

1 **CPT2 mediated fatty acid oxidation is dispensable for humoral immunity**

2 Meilu Li^{†,*}, Xian Zhou[†], Xingxing Zhu[†], Yanfeng Li[†], Taro Hitosugi[‡], Yuzhen Li^{*}, Hu Zeng^{†,§}

3 [†]Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA

4 ^{*}Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University,

5 Harbin, 150001, P. R. China

6 [‡]Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA

7 [§]Department of Immunology, Mayo Clinic Rochester, MN 55905, USA

8

9 Address correspondence and reprint request to Dr. Hu Zeng, Division of Rheumatology,
10 Department of Medicine, Mayo Clinic Rochester, Guggenheim Building 3-42, 200 First ST SW,
11 Rochester, MN, 55902, USA. E-mail address: zeng.hul@mayo.edu.

12

13 **ABSTRACT**

14 B cell activation is accompanied by dynamic metabolic reprogramming, supported by a
15 multitude of nutrients that include glucose, amino acids and fatty acids. While several studies
16 have indicated that fatty acid mitochondrial oxidation is critical for immune cell functions,
17 contradictory findings have been reported. Carnitine palmitoyltransferase II (CPT2) is a critical
18 enzyme for long-chain fatty acid oxidation in mitochondria. Here, we test the requirement of
19 CPT2 for humoral immunity using a mouse model with a lymphocyte specific deletion of CPT2.
20 Stable ¹³C isotope tracing reveals highly reduced fatty acid-derived citrate production in CPT2
21 deficient B cells. Yet, CPT2 deficiency has no significant impact on B cell development, B cell
22 activation, germinal center formation, and antibody production upon either thymus-dependent or

23 –independent antigen challenges. Together, our findings indicate that CPT2 mediated fatty acid
24 oxidation is dispensable for humoral immunity, highlighting the metabolic flexibility of
25 lymphocytes.

26

27 INTRODUCTION

28 In response to challenges from thymus-independent (TI) or thymus-dependent (TD) antigens, B
29 cells can be activated and differentiate into plasmablasts or form germinal centers (GCs), which
30 generate memory B cells and long-lived plasma cells (1-3). Plasmablasts and plasma cells
31 produce antibodies to fight against pathogen infection. B cells are also a major source of
32 inflammatory cytokines. Thus, B cells are vital for host defense and the success of vaccines.

33

34 B cell differentiation is accompanied by dynamic metabolic reprogramming (4). For example,
35 glucose metabolism is critical for B cell development, activation, GC formation, and
36 transformation (5-8). Furthermore, mitochondrial oxidative phosphorylation is critical for B cell
37 survival and differentiation (9-11). Beyond glucose, fatty acids are a major energy source (12).

38 Long chain fatty acid (LCFA) beta-oxidation requires transportation of LCFA across
39 mitochondrial membranes, which is carried out by carnitine palmitoyltransferase I (CPT1) and II
40 (CPT2). CPT1 has two isoforms, CPT1A and CPT1B. Deletion of CPT1A or CPT2 prevents
41 LCFA beta-oxidation (13, 14). Although LCFA could in theory contribute to mitochondrial
42 oxidative phosphorylation, the importance of CPT-mediated LCFA oxidation for immune cells
43 remains contentious. Previous studies showed that the differentiation of T cells and macrophages
44 is not affected by ablation of CPT1A or CPT2 (15, 16). In contrast, NK cell proliferation, anti-
45 viral and anti-tumor effector functions are compromised without CPT1A, indicating that the

46 dependency of CPT-mediated LCFA oxidation could be cell type specific. Furthermore, GC B
47 cell formation is partially suppressed when CPT2 expression is reduced through shRNA-
48 mediated gene knockdown in B cells, although whether *Cpt2* knock-down impairs antibody
49 production remains unknown (17). To further address the role of fatty acid oxidation in B cell
50 function, we assessed humoral immunity in a mouse line with lymphocyte specific deletion of
51 *Cpt2* and bone marrow chimeric mice with B cell specific ablation of *Cpt2*. Our data demonstrate
52 that CPT2 is required for optimal LCFA beta-oxidation in B cells, but it is dispensable for B cell
53 activation *in vitro* and humoral immunity *in vivo*. These results indicate that LCFAAs may
54 influence B cell functions independent of fatty acid oxidation in mitochondria.

55

56 MATERIALS AND METHODS

57 Mice

58 *Cd2*^{iCre}*Cpt2*^{f/f} mice were generated by crossing *Cpt2*^{f/f} mice with *Cd2*-*iCre* transgenic mice
59 (Jackson Laboratory). C57BL/6, B6.CD45.1 (B6.SJL-*Ptprc*^a *Pepc*^b/BoyJ),
60 and *Rag1*^{-/-} mice were purchased from the Jackson Laboratory. Chimeric mice model was
61 generated by transferring 2.5×10^6 bone marrow (BM) cells isolated from *Cd2*^{iCre}*Cpt2*^{f/f} or
62 *Cpt2*^{f/f} (wild type, WT) depleted T cells, mixed with 2.5×10^6 BM cells from B6.CD45.1 mice
63 into *Rag1*^{-/-} mice. After 4 weeks, mice were immunized intraperitoneally with NP-OVA/Alum.
64 Mice were maintained under pathogen-free conditions and were treated in accordance with the
65 guidelines of the Department of Comparative Medicine of Mayo Clinic with approval from the
66 Institutional Animal Care and Use Committee (IACUC).

67 Preparation for NP-OVA/Alum immunization by mixing 100 µg NP-OVA (BioSearch
68 Technologies) and 10% KAL(SO₄)₂ (Sigma) dissolved in PBS at a ratio of 1:1, together with 10

69 μ g LPS (Sigma-Aldrich) at pH 7. For TNP-LPS immunization, 50 μ g of TNP-LPS (Biosearch
70 Technologies) was dissolved in 200 μ l PBS and administered to each mouse via intraperitoneal
71 injection.

72 **Influenza Virus Infection**

73 For influenza virus infection, influenza A/PR8 strain (60 pfu/mouse) were diluted in FBS-free
74 DMEM media on ice and inoculated in anesthetized mice through intranasal route. Sera were
75 collected before and two weeks after infection for fatty acid component measurement. The
76 mediastinal lymph nodes and spleens were harvested and analyzed for germinal center B cell and
77 plasmablast formation and follicular helper T differentiation.

78 **Immune cell purification and culture**

79 Mouse B cells were isolated from spleen single cell suspension using Mouse B Cell Isolation Kit
80 (StemCell Technologies). B cells were cultured in RPMI 1640 (Corning) containing 10% FBS
81 (Gibco), 10 mM HEPES (Gibco), Penicillin Streptomycin Glutamine mixed solution (Gibco) and
82 50 μ M 2-Mercaptoethanol (Sigma-Aldrich), stimulated with 10 μ g/mL LPS (Sigma-Aldrich), 10
83 ng/mL recombinant IL-4 (Tonbo Bioscience) and 20 ng/mL recombinant BAFF (Biolegend). B
84 cells were activated with 2.5 μ M TLR ligand CpG (InvivoGen), 10 ng/mL recombinant IL-4 and
85 10 ng/mL IL-5 (Tonbo Bioscience). B cells were treated with or without SSI-4 (gift from John A.
86 Copland, III, Mayo Clinic, Florida, USA) or Oleic Acid-Albumin from bovine serum (Sigma-
87 Aldrich) or Thioridazine (Cayman chemical). B cell proliferation was measured by dilution of
88 CellTrace Violet proliferation dye (Life Technologies).

89 **Real-time PCR**

90 For mRNA analysis, total mRNA was extracted from mouse B cells by RNeasy Micro kit
91 (QIAGEN) and converted to cDNA by using PrimeScript RT Master Mix (Takara), following the

92 manufacturer's protocols. This was done in preparation for subsequent real-time PCR analysis by
93 using a Takara Realtime PCR system. The following primers were used, *Cpt1a* primers, forward,
94 5'-CTCCGCCTGAGGCCATGAAG-3', reverse, 5'-CACCAGTGATGATGCCATTCT-3'; *Cpt1b*
95 primers, forward, 5'- GCACACCAGGCAGTAGCTTT-3', reverse, 5'-
96 CAGGAGTTGATTCCAGACAGGTA-3'; *Cpt2* primers, forward, 5'-
97 GGATTTGAGAACGGCATTGG-3', reverse, 5'-TTAAAACGACAGAGTCTCGAGC-3'. β -
98 actin expression was used as control.

99 **Metabolic Assays**

100 The bioenergetic activities were measured using a Seahorse XFe96 Extracellular Flux Analyser
101 following established protocols (Agilent). Briefly, about 300,000 B cells were seeded per well on
102 Cell-Tak (Corning) coated XFe96 plate with fresh XF media (Seahorse XF RPMI medium
103 containing 10 mM glucose, 2 mM L-glutamine, and 1 mM sodium pyruvate, PH 7.4; all reagents
104 from Agilent). Oxygen consumption rates (OCR) were measured in the presence of Oligomycin
105 (1.5 μ M; Sigma-Aldrich), FCCP (1.5 μ M; Sigma-Aldrich), and Rotenone (1 μ M; Sigma-
106 Aldrich)/ Antimycin A (1 μ M; Sigma-Aldrich) in Mito Stress assay.

107 **Flow Cytometry**

108 Single-cell suspension from spleens, peripheral lymph nodes, thymus, bone marrow or Payer's
109 patches or mediastinal lymph nodes were prepared in PBS containing 2% (w/v) FBS on ice. For
110 analysis of surface markers, cells were stained in PBS containing 1% (w/v) BSA on ice for 30
111 min, with BV605-labelled B220 (clone: RA3-6B2; BioLegend), APC-labelled anti-CD43 (clone:
112 53-6.7; BD), Percp-cy5.5 -labelled anti-CD19 (clone: 1D3; Tonbo), PE-Cy7-labelled anti-CD21
113 (clone: IM7; BioLegend), FITC-labelled anti-CD23 (clone: B3B4; BioLegend), Alexa Fluor647-
114 labelled anti-CD95/Fas (clone: Jo2; BD Biosciences), Pacific Blue-labelled anti-GL7 (clone:

115 GL7; BioLegend), APC-Cy7-labelled TCR β (clone: H57-597; BioLegend), BV605-labelled anti-
116 CD4 (clone: RM4-5; BioLegend), PE-labelled anti-CD8 (clone: 53-6.7; BioLegend), FITC-
117 labelled anti-IgG1 (clone: RMG1-1; BioLegend), BV711-labelled anti-CD138 (clone: PC61;
118 BioLegend), APC/Cy7-labelled anti-IgD (clone: 11-26c.2a; BioLegend), APC-labelled anti-
119 ICOS (clone: 7E.17G9; BD Biosciences), PE-Cy7-labelled anti PD-1 (clone: RMPI-30;
120 BioLegend), BV605-labelled anti-CD25 (clone: 281-2; BioLegend), PE-Cy7-labelled anti-CD24
121 (clone: M1/69; BioLegend), BV711 -labelled anti-CD44 (clone: IM7; BioLegend). Cell viability
122 was stained using the Ghost Dye Violet 510 (Cytek). CXCR5 was stained with biotinylated anti-
123 CXCR5 (clone: 2G8, BD Biosciences) followed by staining with streptavidin-conjugated PE
124 (BD Biosciences). Transcriptional factors FoxP3 (clone: FJK-16 s; eBioscience) was stained
125 using the Transcription Factor Buffer Set (True-Nuclear, BioLegend). Flow cytometry was
126 performed on the Attune NxT (ThermoFisher) cytometer, and analysis was performed using
127 FlowJo software (BD Biosciences).

128 **Mouse Immunoglobulin Isotyping Panel Detection**

129 To detect the concentrations of mouse immunoglobulin isotypes IgG1, IgG2a, IgG2b, IgG3 and
130 total IgM and IgA in sera, we used LEGENDplex mouse immunoglobulin isotyping panel,
131 according to manufacturer's instructions (Biolegend).

132 **ELISA**

133 To measure the levels of NP-specific antibodies in sera, 96-well plates (2596; Costar) were
134 coated with 1 μ g/mL NP23-BSA or NP2-BSA (Biosearch Technologies) in PBS and incubated at
135 4°C overnight. The plates were washed four times using 0.05% Tween 20 in PBS, then blocked
136 with 5% blocking protein (Bio-Rad) for 1.5h at 37°C and washed four times again. Serum
137 samples, serially diluted with 1% BSA, were incubated in the plates for 1.5h at 37°C and then

138 washed eight times. Horseradish peroxidase (HRP)-conjugated detection antibodies for total IgG,
139 IgG1, IgG2c, and IgM (Bethyl Laboratories) were added and incubated at room temperature for
140 1h, followed by eight washes. The reaction was developed with tetramethylbenzidine (TMB)
141 substrate and stopped with 2N H₂SO₄. The absorbance was read at a wavelength of 450 nm.
142 Similar methods were used to detect antibodies specific to the influenza A/PR8 strain (a gift from
143 Dr. Jie Sun, University of Virginia, USA) and TNP-LPS (Biosearch Technologies) in sera.

144 **Mass Spec Based-FAO Activity Assay**

145 FAO activity was measured by monitoring the conversion rate of [U-¹³C]-palmitate to [M+2, 4,
146 6]-labeled ¹³C citrate with GC/MS. In brief, after 48 h activation with LPS/IL-4/Baff, the cells
147 were incubated with 100 mM [U-¹³C]-palmitate-BSA conjugate for overnight. After the
148 incubation, the cells were quickly rinsed in ice-cold PBS and lysed with 80% methanol. The
149 crude lysates were centrifuged to remove debris. The resulting supernatants were dried with
150 nitrogen gas, dissolved in 75 µL DMF, then derivatized with 75 µL N-Methyl-N-(tert-
151 Butyldimethylsilyl) trifluoroacetamide (MTBSTFA)+ 1% tert-Butyldimethylchlorosilane
152 (TBDMCS) (Regis). Samples were incubated at room temperature for 30 minutes and were
153 analyzed using an Agilent 7890B GC coupled to a 5977A mass detector. 3 µL of derivatized
154 sample were injected into an Agilent HP-5ms Ultra Inert column, and the GC oven temperature
155 increased at 15°C/min up to 215°C, followed by 5°C/min up to 260°C, and finally at 25°C/min
156 up to 325°C. The MS was operated in split-less mode with electron impact mode at 70 eV. Mass
157 range of 50-700 was analyzed, recorded at 1,562 mass units/second. Data was analyzed using
158 Agilent MassHunter Workstation Analysis and Agilent MSD ChemStation Data Analysis
159 software. IsoPat2 software was used to adjust for natural abundance as previously performed
160 (18). The extent of isotopic ¹³C labeling in citrate was further divided by percent isotopic

161 enrichment of intracellular [^{13}C]-palmitate to determine the conversion rate of [^{13}C]-
162 palmitate to [M+2, 4, 6]-labeled citrate in cells. Palmitate and citrate were detected by GC-MS as
163 TBDMS derivatives at the following m/z values: palmitate (m/z 313), [^{13}C]-palmitate (m/z
164 329), and citrate (m/z 459-465).

165 **Statistical Analysis**

166 Statistical analysis was performed using GraphPad Prism (version 9). Comparisons between two
167 groups were examined using a two-tailed Student's t-test. One-way ANOVA or two-way ANOVA
168 was performed for comparisons involving more than three groups. A p-value < 0.05 was
169 considered statistically significant.

170

171

172

173

174

175

176

177

178

179

180

181

182

183 **RESULTS**

184 **The absence of CPT2 does not substantially impact the development or homeostasis of B**
185 **and T cells¹**

186 To study the function of CPT2 in adaptive immunity, we crossed a floxed *Cpt2* allele with *Cd2-*
187 *iCre* transgenic mice to generate *Cd2^{iCre}Cpt2^{fl/fl}* mice, in which *Cpt2* is efficiently deleted in
188 lymphocyte lineages (19, 20). Quantitative Real-time PCR confirmed that *Cpt2* was efficiently
189 ablated in B cells from *Cd2^{iCre}Cpt2^{fl/fl}* mice, while expression of *Cpt1a* and *Cpt1b* remained
190 normal (Figure 1A). Next, we examined the development of B and T cells. *Cd2^{iCre}Cpt2^{fl/fl}* mice
191 harbored normal percentages and number of B220^{int}CD43⁺ B cell precursors, B220^{int}CD43^{low}
192 pre-B/immature B cells, B220^{hi}CD43^{low} mature B cells, and CD138⁺ plasma cells in the bone
193 marrow (BM) compared to WT mice (Figure 1B, 1C). In the spleen, WT and *Cd2^{iCre}Cpt2^{fl/fl}* mice
194 had equivalent numbers of CD21^{int}CD23⁺ follicular (Fo) and CD21^{hi}CD23^{low} marginal zone
195 (MZ) B cells (Figure 1D). The spontaneous formation of GL7⁺Fas⁺ germinal center (GC) B cells
196 in Peyer's patches was not affected by CPT2 deficiency (Figure 1E). To examine T cell
197 development and homeostasis, we quantified T cells subsets in thymus and spleens. Thymus
198 from *Cd2^{iCre}Cpt2^{fl/fl}* mice had normal percentages of CD4⁻CD8⁻ double negative (DN),
199 CD4⁺CD8⁺ double positive (DP), CD4⁺ and CD8⁺ single positive (SP) cells. Although the
200 absolute number of DP thymocytes was modestly and significantly reduced in KO mice, the
201 number of CD4⁺ and CD8⁺ SP thymocytes were normal, suggesting that CPT2 deficiency
202 reduces DP thymocyte formation but does not affect the final maturation of SP thymocytes
203 (Figure 1F). Consistent with this observation, *Cd2^{iCre}Cpt2^{fl/fl}* mice had normal percentages and
204 numbers of CD4⁺, CD8⁺ T cells, and CD4⁺Foxp3⁺ regulatory T cells (Tregs) in the spleens

205 (Figure 1G). Therefore, these data indicate that CPT2 is largely dispensable for B and T cell
206 development and homeostasis.

207 **CPT2 deficiency reduces fatty acid oxidation and oxidative phosphorylation in B cells**

208 Because CPT2 is obligatory for LCFA to be transported into the mitochondrial matrix for beta-
209 oxidation, we predicted that *Cpt2* deletion would reduce palmitate oxidation in B cells. To this
210 end, we assessed FAO activity in B cells from spleens of WT and *Cd2^{iCre}Cpt2^{fl/fl}* mice by
211 monitoring the conversion rate of [U-¹³C]-palmitate to [M+2, 4, 6]-labeled ¹³C citrate using gas
212 chromatography coupled with mass spectrometry. CPT2 deficiency significantly reduced the [U-
213 ¹³C]-palmitate oxidation rate (Figure 2A), demonstrating that CPT2 is required for efficient
214 LCFA beta-oxidation in B cells. In agreement with this phenotype, CPT2 deficient B cells
215 exhibited modest, but significant, reduction of basal respiration, ATP linked respiration, maximal
216 respiration and spared respiratory capacity measured by Seahorse bioanalyzer compared to WT
217 B cells (Figure 2B). Our previous study showed that monounsaturated fatty acids, such as oleic
218 acid (OA), can promote B cell mitochondrial metabolism (21). To our surprise, OA promoted
219 basal respiration and ATP linked respiration in both WT and CPT2 deficient B cells (Figure 2B).
220 These data indicate that CPT2 is necessary for optimal mitochondrial oxidative phosphorylation,
221 but the respiration boosting effect of exogenous OA is independent of CPT2. In another word,
222 our results indicate that LCFA could improve B cell mitochondrial metabolism without
223 undergoing CPT2-mediated LCFA beta-oxidation.

224 **CPT2 is dispensable for B cell activation and proliferation *in vitro***

225 Next, we sought to determine whether *Cpt2* ablation affected B cell activation *in vitro*. We
226 labeled WT and KO B cells with CellTrace violet (CTV) and stimulated the cells with
227 lipopolysaccharide (LPS)/IL-4/Baff for 3 days. Flow cytometry analysis showed that WT and

228 CPT2 deficient B cells had equivalent CTV dilution, indicating similar cell division (Figure 3A).

229 The inhibitor of stearoyl-CoA desaturase (SCD), SSI-4, strongly suppressed B cell proliferation,

230 which was rectified by exogenous OA in both WT and CPT2 KO B cells (Figure 3A). Similar

231 observation was observed in terms of IgG1 class switch (Figure 3B), suggesting that SCD

232 inhibition might not impact CPT2-mediated FAO. Exogenous OA could enhance IgG1 class

233 switch in WT and CPT2 deficient B cells stimulated with LPS/IL-4/Baff (Figure 3C). Such

234 enhancement was not limited to TLR4 engagement. OA could promote IgG1 expression upon

235 stimulation with toll-like receptor 9 (TLR9) ligand CpG/IL-4/IL-5 in the presence or absence of

236 CPT2, with CPT2 deficient B cells exhibiting even higher IgG1 expression than WT B cells

237 (Figure 3D). FAO could take place in the mitochondria as well as peroxisome (22). Therefore,

238 we hypothesized that peroxisomal FAO may compensate for the loss of CPT2. We treated B cells

239 with thioridazine, a peroxisome inhibitor, and observed that both WT and CPT2 null B cells

240 exhibited reduced proliferation and class switching upon thioridazine treatment (Figure 3E).

241 However, no significant differences were noted between the two groups. Additionally, the

242 exogenous OA rectified the reduced proliferation and IgG1 expression induced by thioridazine

243 treatment in both WT and CPT2 deficient B cells (Figure 3E). Taken together, these data indicate

244 that, first, CPT2 deficiency does not affect B cell proliferation and IgG1 expression *in vitro*;

245 second, the effects of exogenous OA on B cells, with or without SCD inhibitor, are independent

246 of CPT2; lastly, peroxisomal FAO may not compensate for CPT2 deficiency in B cells because

247 WT B cells and CPT2 deficient B cells responded to peroxisome inhibitor, with or without

248 exogenous OA, in a similar manner.

249 ***Cpt2* deletion does not affect NP-OVA immunization induced B cell response *in vivo***

250 Using *Cpt2* targeting shRNA delivered by retrovirus, a previous study has indicated that CPT2
251 was critically required for optimal germinal center (GC) formation in response to hapten 4-
252 hydroxy-3-nitrophenylacetyl (NP) immunization (22). Hence, we hypothesized that
253 *Cd2*^{iCre}*Cpt2*^{f/f} mice would have a reduced GC formation and overall humoral immune
254 responses, which might be reflected by reduced immunoglobulin level at baseline and/or after
255 immune challenges. We first measured the serum immunoglobulin levels at baseline. WT and
256 *Cd2*^{iCre}*Cpt2*^{f/f} mice had equivalent serum concentrations of all immunoglobulin isotypes
257 measured, including IgM, IgG1, IgG2a, IgG2b, IgG3, and IgA (Figure 4A). Then we immunized
258 mice with NP-OVA precipitated in alum. Generation of GC B cells and NP-specific GC B cells
259 were not affected by CPT2 deficiency (Figure 4B, 4C). *Cd2*^{iCre}*Cpt2*^{f/f} mice also exhibited
260 normal plasmablast formation after NP-OVA immunization (Figure 4D). Moreover, *Cpt2*
261 deletion did not affect differentiation of follicular helper T (Tfh) cells (Figure 4E). Consistent
262 with the normal GC and plasmablast formation, the production of all affinity (anti-NP23) and
263 low affinity (anti-NP2) immunoglobulins was not significantly altered in *Cd2*^{iCre}*Cpt2*^{f/f} mice
264 (Figure 4F). Thus, our data indicates that CPT2 expression in lymphocytes is dispensable for NP-
265 OVA immunization elicited humoral immune responses.

266 **B cell intrinsic CPT2 is dispensable for NP-OVA induced humoral immunity**

267 To address whether B cell intrinsic CPT2 expression is necessary for humoral immunity *in vivo*,
268 we generated mixed chimera mice. We mixed BM cells from WT or *Cd2*^{iCre}*Cpt2*^{f/f} mice with
269 CD45.1 congenic mouse BM cells at a ratio of 1:1. The mixed BM cells were transferred into
270 *Rag1*^{-/-} mice that lack mature T and B cells. In such mixed chimera mice, WT and CPT2
271 deficient B cells would receive help from WT T cells. Ten weeks after BM reconstitution, the
272 chimera mice were immunized with NP-OVA. We observed equivalent GC, NP-specific GC,

273 plasmablast and Tfh formation in the *Cd2^{icre}Cpt2^{fl/fl}* chimera mice relative to WT chimera mice
274 (Figure 5A-5D). The production of NP specific antibodies was also largely normal (Figure 5E).
275 Thus, B cell intrinsic CPT2 expression is not necessary for normal GC and plasmablast
276 formation in response to NP-OVA immunization.

277 **CPT2 is not required for humoral immunity against influenza infection**

278 B cells play a critical role in host defense against influenza infection (23). To evaluate if CPT2
279 expression in lymphocytes contributes to anti-viral humoral immunity, we infected WT and
280 *Cd2^{icre}Cpt2^{fl/fl}* mice with H1N1 influenza A virus intranasally. *Cd2^{icre}Cpt2^{fl/fl}* mice showed a
281 similar weight decrease as WT after influenza infection (Figure 6A). We examined GC and
282 plasmablast formation in spleens and mediastinal lymph nodes (Figure 6B, 6C) and found
283 equivalent responses between WT and *Cd2^{icre}Cpt2^{fl/fl}* mice. Tfh cells also differentiated normally
284 in the absence of Cpt2 (Figure 6D). Finally, deletion of *Cpt2* did not affect the production of
285 antibodies against influenza (Figure 6E). Therefore, CPT2 is dispensable for humoral immunity
286 upon respiratory viral infection.

287 **CPT2 deficiency does not impair the immune response to TNP-LPS immunization**

288 B cells can respond to thymus-dependent (TD) antigens, including NP-OVA and influenza virus,
289 and thymus-independent (TI) antigens, such as TNP-LPS. Our data so far indicate that CPT2 is
290 dispensable for humoral immune response to TD antigens. We next tested whether CPT2
291 deficiency affected TI response by immunizing WT and *Cd2^{icre}Cpt2^{fl/fl}* mice with TNP-LPS. We
292 found that CPT2 deficiency did not affect plasmablast formation (Figure 7A) or B cell activation
293 measured by GL7 and IgD expression (Figure 7B). Importantly, *Cd2^{icre}Cpt2^{fl/fl}* mice produced
294 the same level of anti-TNP IgM and IgG antibodies as WT mice did (Figure 7C). Therefore, our
295 data indicates that CPT2 is dispensable for humoral responses to TI antigen TNP-LPS.

296 **DISCUSSION**

297 Metabolic plasticity is characteristic of immune cells. Recent stable isotope tracing experiments
298 have demonstrated that T cells can utilize glucose, lactose, glutamine and acetate to fuel their
299 biosynthetic and bioenergetic needs (24-27). Fatty acid is a major energy source. LCFA beta-
300 oxidation in mitochondrial has been shown to be critical for the generation and maintenance of
301 memory T cells, Tregs and GC B cells, as well as NK cell effector function (17, 22, 28, 29). Yet,
302 contradictory findings have been presented because genetic ablation of CPT1A does not affect
303 the differentiation of memory T cells and Tregs (16). Thus, it remains contentious whether LCFA
304 beta-oxidation is critically required for lymphocyte differentiation and function. Our study was
305 undertaken to provide a definitive answer to the dependency of CPT mediated LCFA beta-
306 oxidation for humoral immunity.

307 Using a mouse line with lymphocyte specific deletion of CPT2, the obligatory enzyme that
308 mediates LCFA transfer across the mitochondrial inner membrane for beta-oxidation, we
309 demonstrated that CPT2 is necessary for optimal LCFA oxidation and mitochondrial metabolism
310 in B cells. Yet, despite highly reduced LCFA beta-oxidation, B cell activation and proliferation *in*
311 *vitro* and humoral immune responses towards both TD and TI antigens, including GC and
312 plasmablast formation, and antibody production, were not significantly affected by CPT2
313 deficiency *in vivo*. Thus, our data indicate that CPT2 mediated LCFA beta-oxidation is largely
314 dispensable for humoral immunity. It is currently unclear why our data contradict the earlier
315 study, which showed a reduced GC formation when *Cpt2* was knockdown in B cells (22). There
316 are several potential explanations for such divergent observations. First, different gene targeting
317 approaches were utilized, Cre-Loxp mediated genetic deletion in our study versus retroviral
318 introduction of *Cpt2* targeting ShRNA in the prior work. Second, different B cell responses were

319 evaluated, polyclonal reaction in our study versus monoclonal reaction with B1-8 transgenic B
320 cells in the prior work. Nevertheless, because we did not detect any significant changes in terms
321 of antibody production, it seems unlikely that CPT2 ablation has a substantial impact on humoral
322 immunity. Therefore, our data suggest that other energy sources could fully compensate for the
323 loss of LCFA beta-oxidation for B cell response *in vivo*, again highlighting the metabolic
324 flexibility of B cells. It remains to be seen whether CPT2 is required for the differentiation of
325 memory B cells in future studies.

326 Fatty acids and their derivatives can in theory affect immune cells through mechanisms other
327 than mitochondrial beta-oxidation. For example, they are an integral part of cellular and
328 organelle membranes (30). Monounsaturated fatty acids can help control endoplasmic reticulum
329 stress (21, 31). Finally, LCFA can be oxidized in peroxisomes independent of CPT2 (22, 32). Our
330 data indicated that peroxisomal oxidation likely does not compensate for the loss of CPT2.
331 Therefore, our results suggest that loss of LCFA beta-oxidation can be fully compensated by
332 hitherto undefined mechanisms in B cells, which warrant further investigation.

333

334 **ACKNOWLEDGEMENTS**

335 We thank Dr. Jie Sun for sharing research reagents. We acknowledge the Microscopy and Cell
336 Analysis Core facility at Mayo Clinic Rochester. We acknowledge the NIH (grants R01 AI
337 162678 and R01 AR077518) for supporting this work in H.Z.'s laboratory, and R01 CA225680
338 to T.H.'s laboratory.

339

340 **AUTHOR CONTRIBUTIONS**

341 M.L. and H.Z. conceived the project, designed the research, interpreted the data and wrote the
342 manuscript. M.L. and X.Z. prepared the materials and carried out the experiments. X.X.Z.
343 performed the influenza infection. Yanfeng Li managed the mouse colony and performed the
344 molecular biology experiments. Yuzhen Li provided research material. T.H. performed the stable
345 isotope labeled FAO assay.

346

347 **DECLARATION OF INTERESTS**

348 The authors declare no conflict of interests.

349

350 **REFERENCE**

- 351 1. Allman, D., J. R. Wilmore, and B. T. Gaudette. 2019. The continuing story of T-cell
352 independent antibodies. *Immunol Rev.* 288: 128-135.
- 353 2. Rawlings, D. J., M. A. Schwartz, S. W. Jackson, and A. Meyer-Bahlburg. 2012. Integration of
354 B cell responses through Toll-like receptors and antigen receptors. *Nat Rev Immunol.* 12: 282-
355 294.
- 356 3. Victora, G. D., and M. C. Nussenzweig. 2022. Germinal Centers. *Annu Rev Immunol.* 40: 413-
357 442.
- 358 4. Boothby, M., and R. C. Rickert. 2017. Metabolic Regulation of the Immune Humoral
359 Response. *Immunity.* 46: 743-755.
- 360 5. Caro-Maldonado, A., R. Wang, A. G. Nichols, M. Kuraoka, S. Milasta, L. D. Sun, A. L. Gavin,
361 E. D. Abel, G. Kelsoe, D. R. Green, and J. C. Rathmell. 2014. Metabolic reprogramming is

362 required for antibody production that is suppressed in anergic but exaggerated in chronically
363 BAFF-exposed B cells. *J Immunol.* 192: 3626-3636.

364 6. Xiao, G., L. N. Chan, L. Klemm, D. Braas, Z. Chen, H. Geng, Q. C. Zhang, A. Aghajanirefah,
365 K. N. Cosgun, T. Sadras, J. Lee, T. Mirzapoiazova, R. Salgia, T. Ernst, A. Hochhaus, H. Jumaa,
366 X. Jiang, D. M. Weinstock, T. G. Graeber, and M. Muschen. 2018. B-Cell-Specific Diversion of
367 Glucose Carbon Utilization Reveals a Unique Vulnerability in B Cell Malignancies. *Cell.* 173:
368 470-484 e418.

369 7. Sharma, R., R. M. Smolkin, P. Chowdhury, K. C. Fernandez, Y. Kim, M. Cols, W. Alread, W.
370 F. Yen, W. Hu, Z. M. Wang, S. Violante, R. Chaligne, M. O. Li, J. R. Cross, and J. Chaudhuri.
371 2023. Distinct metabolic requirements regulate B cell activation and germinal center responses.
372 *Nat Immunol.* 24: 1358-1369.

373 8. Brookens, S. K., S. H. Cho, Y. Paik, K. Meyer, A. L. Raybuck, C. Park, D. L. Greenwood, J.
374 C. Rathmell, and M. R. Boothby. 2024. Plasma Cell Differentiation, Antibody Quality, and Initial
375 Germinal Center B Cell Population Depend on Glucose Influx Rate. *J Immunol.* 212: 43-56.

376 9. Akkaya, M., J. Traba, A. S. Roesler, P. Miozzo, B. Akkaya, B. P. Theall, H. Sohn, M. Pena, M.
377 Smelkinson, J. Kabat, E. Dahlstrom, D. W. Dorward, J. Skinner, M. N. Sack, and S. K. Pierce.
378 2018. Second signals rescue B cells from activation-induced mitochondrial dysfunction and
379 death. *Nat Immunol.* 19: 871-884.

380 10. Urbanczyk, S., O. R. Baris, J. Hofmann, R. V. Taudte, N. Guegen, F. Golombek, K.
381 Castiglione, X. Meng, A. Bozec, J. Thomas, L. Weckwerth, D. Mougiakakos, S. R. Schulz, W.
382 Schuh, U. Schlotzer-Schrehardt, T. D. Steinmetz, S. Brodesser, R. J. Wiesner, and D. Mielenz.

383 2022. Mitochondrial respiration in B lymphocytes is essential for humoral immunity by
384 controlling the flux of the TCA cycle. *Cell Rep.* 39: 110912.

385 11. Yazicioglu, Y. F., E. Marin, C. Sandhu, S. Galiani, I. G. A. Raza, M. Ali, B. Kronsteiner, E. B.
386 Compeer, M. Attar, S. J. Dunachie, M. L. Dustin, and A. J. Clarke. 2023. Dynamic mitochondrial
387 transcription and translation in B cells control germinal center entry and lymphomagenesis. *Nat
388 Immunol.* 24: 991-1006.

389 12. Zhou, X., X. Zhu, and H. Zeng. 2023. Fatty acid metabolism in adaptive immunity. *FEBS J.*
390 290: 584-599.

391 13. Schoors, S., U. Bruning, R. Missiaen, K. C. Queiroz, G. Borgers, I. Elia, A. Zecchin, A. R.
392 Cantelmo, S. Christen, J. Goveia, W. Heggermont, L. Godde, S. Vinckier, P. P. Van Veldhoven,
393 G. Eelen, L. Schoonjans, H. Gerhardt, M. Dewerchin, M. Baes, K. De Bock, B. Ghesquiere, S. Y.
394 Lunt, S. M. Fendt, and P. Carmeliet. 2015. Fatty acid carbon is essential for dNTP synthesis in
395 endothelial cells. *Nature.* 520: 192-197.

396 14. Lee, J., J. M. Ellis, and M. J. Wolfgang. 2015. Adipose fatty acid oxidation is required for
397 thermogenesis and potentiates oxidative stress-induced inflammation. *Cell Rep.* 10: 266-279.

398 15. Divakaruni, A. S., W. Y. Hsieh, L. Minarrieta, T. N. Duong, K. K. O. Kim, B. R. Desousa, A.
399 Y. Andreyev, C. E. Bowman, K. Caradonna, B. P. Dranka, D. A. Ferrick, M. Liesa, L. Stiles, G.
400 W. Rogers, D. Braas, T. P. Ciaraldi, M. J. Wolfgang, T. Sparwasser, L. Berod, S. J. Bensinger,
401 and A. N. Murphy. 2018. Etomoxir Inhibits Macrophage Polarization by Disrupting CoA
402 Homeostasis. *Cell Metab.* 28: 490-503 e497.

403 16. Raud, B., D. G. Roy, A. S. Divakaruni, T. N. Tarasenko, R. Franke, E. H. Ma, B. Samborska,
404 W. Y. Hsieh, A. H. Wong, P. Stuve, C. Arnold-Schrauf, M. Guderian, M. Lochner, S.

405 Rampertaap, K. Romito, J. Monsale, M. Bronstrup, S. J. Bensinger, A. N. Murphy, P. J. McGuire,
406 R. G. Jones, T. Sparwasser, and L. Berod. 2018. Etomoxir Actions on Regulatory and Memory T
407 Cells Are Independent of Cpt1a-Mediated Fatty Acid Oxidation. *Cell Metab.* 28: 504-515 e507.

408 17. Sheppard, S., K. Srpan, W. Lin, M. Lee, R. B. Delconte, M. Owyong, P. Carmeliet, D. M.
409 Davis, J. B. Xavier, K. C. Hsu, and J. C. Sun. 2024. Fatty acid oxidation fuels natural killer cell
410 responses against infection and cancer. *Proc Natl Acad Sci U S A.* 121: e2319254121.

411 18. Kurmi, K., S. Hitosugi, E. K. Wiese, F. Boakye-Agyeman, W. I. Gonsalves, Z. Lou, L. M.
412 Karnitz, M. P. Goetz, and T. Hitosugi. 2018. Carnitine Palmitoyltransferase 1A Has a Lysine
413 Succinyltransferase Activity. *Cell Rep.* 22: 1365-1373.

414 19. de Boer, J., A. Williams, G. Skavdis, N. Harker, M. Coles, M. Tolaini, T. Norton, K.
415 Williams, K. Roderick, A. J. Potocnik, and D. Kioussis. 2003. Transgenic mice with
416 hematopoietic and lymphoid specific expression of Cre. *Eur J Immunol.* 33: 314-325.

417 20. Siegemund, S., J. Shepherd, C. Xiao, and K. Sauer. 2015. hCD2-iCre and Vav-iCre mediated
418 gene recombination patterns in murine hematopoietic cells. *PLoS One.* 10: e0124661.

419 21. Zhou, X., X. Zhu, C. Li, Y. Li, Z. Ye, V. S. Shapiro, J. A. Copland, 3rd, T. Hitosugi, D. A.
420 Bernlohr, J. Sun, and H. Zeng. 2021. Stearoyl-CoA Desaturase-Mediated Monounsaturated Fatty
421 Acid Availability Supports Humoral Immunity. *Cell Rep.* 34: 108601.

422 22. Weisel, F. J., S. J. Mullett, R. A. Elsner, A. V. Menk, N. Trivedi, W. Luo, D. Wikenheiser, W.
423 F. Hawse, M. Chikina, S. Smita, L. J. Conter, S. M. Joachim, S. G. Wendell, M. J. Jurczak, T. H.
424 Winkler, G. M. Delgoffe, and M. J. Shlomchik. 2020. Germinal center B cells selectively oxidize
425 fatty acids for energy while conducting minimal glycolysis. *Nat Immunol.* 21: 331-342.

426 23. Rangel-Moreno, J., D. M. Carragher, R. S. Misra, K. Kusser, L. Hartson, A. Moquin, F. E.
427 Lund, and T. D. Randall. 2008. B cells promote resistance to heterosubtypic strains of influenza
428 via multiple mechanisms. *J Immunol.* 180: 454-463.

429 24. Kaymak, I., K. M. Luda, L. R. Duimstra, E. H. Ma, J. Longo, M. S. Dahabieh, B. Faubert, B.
430 M. Oswald, M. J. Watson, S. M. Kitchen-Goosen, L. M. DeCamp, S. E. Compton, Z. Fu, R. J.
431 DeBerardinis, K. S. Williams, R. D. Sheldon, and R. G. Jones. 2022. Carbon source availability
432 drives nutrient utilization in CD8(+) T cells. *Cell Metab.* 34: 1298-1311 e1296.

433 25. Blagih, J., F. Coulombe, E. E. Vincent, F. Dupuy, G. Galicia-Vazquez, E. Yurchenko, T. C.
434 Raissi, G. J. van der Windt, B. Viollet, E. L. Pearce, J. Pelletier, C. A. Piccirillo, C. M.
435 Krawczyk, M. Divangahi, and R. G. Jones. 2015. The energy sensor AMPK regulates T cell
436 metabolic adaptation and effector responses in vivo. *Immunity.* 42: 41-54.

437 26. Balmer, M. L., E. H. Ma, G. R. Bantug, J. Grahlert, S. Pfister, T. Glatter, A. Jauch, S.
438 Dimeloe, E. Slack, P. Dehio, M. A. Krzyzaniak, C. G. King, A. V. Burgener, M. Fischer, L.
439 Develioglu, R. Belle, M. Recher, W. V. Bonilla, A. J. Macpherson, S. Hapfelmeier, R. G. Jones,
440 and C. Hess. 2016. Memory CD8(+) T Cells Require Increased Concentrations of Acetate
441 Induced by Stress for Optimal Function. *Immunity.* 44: 1312-1324.

442 27. Macintyre, A. N., V. A. Gerriets, A. G. Nichols, R. D. Michalek, M. C. Rudolph, D.
443 Deoliveira, S. M. Anderson, E. D. Abel, B. J. Chen, L. P. Hale, and J. C. Rathmell. 2014. The
444 glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function.
445 *Cell Metab.* 20: 61-72.

446 28. Michalek, R. D., V. A. Gerriets, S. R. Jacobs, A. N. Macintyre, N. J. MacIver, E. F. Mason, S.
447 A. Sullivan, A. G. Nichols, and J. C. Rathmell. 2011. Cutting edge: distinct glycolytic and lipid

448 oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. *J*
449 *Immunol.* 186: 3299-3303.

450 29. van der Windt, G. J., B. Everts, C. H. Chang, J. D. Curtis, T. C. Freitas, E. Amiel, E. J.
451 Pearce, and E. L. Pearce. 2012. Mitochondrial respiratory capacity is a critical regulator of CD8+
452 T cell memory development. *Immunity*. 36: 68-78.

453 30. de Carvalho, C., and M. J. Caramujo. 2018. The Various Roles of Fatty Acids. *Molecules*. 23.

454 31. Wei, Y., D. Wang, F. Topczewski, and M. J. Pagliassotti. 2006. Saturated fatty acids induce
455 endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. *Am J*
456 *Physiol Endocrinol Metab.* 291: E275-281.

457 32. Reddy, J. K., and T. Hashimoto. 2001. Peroxisomal beta-oxidation and peroxisome
458 proliferator-activated receptor alpha: an adaptive metabolic system. *Annu Rev Nutr.* 21: 193-230.

459

460 **FIGURE LEGENDS**

461 **FIGURE 1. *Cd2*^{iCre}*Cpt2*^{fl/fl} mice have largely normal B and T cell development
462 and homeostasis.**

463 (A) Real-time PCR analysis of *Cpt2*, *Cpt1a* and *Cpt1b* from B cells isolated from spleens. The
464 expression level of *Cpt2* in WT mice was used as an internal control for RNAs. (B) Left, the
465 expression of B220 and CD43 among BM cells analyzed by flow cytometry. Right, the
466 frequency (left) and absolute number (right) of B220^{hi}CD43^{low}, B220^{int}CD43^{low} and
467 B220^{int}CD43⁺ cell populations. (C) Left, the expression of B220 and CD138 among BM cells
468 analyzed by flow cytometry. Right, the frequency of CD138⁺ populations. (D) Left, flow

469 cytometry analysis of Fo (CD21^{low}CD23⁺), MZ (CD21^{hi}CD23⁻) cells among B220⁺CD19⁺
470 population from spleens. Right, the frequency (left) and absolute number (right) of Fo and MZ
471 cell populations. (E) Left, flow cytometry analysis of GC (GL7⁺Fas⁺) among TCR β ⁻CD19⁺
472 population from Peyer's patches. Right, the frequency (left) and absolute number (right) of GC
473 populations. (F) Left, the expression of CD4 and CD8 among thymus lymphocytes analyzed by
474 flow cytometry. Right, the frequency (left) and absolute number (right) of DN (CD4⁻CD8⁻), DP
475 (CD4⁺CD8⁻), CD4 SP (CD4⁺CD8⁻) and CD8 SP (CD4⁻CD8⁺) cell populations. (G) Left, flow
476 cytometry analysis of CD4, CD8 and Treg cells (B220⁻CD4⁺FoxP3⁺) from spleens. Right, the
477 frequency (left) and absolute number (right) of CD4, CD8 and Treg cells. (A-G) Cells were from
478 WT and *Cd2*^{iCre} *Cpt2*^{fl/fl} mice. *p* values were calculated using two-way ANOVA (A, B, D-G) and
479 Student's t-test (C). ns, not significant; ****p* < 0.001. Data were collected from at least 3 (A-G)
480 independent experiments. Error bars represent SEM.

481 **FIGURE 2. *Cpt2* deficiency leads to a defect in FAO in B cells.**

482 (A) FAO activity was measured by [U-¹³C] palmitate oxidation rate in B cells from WT and
483 *Cd2*^{iCre} *Cpt2*^{fl/fl} mice. (B) Oxygen consumption rate (OCR) was measured using a Seahorse
484 XFe96 analyzer using CpG/IL4/IL5 activated B cells treated with BSA (50 μ M) as control, or
485 OA (100 μ M) for 48 h with MitoStress Test. Right: summary of basal respiration, ATP-linked
486 respiration, max respiration, and spare respiratory capacity. Data are representative of at least
487 three independent experiments. *p* values were calculated using Student's t-test (A-B). ns, not
488 significant, **p* < 0.05, ***p* < 0.01. Error bars represent SEM.

489 **FIGURE 3. *Cpt2* is dispensable for B cell proliferation, survival, and class switch in vitro.**

490 (A) Left, cell proliferation measured by dilution of CellTrace Violet (CTV) dye in B cells from
491 spleens of WT and *Cd2*^{iCre} *Cpt2*^{fl/fl} mice. B cells were stimulated with LPS/IL4/Baff and treated

492 with BSA (50 μ M) as control, or SSI-4 (0.1 μ M), or SSI-4 with OA (50 μ M) for 3 days. Right,
493 summary of cell counts, and proliferation index normalized to WT BSA group. (B) Left, CTV
494 and IgG1 expression on LPS/IL4/Baff activated B cells from WT and *Cd2*^{iCre}*Cpt2*^{f/f} mice. Right,
495 summarized IgG1⁺ percentages normalized to WT BSA group. (C) Left, proliferation and IgG1
496 expression on LPS/IL4/Baff activated B cells from WT and *Cd2*^{iCre}*Cpt2*^{f/f} mice treated with
497 BSA (50 μ M) as control, or OA (100 μ M). Right, IgG1 percentage comparison between two
498 treatments of WT and KO B cells separately. (D) Left, cell proliferation and IgG1 expression on
499 CpG/IL4/IL5 activated B cells from WT and *Cd2*^{iCre}*Cpt2*^{f/f} mice treated with BSA (50 μ M) as
500 control, or OA (100 μ M). Right, summarized IgG1⁺ percentages, and proliferation index
501 normalized to WT BSA group. (E) Left, CTV and IgG1 expression on LPS/IL4/Baff activated B
502 cells from WT and *Cd2*^{iCre}*Cpt2*^{f/f} mice treated with vehicle, thioridazine (2.5 μ M) with or
503 without OA (100 μ M). Right, two formats of summarized proliferation index (above) and IgG1⁺
504 percentages (below) normalized to WT vehicle group. *p* values were calculated using one-way
505 ANOVA (A, B, and D) or unpaired Student t-test (C and E). ns, not significant, **p* < 0.05, ***p* <
506 0.01, ****p* < 0.001, *****p* < 0.0001. Data are representative of at least three (A–E) independent
507 experiments. Error bars represent SEM.

508 **FIGURE 4. *Cpt2* deletion may not affect NP-OVA immunization induced B cell response *in*
509 *vivo*.**

510 (A) The baseline levels of immunoglobulin (Ig) G1, IgG2a, IgG2b, IgG3, IgA and IgM in mouse
511 sera collected from WT and *Cd2*^{iCre}*Cpt2*^{f/f} mice. (B-E) WT and *Cd2*^{iCre}*Cpt2*^{f/f} mice were
512 immunized with NP-OVA and analyzed after 14 days. Left, flow cytometry of GC expression in
513 B220⁺ cells (B), GL7 and NP expression in GC (C), B220^{int}CD138⁺ expression (D), and
514 expression of PD-1 and CXCR5 among CD4⁺ T cells (E) from spleen lymphocytes. Right, the

515 summaries of GC B cells (B), GL7⁺NP⁺ populations (C), B220^{int}CD138⁺ plasmablasts (D), and
516 PD-1⁺CXCR5^{hi} Tfh cells (E). (F) ELISA test of serum anti-NP23 and anti-NP2 immunoglobulins
517 from NP-OVA immunized mice presented as absorbance at 450 nM (A₄₅₀). *p* values were
518 calculated using Student's t test (A–E). ns, not significant. Data are representative of three (B–F)
519 independent experiments. Error bars represent SEM.

520 **FIGURE 5. B cell intrinsic CPT2 expression is not required for humoral immunity *in vivo*.**

521 (A–D) WT and *Cd2*^{iCre}*Cpt2*^{fl/fl} chimera mice were immunized with NP-OVA and analyzed after
522 14 days. Left, flow cytometry of GC expression in B220⁺ cells (A), GL7 and NP expression in
523 GC (B), B220^{int}CD138⁺ expression (C), and expression of PD-1 and CXCR5 among CD4⁺ T
524 cells (D) from spleen lymphocytes. Right, the frequencies of GC B cells (A), GL7⁺NP⁺
525 populations (B), B220^{int}CD138⁺ plasmablasts (C), and PD-1⁺CXCR5^{hi} Tfh cells (D). (E) Serum
526 anti-NP23 and anti-NP2 immunoglobulins from NP-OVA immunized mice were measured by
527 ELISA. *p* values were calculated using Student's t test (A–D). ns, not significant. Data are
528 representative of two (A–E) independent experiments. Error bars represent SEM.

529 **FIGURE 6. *Cpt2* is not required for humoral immunity against influenza infection.**

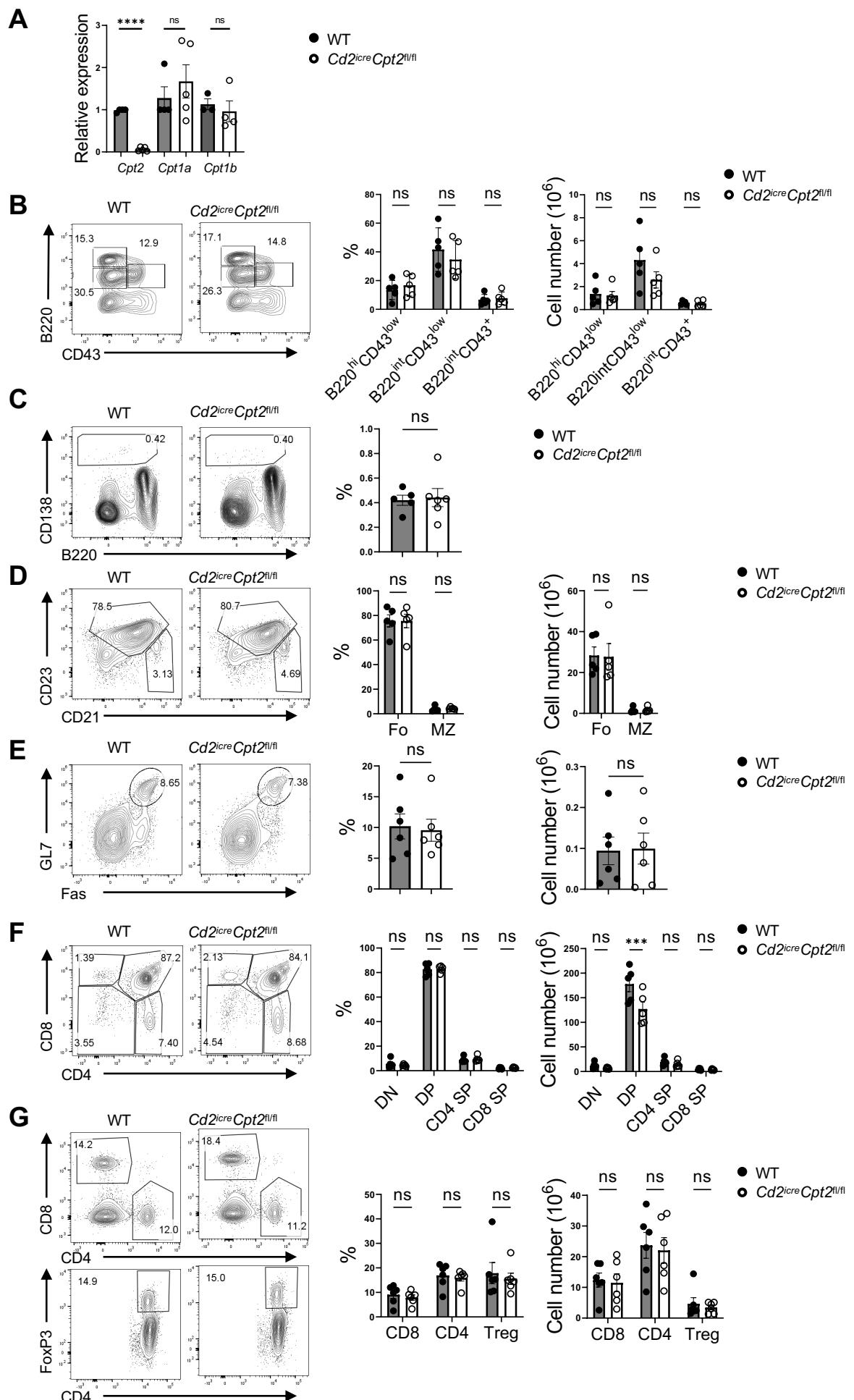
530 (A) Weight change of WT and *Cd2*^{iCre}*Cpt2*^{fl/fl} mice following influenza infection. (B–D) Left,
531 flow cytometry analysis of GC B cells (B), B220^{int}CD138⁺ expression (C), and expression of
532 PD-1 and CXCR5 among CD4⁺ T cells (D) from spleens and mediastinal lymph nodes at day 14
533 following infection. Right, the frequencies of GC B cells (B), B220^{int}CD138⁺ plasmablasts (C),
534 and PD-1⁺CXCR5^{hi} Tfh cells (D). (E) Influenza virus-specific antibodies IgM, IgG1, IgG2c in
535 sera were measured using ELISA. *p* values were calculated using Student's t test (A–E). ns, not
536 significant. Data are representative of two (B–E) independent experiments. Error bars represent
537 SEM.

538 **FIGURE 7. *Cpt2* deletion does not impact the immune response to TNP-LPS immunization.**

539 (A-B) WT and $Cd2^{iCre}$ $Cpt2^{\text{fl/fl}}$ mice were immunized with TNP-LPS and analyzed after 14 days.

540 Left, flow cytometry of $B220^{\text{int}}CD138^+$ expression (A), and expression of GL7 and IgD among

541 $B220^+$ cells (B) from spleen lymphocytes. Right, the frequencies of $B220^{\text{int}}CD138^+$ plasmablasts


542 (A), and GL7⁺IgD⁻ and GL7⁺IgD⁻ cell populations (B). (C) Anti-TNP IgG and IgM in sera

543 measured by ELISA. *p* values were calculated using Student's t test (A–B). ns, not significant.

544 Data are from one (A-C) experiment. Error bars represent SEM.

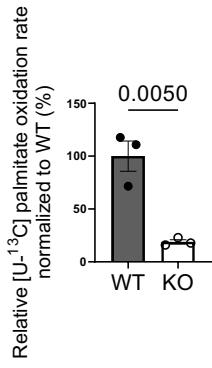

545

Figure 1

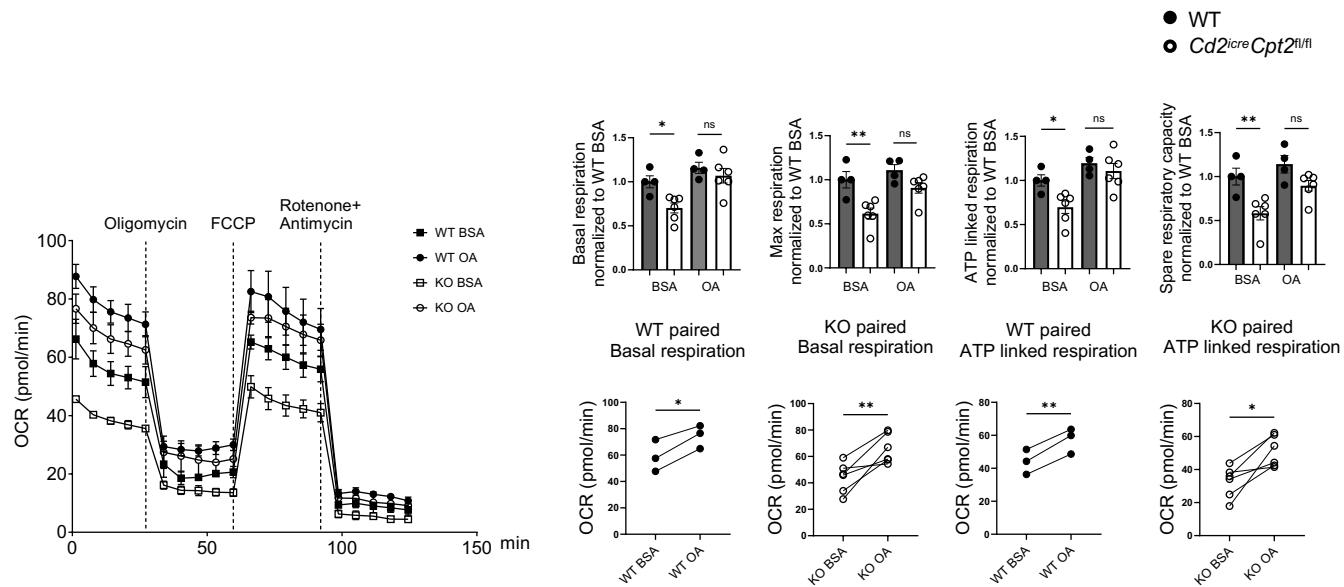
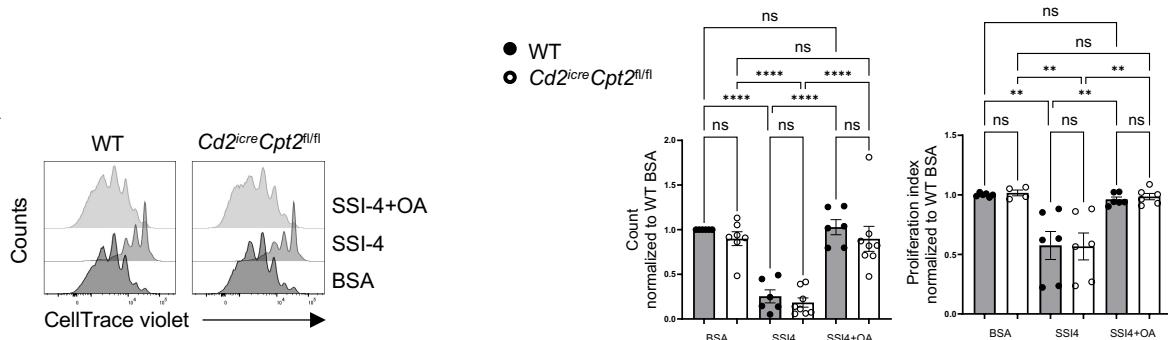


Figure 2

A



B

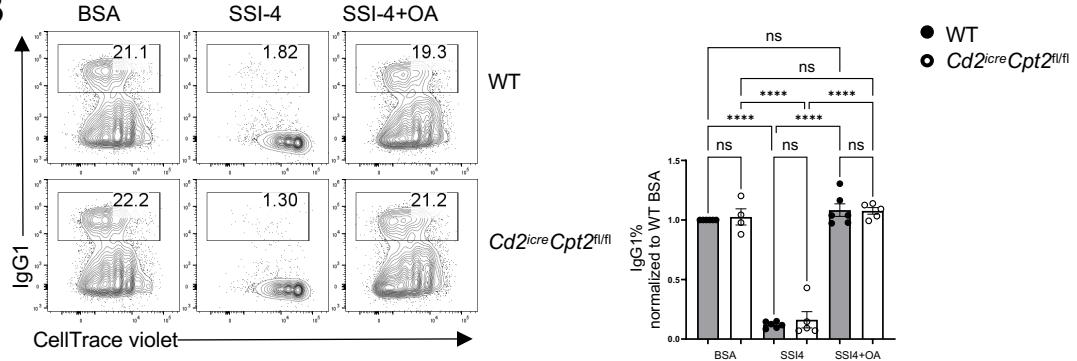
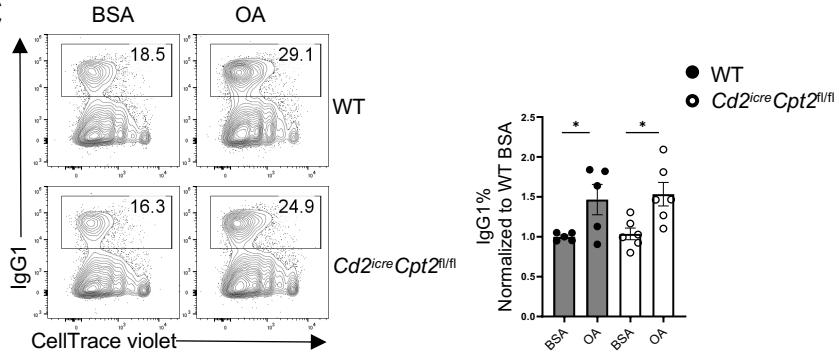
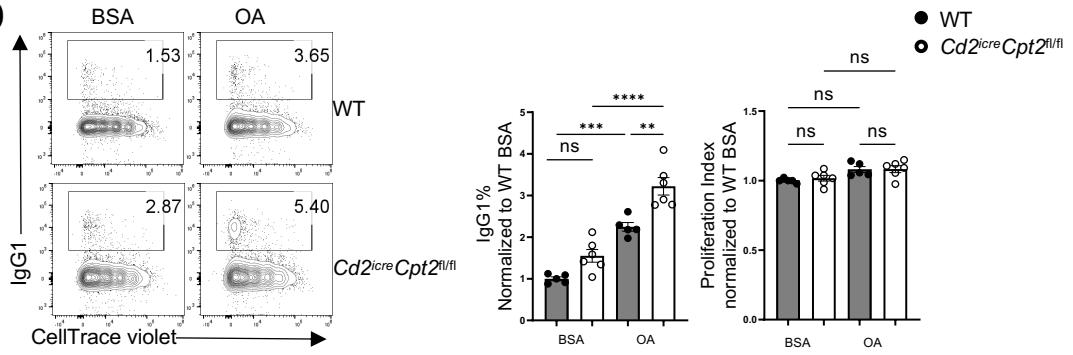
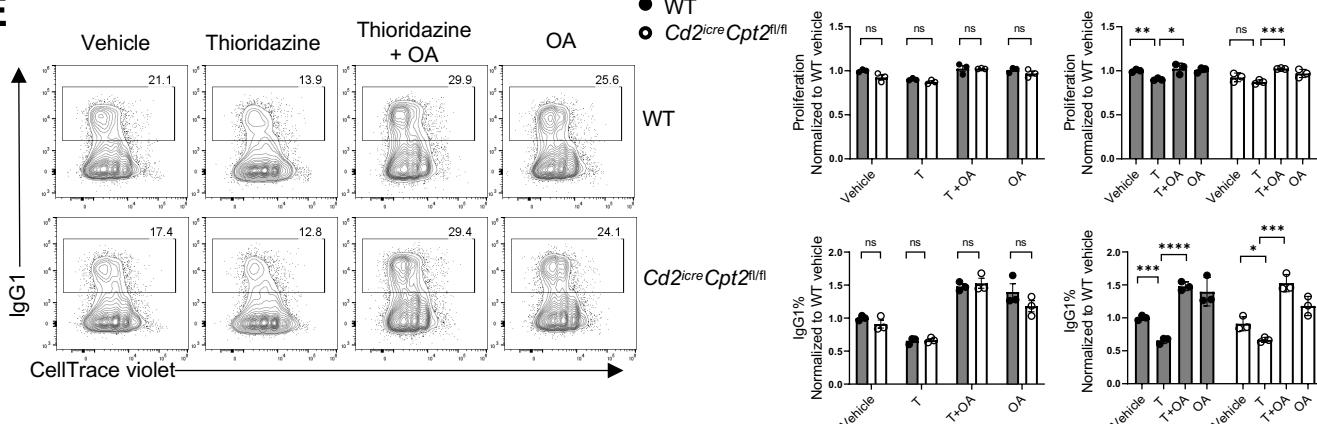


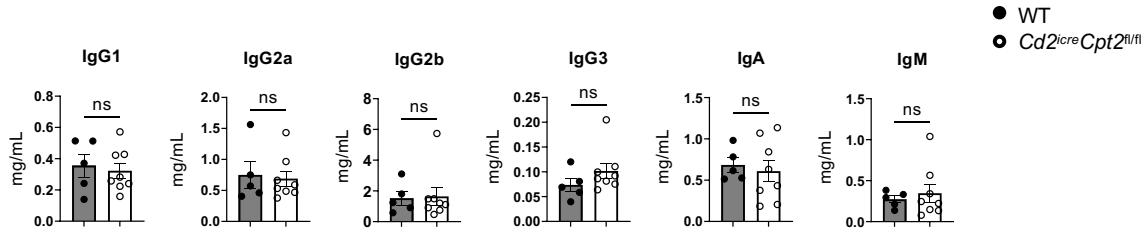
Figure 3


A


B


C

D



E

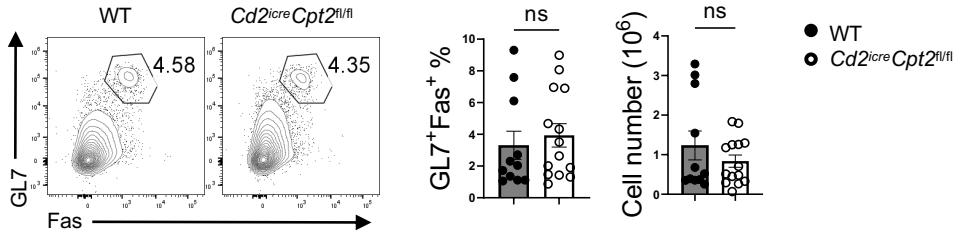
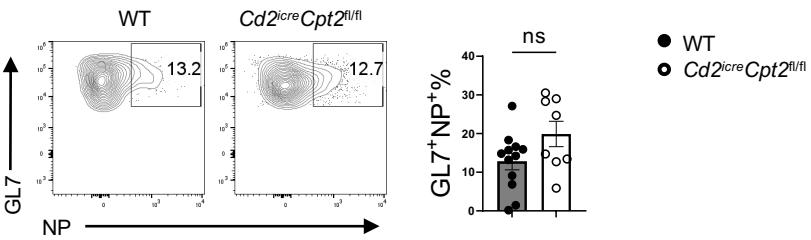
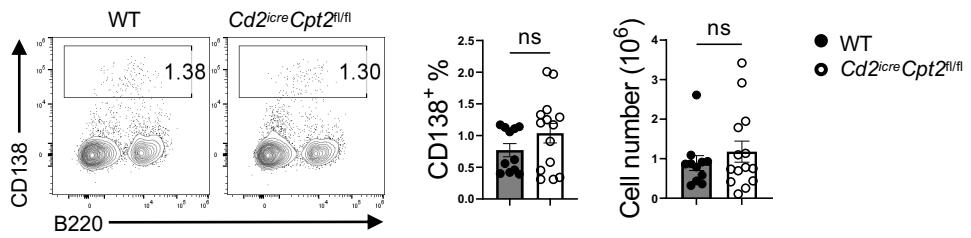
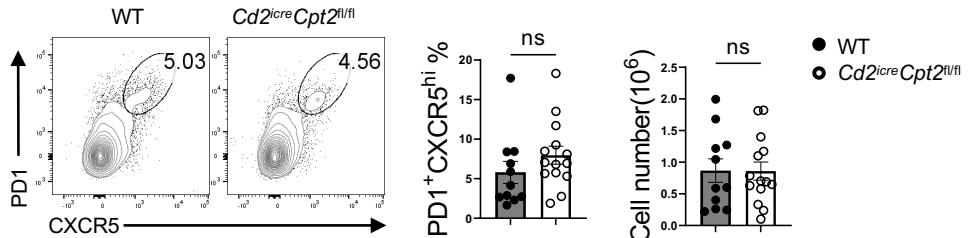
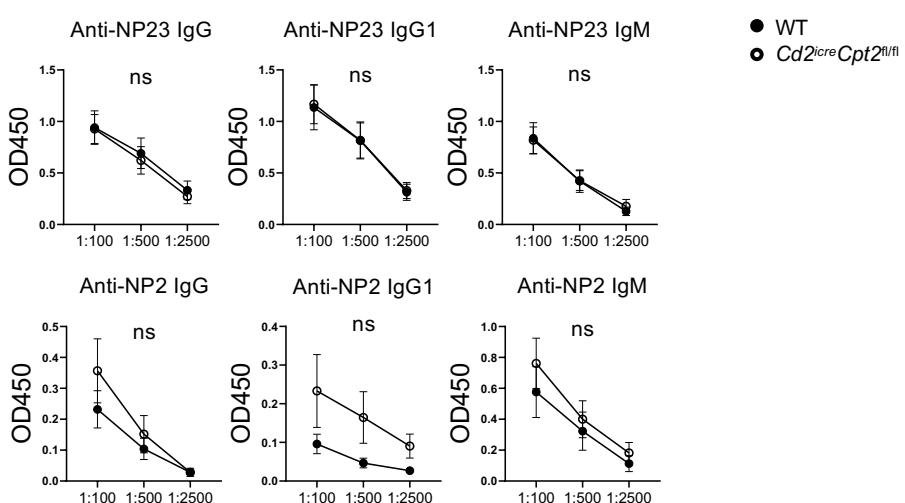


Figure 4

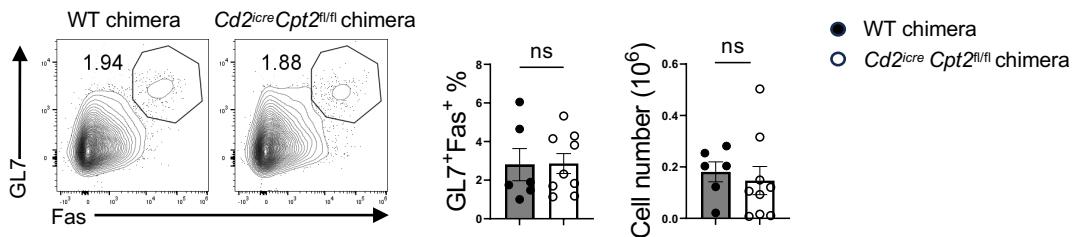

A


B


C


D

E



F

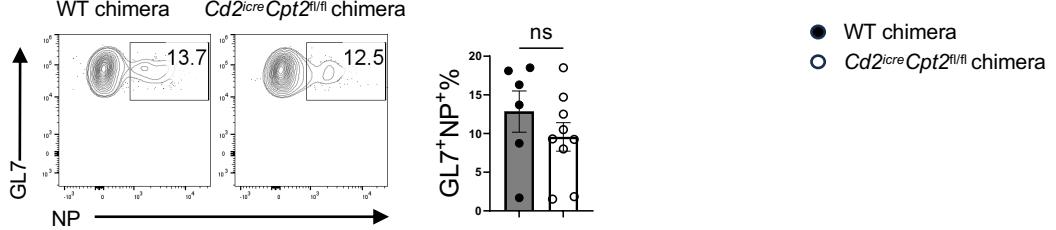
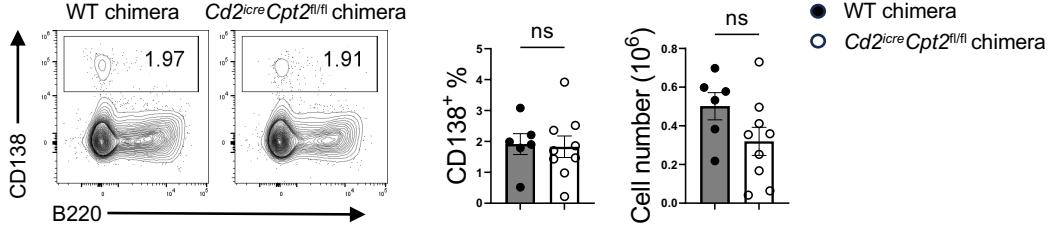
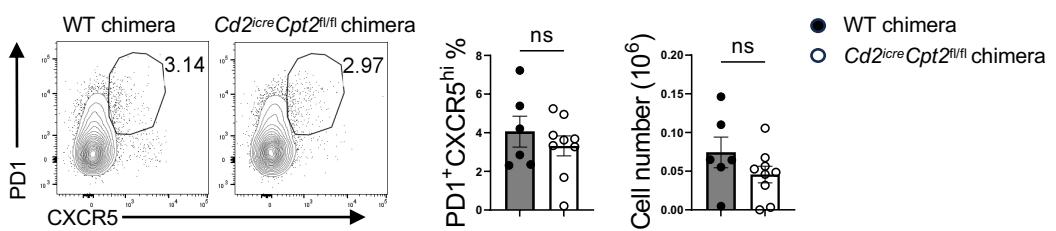
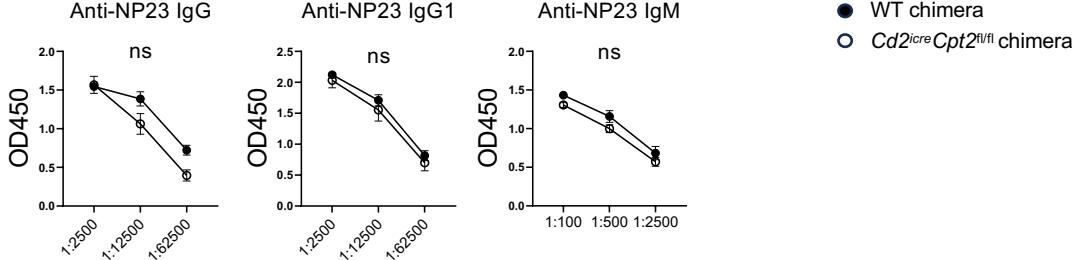
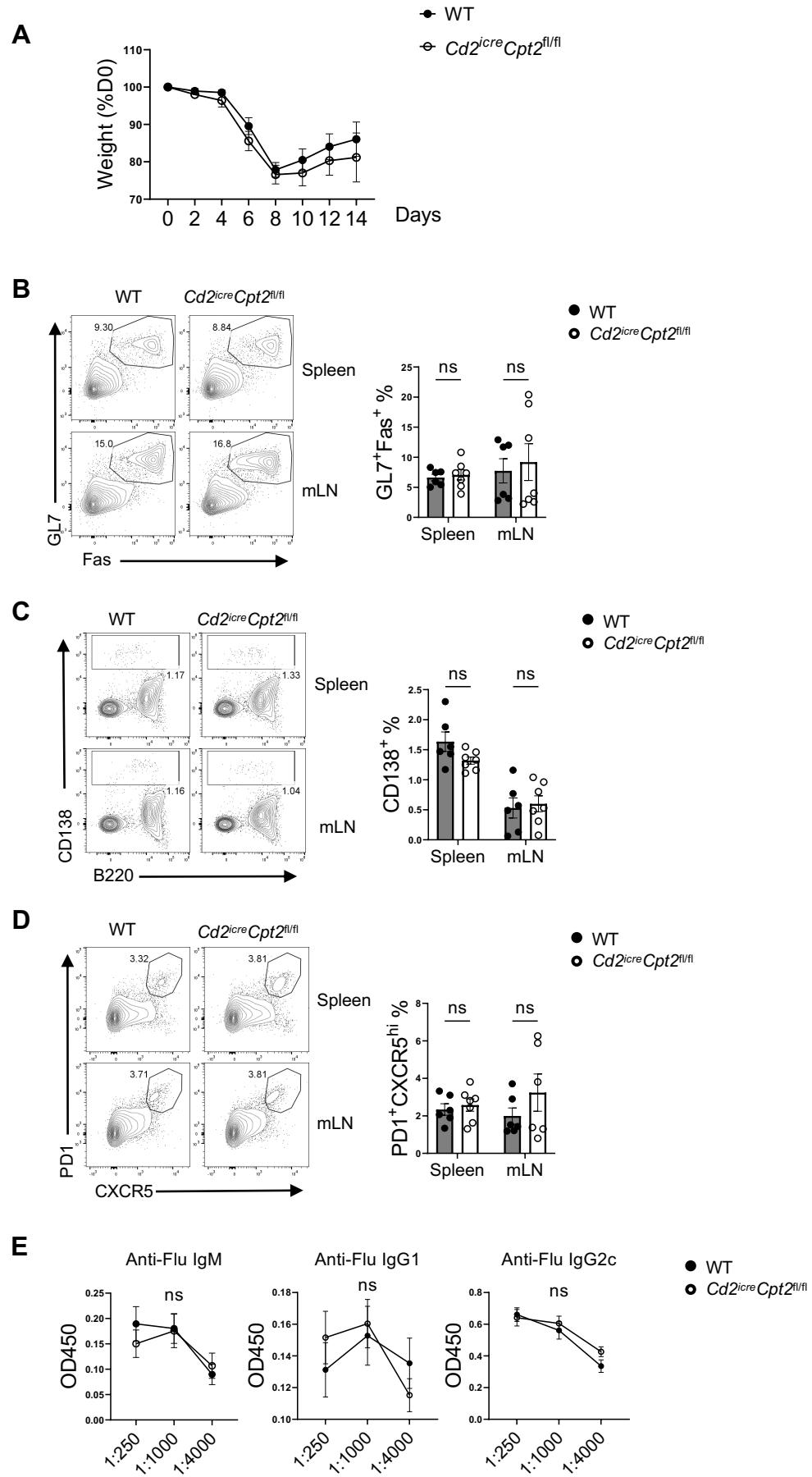


Figure 5


A


B


C


D

E

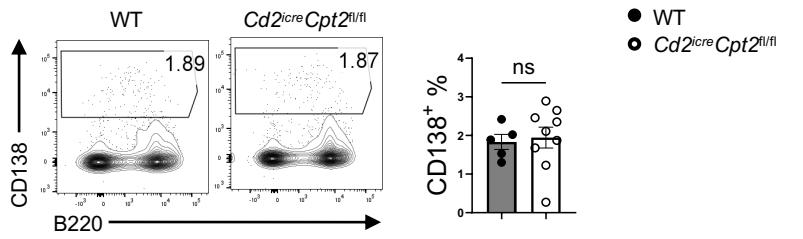


Figure 6

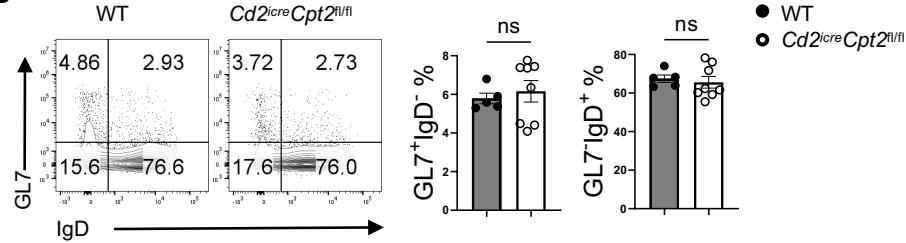
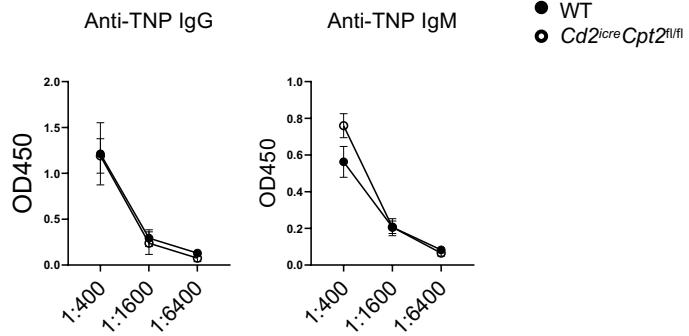


Figure 7


A

B

C

