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Eukaryotes radiated from their last common ancestor, diversifying into several supergroups
with unresolved deep evolutionary connections. Heterotrophic flagellates, often branching
deeply in phylogenetic trees, are arguably the most diverse eukaryotes. However, many of them
remain undersampled and/or incertae sedis. Here, we conducted comprehensive
phylogenomics analyses with an expanded taxon sampling of early-branching protists
including 22 newly sequenced transcriptomes (apusomonads, ancyromonads, Meteora). They
support the monophyly of Opimoda, one of the largest eukaryotic supergroups, with CRuMs
being sister to the Amorphea (amoebozoans, breviates, apusomonads, and opisthokonts —
including animals and fungi-), and the ancyromonads+malawimonads clade. By mapping traits
onto this phylogenetic framework, we infer a biflagellate opimodan ancestor with an excavate-
like feeding groove. Breviates and apusomonads retained the ancestral biflagellate state. Other
Amorphea lost one or both flagella, enabling the evolution of amoeboid shapes, novel feeding
modes, and palintomic cell division resulting in multinucleated cells, which likely facilitated
the subsequent evolution of fungal and metazoan multicellularity.
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Eukaryotes evolved from their prokaryotic ancestors in the early Proterozoicl? and rapidly
diversified into a multitude of lineages from an already complex last eukaryotic common
ancestor (LECA) that possessed all typical traits of extant eukaryotes®. The majority of
eukaryotes comprise hugely diverse unicellular, mostly flagellated and heterotrophic,
protists*®, although much of this diversity remains undescribed, as suggested by environmental
studies®’. Several eukaryotic lineages developed complex multicellularity, such as animals,
fungi, plants and brown algae, and/or acquired photosynthesis though the endosymbiosis of a
cyanobacterium or their algal derivatives*®. Heterotrophic protists are generally phagotrophic,
preying on bacteria or other protists*. Other heterotrophic eukaryotes such as fungi and
oomycetes became osmotrophic, feeding from the absorption of extracellularly digested
organic molecules; several of them evolved into parasites*®. With their diversity of trophic
modes, protists play crucial roles in ecosystem’s networks and the carbon cycle®.

Eukaryotic lineages are currently known to form several large supergroups but their deep
phylogenetic relationships remain unresolved®, as is the root of the eukaryotic treel®. These
uncertainties can be explained by an inherent phylogenetic signal limitation due to a rapid
diversification in a short time span, methodological artefacts linked, among others, to
heterogeneous evolutionary rates, hidden paralogy and horizontal gene transfer, as well as to
patchy sampling across the eukaryotic diversity'*!2. Nonetheless, significant progress has been
achieved in recent years owing to the improvement of phylogenetic methods and to the
generation of genomic and/or transcriptomic data from poorly studied or newly identified
eukaryotes®®. The addition of this diversity has increasingly enlarged, reshaped and
consolidated eukaryotic supergroups. For instance, the long supported Opisthokonta clade,
comprising metazoans, fungi and their unicellular relatives (e.g. choanoflagellates,
ichthyosporeans, nucleariids, aphelids, rozellids)***® was found to form a robust supergroup,
the Amorphea, with classical amoeba (Amoebozoa) plus two groups of flagellated protists
previously considered incertae sedis, the amoeboflagellated Breviatea and the biflagellated
Apusomonadida®®. Opisthokonta and Amoebozoa were previously thought to share a
uniflagellated ancestor!’, and the root of the eukaryotic tree to lie between this Unikonta clade
and the rest of eukaryotes (Bikonta)!®, The latter clustered several lineages sharing a
biflagellate ancestor, including Archaeplastida (glaucophytes, red algae, green algae and
plants) and SAR, composed of Stramenopiles (e.g. oomycetes, diatoms, brown algae),
Alveolata (e.g. dinoflagellates, ciliates) and Rhizaria (e.g. radiolarians, cercozoans).
However, the nested position of apusomonads (represented at the time by the genome of a
single species) within unikonts rejected the idea of a uniflagellated ancestor, and the new names
Opimoda and Diphoda were proposed for those redefined major splits!®. Archaeplastida and
SAR, together with other lineages of unicellular protists, many photosynthetic (cryptophytes,
haptophytes), and their allies (e.g. telonemids, centrohelids, Palpitomonas) often cluster in a
large supergroup called Diaphoretickes?>?!. At the same time, another group of poorly known
protists called CRuMs (collodictyonids, rigifilids, and Mantamonas) appears to branch as sister
to the Amorphea>?2. To complete the global picture, Excavata, once thought to be a major
eukaryotic supergroup characterized by the shared phenotypic feature of a ventral feeding
groove, lacks molecular phylogenetic support and is no longer considered monophyletic, being
split into Discoba (e.g. euglenids, jakobids), Malawimonadida?® and Metamonada (e.g.
trichomonads, Trimastix, Carpediomonas)®*°.
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86 If the inclusion of phylogenomic data for many newly described flagellates has confirmed
87  some eukaryotic supergroups, many lineages of heterotrophic flagellates are yet to find a home
88 in the eukaryotic tree and remain incertae sedis. This is the case of ancyromonads® or
89 malawimonads®, so far not clearly related to any eukaryotic supergroup. Other newly
90  described phylum-level lineages such as Provora®* (including Ancoracysta®)
91 Hemimastigophora?® and Meteora??’ also branch deeply in the eukaryotic tree, although
92 showing some affinity with the Diaphoretickes. In general, many of these difficult-to-place
93  lineages are represented by one or few representative species available in culture. However,
94  they are most likely undersampled and encompass a wider within-group diversity. This can be
95 illustrated by apusomonads?, for which the use of specific 18S rRNA gene primers revealed a
96  broad diversity of these gliding flagellates in freshwater and marine benthos across the globe?®.
97  Getting these tiny predators in culture for further study is challenging for several reasons. They
98  depend on specific bacterial or eukaryotic prey which, in turn, are not necessarily easy to
99 identify and maintain. Also, being higher in the trophic chain, they are in lower abundances in
100  their native ecosystems and, hence, underrepresented in metagenomic data. Likewise,
101 metagenomic studies rarely target sediment samples, where many of these organisms roam.
102 Sediment-dwelling heterotrophic flagellates therefore remain largely understudied despite their
103 long appreciated ecological role as grazers®, and their incorporation to global phylogenetic
104 analyses can help resolving the eukaryotic tree?*?4?’. Here, we generated almost complete
105 transcriptomes of diverse members of the Apusomonadida (14 species) and Ancyromonadida
106 (7 species) that we recently cultured from different marine and freshwater environments3t3?,
107 as well as the type species of Meteora sporadica, which we cultured from Mediterranean
108 samples®. Our phylogenomic analyses with an expanded dataset of early-branching
109  heterotrophic flagellates resolve the internal evolutionary relationships within Apusomonadida
110 and Ancyromonadida and shed new light onto the eukaryotic tree, reinforcing the Opimoda
111 monophyly. The distribution of complex phenotypic traits in this phylogenomic framework,
112 notably the presence and number of flagella, the occurrence of pseudopodia or the
113 karyokinesis-cytokinesis coupling, helps inferring ancestral states and crucial steps that
114 conditioned lifestyles and subsequent major evolutionary trends along the natural history of
115  eukaryotes.

116

117

118 Results and Discussion

119

120  High-quality curated transcriptomes for phylogenomic analysis

121 We considerably enriched the number of available transcriptomic datasets for members of the
122 Apusomonadida?® Karpov & Mylnikov 1989, and Ancyromonadida®® Atkins et al. 2000 by
123 sequencing polyA-containing transcripts of recently cultured species spanning the diversity of
124 these two clades®*2. We also generated transcriptome data for the Mediterranean type strain
125 of Meteora sporadica? (Supplementary Table 1). Since these eukaryotic species were in co-
126 culture with diverse bacteria and sometimes other protists, we established a pipeline
127 (Supplementary Fig.1) to eliminate contaminant sequences and retained only targeted protein-
128 coding genes for subsequent phylogenomic analyses (see Methods). After the strict manual
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129  curation of these datasets, we obtained a set of highly complete transcriptomes, as assessed by
130  the presence of universal single-copy genes using BUSCO?3. Most of our transcriptomes were
131 more than 80% and up to ~93% complete (Supplementary Table 1). Regarding the presence of
132 the selected 303 phylogenetic markers for phylogenomic analyses (Methods), they contained
133 relatively few missing markers (~6% and 8%, on average, for apusomonads and ancyromonads,
134 respectively; 8.5% for Meteora) and total amino acid gaps in the final multimarker alignment
135 (7.9% and 11.7% , on average, for apusomonads and ancyromonads, respectively; 11.5% for
136  Meteora). These represented comparable or even more complete datasets than those for the few
137 previously 454-sequenced transcriptomes for the same clades®*, as well as the only available
138 apusomonad genome, that of Thecamonas trahens®® (13% missing data), and the
139 transcriptomes of the apusomonad Striomonas (formerly Nutomonas) longa®® (15.9% gaps)
140  and the ancyromonads®? Ancyromonas kenti (42.83% gaps) and Fabomonas tropica (24.2%
141 gaps) (Supplementary Table 2).

142 The less complete transcriptomes in our newly generated datasets were those of
143 Apusomonas proboscidea and Nutomonas limna terrestris (29.2% and 24.4% gaps,
144 respectively). A. proboscidea was co-cultured with a stramenopile contaminant. In general, the
145  less complete transcriptomes corresponded to those that suffered most cross-contamination;
146 other examples were the ancyromonad Nyramonas silfraensis (14.9% gaps) and the
147  apusomonad Chelonemonas dolani (14.52% gaps) (Supplementary Table 2). Although we
148 could easily remove cross-contaminant sequences when analysing single marker trees, we were
149  very strict not to include any potential contamination from prey or co-cultured microorganisms
150 in order to retain only high-quality data (see Methods; Supplementary Fig.1l. and
151 Supplementary Tables 3-4). In addition, since de novo transcriptomes are prone to show
152 artificially duplicated sequences in comparative genomics analyses, we tested the inferred
153 oligopeptide redundancy by clustering sequences with CD-HIT at 90% identity. This procedure
154  removed few such oligopeptide sequences for most species (6.5% on average), except for the
155  highly duplicated Mylnikovia oxoniensis (~42%), as well as for Multimonas media (20.5%),
156 Apusomonas australiensis (15.5%) and Cavaliersmithia chaoae (9.6%). However, the removal
157  of this redundancy did not affect the BUSCO completeness (Supplementary Table 3) and the
158 information available for the set of conserved proteins used in phylogenomic analyses.

159

160  Phylogenomic analyses of an expanded dataset of heterotrophic flagellates

161  To infer the evolutionary relationships among major eukaryotic supergroups, we included data
162 from our transcriptomes and from a large representation of heterotrophic flagellates. Our final,
163 manually curated dataset contained 303 concatenated markers, corresponding to 97,171 amino
164  acid positions, for a total of 101 selected taxa (Supplementary Table 2). We applied state-of-
165  the-art complex mixture models of sequence evolution in both maximum likelihood (ML) and
166  Bayesian inference (BI) methods to alleviate putative homoplasy and long-branch attraction
167  artefacts. The ML tree was reconstructed using the PMSF approximation of the model
168  LG+C60+F+G (Supplementary Fig.2), and the BI trees, with the CAT-GTR (Supplementary
169  Fig.3) and CAT-Poisson (Supplementary Fig.4) models of sequence evolution, respectively.
170 Bl and ML phylogenomic analyses yielded congruent tree topologies for major eukaryotic
171 groups, with only minor changes in the position of some branches (Fig.1 and Supplementary
172 Figs.1-3).
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173 All our analyses retrieved the monophyly of Apusomonadida and Ancyromonadida with
174 maximal support. The internal relationships within each of these groups were overall stable,
175  except for very minor uncertainties (Fig.1). The Apusomonadida comprised two major clades,
176 A and B, both grouping a mix of marine and freshwater species showing an overall internal
177 topology congruent with that based on 18S rRNA gene phylogenies®!. Clade A grouped species
178  characterized by an elongated Amastigomonas-type morphology and relative large cell size (~8
179 pm; genera Multimonas, Podomonas, Cavaliersmithia, Mylnikovia and Catacumbia). Clade B
180  comprised the Thecamonadinae, also grouping species with the elongated Amastigomonas-type
181 morphology but of smaller size (~5 pm cell diameter; genera Singekia, Karpovia,
182 Chelonemonas and Thecamonas)®!, and the Apusomonadinae, which grouped the genera
183 Apusomonas, characterized by rounded cells, and Manchomonas, exhibiting elongated and
184 larger cells (9.5 um)®’. The only internal uncertainty within the apusomonads concerned the
185  placement of Manchomonas, which branched sister to the Thecamonadinae, instead of
186  Apusomonas, in Bl trees using the CAT-GTR model, albeit with modest support (0.74 posterior
187  probability —PP—; Supplementary Fig.3). These topological differences may be a consequence
188 of the high percentage of missing data from Manchomonas bermudensis (only 62 out of the
189 303 selected markers proteins, 90.49% gaps), with only EST data available for this species (F.
190  Lang, unpublished; Supplementary Table 2). Apusomonadida formed a fully supported clade
191  with Opisthokonta, which was sister to the Breviatea (Obazoa). In turn, this Obazoa clade was
192  sister to Amoebozoa with full support (Amorphea clade) and, the Amorphea to the CRuMs
193 with very good to full support, forming the supergroup Podiata® (Fig.1).

194 Similarly, we retrieved the monophyly of the two described ancyromonad families,
195 Ancyromonadidae and Planomonadidae®, and the recovered internal topology for the clade
196  was again congruent with that based on 18S rRNA genes®?. Within Ancyromonadidae, we
197  retrieved a clade of marine representatives (Caraotamonas and Ancyromonas species) and
198  another of freshwater members (Striomonas, Nutomonas and Nyramonas) (Fig.1). However,
199  we only retrieved the monophyly of Planomonadidae, including Planomonas and Fabomonas,
200  with ML; BI analyses placed Fabomonas as the earliest-branching ancyromonad, sister to all
201 other ancyromonad genera (0.8 PP for CAT-GTR, and 0.99 PP for CAT-Poisson;
202 Supplementary Figs.3-4). Interestingly, malawimonads?, traditionally classified within
203 Excavata®®**?, branched sister to the ancyromonads in our ML tree (Fig.1, Supplementary
204 Fig.2), in line with some previous analyses??2*. Ancyromonadida and Malawimonadida formed
205 a monophyletic supergroup with Amorphea and CRuMs, the Opimoda, fully supported in the
206 ML tree and well supported in Bl with CAT-GTR (0.99 PP). However, in the BI analyses,
207 Ancyromonadida appeared as the earliest-branching lineage within Opimoda (0.99 PP and 0.75
208 PP under CAT-GTR and CAT-Poisson models, respectively), Malawimonadida being sister to
209 the Podiata clade (0.98 PP and 0.73 PP under CAT-GTR and CAT-Poisson models
210  respectively) (Fig.1; Supplementary Figs.2-4).

211 To test whether the aforementioned uncertainties in our phylogenomic tree, i.e. the position
212 of Manchomonas within Apusomonadida, that of Fabomonas within Ancyromonadida and the
213 position of Malawimonadida, could result from marked differences in evolutionary rate, we
214  analysed the stability of the respective branches in the tree against alternative topologies
215  (Fig.2a-c) after progressive removal of the fastest-evolving sites in the alignment (5% at a
216  time). As can be seen in Fig.2d, the monophyly of Manchomonas and Apusomonas was

6


https://doi.org/10.1101/2024.05.15.594285
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.15.594285; this version posted May 15, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

217 strongly supported until only 15% of the data remained. Likewise, the monophyly of
218 Planomonas and Fabomonas was fully supported until less than 25% of sites remained. In the
219  case of malawimonads, we monitored the statistical support for, in addition to the two observed
220  topologies in our analyses, the monophyly of malawimonads and Discoba. We followed, as
221 control, the monophyly of Opisthokonta, which were fully supported until 15% of sites
222 remained (Fig.2d). We recovered general low support for the two observed alternatives, albeit
223 the statistical support for the monophyly of malawimonads and ancyromonads was always
224 much higher than malawimonads as sister of the Podiata. By contrast, the monophyly of
225 malawimonads and Discoba was never observed (Fig. 2d).

226 Although our eukaryotic tree was not rooted with an external outgroup, we included the
227 widest possible diversity of free-living protists also on the Diphoda®® side, including
228 heterotrophic flagellates when possible. We arbitrarily rooted our trees using the excavate clade
229  Metamonada, with the inclusion of the relatively short-branching Trimastix species (Fig.1). As
230  expected, Metamonada appeared paraphyletic with respect to Discoba**#4. Also, we recovered
231 the monophyly of Diaphoretickes with full support (Fig.1). Within Diaphoretickes, the SAR
232 supergroup also received full support. However, the monophyly of SAR and telonemids found
233 in some analyses (the TSAR group*) was not observed. Telonemids branched within or sister
234  to Haptista, albeit with moderate-to-low support (Fig.1). The Archaeplastida clade was
235 recovered with moderate (96%; ML) to full support (1 PP; Bl CAT-GTR) and included the
236 Picozoa as sister to Rhodelphida + Rhodophyta, in agreement with recent observations*®, albeit
237 with full support only from Bl analyses using CAT-GTR. We also recovered with full support
238 the widely accepted monophyly of Archaeplastida and Cryptista®>*®, Finally, we retrieved the
239 monophyly of Ancoracysta (Provora)?®, Hemimastigophora?! and the Meteora sporadica type
240  strain CRO19MET?® with full ML support, as has been recently observed with another strain
241 of M. sporadica?’. Ancoracysta and other Provora members have also been suggested to form
242 a monophyletic group with Hemimastigophora?*. Our results thus provide additional support
243 for this new supergroup of morphologically diverse predatory protists.

244

245  Evolution of major phenotypic traits during the early eukaryotic radiation

246 Our results suggest that, although resolving the phylogenetic tree of eukaryotes is challenging,
247  the topology of the tree can be stabilized with the incorporation of a more balanced taxon
248 sampling, including a wider representation of deep-branching free-living protists, combined
249  with the use of appropriate phylogenetic reconstruction approaches. Our phylogenomic
250  analyses including an expanded sampling of apusomonads and ancyromonads converge to a
251 rather stable topology for some major clades, notably in the Opimoda supergroup and its
252 increasingly nested phylogenetic clades (Podiata, Amorphea, Obazoa), which appear sister to
253 a clade containing the ancyromonads and, most likely, the malawimonads (Fig.1). This
254 phylogenetic framework allows to comparatively assess the distribution of complex phenotypic
255  features, infer the ancestral states for the different clades and propose plausible evolutionary
256 scenarios for trait evolution. Obviously, the availability of morphological and structural data is
257 still limited, many morphological features may not be homologous, and more biodiversity
258 alongside ultrastructural and phylogenetic analyses with, notably, the inference of a rooted tree
259 of eukaryotes (e.g. using mitochondrial or Asgard archaeal-derived markers) will be needed to
260  Vvalidate and/or complete this emerging evolutionary scheme (Fig.3).


https://doi.org/10.1101/2024.05.15.594285
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.15.594285; this version posted May 15, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

261 It is interesting to note that some large clades, notably the ancyromonads, show apparent
262 phenotypic stasis. Indeed, ancyromonads have comparable levels of sequence divergence to
263  those of other morphologically and structurally diverse lineages such as Amoebozoa or
264  Opisthokonta, but have retained a constrained morphotype for hundreds of million years,
265  suggesting an efficient adaptation to their predatory lifestyle in benthic and soil ecosystems.
266 Unlike apusomonads, there seems to be no obvious morphological differences between
267 ancyromonad family members in terms of cell size, shape or any other particular feature
268 observable under light microscopy®. Ecologically, ancyromonads include marine and
269  freshwater species, with the topology of the tree for the current taxon sampling suggesting a
270 single transition from marine ancestors to a clade of freshwater genera (Nyramonas,
271 Nutomonas, Striomonas; Fig.1). Accordingly, the last common ancestor of ancyromonads was
272 likely marine and resembled extant species, having bean-shaped flattened biflagellate cells with
273 a short anterior flagellum and a rostrum with extrusomes®. Although ancyromonads have a
274 dorsal pellicle, a complex cytoskeleton and a ventral groove for feeding, they do not bear the
275 bona fide excavate groove or actin-based pseudopods similar to those of diverse Obazoa®
276  (Fig.3). By contrast, apusomonads, another diverse clade with high internal evolutionary
277 divergence, exhibit some apparent morphological differences and ecological variation, with
278 marine-freshwater transitions having occurred multiple times during their evolution?®3
279 (Fig.1). Within clade A, members of the four described genera exhibit a short proboscis sleeve
280 as compared to the cell body length, as well as more-prominent pseudopodia than other
281 apusomonads®. Additionally, Podomonas has a tusk, a character also present in
282 Thecamonadinae*’. Multimonas also displays a potential tusk, posterior extrusomes* and
283 division by binary and multiple fission. Podomonas and Mylnikovia possess refractile granules
284 running in parallel to the posterior flagellum®. All these characteristics can be found in other
285  apusomonads®l. In clade B, if Karpovia or Singekia present a tusk, not clearly observed yet
286 under optical microscopy, they would also fit the description of the subfamily
287 Thecamonadinae*’, alongside trailing pseudopodia®!. Also within clade B, Manchomonas and
288 Apusomonas share some morphological similarities, such as few pseudopods, a hidden
289  posterior flagellum, the absence of tusks, and some ultrastructural features®. Manchomonas
290  has the largest observed sleeve compared to other apusomonads of elongated shapes, while
291 Apusomonas exhibits a unique structure called mastigophore. Given the widespread elongated,
292 Amastigomonas-type, cell shape in apusomonads, this seems the ancestral phenotype for the
293 group, with the rounded Apusomonas cells being derived. Although there is considerable
294  morphological variation within the group and many environmental species remain to be
295  described?®, the available information suggests that the last apusomonad common ancestor had
296 a typical elongated cell type, with dorsal pellicle, ventral feeding groove, actin-based
297  pseudopodia, and proboscis (likely with a short sleeve), probably with a tusk and able to divide
298 by multiple fission (Fig.3).

299 In our phylogenomic tree, malawimonads and ancyromonads were sister groups (Fig.1). If
300 confirmed, this would imply that this clade is one of the earliest branching lineages after the
301 Opimoda-Diphoda split. Alternatively, malawimonads could be sister to the Podiata. Whatever
302 the actual topology, since both clades encompass small bacterivorous heterotrophic
303 biflagellates with a, likely homologous®, ventral feeding groove?32°2 the last common
304  ancestor of Opimoda most likely shared this excavate-like phenotype (Fig.3). Furthermore,
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305 since excavates are likely paraphyletic?2243® with Metamonada and Discoba branching deeply
306 in the eukaryotic tree (Fig.1), it might be argued that the ancestral LECA phenotype also
307 corresponded to that of an excavate-like biflagellate®, irrespective of the specific position of
308 the root!? (Fig.3). This seems further supported by the strong conservation of the microtubular
309 cytoskeleton and the flagellar apparatus® across eukaryotes®. From such an ancestor,
310  ancyromonads developed a dorsal pellicle and a rostrum with extrusomes, losing the flagellar
311 vanes and shortening the anterior flagellum®. It is possible that the opimodan ancestor was a
312 marine planktonic biflagellate that lost free swimming capabilities and adapted to glide on
313 benthic substrates. Without the excavate physical constrains for feeding that are intertwined
314 with the flagellar motility®?, the ancyromonad morphotype might have easily evolved (Fig. 3).
315  Bearing a dorsal pellicle, ancyromonads maintained ventral feeding, keeping the posterior
316  flagellum attached to the surface, which is likely at the origin of the “twitch- yanking”
317 movement for feeding®.

318 Our phylogenomic tree supported the monophyly of Amorphea (Amoebozoa, Breviatea,
319  Apusomonadida and Opisthokonta) and CRuMs (Fig.1). This clade had already been proposed
320  to occur based on the shared capability to produce pseudopodia across their members and,
321 accordingly, named Podiata®®. The last common ancestor of Amorphea was clearly able to
322 produce pseudopodia (Fig.3). However, the available cell biology descriptions for CRuMs are
323 still limited?? and the presence of some features, such as a pellicle homologous to that of
324 apusomonads and ancyromonads®®, is unclear. Likewise, the presence of true pseudopodia in
325  some species (e.g., Micronuclearia and Rigifila) needs further confirmation. Nonetheless, at
326 least some Mantamonas species (e.g. M. plastica) do bear pseudopodia®’ and, accordingly, the
327 ancestor of the group. Mantamonadida have a stable phylogenetic position®® and might have
328  retained some of the ancestral features of CRuMSs; indeed, Mantamonas share some similarities
329  with ancyromonads, notably the possession of small flattened cells with a short anterior
330 flagellum and benthic/soil-associated lifestyles. However, the other CRuM linages
331 (Diphyllatea and Hilomonadea) include larger, freshwater planktonic species, also possessing
332 aventral groove®®®°. Populating the CRuMs’ branch with new described members should help
333 to ascertain trait evolution within this clade.

334 The Amorphea contain the most diversified and studied lineages of the opimodan side of
335  the eukaryotic tree, Amoebozoa and Opisthokonta. These clades exhibit more diverse and
336 derived morphoplans than the two other amorphean lineages, Apusomonadida and Breviatea.
337 Amoebozoa and Opisthokonta lost one or both flagella®®®!, Biflagellate protists have complex
338 microtubular cytoskeletons that impose severe structural constrains on their cell shape, such
339 that flagellar loss, freeing those constrains, likely facilitated the evolution of more diverse
340  morphoplans. This increased morphological evolvability linked to concomitant changes in
341 selective pressures allowed the exploration of novel cell shapes (e.g. amoeboid), feeding modes
342 (e.g., osmotrophy) and cell-cell interactions (e.g., multicellularity), as currently observed
343 across this clades®*. By contrast, both Breviatea and Apusomonadida, being paraphyletic within
344  the Obazoa, can be inferred to have retained the ancestral biflagellate state alongside other
345  features likely present in the obazoan ancestor (Fig.3). Both lineages encompass small
346 bacterivorous amoeboflagellates that phagocytize prey using pseudopodia (unlike
347  ancyromonads or excavates)*®. Breviates are anaerobic and possess gliding and swimming
348 forms, lack a pellicle and display more pronounced amoeboid shapes than apusomonads?®.
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349 Apusomonads comprise gliding, elongated, semi-rigid amoeboflagellates with an anterior
350  proboscis and a dorsal pellicle allowing ventral feeding similarly to ancyromonads®'*’.
351 Interestingly, both breviates and apusomonads can divide palintomically, i.e. their karyokinesis
352 is uncoupled from cellular division leading, at least transiently, to multinucleated cells. The
353 ability to generate multinucleated cells is also widespread across amoebozoans and
354 opisthokonts, including several unicellular relatives of animals (e.g. corallochytrids)®? and
355 fungi (e.g. aphelids)!®. It seems increasingly clear that the occurrence of cenocytic (i.e.,
356 multinucleated) stages was important along the road to metazoan multicellularity®®. Therefore,
357 the ancestral Amorphea capability to produce multinucleated cells appears intriguingly crucial
358 for the subsequent evolution of plasmodial growth, and metazoan and hyphal-based fungal
359  multicellularity.

360

361

362 Methods

363

364  Protist culture, RNA extraction and transcriptome sequencing

365  The 22 species of heterotrophic flagellate protists from which we generated transcriptome data
366 were previously isolated or enriched from benthos of marine or freshwater ecosystems or soil,
367 and included apusomonads®, ancyromonads®? and the type strain of Meteora sporadica?
368 (Supplementary Table 1). Soil and freshwater flagellates were grown in VVolvic water with 1%
369  yeast tryptone (YT), and marine flagellates in 0.2 micron-filtered seawater with 1% YT
370 medium or Cerophyl medium. Flagellates were grown in flat cell culture flasks with ~10 ml of
371 medium, just to cover the bottom surface (75 cm?). The gliding protist cells from high-density
372 cultures were collected by gently scratching the bottom of the flask with a cell scraper and
373 pooled in 50 ml Falcon tubes. Cells were pelleted by centrifugation at 10°C for 15 minutes at
374 15,000g. Total RNA for each species was extracted with the RNeasy mini Kit (Qiagen)
375 following the manufacturer protocol, including DNAse treatment. Purified RNA was
376  quantified using a Qubit fluorometer (ThermoFisher Scientific). For each species, cDNA
377 Illumina libraries were constructed after polyA mRNA selection, tagged and paired-end (2 x
378 150 bp) sequenced with Illumina NovaSeq 6000 S2 (Eurofins Genomics, Germany) in three
379  different sequencing runs (NG-22350, NG-24277, NG-25209; Supplementary Fig.1 and
380  Supplementary Table 4). Sequence statistics and accession numbers are provided in
381 Supplementary Table 1.

382

383 Transcriptome assembly and decontamination

384 The quality of Illumina sequences was checked with FastQC® v0.11.8. High-quality reads were
385 retained and used for transcriptome de novo assembly using Spades®* v3.13.1 66 with -rna
386 mode and default parameters. Cross-contamination of transcripts among multiplexed cDNA
387 libraries within the same sequencing run were detected and removed using CroCo®% v1.2
388 (Supplementary Fig.1, Supplementary Tables 3-4). We translated the remaining transcripts into
389  oligopeptides using TransDecoder v5.5 (https://github.com/TransDecoder/) with the script
390  LongOrfs and clustered them with CD-HIT% v4.8.1 at 100% identity. Predicted oligopeptides
391 of non-eukaryotic origin were removed using similarity search against a custom protein
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392 database (BAUVdb: bacteria, archaea, eUkaryotes and viruses). BAUVdb included 32
393 reference genomes of eukaryotic species spanning all supergroups (Supplementary Table 5) as
394  well as, respectively, 62,291 and 3,412 bacterial and archaeal genomes from the Genome
395  Taxonomy DataBase, GTDB®' release 207, 361,930 viral genomes from the reference viral
396 database (RVDB)®® and RVDB proteins®® clustered using CD-HIT at 90% identity and
397  coverage. To discriminate target eukaryotic sequences from those of alien origin, we then
398 applied Diamond’® v2.0.14.152 in ultra-sensitive mode setting an e-value threshold of 1e-3 for
399 a maximum of 100 hits. From the tabular output, eukaryotic oligopeptides were retained if
400  Thecamonas trahens or five eukaryotes were the first hits. Eukaryotic oligopeptides were
401 automatically annotated using eggNOG-mapper’* using all orthologs and all annotations as
402 evidence. The number of identified single-copy markers from BUSCO® v5.2.2 were used as a
403  proxy for gene set completeness using the eukaryote database dbl10. All transcripts and
404  oligopeptides generated in this study are available in the figshare repository
405  (10.6084/m9.figshare.22148027). Since A. proboscidea MPSANABRIAL5 was co-cultured
406  with a difficult-to-eliminate stramenopile contaminant (belonging to the genus
407  Paraphysomonas, as inferred from its 18S rRNA gene sharing ~98% pairwise identity with
408  members of this genus), we also sequenced the transcriptome of the latter from a
409  monoeukaryotic culture (NCBI biosample SRR23610779). To decontaminate the apusomonad
410 set of proteins from stramenopile sequences, eukaryotic proteins of A. proboscidea
411 MPSANABRIA15 were used as queries in BLASTP (minimum e-value of le-25) against a
412 protein database with the closest related taxa (PROMEX), our own stramenopile contaminant,
413 plus three publicly available Paraphysomonas transcriptomes: MMETSP1103, MMETSP0103
414 and MMETSP1107. Eukaryotic oligopeptides were considered contaminant when they had
415 only stramenopile hits or, in the case of hits in both lineages, when the pairwise identity,
416  weighted by coverage, was higher in stramenopiles than in PROMEX.

417

418  Phylogenomic analyses

419 Our phylogenomic dataset was updated from a previous paneukaryotic study with 104 taxa and
420 351 conserved markers®!. To that dataset, we added the corresponding identified markers from
421 recently sequenced genomes/transcriptomes of early-branching eukaryotes*’27° and from our
422 22 flagellate brut transcriptomes (Supplementary Table 2). To identify the selected
423 phylogenetic markers in these transcriptomes, we queried these datasets with the 351 marker
424 sequences from Homo, Saprolegnia, Spizellomyces and Diphylleia with BLASTp and retrieved
425  all possible homologs. Each marker from the 230 taxa representing all eukaryotic supergroups,
426 was aligned with MAFFT'® v7.427 77 (L-INS-i with 1000 iterations), and trimmed using
427 Trimal”” v1.4.rev22 in automated mode. Approximate-maximum likelihood single marker trees
428 were inferred from each trimmed alignment using FastTree’® v2.1.11 with default parameters,
429 and examined manually with Figtree v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/).
430  Alignments were inspected with Aliview’® v1.26 80, and pruned from contaminants, paralogs
431 or spurious sequences. Markers with complex histories were removed from the dataset,
432 resulting in a selection of 303 protein-coding genes. For final multi-marker phylogenetic
433 analyses and to limit computational load, the taxon sampling was reduced to 101 eukaryotes,
434  keeping at least five representatives for each known supergroup, mostly free-living
435 heterotrophic flagellates. Finally, the markers were realigned, trimmed and concatenated with
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436 alvert.py from the barrel-o-monkeys
437 (http://rogerlab.biochemistryandmolecularbiology.dal.ca/Software/Software.htm#Monkeybar
438 rel), generating a concatenated matrix with 97,171 amino acidic sites that was used to infer
439 phylogenies (10.6084/m9.figshare.22148027). The Maximum likelihood (ML) phylogenetic
440  tree was inferred using 1Q-TREE®® v1.6 using the PMSF approximation®! and a guide tree
441 inferred with the LG+C60+F+G mixture model. Statistical support was generated with 1,000
442 ultrafast bootstraps. The Bayesian inference (BI) analyses were conducted with PhyloBayes-
443 MPI®? v1.5a 81 with both CAT-Poisson and CAT-GTR models®, with two and four MCMC
444 chains respectively run for 10,000 generations, saving one every 10 trees. Analyses were
445  stopped once convergence thresholds were reached (i.e. maximum discrepancy <0.1 and
446 minimum effective size >100, calculated using bpcomp) and consensus trees constructed after
447  a burn-in of 25%. Additionally, to minimize possible systematic errors, the fastest-evolving
448  sites were progressively removed at 5% of sites at a time. For that, among-site substitution rates
449  were inferred using 1Q-TREE under the -wsr option and the best-fitting model, generating a
450  total of 19 new data subsets (10.6084/m9.figshare.22148027). Each of them was used to infer
451 a phylogeny using IQTREE with the LG+C60+F+G model and obtain the bootstrap supports
452 for each split. We wused CONSENSE from the PHYLIP v3.695 package
453 (https://phylipweb.github.io/phylip/) to interrogate the UFBOQOT files using a Python script
454 (Nick Irwin, pers. comm.).

455

456  Data availability

457  Raw read sequences have been submitted to Sequence Read Archive under BioProject
458  PRINA907040; the specific accession numbers for each protist transcriptome are given in
459  Supplementary Table 1. Transcripts and oligopeptides generated in this study are available in
460  the figshare repository (10.6084/m9.figshare.22148027).

461
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678  Figure legends

679

680  Figure 1. Phylogenomic tree of eukaryotes including an expanded diversity of
681  Apusomonadida and Ancyromonadida. The tree was inferred using Maximum Likelihood
682  from 97,171 amino acid positions and 101 taxa (model of sequence evolution: LG+C60+F+G
683  — PMSF). The root of the tree has been arbitrarily placed between Metamonada and the rest of
684  eukaryotes. Numbers at nodes represent ultrafast bootstrap approximation percentages (1,000
685  replicates) followed by Bayesian posterior probabilities under CAT-GTR and CAT-Poisson
686  models, respectively. Black dots denote maximum support with all methods. The scale bar
687 indicates the number of expected substitutions per unit branch length. The asterisks indicate
688  taxa of typical excavates.

689

690  Figure 2. Progressive removal of the fastest evolving sites in 5% increments to evaluate
691  alternative topologies within Opimoda. The alternative positions tested were as follows. a,
692  Within the Apusomonadida: Manchomonas being sister to Apusomonas or to the
693  Thecamonadinae (dashed line). b, Within the Ancyromonadida: the monophyly of Fabomonas
694  and Planomonas (the Planomonadidae clade) versus their paraphyly (Fabomonas branching
695  deeply, dashed line). ¢, Regarding the placement of Malawimonadida and Ancyromonadida:
696  Malawimonadida and Ancyromonadida being monophyletic versus Malawimonadida
697  branching as sister to Podiata (and, accordingly, ancyromonads as the earliest-branching
698  Opimoda lineage) or Malawimonadida sister to Discoba (dashed lines). d, Plot showing the
699  bootstrap support in ML phylogenetic trees under the LG+C60+F+G model of sequence
700  evolution as sites are progressively removed. The monophyly of Opisthokonta (yellow) is used
701 as a control to indicate when the phylogenetic signal is too low to retrieve well-known robust
702 monophyletic clades.

703

704  Figure 3. Early trait evolution across Opimoda lineages. The distribution of five key
705 morphological traits is parsimoniously inferred for each lineage ancestor (upper panel) based
706 on available descriptions and, to their respective last common ancestors (LCA), based on the
707 inferred phylogenetic backbone (lower panel). Numbers in black circles refer to the number of
708  flagella. The small character drawings in the cladogram represent the innovations at the onset
709  of each lineage.

710

711
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