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Abstract

A biological age (BA) indicator is intended to capture detrimental age-related changes
occurring with passing time. To date, the best-known and used BA indicators include DNA-
methylation-based epigenetic ages (epigenetic clocks) and telomere length. The most common
biological sample material for epidemiological aging studies is composed of different cell
types, whole blood. We aimed to compare differences in BAs between blood cell types and

assessed BA indicators’ cell type-specific associations with donor’s calendar age.

Analysis on DNA methylation-based BA indicators including telomere length, methylation
level at cg16867657 (a CpG-site in ELOVLZ2) and the Hannum, Horvath, DNAmMPhenoAge and
DunedinPACE epigenetic clocks was performed in 428 biological samples from 12 blood cell
types. BA values were different (p<0.05) in the majority of pairwise comparisons between the
cell types. Most cell types also displayed differences as compared to whole blood (p<0.05).
Some of the observed differences persisted across blood donor’s calendar ages from 20 to 80
years (50-years-difference in DNAmPhenoAge between naive CD4+ T cells and monocytes),
while others did not (up to four-fold difference in DunedinPACE values between monocytes
and B cells). All BA indicators, except DunedinPACE, had mostly a very strong correlation

with donor’s calendar age within a cell type.

Our findings demonstrate that DNA methylation-based indicators of biological age exhibit cell
type-specific characteristics, underscoring the importance of accounting for cell composition
in related studies. Our results have implications for understanding the molecular mechanisms
underlying epigenetic clocks and and provide guidance for utilizing them as indicators for

success of aging interventions.

Keywords: biological age, epigenetic clock, telomere length, DNA methylation, biological
aging, blood cell subtypes
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73 Introduction
74 By definition, biological age (BA), or an aging biomarker, should better predict future health
75  status as compared to chronological age. By AFAR (American Federation for Aging Research)
76  criteria “It must monitor a basic process that underlies the aging process, not the effects of
77  disease.”*. Of the many established BA indicators *°, the most well-known and used are
78  DNA-methylation-based epigenetic ages (epigenetic clocks) and telomere length, a hallmark
79  of aging®. Ideally, these indicators should reflect how health interventions influence biological
80 aging. However, the underlying molecular mechanisms of the epigenetic clocks are still
81  unknown.
82
83  Accelerated biological aging (or aging rate) indicated by telomere length’ and epigenetic
84  clocks® predicts health span, lifespan or both in large-scale cohort studies. Typically, these
85  analyses are performed in whole blood samples that are mixtures of various blood cell subtypes.
86  As such, blood cell composition is a potential confounder in the analyses, because blood cell
87  composition changes with advancing age 8, already before middle-age °. Typical characteristics
88  of age-related remodeling of the immune system include decreasing naive CD8 and CD4 T cell
89 and increasing exhausted CD28- T cell counts, declining CD4 to CD8 T cell ratio, and
90 potentially also altered NK cell count and functionality 1®t. This remodeling is highlighted by
91 the existence of IMM-AGE??, a blood cell composition-based, potential BA indicator. Further,
92  changes in blood cell composition are seen in many age-related conditions (e.g. frailty %) and
93 diseases e.g. cancer * | Alzheimer’s '° | and cardiovascular diseases *®'7. The age-related
94  remodeling of the blood cell composition is not limited to these changes, but these are the well-
95  known examples for which there is epidemiological evidence of their relationship to aging and
96  aging phenotypes.
97
98 A better understanding on the biological aging at the cell subtype-level within tissues is needed.
99  Previous studies have shown telomere length 82! and DNA methylation level at cg16867657,
100 a CpG site in ELOVL2??, are tissue- and cell type-specific in their absolute values and age-
101 related changes. A few previous studies have shown that epigenetic ages by DNAmMPhenoAge
102  and Horvath differ between blood cell types?, but BA or biological aging rate indicated by
103  epigenetic clocks developed more recently are studied less in separated cell subtypes.
104  Importantly, previous such analyses have been made typically using separated cells originating
105  from different individuals and datasets with less than 10 individuals each?*. Further, it is

106  unknown in what way cell subtype-specific epigenetic age values indicated by the 2" and 3"
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107  generation epigenetic clocks change with advancing calendar age across adulthood. Thus, in
108 this study, we aimed to 1) assess differences in values of DNA-methylation-based BA
109 indicators between blood cell types originating from the same blood donors and with more
110  adequate sample size. 2) We also aimed to assess BA indicators’ cell type-specific associations
111 with donor’s calendar age. The BA indicators included ‘the 1% generation clocks’ (ELOVL2-
112  CpG-site, cg16867657 2%, Horvath 2® and Hannum ?27), ‘the 2" generation clock’
113 (DNAmPhenoAge?®), ‘the 3" generation clock’ (DunedinPACE 2°) as well as telomere length
114  (DNAmMTL, estimated based on DNA methylation data 3°). In our main analyses, we performed
115 pairwise comparisons for BA indicator values between whole blood, peripheral blood
116  mononuclear cells (PBMCs) and up to ten separated blood cell subtypes in four separate data
117  sets with 428 biological samples, originating from the same blood donors. Then, we assessed
118  cell subtype-specific associations of the different BA indicators with calendar age. In our
119  additional analyses, we repeated pairwise comparison analysis with principal component
120 derivates of the clocks®, assessed cell subtype-specific correlations of the different BA
121  indicators with each other, and last, exemplified blood cell subtype count trajectories over
122  decades in a longitudinal cohort sample (The Swedish Adoption/Twin Study of Aging
123  [SATSA], n=328).

124
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125  Methods

126  Data sets

127  We included four datasets available in NCBI GEO %22 (GSE35069 3* GSE131989 *°
128  GSE166844 2, GSE78942 ) in which DNA methylation data was available from separated
129  immune cell subtypes (Table 1) for this study. These subtypes were separated using
130  fluorescence-activated cell sorting (FACS) as described in detail in the original publications
131 23438 Surface markers used for the FACS analyses are summarized in Supplementary Table
132 S1. We included only datasets in which the different immune cell populations were available
133  from the same individuals as complete cases. For the cell count trajectory analysis, DNA-
134  methylation-based cell count estimates in whole blood samples in the Swedish Adoption/Twin
135  Study of Aging (SATSA, n=328 with 657 observations, baseline ages 48-98, mean age 68.5)
136 were used ¥,

137

138  BAindicators

139  We assessed different BA indicators using DNA methylation data from the aforementioned
140  datasets (Table 1). The indicators of BA (or biological aging rate) investigated were telomere
141  length estimated based on DNA methylation (DNAMTL) 3°, methylation level of ELOVL2 at
142  one CpG (cg16867657)%, Hannum?’, Horvath?®, DNAmMPhenoAge?® and DunedinPACE? as
143 well as the principal component derivates of Horvath, Hannum, DNAmPhenoAge and
144  DNAMTL3L In three of the included datasets, DNA methylation was measured using Hlumina
145 450K (GSE35069, GSE13198) or Illumina EPIC (GSE166844) array, allowing us to calculate
146  all the ten indicators of BA. In dataset GSE78942, methylation data were measured using
147  Illumina 27K array, allowing us to calculate only Horvath and DNAmPhenoAge. All BA
148 indicators were calculated from the normalized and preprocessed data available in GEO.

149

150 Horvath (for datasets GSE35069, GSE13198 and GSE166844), Hannum, DNAmMPhenoAge
151  and DNAmMTL (for all included datasets) were calculated using the DNAmAge function of the
152  methylclock package version 0.8.2%. For GSE78942, Horvath was calculated using the
153 webpage tool available in https://dnamage.clockfoundation.org/. DunedinPACE was
154  calculated as described in the original publication®® with the R package DunedinPACE. The
155  principal component derivates of the clocks were calculated as previously described 3%,
156  Methylation value of the probe cgl16867657 in ELOVL2 was extracted directly from
157  methylation data available in GEO for each dataset.

158
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159  Statistical analysis

160  Statistical significance for the pairwise comparisons were assessed using the Mann Whitney
161  U-test. BA values were compared between the cell subtypes at group-level within a data set.
162  Cell subtype-specific BA values were visualized as boxplots with dots and line plots, and
163  pairwise differences as boxplots. Cell subtype-specific relationships between values of
164  different BA indicators and calendar age were assessed using correlation statistics (Spearman),
165 and the relationships were visualized as scatterplots.

166

167 In our additional analyses, we assessed cell subtype-specific relationships between values of
168  different BA indicators using correlation statistics (Spearman) and the relationships were
169  visualized as scatterplots. In the longitudinal cohort data, cell subtype count trajectories were
170  visualized as line plots and significance for the cell count change with calendar age was
171  obtained using mixed linear model. In GSE131989 and SATSA, calendar age was used as
172  individual-level phenotypic data in our statistical analyses. Data were analysed and visualized
173  using R statistical software (version 4.2.2) and R-packages ggplot2. P-value threshold for
174  statistical significance was set to 0.05.
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175 Table 1. Data sets in pairwise comparisons

176  Details on how different cell types were separated are provided in Supplementary Table 1.

Cell Pairwise
Calendar age sample cell type
Individuals, Calendar age  available for =~ Female, types, comparisons,
Data set n (years) each individual % n Available cell sample types n
GSE131989 49 54 +17.5 Yes 100 4 CD14+, CD19+, CD4 memory T cells, CD4 naive T cells 6
GSE166844 28 19+0 Yes 40 6 Whole blood, Granulocytes, CD14+ monocytes, CD19+ B 15
cells, CD8+ T cells, CD4+ T cells

GSE35069 6 38+13.6 No 0 10 Whole blood, PBMC, Granulocytes, Neutrophils, Eosinophils, 45

CD14+ monocytes, CD19+ B cells, CD56+ NK cells, CD8+ T
cells, CD4+ T cells

GSE78942 24* 62.1+99 No NA 2 CD4+CD28+ T cells, CD4+CD28- T cells 1

*DNA methylation measured from two pooled samples of separated cells; 12 individuals in a sample
177
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178 Results

179

180  Pairwise comparisons

181  BA values for each cell type in the different data sets (Table 1) in our analysis are shown in
182  Figure 1, Table 2, Supplementary Figure S1 and Supplementary Table S2. We performed as
183  our main analysis pairwise comparisons of the BA indicator values between the blood cell
184  subtypes. In summary, BA values, including principal component derivates of the epigenetic
185  clocks, were different (Mann-Whitney U-test p<0.05) in the majority of pairwise comparisons
186  between the cell types (Table 2, Figure 2, Supplementary Table S3-S5, Supplementary
187  Results). Most cell types also displayed differences as compared to whole blood (Mann-
188  Whitney U-test p<0.05, Figure 2, Supplementary Table S3-S5). Some of the observed
189  differences persisted across blood donor’s calendar ages from 20 to 80 years, for example the
190  50-years-difference in DNAmMPhenoAge values between naive CD4+ T cells and monocytes
191  (Figure 3). However, for example, the up to four-fold difference in DunedinPACE values

192  between monocytes and B cells did not persist over time (Figure 3).

193  Asexpected, pairwise comparisons were more often statistically significant (Mann-Whitney U
194  test p-value <0.05) in GSE166844 and GSE131989 with larger number of individuals than in
195  GSE35069 which included six individuals (Table 1, Table 3). Other important details for results
196  interpretation are that GSE131989 and GSE35069 included individuals with wide calendar age
197  range while individuals in GSE166844 were all 19 years old. While most cell types were
198 available in at least two datasets, neutrophils, eosinophils and CD56+ NK cells were available
199  for analysis in GSE35069 only. In GSE78942, the difference in BA values was apparent but
200  statistical analysis was not possible as it comprised four biological samples only.
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204
205  Figure 1. Blood cell type-specific biological ages (BAs) and a BA rate

206  Values of DNAMTL (TL), cg16867657 in ELOVLZ2, and Hannum are summarized as boxplot
207  with dots in panel A, and Horvath, DNAmPhenoAge and DunedinPACE in panel B. These
208 DNA methylation-based BA indicators were assessed in three DNA methylation data sets
209 (GSE131989, GSE166844, GSE35069) with 424 biological samples from 83 individuals and
210 including 12 cell sample types. Boxes are colored according to cell type (1-12). Each dot
211  represents one individual.
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Dataset Sample type, sample id Horvath DNAmMPhenoAge

GSE78942 CD4+CD28- T cells, pooll  65.9 50.8
CD4+CD28- T cells, pool2  72.9 57.0
CD4+CD28+ T cells, pooll 39.0 8.5
CD4+CD28+ T cells, pool2 35.1 10.7

Table 2. BA values according Horvath and DNAmMPhenoAge in displayed ‘younger’
values in CD4+CD28+ T cells as compared to CD4+CD28- T cells in GSE78942

DNA methylation was measured from four pooled biological samples of purified cells. In
pooll, cells were separated from 12 individuals and the cells were pooled as two biological
samples (CD28+ and CD28- cells), and in pool2, cells originated from other set of 12
individuals and the separated cells were pooled in a similar way as pool 1. Calendar age of
these healthy blood donors was 45-75 years (mean[SD]=62.1[9.9]).
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Figure 2. Pairwise differences in values of DNAMTL (TL) and cg16867657 at ELOVL2
(ELOVLZ2) (A), Horvath and Hannum (B), and DunedinPACE and DNAmMPhenoAge (C)
between the cell types
Cell pairs with statistically significant difference in BA values (Mann Whitney U, p<0.05) are
colored with red, otherwise with grey. Difference in BA indicator values between a cell-pair
(A) was calculated for each individual and these differences are shown as boxplots for the three
data sets. A-value for a BA indicator is shown on the x-axis. In GSE131989 including 49 blood
donors, there were 6 cell type pairs, in GSE166844 including 28 blood donors, 15 pairs, and in
GSE35069 including six blood donors, 45 cell type pairs to be compared. Cell type-specific
BA values within a dataset are summarised in Figure 1, Supplementary Figure 1 and Table S2,

and p-values for the comparisons are presented in Supplementary Tables S3-S5.
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Table 3. Number of cell pairs showing differences for each indicator of BA in three
datasets
Mann-Whitney U test p-values are shown in Supplementary Table S3-S5.

Data set
GSE131989 GSE166844 GSE35069
Number of pairwise comparisons

6 15 45
Number of cell pairs showing pairwise differences(%b)
DNAMTL 3(50) 14(93) 6(13)
ELOVL2 3(50) 14(93) 6(13)
Hannum 3(50) 10(67) 8(18)
Horvath 4(67) 12(80) 0(0)
DNAmMPhenoAge 5(83) 15(100) 7(16)
DunedinPACE 6(100) 15(100) 31(69)
Cell subtype - CD19+ B cells =&=  CD14+ monocytes =% Naive CD4+ T cells Memory CD4+ T cells
DNAmMTL ELOVL2 Hannum
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Figure 3. Cell type-specific associations of DNA-methylation-based BA indicators (and
biological aging rate) with blood donors’ calendar age in GSE131989

DNA methylation data within four separated cell subtypes (CD19+ B cells, CD14+
monocytes, naive CD4+ T cells, memory CD4+ T cells) originated from 49 individuals aged
18-82 years (all females). Correlation statistics showing the significance for the associations
with calendar age are shown in Supplementary Table S6. Grey areas indicate 95%
Confidence Intervals for the linear fit lines.
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261
262 CD19+ B cells

263  Methylation data in CD19+ B cells was available in three datasets. As compared to other cell
264  types, CD19+ B cells displayed a statistically significant difference (Mann-Whitney U test p-
265  value <0.05) in majority of the pairwise comparisons in GSE131989 and GSE166844 (Figure
266 2, Supplementary S3-S4). In the smallest dataset, GSE35069, statistically significant
267  differences were mainly observed for DunedinPACE (Figure 2, Supplementary Figure S1,
268  Supplementary Table S5). In summary, our results suggest CD19+ B cells are, according to the
269  studied BA indicators, ‘younger’ as compared to CD14+ cells, but ‘older’ as compared to naive
270  CDA4+ cells and total CD8+ T cells, although there are some discrepancies between the different
271  BAs (Figure 2, Supplementary Table S3-S5). In comparison to whole blood, no clear pattern
272  was observed for CD19+ B cells.

273
274 T cell subsets

275 Data on various subsets of T cells was available in four datasets, including total CD4+ and
276  CD8+ T cells (GSE166844 and GSE35069), CD4+ naive and memory T cells (GSE131989)
277 and CD4+CD28- and CD4+CD28+ T cells (GSE78942). Majority of pairwise comparisons
278  across these cell types were statistically significant (Figure 2, Table 2, Supplementary Tables
279  S3-S5). Our results suggest that CD8+ T cells are ‘younger’ as compared to CD4+ T cells, and
280 that naive CD4+ T cells are ‘younger’ as compared to memory CD4+ T cells (Figure 2,
281  Supplementary Table S3-S5). In addition, CD4+CD28+ cells were identified to be ‘younger’
282  ascompared to CD4+CD28- according to both BA indicators available for this dataset, Horvath
283 and DNAmMPhenoAge (Table 2), although for this data no statistical tests could be performed,
284  asthere were only four biological samples. As compared to whole blood, both CD4+ and CD8+
285 T cells are ‘younger’, although there are discrepancies between different BA indicators (Figure
286 2, Supplementary Table S3-S5). The magnitude of difference was larger between CD8+ T cells
287  and whole blood as compared to CD4+ T cells and whole blood (Figure 1, Figure 2).

288

289 CD14+ monocytes
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290 Data on CD14+ monocytes was available in three datasets. As compared to other cell types,
291  majority of pairwise comparisons between CD14+ monocytes were statistically significant in
292 GSE166844 and GSE131989 (Figure 2, Supplementary Figure S1, Supplementary Table S3
293  and S4). Our results suggest that CD14+ monocytes are ‘older’ as compared to various T cell
294  subsets, ‘older’ as compared to CD19+ B cells, and also ‘older’ as compared to whole blood

295  samples (Figure 2, Supplementary Tables S3-S5).
296
297 Cell-subtype specific BA values across adult calendar ages

298  All BA indicators, except DunedinPACE, correlated strongly with calendar age within a cell
299  type in dataset GSE131988 (>0.8 or < -0.7, Figure 3, Supplementary Table S6). DunedinPACE
300 values increased most consistently with a higher calendar age within naive CD4+ T cells
301 (Spearman’s p=0.636), but in other cell types tested the correlations were more modest or
302 nonsignificant (Figure 3, Supplementary Table S6). The analysis could only be performed in
303 this one dataset, as calendar age was not available, or all individuals were of the same age, in
304  others.

305
306  Additional analyses
307 Pairwise comparisons for principal component clocks

308 The epigenetic clocks have been reported to suffer from technical noise®. The proposed
309  solution is to utilize principal components instead of the individual level CpG data to calculate
310 the clocks i.e. PC-clocks. To verify that the observed differences in BA indicators across cell
311  types are not due to technical noise of the Illumina array, as an additional analysis, we repeated
312  the pairwise comparison analysis with the principal component derivates for Horvath, Hannum,
313 DNAmPhenoAge and DNAMTL (Supplementary Table S2). Our results show that the
314  observed differences between the cell types in the main analysis remained significant for the
315  studied PC-clocks (Supplementary Table S3, S4 and S5).

316
317 Relationships between different BAs

318  Then, we explored relationships between the values of different BA indicators (Supplementary

319 Figure S2) and focused on the relationships within each cell subtype population
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320  (Supplementary Table S6-S8). The majority of BA indicators showed strong or very strong
321  correlations (>0.7 or < -0.7) with each other within the different cell subtype populations in
322  GSE131989 and GSE35069 (Supplementary Table S6 and S8), which have wide age ranges.
323  However, only a very few moderate or stronger correlations (>0.5 or < -0.5) were observed in
324  GSE166844 (Supplementary Table S7), which includes individuals with the same calendar age.
325  An exception in the cell type-specific correlations was seen for DunedinPACE as the

326  correlations were, overall, lower or non-existing (Figure 3A, Supplementary Table S6-S8).
327
328 Blood cell composition trajectories

329 Inthe last additional analysis, we visualized estimated blood cell composition trajectories in a
330 longitudinal cohort (SATSA) with decades of follow-up (Supplementary Figure S3) and
331  observed changes in cell counts with advancing calendar age for all blood cell subtypes that
332 were in our pairwise comparisons and also available in SATSA (p<0.005). The counts of B
333  cells, CD4+ and CD8+ T cells, naive CD4+ and CD8+ T cells decrease, while the counts of
334 CD8+CD28-CD45RA- T and NK cells, plasmablasts, monocytes and granulocytes increase
335 from midlife into old age (Supplementary Figure S3).

336

337

338
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339  Discussion

340

341 We assessed ten DNA-methylation-based BA indicators, Horvath®®, Hannum?,
342 DNAmPhenoAge?®, DNAMTL, their principal component derivates !, DunedinPACE? and
343  methylation level of ELOVL2 at cg16867657%° in 428 biological samples, in up to 12 blood
344 cell types, collected and separated from the same set of individuals. Our results show a
345  significant difference (p < 0.05) in BA values, including principal component derivates of the
346  epigenetic clocks, in the majority of pairwise comparisons between the cell types and as
347  compared to whole blood. As a new finding, we show that the cell type-specific BA values of
348  the blood cells appear to persist across human adulthood, with the exception of DunedinPACE.
349  For example, the 50-years-difference in DNAmMPhenoAge values between naive CD4+ T cells
350 and CD14+ monocytes, persists across calendar ages from 20 to 80 years. To put the 50-years-
351  difference into perspective, the BA value difference is approximately 60 years between a 20-
352 and 80-years-old person, but the cell type-specific difference is a few years between two
353  persons with the same calendar age. Thus, in line with Zhang et al (2023)*, we conclude that
354  calendar age and blood cell composition together explain the great majority of variation in BA
355  values. As an exception among the BA indicators, the DunedinPACE values can have up to
356  four-fold differences between the cell types, but the differences appear not to persist across
357  human life course across all cell types studied here. Furthermore, by using longitudinal cohort
358 data, we highlight how thoroughly blood cell composition changes with age during adulthood,
359 in line with previous reports 122 The synthesis of this research evidence implies that the
360 proportion of many of the cell types with ‘younger’ BA values in blood circulation, such as
361 naive CD4+ and naive CD8+ T cells, decline with advancing calendar age, while the proportion
362  of cells with mostly ‘older’ BA values, such as monocytes, become more prevalent (Figure 4).
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Figure 4. Graphical summary of typical blood cell subtype separation with cell type-
specific biological ages (BAs), as well as cell proportion ranges and age-related changes
at human population-level

Cell count prevalence ranges and changes with advancing age at population-level are
according to previous reports®*40424447and Supplementary Figure S3. Biological age (BA)
indicated by DNAmMPhenoAge is colored according to rank-orders of cell type-specific group
mean values for DNAmMPhenoAge in GSE131989, GSE166844, GSE35069 and GSE78942 in
this study (Table 2, Supplementary Table S2). Our results suggest a trend of cell types with
‘older’ BA values increasing in numbers with increasing calendar age, and vice versa, cell
types with ‘younger’ BA values decreasing with age.

So far, reports on blood cell type-specificity in Horvath, DNAmPhenoAge and DunedinPACE

values have been based on pairwise comparisons between cell subtypes originating from

different individuals®*, small datasets (number of individuals<10)?*, on whole blood data,

where cell proportions have been estimated using deconvolution methods?*“¢ or for a single
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379  BA indicator at a time?“3. The strength of our approach was the inclusion of purified cell
380  populations from four independent data sets, six BA indicators and the PC-clocks, and datasets
381  consisting of the same sets of individuals for each cell type. Furthermore, we were able to
382  assess relationships between DNAmMPhenoAge and DunedinPACE values and donor’s calendar

383  age within a cell type for a larger number of individuals than in previous studies.

384  Our observations are in line with previous studies®244348 in those parts where comparable. In
385  our analysis, subsets of T cells, especially naive CD4+ and total CD8+ T cells displayed
386  generally the ‘youngest’ values of different BA indicators. Both CD19+ B cells and CD14+
387  monocytes displayed ‘older’ BA indicator values as compared to T cells, and of the two,
388 CDI14+ monocytes displayed the ‘oldest” BA values. The differences between CD4+CD28+
389 and CD4+CD28- T cells were especially pronounced. That is, naive CD4+ T cells showed
390  ‘younger’ BA as compared to memory CD4+ T cells, and that CD4+CD28+ T cells showed
391  ‘younger’ values of Horvath and DNAmMPhenoAge as compared to CD4+CD28- T cells, and
392  the differences were up to 40 years.

393  We identified statistically significant differences for the Horvath pan-tissue clock?® in the
394  majority of pairwise comparisons in two independent data sets in line with our previous
395  findings* as well as other literature?®2448, This finding is interesting as this 1 generation clock
396  was trained with data from altogether 53 somatic tissues?%, and one could expect that different
397  cell types would display similar values of this BA. In Kananen et al. (2016), Horvath values
398  were higher with a higher FACS-analysis-based proportions of CD4+CD28- T cells as
399  compared to CD4+CD28+ T cells when assessed from cells originating from individuals with
400 the same calendar age. The other previous studies have reported up to twenty-years difference

401  in Horvath values between different cell subtypes 232448,

402  Zhang et al. (2023) reported lowest values for Horvath, Hannum, DNAmPhenoAge and
403  DunedinPACE for naive CD8+ T cells. Our datasets did not include naive CD8+ T cells, only
404  total CD8+ T cells, and they were generally observed to have lower values of BAs as compared
405  to whole blood. In addition, in both datasets containing CD8+ T cells, they showed the lowest
406  values of BAs among the different cell types. It is important to note that although naive T cells
407  are more prevalent in blood than CD28- T cells, especially in younger calendar ages 4**°, and
408  we observed dramatic differences in their BA values when compared to whole blood, while
409  BA values of CD4+CD28- T cells are closer those of whole blood. Thus, the magnitude of the
410  possible contribution by naive T cells to the BA values in a whole blood sample is substantial.
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411  The DunedinPACE? values, when measured in whole blood, have been shown to increase with
412  a higher calendar age, even though this association is much weaker as compared to other
413  epigenetic clocks®. The association between the donor’s calendar age and DunedinPACE?®
414 values within a separated blood cell type has been assessed previously in data with only a few
415 individuals®*. Our correlation statistics from dataset (GSE131989) with 49 blood donors
416 indicate that the association between DunedinPACE and calendar age may not be the same in
417  all cell types. In naive CD4+ T cells, the Spearman’s correlation p was 0.64 while in memory
418 CD4+ T cells, CD14+ monocytes and CD19+ B cells, the correlation was weak or non-existing
419  (Spearman’s p<0.3). This highlights the need to further study the effect of naive CD4+ T cell
420  counts on the DunedinPACE values measured in whole blood samples. For the other BA
421  indicators (DNAmMTL, methylation level at the ELOVL2 CpG-site, Hannum, Horvath and
422  DNAmPhenoAge), cell type-specific values correlated with calendar age strongly or very
423  strongly (Spearman’s p >0.7 or < -0.7).

424

425  The majority of our results show a similar direction and magnitude for pairwise comparisons
426  in the different BA values between the cell types. Certain cell types were either ‘younger’ or
427  ‘older’ according to most of the indicators, for example, naive CD4+ T cells were very often
428  ‘younger’ than the other cells. The similarities might be explained by the fact that these BA
429 indicators are based on DNA methylation which is tightly linked with cellular identity®®. In
430  parallel, according to some BA indicators, such as DNAmMPhenoAge, monocytes are ‘older’
431 than B cells, naive and memory CD4+ T cells, but according to Hannum they are not. The
432  differences for the BA indicators may be explained by the fact that the different BAs are
433  representing different domains in biological aging (e.g. DNA methylation in a gene vs telomere
434 length vs epigenetic clocks) and of course, utilize varying sets of DNA methylation sites in the
435 genome. Further, the epigenetic clocks can also be categorized into generations depending on
436  the building strategy. The 1% generation epigenetic clocks, such as Horvath 26 and Hannum
437  clocks 27 were built to predict calendar age, the 2" generation epigenetic clocks, such as
438  DNAmPhenoAge?®, were built to predict biological age utilizing biomarkers and calendar age,
439  while the 3 generation clock, DunedinPACE 2° was built to predict pace of aging, utilizing
440 longitudinal biomarker and health data, and not calendar age as such. Horvath was trained in
441  blood and multiple tissues®®, and the rest are only based on measurements from blood samples.
442

443  The significance of cell proportion for epigenetic ages has been noted, to some extent, in

444 previous literature and is an important consideration for the concepts of intrinsic and extrinsic
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445  epigenetic ages®?. These measures of aging are both residual values of an epigenetic clock, such
446  as Horvath or Hannum, after adjusting for calendar age, but intrinsic epigenetic age aims to be
447  independent of blood cell composition as the composition is adjusted for. However, for the
448  extrinsic epigenetic age, the cell composition is incorporated into its values as an additive
449  element. Thus, extrinsic age is not intended to be a measure of the deep cellular mechanism in
450 the aging process, but it is a composite measure. In a meta-analysis of 13 cohorts by Chen et
451  al. (2016), extrinsic age values resulted a higher hazard ratio for mortality with more narrow
452  confidence intervals than intrinsic age®2. This implies that cell counts may give additive value
453  for, for example, lifespan prediction, and the cell composition is not solely a potential
454 confounding factor.

455

456  DNA methylation-based BA indicators are often developed for and measured in whole blood
457  or PBMC samples. They can used in trials or interventions targeted at rejuvenation or reversing
458  biological aging, but they can also be used to study physiological or pathological conditions
459  not related directly to ageing as such. As ageing and various other physiological or pathological
460 conditions can have an effect on blood cell composition, great care should be taken to
461  disentangle the relationship between cell composition and these indicators. For example, a
462  physically active lifestyle has been reported to rejuvenate the immune system by increasing the
463  numbers of naive T lymphocytes or by altering the CD4/CD8 ratio®. Fahy et al. (2019) have
464  reported reversal of epigenetic aging in PBMCs indicated by four different epigenetic clocks
465  with athymus regenerating treatment. In a parallel analysis, they showed that treatment-related
466  changes in circulating blood cell types include a decrease in monocytes and an increase in naive
467  CD4+and CD8+ T cell, but did not account for the cell counts in the statistical analysis for the
468  epigenetic clocks®. As our results indicate that monocytes have ‘older’ BA values while naive
469 T cells have ‘younger’ values, their results on the epigenetic clocks may have been influenced
470 by the changes in immune cell proportions. In other studies on potential aging interventions,
471  cell proportions have not been taken into account > or only the baseline cell proportions have
472  been accounted for®. In general, when interpreting the results of potential aging interventions,
473  great care should be taken to define what is meant and aimed by rejuvenation. Is the aim to
474 change the cells’ intrinsic processes or not? One can ask, is a change in immune cell proportions
475  alone a sufficient outcome for an intervention to be considered successful?

476

477  As an example of a physiological condition, it has been recently reported that pregnancy is

478  associated with increased biological age, and that this increase is reversible postpartum®’:8,
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479  Pregnancy is associated with reversible changes in blood cell composition, with changes in
480  both total number and proportions of different cell types >, In the analysis by Pham et al.
481  (2024), adjusting the statistical models with estimated cell proportions attenuated the
482  association between biological age and course of pregnancy. However, not all potentially
483  relevant blood cell subtypes were accounted for in the analysis, and these findings should be
484  replicated with measured, instead of estimated, blood cell proportions (see Limitations and
485  future perspectives).

486

487  Limitations and future perspectives

488

489  We show extreme and abundant differences for the values of ten BA indicators between the
490  blood cell subtypes using four independent data sets. Importantly, we are able to show that the
491  differences between the cell types appear to persist during adulthood, except for
492  DunedinPACE. These results, together with the knowledge on wide ranges and age-associated
493  changes in cell subtype proportions at population-level (Figure 4), highlight the need for
494  additional efforts when using the existing epigenetic clocks or building up new ones. The cell
495  composition in the blood samples may be accounted for in the statistical analysis if the
496  composition is measured, however, measured cell type proportions are rarely available in large
497  human cohort studies. One solution is to estimate the cell counts in a tissue sample using DNA
498  methylation reference libraries for the various cell subtypes®2%4. However, this cell count
499  estimation is limited in two ways. First, DNA methylation-based cell count estimates may show
500 only modest correlations with the cell counts obtained using other DNA methylation-based
501 estimation algorithm®, and the reliability of the cell count estimation algorithms should be
502  further evaluated in relation to e.g. FACS-based cell counts in larger, independent population
503 cohorts. Second, current libraries do not cover all the different blood cell subtypes with diverse
504  functionalities such as the more specific CD4+ 8 including regulatory T cell subpopulations®’,
505  or various B cell ® or NK cell®® subpopulations. For example, NK cell subtypes show drastic
506 changes in their abundance and/or functionality/properties in aging and/or age-related
507  pathologies™. This limitation also extends to our analysis. Even though our observations are
508  from sets of purified cell types that are often considered as ‘detailed cell separation’ (Figure
509 4), many potentially relevant blood cell subtypes couldn’t be analysed in our study because
510 DNA methylation data is not available for them. Overall, our results highlight the need for
511 analyses on the BA indicators in single cells.

512


https://doi.org/10.1101/2024.05.07.592895
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.07.592895; this version posted May 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

page 24

513 In addition, even when the cell separation protocols and purity levels are according to the high
514  standards in the field, cell subsets are hardly ever completely purified. In the four data sets used
515 inthis study, cells were separated using varying FACS protocols, and, for example, sometimes
516 a cell subtype was determined with only one surface antigen while it was sometimes
517  determined using more than one (Supplementary Table S1). The impurity may have influenced
518  our results and caused noise in the cell subtype-specific BA values. Consistency in our findings
519  suggest the extent of this noise is likely small but further studies are needed.

520

521  Conclusions

522

523  Different blood cell subtypes generally show distinct biological ages (BAs), according to six
524  BA indicators representing various aspects of biological aging. The differences between the
525  cells can be substantial and they appear to persist across adult ages from 20 to 80 years for all
526  BA indicators, except for DunedinPACE. When studying DNA methylation-based BA
527 indicators in whole blood samples, the contribution of differing blood cell proportions needs
528 to be considered. This is relevant for studies on physiological and pathological conditions
529  known to have a significant effect on blood cell proportions, but especially for any potential
530 aging interventions.

531
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