is
745 expressed by exhausted and polyfunctional human effector memory CD8+ T cells.
746 *Sci Immunol* [Internet]. 2020 Jul 1 [cited 2021 Apr 14];5(49). Available from:
747 <https://immunology.science.org/content/5/49/eaba7918>
- 748 9. Utzschneider DT, Charmoy M, Chennupati V, Pousse L, Ferreira DP, Calderon-
749 Copete S, et al. T Cell Factor 1-Expressing Memory-like CD8+ T Cells Sustain the
750 Immune Response to Chronic Viral Infections. *Immunity*. 2016;45(2):415–27.
- 751 10. Beltra JC, Manne S, Abdel-Hakeem MS, Kurachi M, Giles JR, Chen Z, et al.
752 Developmental Relationships of Four Exhausted CD8+ T Cell Subsets Reveals
753 Underlying Transcriptional and Epigenetic Landscape Control Mechanisms.
754 *Immunity*. 2020 May;52(5):825-841.e8.
- 755 11. Kallies A, Zehn D, Utzschneider DT. Precursor exhausted T cells: key to
756 successful immunotherapy? Vol. 20, *Nature Reviews Immunology*. *Nature*
757 Research; 2020. p. 128–36.
- 758 12. Siddiqui I, Schaeuble K, Chennupati V, Fuertes Marraco SA, Calderon-Copete S,
759 Pais Ferreira D, et al. Intratumoral Tcf1 + PD-1 + CD8 + T Cells with Stem-like
760 Properties Promote Tumor Control in Response to Vaccination and Checkpoint
761 Blockade Immunotherapy. *Immunity*. 2019 Jan 15;50(1):195-211.e10.
- 762 13. Miller BC, Sen DR, Al Abosy R, Bi K, Virkud Y V., LaFleur MW, et al. Subsets of
763 exhausted CD8+ T cells differentially mediate tumor control and respond to
764 checkpoint blockade. *Nat Immunol*. 2019 Mar 1;20(3):326–36.

765 14. Jansen CS, Prokhnevskaya N, Master VA, Sanda MG, Carlisle JW, Bilen MA, et al.
766 An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. *Nature*.
767 2019 Dec 19;576(7787):465–70.

768 15. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy
769 for human cancer. Vol. 348, *Science*. American Association for the Advancement
770 of Science; 2015. p. 62–8.

771 16. Prickett TD, Crystal JS, Cohen CJ, Pasetto A, Parkhurst MR, Gartner JJ, et al.
772 Durable complete response from metastatic melanoma after transfer of
773 autologous T cells recognizing 10 mutated tumor antigens. *Cancer Immunol Res*.
774 2016;4(8):669–78.

775 17. Stevanovic S, Helman SR, Wunderlich JR, Langhan MM, Doran SL, Kwong MLM,
776 et al. A Phase II Study of Tumor-infiltrating Lymphocyte Therapy for Human
777 Papillomavirus–associated Epithelial Cancers. *Clinical Cancer Research*. 2019
778 Mar 1;25(5):1486–93.

779 18. Scheper W, Kelderman S, Fanchi LF, Linnemann C, Bendle G, de Rooij MAJ, et
780 al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human
781 cancers. *Nat Med*. 2019 Jan 1;25(1):89–94.

782 19. Zhang Y, Liu Z, Wei W, Li Y. TCR engineered T cells for solid tumor
783 immunotherapy. Vol. 11, *Experimental Hematology and Oncology*. BioMed
784 Central Ltd; 2022.

785 20. Patel U, Abernathy J, Savani BN, Oluwole O, Sengsayadeth S, Dholaria B. CAR
786 T cell therapy in solid tumors: A review of current clinical trials. *EJHaem*. 2022
787 Jan;3(S1):24–31.

788 21. Kochenderfer JN, Somerville RPT, Lu T, Yang JC, Sherry RM, Feldman SA, et al.
789 Long-Duration Complete Remissions of Diffuse Large B Cell Lymphoma after
790 Anti-CD19 Chimeric Antigen Receptor T Cell Therapy. *Molecular Therapy*. 2017
791 Oct 4;25(10):2245–53.

792 22. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric Antigen Receptor–
793 Modified T Cells in Chronic Lymphoid Leukemia. *New England Journal of
794 Medicine*. 2011 Aug 25;365(8):725–33.

795 23. Zhang X, Zhu L, Zhang H, Chen S, Xiao Y. CAR-T Cell Therapy in Hematological
796 Malignancies: Current Opportunities and Challenges. Vol. 13, *Frontiers in
797 Immunology*. Frontiers Media S.A.; 2022.

798 24. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, et al.
799 Cancer Regression in Patients After Transfer of Genetically Engineered
800 Lymphocytes [Internet]. Available from: www.sciencemag.org

801 25. Chan JD, Lai J, Slaney CY, Kallies A, Beavis PA, Darcy PK. Cellular networks
802 controlling T cell persistence in adoptive cell therapy. Vol. 21, *Nature Reviews
803 Immunology*. Nature Research; 2021. p. 769–84.

804 26. Bechman N, Maher J. Lymphodepletion strategies to potentiate adoptive T-cell
805 immunotherapy—what are we doing; where are we going? Vol. 21, *Expert Opinion
806 on Biological Therapy*. Taylor and Francis Ltd.; 2021. p. 627–37.

807 27. Wylie B, Chee J, Forbes CA, Booth M, Stone SR, Buzzai A, et al. Acquired
808 resistance during adoptive cell therapy by transcriptional silencing of
809 immunogenic antigens. *Oncoimmunology*. 2019;8(8).

810 28. Khong HT, Restifo NP. Natural selection of tumor variants in the generation of
811 “tumor escape” phenotypes. 2002.

812 29. O'Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T
813 cell-based immunotherapy. Vol. 16, *Nature Reviews Clinical Oncology*. Nature
814 Publishing Group; 2019. p. 151–67.

815 30. Sotillo E, Barrett DM, Black KL, Bagashev A, Oldridge D, Wu G, et al.
816 Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables
817 Resistance to CART-19 Immunotherapy. *Cancer Discov*. 2015 Dec 1;5(12):1282–
818 95.

819 31. Braig F, Brandt A, Goebeler M, Tony HP, Kurze AK, Nollau P, et al. Resistance to
820 anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by
821 disrupted CD19 membrane trafficking. *Blood*. 2017 Jan 5;129(1):100–4.

822 32. Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM, Ramakrishna S, et
823 al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant
824 to CD19-targeted CAR immunotherapy. *Nat Med*. 2018 Jan 20;24(1):20–8.

825 33. O'Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T
826 cell-based immunotherapy. *Nat Rev Clin Oncol*. 2019 Mar 6;16(3):151–67.

827 34. Duell J, Leipold AM, Appenzeller S, Fuhr V, Rauert-Wunderlich H, Da Vià MC, et
828 al. Sequential Antigen-loss and Branching Evolution in Lymphoma after CD19-
829 and CD20-Targeted T-cell Redirecting Therapy. *Blood Journal*. 2023 Nov 17;

830 35. Jackson HJ, Brentjens RJ. Overcoming antigen escape with CAR T-cell therapy.
831 *Cancer Discov*. 2015 Dec 1;5(12):1238–40.

832 36. Lai J, Mardiana S, House IG, Sek K, Henderson MA, Giuffrida L, et al. Adoptive
833 cellular therapy with T cells expressing the dendritic cell growth factor Flt3L drives
834 epitope spreading and antitumor immunity. *Nat Immunol*. 2020 Aug 1;21(8):914–
835 26.

836 37. Walsh SR, Simovic B, Chen L, Bastin D, Nguyen A, Stephenson K, et al.
837 Endogenous T cells prevent tumor immune escape following adoptive T cell
838 therapy. *Journal of Clinical Investigation*. 2019 Dec 2;129(12):5400–10.

839 38. Gálvez-Cancino F, López E, Menares E, Díaz X, Flores C, Cáceres P, et al.
840 Vaccination-induced skin-resident memory CD8+ T cells mediate strong
841 protection against cutaneous melanoma. *Oncoimmunology* [Internet]. 2018 Jul 3
842 [cited 2021 Apr 17];7(7). Available from: [/pmc/articles/PMC5993487/](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993487/)

843 39. Kaech SM, Cui W. Transcriptional control of effector and memory CD8+ T cell
844 differentiation. Vol. 12, *Nature Reviews Immunology*. 2012. p. 749–61.

845 40. Ahn E, Araki K, Hashimoto M, Li W, Riley JL, Cheung J, et al. Role of PD-1 during
846 effector CD8 T cell differentiation. *Proceedings of the National Academy of
847 Sciences* [Internet]. 2018;115(18). Available from:
848 <https://www.pnas.org/content/115/18/4749>

849 41. Chiba K, Matsuyuki H, Maeda Y, Sugahara K. Role of Sphingosine 1-Phosphate
850 Receptor Type 1 in Lymphocyte Egress from Secondary Lymphoid Tissues and
851 Thymus. Vol. 3, *Cellular & Molecular Immunology*. 2006.

852 42. Majzner RG, Mackall CL. Tumor antigen escape from car t-cell therapy. Vol. 8,
853 *Cancer Discovery*. American Association for Cancer Research Inc.; 2018. p.
854 1219–26.

855 43. Brunner C, Seiderer J, Schlamp A, Bidlingmaier M, Eigler A, Haimerl W, et al.
856 Enhanced Dendritic Cell Maturation by TNF- α or Cytidine-Phosphate-Guanosine
857 DNA Drives T Cell Activation In Vitro and Therapeutic Anti-Tumor Immune
858 Responses In Vivo. *The Journal of Immunology*. 2000 Dec 1;165(11):6278–86.

859 44. Maney NJ, Reynolds G, Krippner-Heidenreich A, Hilkens CMU. Dendritic Cell
860 Maturation and Survival Are Differentially Regulated by TNFR1 and TNFR2. *The*
861 *Journal of Immunology*. 2014 Nov 15;193(10):4914–23.

862 45. Menares E, Gálvez-Cancino F, Cáceres-Morgado P, Ghorani E, López E, Díaz X,
863 et al. Tissue-resident memory CD8+ T cells amplify anti-tumor immunity by
864 triggering antigen spreading through dendritic cells. *Nat Commun* [Internet]. 2019
865 Sep 27 [cited 2019 Oct 8];10(1):4401. Available from:
866 <http://www.ncbi.nlm.nih.gov/pubmed/31562311>

867 46. Kissensepennig A, Henri S, Dubois B, Laplace-Builhé C, Perrin P, Romani N, et al.
868 Dynamics and function of langerhans cells in vivo: Dermal dendritic cells colonize
869 lymph node areas distinct from slower migrating langerhans cells. *Immunity*.
870 2005;22(5):643–54.

871 47. Spranger S, Dai D, Horton B, Gajewski TF. Tumor-Residing Batf3 Dendritic Cells
872 Are Required for Effector T Cell Trafficking and Adoptive T Cell Therapy. *Cancer*
873 *Cell*. 2017 May 8;31(5):711-723.e4.

874 48. Nissan A, Lev-Ari S, Meirson T, Jacoby E, Asher N, Ben-Betzael G, et al.
875 Comparison of non-myeloablative lymphodepleting preconditioning regimens in
876 patients undergoing adoptive T cell therapy. *J Immunother Cancer*. 2021 May
877 14;9(5).

878 49. Lauss M, Donia M, Harbst K, Andersen R, Mitra S, Rosengren F, et al. Mutational
879 and putative neoantigen load predict clinical benefit of adoptive T cell therapy in
880 melanoma. *Nat Commun*. 2017 Dec 1;8(1).

881 50. Jerby-Arnon L, Shah P, Cuoco MS, Rodman C, Su MJ, Melms JC, et al. A Cancer
882 Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade.
883 *Cell*. 2018 Nov 1;175(4):984-997.e24.

884 51. Morotti M, Albukhari A, Alsaadi A, Artibani M, Brenton JD, Curbishley SM, et al.
885 Promises and challenges of adoptive T-cell therapies for solid tumours. Vol. 124,
886 *British Journal of Cancer*. Springer Nature; 2021. p. 1759–76.

887 52. Huang J, Khong HT, Dudley ME, El-Gamil M, Li YF, Rosenberg SA, et al.
888 Survival, Persistence, and Progressive Differentiation of Adoptively Transferred
889 Tumor-Reactive T Cells Associated with Tumor Regression. Vol. 28, *J*
890 *Immunother*. 2005.

891 53. Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, et al.
892 Adoptive cell transfer therapy following non-myeloablative but lymphodepleting
893 chemotherapy for the treatment of patients with refractory metastatic melanoma.
894 *Journal of Clinical Oncology*. 2005;23(10):2346–57.

895 54. Klebanoff CA, Khong HT, Antony PA, Palmer DC, Restifo NP. Sinks, suppressors
896 and antigen presenters: How lymphodepletion enhances T cell-mediated tumor
897 immunotherapy. Vol. 26, *Trends in Immunology*. Elsevier Ltd; 2005. p. 111–7.

898 55. Boulch M, Cazaux M, Loe-Mie Y, Thibaut R, Corre B, Lemaître F, et al. A cross-
899 talk between CAR T cell subsets and the tumor microenvironment is essential for

900 sustained cytotoxic activity [Internet]. Vol. 6, Sci. Immunol. 2021. Available from:
901 <https://www.science.org>

902 56. Nowicki TS, Peters CW, Quiros C, Kidd CK, Kawakami M, Klomhaus AM, et al.
903 Infusion Product TNFa, Th2, and STAT3 Activities Are Associated with Clinical
904 Responses to Transgenic T-cell Receptor Cell Therapy. *Cancer Immunol Res.*
905 2023 Dec 10;11(12):1589–97.

906 57. Schenkel JM, Herbst RH, Canner D, Li A, Hillman M, Shanahan SL, et al.
907 Conventional type I dendritic cells maintain a reservoir of proliferative tumor-
908 antigen specific TCF-1+ CD8+ T cells in tumor-draining lymph nodes. *Immunity.*
909 2021 Oct 12;54(10):2338-2353.e6.

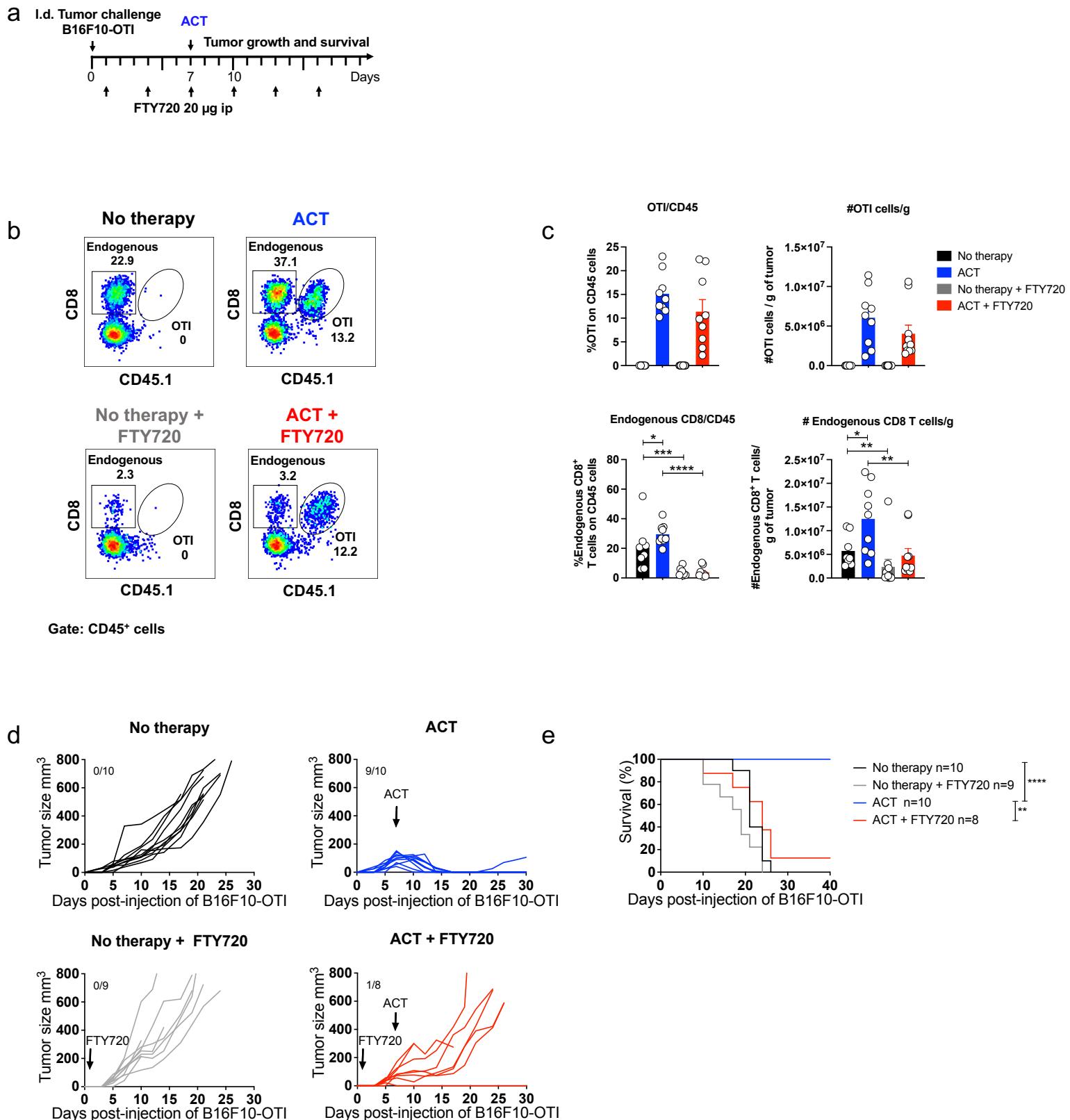
910 58. Connolly KA, Kuchroo M, Venkat A, Khatun A, Wang J, William I, et al. A reservoir
911 of stem-like CD8 + T cells in the tumor-draining lymph node preserves the
912 ongoing antitumor immune response [Internet]. Vol. 6, Sci. Immunol. 2021.
913 Available from: <https://www.science.org>

914 59. Li Z, Tuong ZK, Dean I, Willis C, Gaspal F, Fiancette R, et al. In vivo labeling
915 reveals continuous trafficking of TCF-1+ T cells between tumor and lymphoid
916 tissue. *Journal of Experimental Medicine.* 2022 Jun 6;219(6).

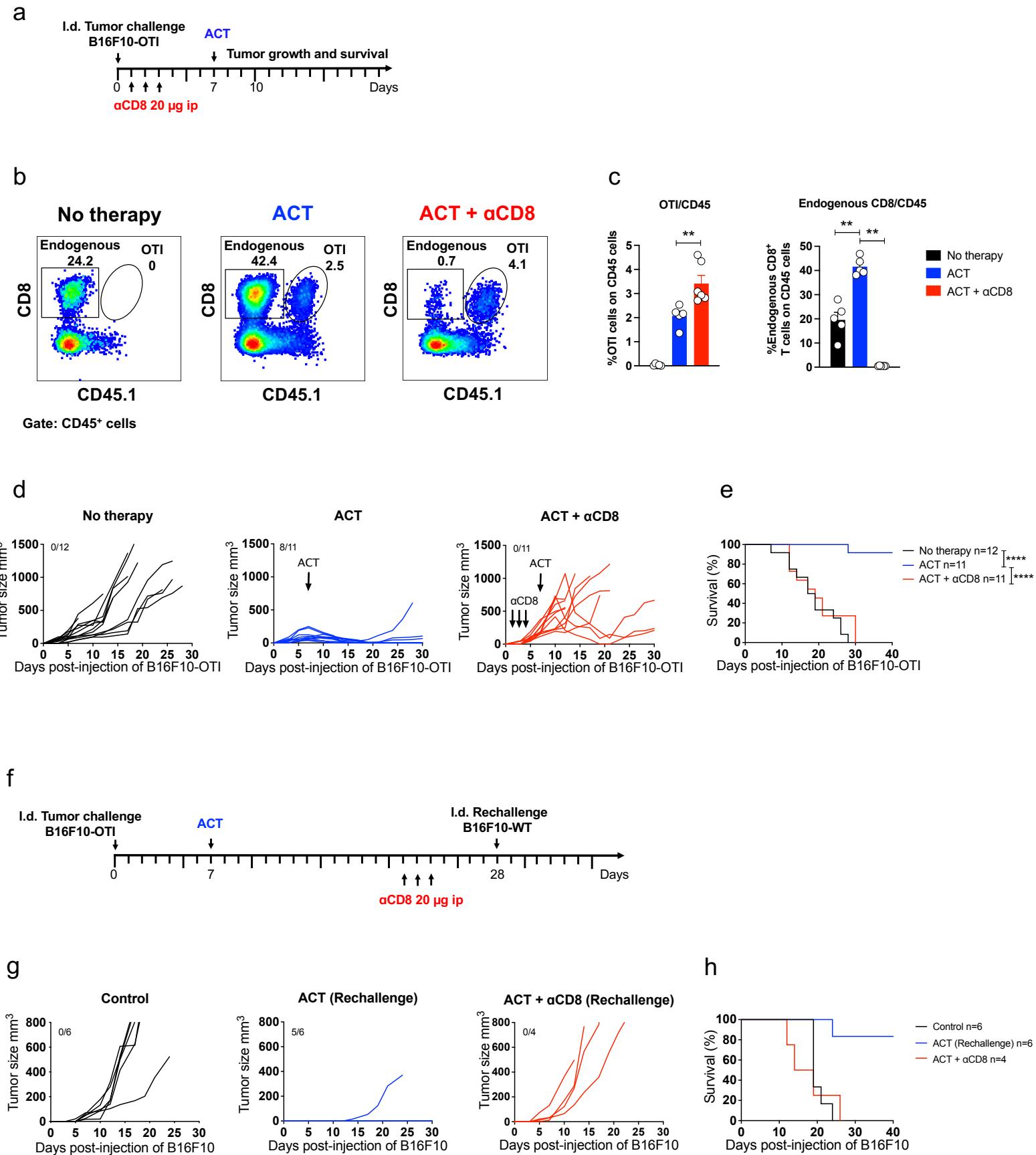
917 60. Kuhn NF, Lopez A V., Li X, Cai W, Daniyan AF, Brentjens RJ. CD103+ cDC1 and
918 endogenous CD8+ T cells are necessary for improved CD40L-overexpressing
919 CAR T cell antitumor function. *Nat Commun.* 2020 Dec 1;11(1).

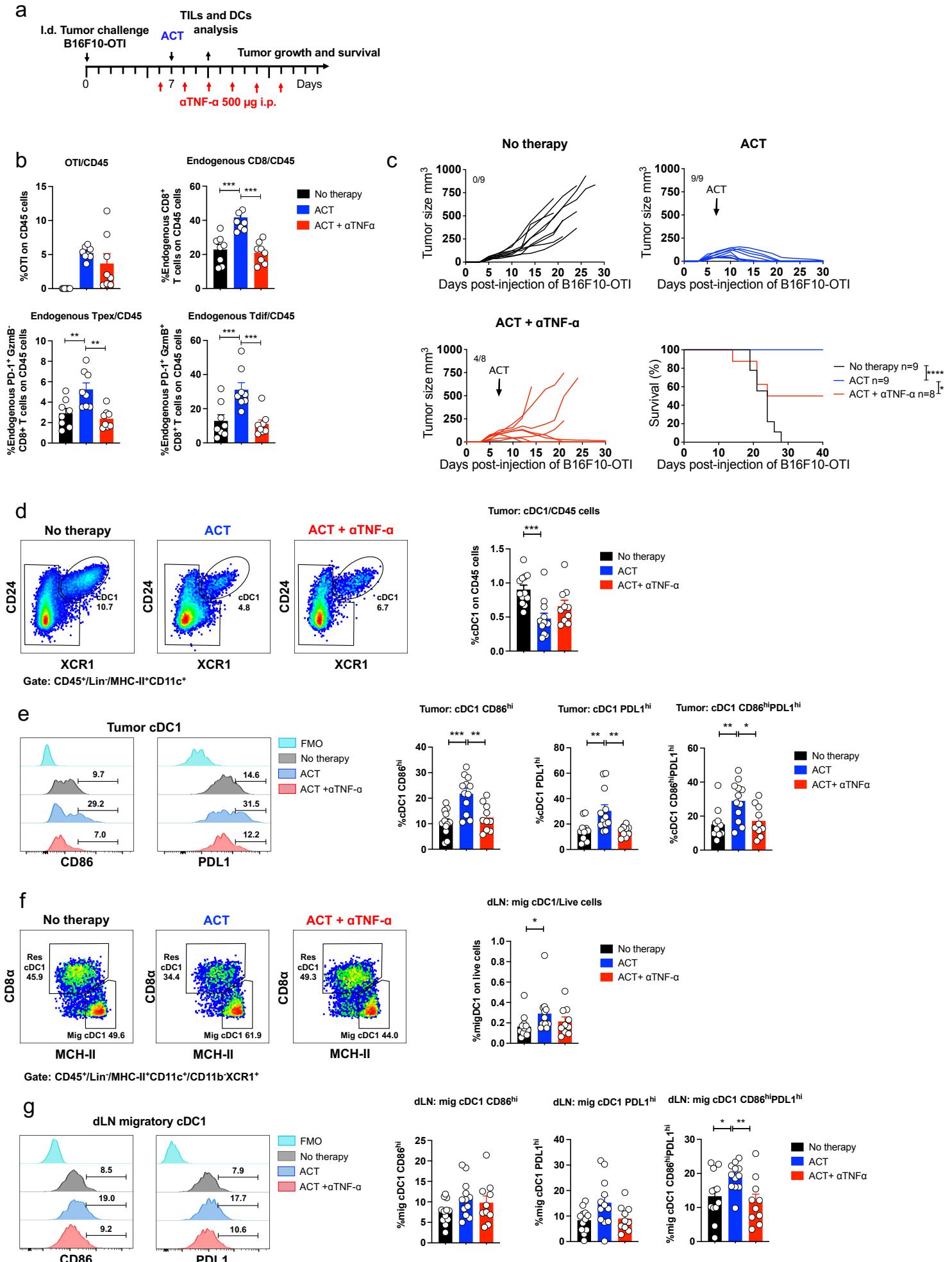
920 61. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov
921 JP. Molecular signatures database (MSigDB) 3.0. *Bioinformatics.* 2011
922 Jun;27(12):1739–40.

923 62. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al.
924 Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype
925 Relationships and Predictors of Response to Checkpoint Blockade. *Cell Rep.*
926 2017 Jan 3;18(1):248–62.


927 63. Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG, Jenkins RW, et
928 al. Defining T Cell States Associated with Response to Checkpoint
929 Immunotherapy in Melanoma. *Cell.* 2018 Nov 1;175(4):998-1013.e20.

930 64. Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al.
931 Single-cell RNA-seq reveals new types of human blood dendritic cells,
932 monocytes, and progenitors. *Science (1979).* 2017 Apr 21;356(6335).


933 65. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al.
934 Gene set enrichment analysis: A knowledge-based approach for interpreting
935 genome-wide expression profiles [Internet]. 2005. Available from:
936 www.pnas.org/cgi/doi/10.1073/pnas.0506580102


Figure 2

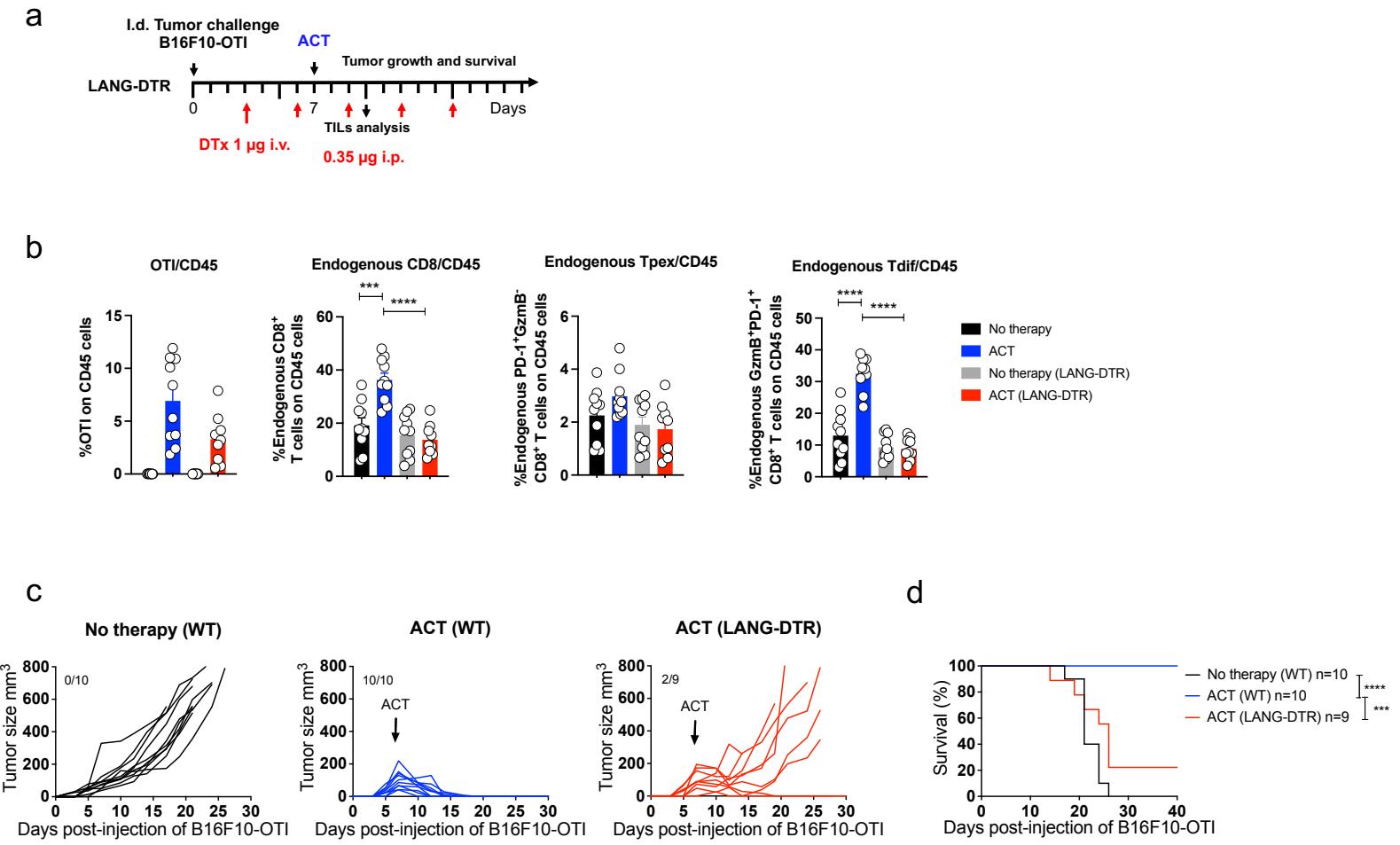

Figure 3

Figure 4

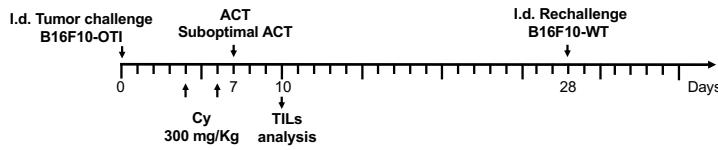


Figure 5

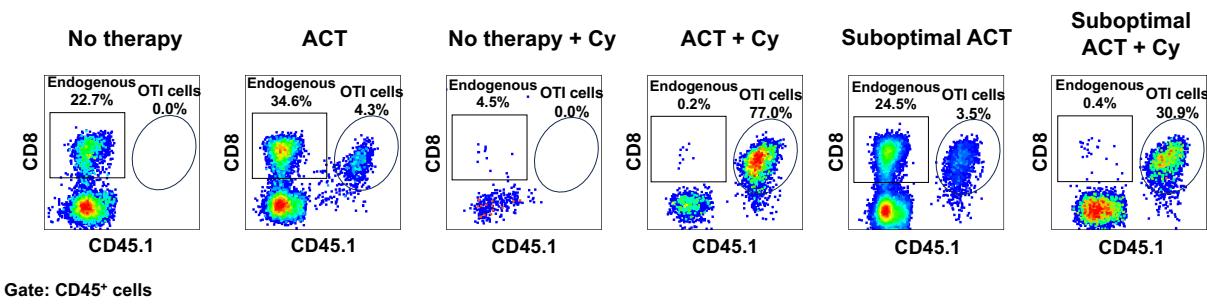
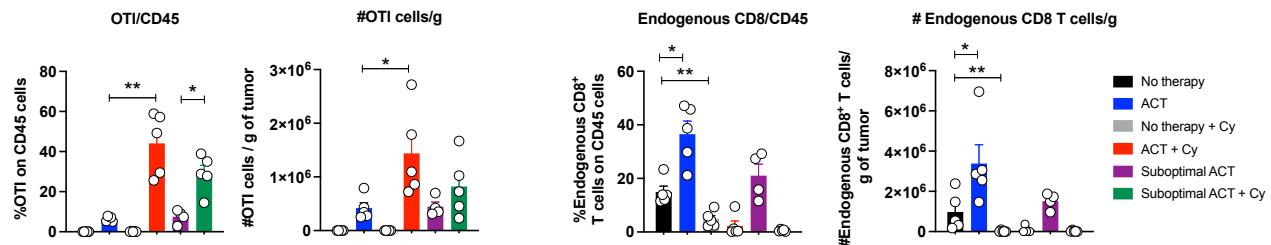
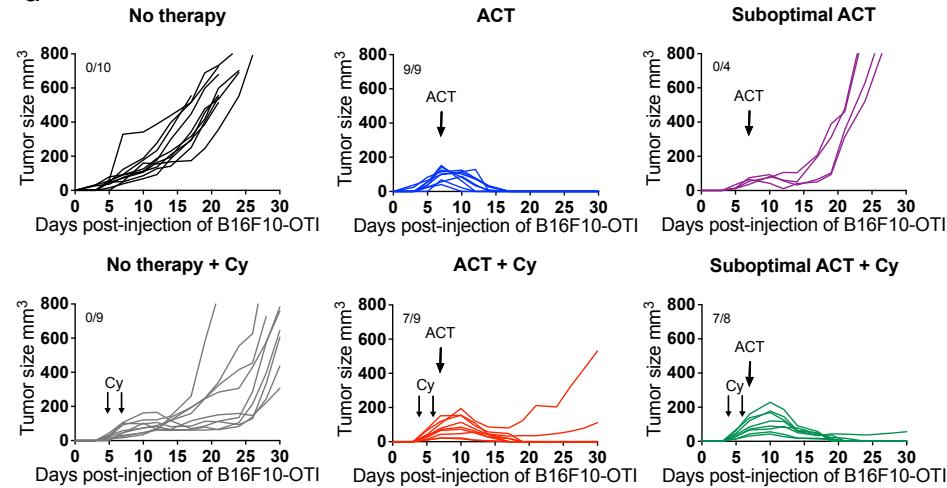
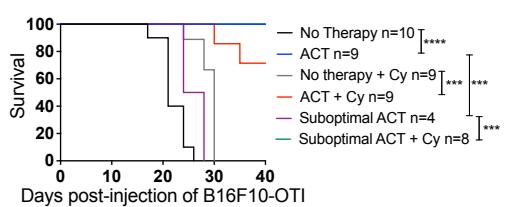
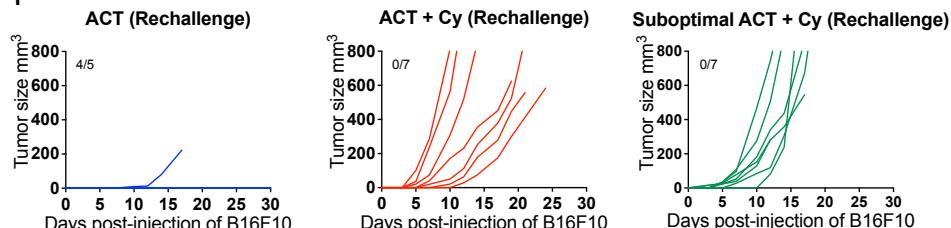


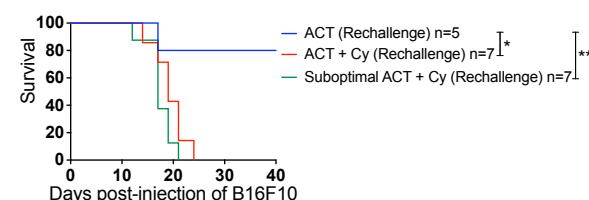
Figure 6


a

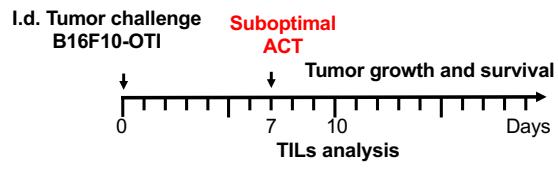

b

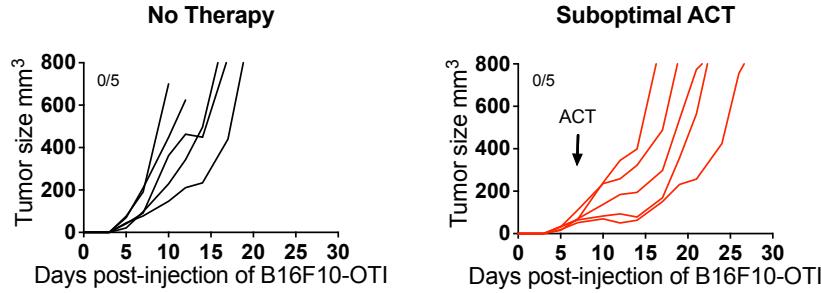

c

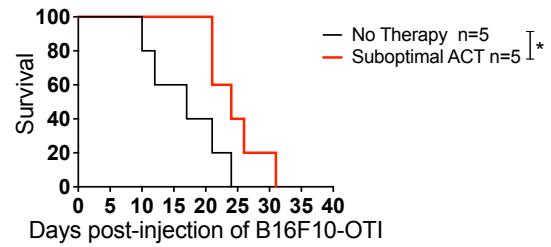

d

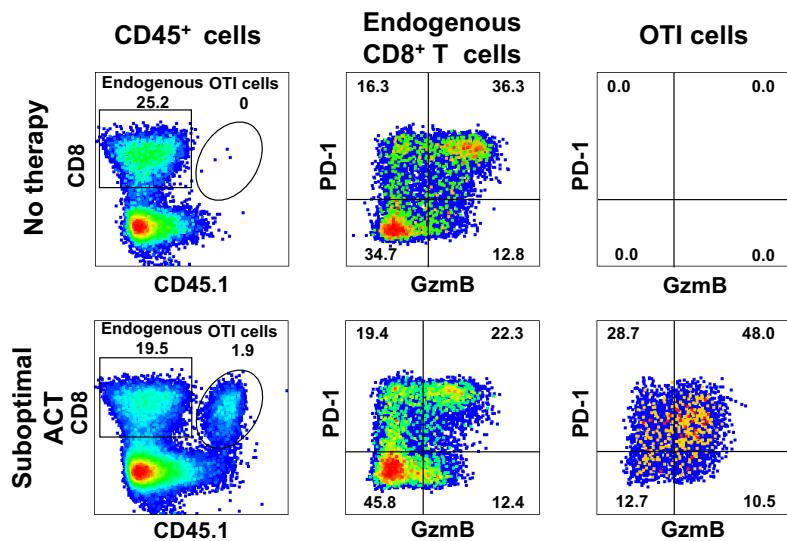

e

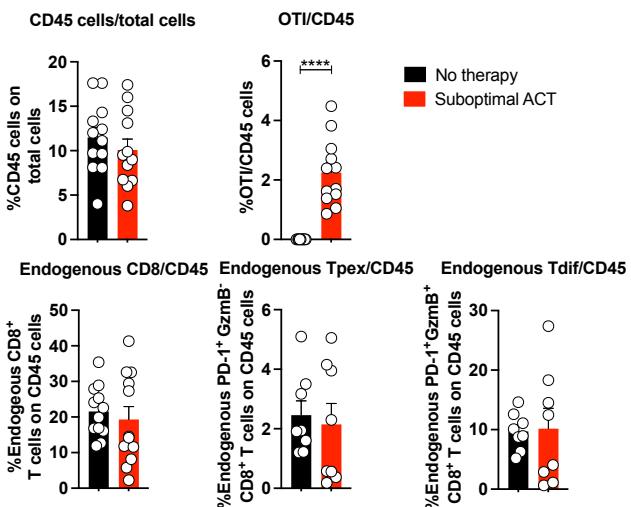
f


g

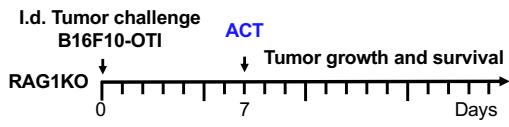

Figure 7


a

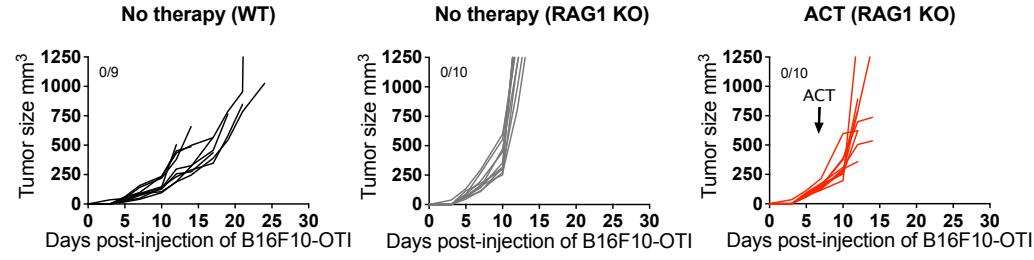

b


c

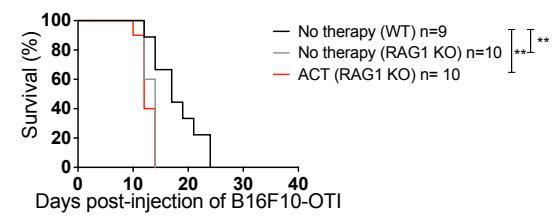
d



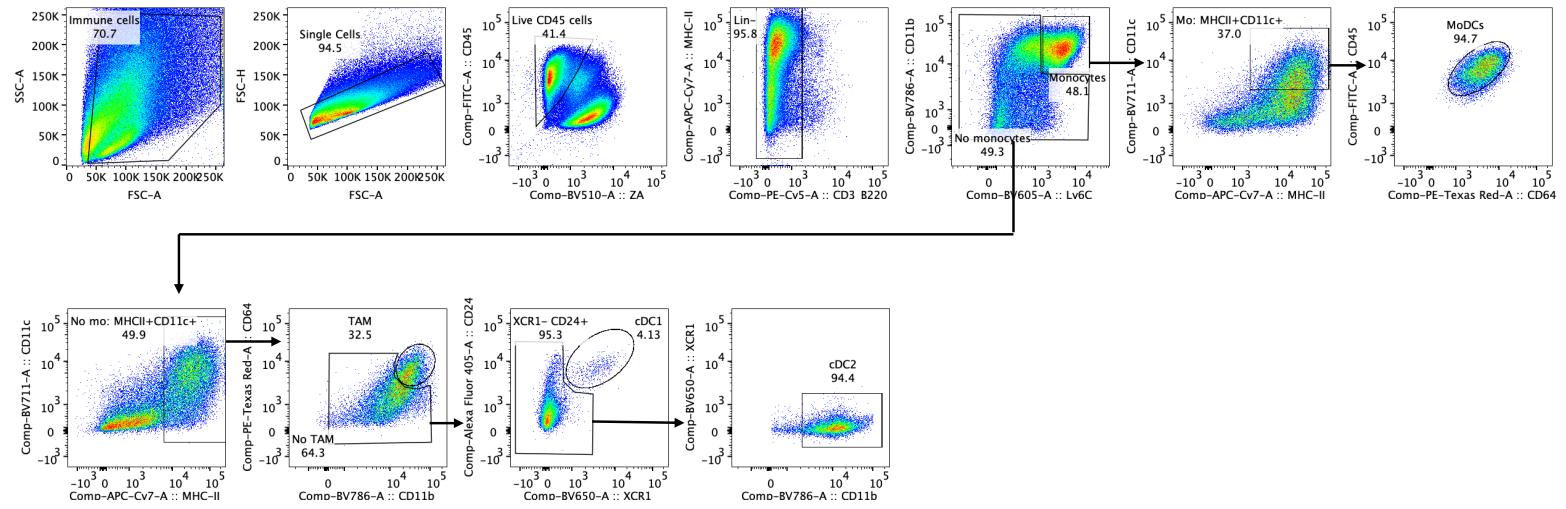
e



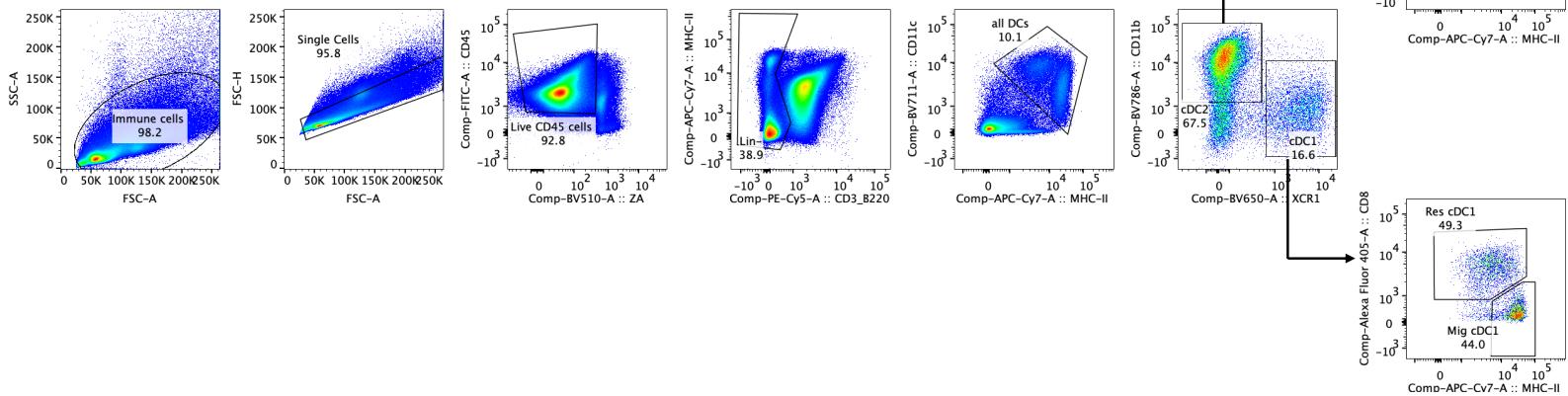
Supplementary figure 2


a

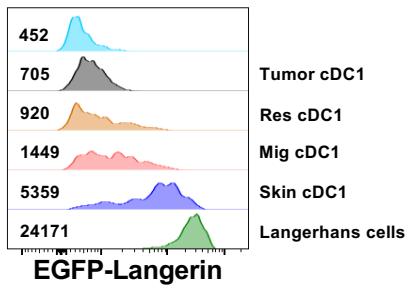
b


c

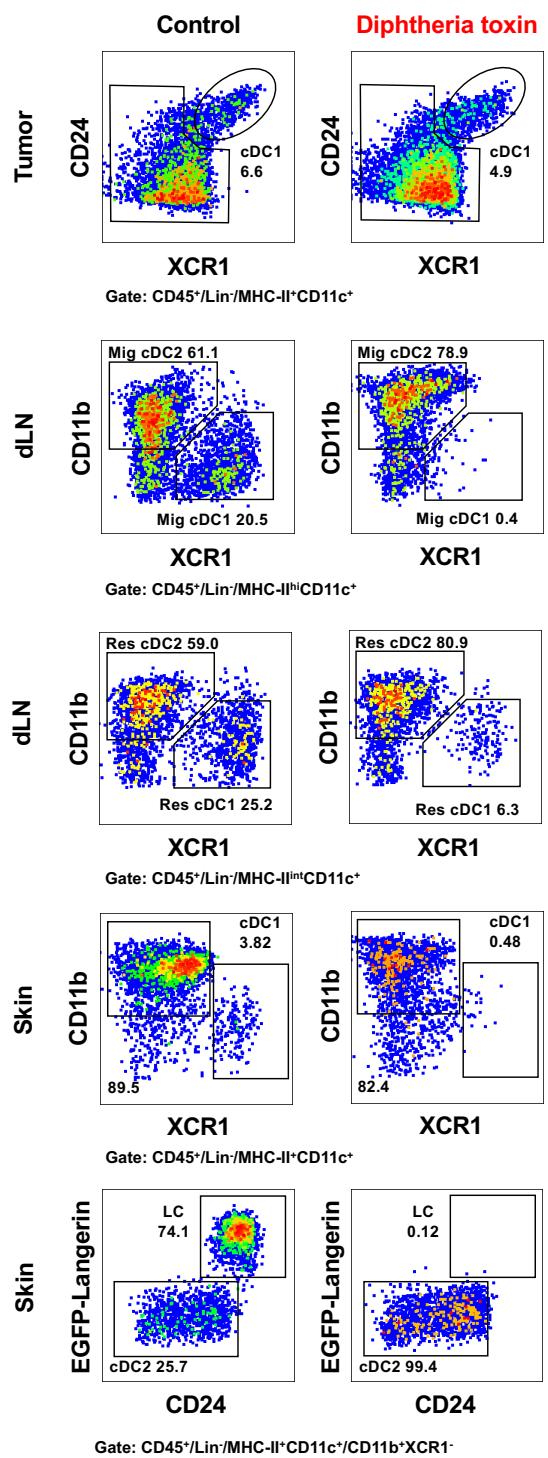
Supplementary Figure 3


a

Tumor dendritic cells


b

Draining lymph node dendritic cells



Supplementary Figure 4

a

b

c

