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 45 

Abstract 46 

A biological age (BA) indicator is intended to capture detrimental age-related changes 47 

occurring with passing time. To date, the best-known and used BA indicators include DNA-48 

methylation-based epigenetic ages (epigenetic clocks) and telomere length. The most common 49 

biological sample material for epidemiological aging studies is composed of different cell 50 

types, whole blood. We aimed to compare differences in BAs between blood cell types and 51 

assessed BA indicators’ cell type-specific associations with donor’s calendar age. 52 

 53 

Analysis on DNA methylation-based BA indicators including telomere length, methylation 54 

level at cg16867657 (a CpG-site in ELOVL2) and the Hannum, Horvath, DNAmPhenoAge and 55 

DunedinPACE epigenetic clocks was performed in 428 biological samples from 12 blood cell 56 

types. BA values were different (p<0.05) in the majority of pairwise comparisons between the 57 

cell types. Most cell types also displayed differences as compared to whole blood (p<0.05). 58 

Some of the observed differences persisted across blood donor’s calendar ages from 20 to 80 59 

years (50-years-difference in DNAmPhenoAge between naïve CD4+ T cells and monocytes), 60 

while others did not (up to four-fold difference in DunedinPACE values between monocytes 61 

and B cells). All BA indicators, except DunedinPACE, had mostly a very strong correlation 62 

with donor’s calendar age within a cell type. 63 

 64 

Our findings demonstrate that DNA methylation-based indicators of biological age exhibit cell 65 

type-specific characteristics, underscoring the importance of accounting for cell composition 66 

in related studies. Our results have implications for understanding the molecular mechanisms 67 

underlying epigenetic clocks and and provide guidance for utilizing them as indicators for 68 

success of aging interventions. 69 

 70 

Keywords: biological age, epigenetic clock, telomere length, DNA methylation, biological 71 

aging, blood cell subtypes  72 
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Introduction 73 

By definition, biological age (BA), or an aging biomarker, should better predict future health 74 

status as compared to chronological age. By AFAR (American Federation for Aging Research) 75 

criteria “It must monitor a basic process that underlies the aging process, not the effects of 76 

disease.”1–4. Of the many established BA indicators 4,5, the most well-known and used are 77 

DNA-methylation-based epigenetic ages (epigenetic clocks) and telomere length, a hallmark 78 

of aging6. Ideally, these indicators should reflect how health interventions influence biological 79 

aging. However, the underlying molecular mechanisms of the epigenetic clocks are still 80 

unknown.  81 

 82 

Accelerated biological aging (or aging rate) indicated by telomere length7 and epigenetic 83 

clocks6 predicts health span, lifespan or both in large-scale cohort studies. Typically, these 84 

analyses are performed in whole blood samples that are mixtures of various blood cell subtypes. 85 

As such, blood cell composition is a potential confounder in the analyses, because blood cell 86 

composition changes with advancing age 8, already before middle-age 9. Typical characteristics 87 

of age-related remodeling of the immune system include decreasing naïve CD8 and CD4 T cell 88 

and increasing exhausted CD28- T cell counts, declining CD4 to CD8 T cell ratio, and 89 

potentially also altered NK cell count and functionality 10,11. This remodeling is highlighted by 90 

the existence of IMM-AGE12, a blood cell composition-based, potential BA indicator. Further, 91 

changes in blood cell composition are seen in many age-related conditions (e.g. frailty 13) and 92 

diseases e.g. cancer 14 , Alzheimer’s 15 , and cardiovascular diseases 16,17. The age-related 93 

remodeling of the blood cell composition is not limited to these changes, but these are the well-94 

known examples for which there is epidemiological evidence of their relationship to aging and 95 

aging phenotypes.   96 

  97 

A better understanding on the biological aging at the cell subtype-level within tissues is needed. 98 

Previous studies have shown telomere length 18–21 and DNA methylation level at cg16867657, 99 

a CpG site in ELOVL222, are tissue- and cell type-specific in their absolute values and age-100 

related changes. A few previous studies have shown that epigenetic ages by DNAmPhenoAge 101 

and Horvath differ between blood cell types23, but BA or biological aging rate indicated by 102 

epigenetic clocks developed more recently are studied less in separated cell subtypes. 103 

Importantly, previous such analyses have been made typically using separated cells originating 104 

from different individuals and datasets with less than 10 individuals each24. Further, it is 105 

unknown in what way cell subtype-specific epigenetic age values indicated by the 2nd and 3rd 106 
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generation epigenetic clocks change with advancing calendar age across adulthood. Thus, in 107 

this study, we aimed to 1) assess differences in values of DNA-methylation-based BA 108 

indicators between blood cell types originating from the same blood donors and with more 109 

adequate sample size. 2) We also aimed to assess BA indicators’ cell type-specific associations 110 

with donor’s calendar age. The BA indicators included ‘the 1st generation clocks’ (ELOVL2-111 

CpG-site, cg16867657 23, Horvath 26 and Hannum 27), ‘the 2nd generation clock’ 112 

(DNAmPhenoAge28), ‘the 3rd generation clock’ (DunedinPACE 29) as well as telomere length 113 

(DNAmTL, estimated based on DNA methylation data 30). In our main analyses, we performed 114 

pairwise comparisons for BA indicator values between whole blood, peripheral blood 115 

mononuclear cells (PBMCs) and up to ten separated blood cell subtypes in four separate data 116 

sets with 428 biological samples, originating from the same blood donors. Then, we assessed 117 

cell subtype-specific associations of the different BA indicators with calendar age. In our 118 

additional analyses, we repeated pairwise comparison analysis with principal component 119 

derivates of the clocks31, assessed cell subtype-specific correlations of the different BA 120 

indicators with each other, and last, exemplified blood cell subtype count trajectories over 121 

decades in a longitudinal cohort sample (The Swedish Adoption/Twin Study of Aging 122 

[SATSA], n=328). 123 

  124 
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Methods 125 

Data sets 126 

We included  four datasets available in NCBI GEO 32,33 (GSE35069 34, GSE131989 35, 127 

GSE166844 23, GSE78942 36) in which DNA methylation data was available from separated 128 

immune cell subtypes (Table 1) for this study. These subtypes were separated using 129 

fluorescence-activated cell sorting (FACS) as described in detail in the original publications 130 

23,34–36. Surface markers used for the FACS analyses are summarized in Supplementary Table 131 

S1. We included only datasets in which the different immune cell populations were available 132 

from the same individuals as complete cases. For the cell count trajectory analysis, DNA-133 

methylation-based cell count estimates in whole blood samples in the Swedish Adoption/Twin 134 

Study of Aging (SATSA, n=328 with 657 observations, baseline ages 48-98, mean age 68.5) 135 

were used 37. 136 

 137 

BA indicators 138 

We assessed different BA indicators using DNA methylation data from the aforementioned 139 

datasets (Table 1). The indicators of BA (or biological aging rate) investigated were telomere 140 

length estimated based on DNA methylation (DNAmTL) 30, methylation level of ELOVL2 at 141 

one CpG (cg16867657)25, Hannum27, Horvath26, DNAmPhenoAge28 and DunedinPACE29 as 142 

well as the principal component derivates of Horvath, Hannum, DNAmPhenoAge and 143 

DNAmTL31. In three of the included datasets, DNA methylation was measured using Illumina 144 

450K (GSE35069, GSE13198) or Illumina EPIC (GSE166844) array, allowing us to calculate 145 

all the ten indicators of BA. In dataset GSE78942, methylation data were measured using 146 

Illumina 27K array, allowing us to calculate only Horvath and DNAmPhenoAge. All BA 147 

indicators were calculated from the normalized and preprocessed data available in GEO. 148 

 149 

Horvath (for datasets GSE35069, GSE13198 and GSE166844), Hannum, DNAmPhenoAge 150 

and DNAmTL (for all included datasets) were calculated using the DNAmAge function of the 151 

methylclock package version 0.8.238. For GSE78942, Horvath was calculated using the 152 

webpage tool available in https://dnamage.clockfoundation.org/. DunedinPACE was 153 

calculated as described in the original publication29 with the R package DunedinPACE. The 154 

principal component derivates of the clocks were calculated as previously described 31
. 155 

Methylation value of the probe cg16867657 in ELOVL2 was extracted directly from 156 

methylation data available in GEO for each dataset. 157 

 158 
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Statistical analysis 159 

Statistical significance for the pairwise comparisons were assessed using the Mann Whitney 160 

U-test. BA values were compared between the cell subtypes at group-level within a data set. 161 

Cell subtype-specific BA values were visualized as boxplots with dots and line plots, and 162 

pairwise differences as boxplots. Cell subtype-specific relationships between values of 163 

different BA indicators and calendar age were assessed using correlation statistics (Spearman), 164 

and the relationships were visualized as scatterplots. 165 

 166 

In our additional analyses, we assessed cell subtype-specific relationships between values of 167 

different BA indicators using correlation statistics (Spearman) and the relationships were 168 

visualized as scatterplots. In the longitudinal cohort data, cell subtype count trajectories were 169 

visualized as line plots and significance for the cell count change with calendar age was 170 

obtained using mixed linear model. In GSE131989 and SATSA, calendar age was used as 171 

individual-level phenotypic data in our statistical analyses. Data were analysed and visualized 172 

using R statistical software (version 4.2.2) and R-packages ggplot2. P-value threshold for 173 

statistical significance was set to 0.05. 174 
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Table 1. Data sets in pairwise comparisons 175 

Details on how different cell types were separated are provided in Supplementary Table 1. 176 

Data set 

Individuals,  

n 

Calendar age  

(years) 

Calendar age 

available for 

each individual 

Female,  

% 

Cell 

sample  

types,  

n Available cell sample types 

Pairwise 

cell type 

comparisons, 

n 

GSE131989 49 54 ± 17.5 Yes 100 4 CD14+, CD19+, CD4 memory T cells, CD4 naïve T cells 6 

GSE166844 28 19 ± 0 Yes 40 6 Whole blood, Granulocytes, CD14+ monocytes, CD19+ B 

cells, CD8+ T cells, CD4+ T cells 

15 

GSE35069 6 38 ± 13.6 No 0 10 Whole blood, PBMC, Granulocytes, Neutrophils, Eosinophils, 

CD14+ monocytes, CD19+ B cells, CD56+ NK cells, CD8+ T 

cells, CD4+ T cells 

45 

GSE78942 24* 62.1 ± 9.9 No NA 2 CD4+CD28+ T cells, CD4+CD28- T cells 1 

 *DNA methylation measured from two pooled samples of separated cells; 12 individuals in a sample 

 177 
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Results 178 

 179 

Pairwise comparisons 180 

BA values for each cell type in the different data sets (Table 1) in our analysis are shown in 181 

Figure 1, Table 2, Supplementary Figure S1 and Supplementary Table S2. We performed as 182 

our main analysis pairwise comparisons of the BA indicator values between the blood cell 183 

subtypes. In summary, BA values, including principal component derivates of the epigenetic 184 

clocks, were different (Mann-Whitney U-test p<0.05) in the majority of pairwise comparisons 185 

between the cell types (Table 2, Figure 2, Supplementary Table S3-S5, Supplementary 186 

Results). Most cell types also displayed differences as compared to whole blood (Mann-187 

Whitney U-test p<0.05, Figure 2, Supplementary Table S3-S5). Some of the observed 188 

differences persisted across blood donor’s calendar ages from 20 to 80 years, for example the 189 

50-years-difference in DNAmPhenoAge values between naïve CD4+ T cells and monocytes 190 

(Figure 3). However, for example, the up to four-fold difference in DunedinPACE values 191 

between monocytes and B cells did not persist over time (Figure 3).  192 

As expected, pairwise comparisons were more often statistically significant (Mann-Whitney U 193 

test p-value <0.05) in GSE166844 and GSE131989 with larger number of individuals than in 194 

GSE35069 which included six individuals (Table 1, Table 3). Other important details for results 195 

interpretation are that GSE131989 and GSE35069 included individuals with wide calendar age 196 

range while individuals in GSE166844 were all 19 years old. While most cell types were 197 

available in at least two datasets, neutrophils, eosinophils and CD56+ NK cells were available 198 

for analysis in GSE35069 only. In GSE78942, the difference in BA values was apparent but 199 

statistical analysis was not possible as it comprised four biological samples only. 200 
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 203 
 204 

Figure 1. Blood cell type-specific biological ages (BAs) and a BA rate  205 

Values of DNAmTL (TL), cg16867657 in ELOVL2, and Hannum are summarized as boxplot 206 

with dots in panel A, and Horvath, DNAmPhenoAge and DunedinPACE in panel B. These 207 

DNA methylation-based BA indicators were assessed in three DNA methylation data sets 208 

(GSE131989, GSE166844, GSE35069) with 424 biological samples from 83 individuals and 209 

including 12 cell sample types. Boxes are colored according to cell type (1-12).  Each dot 210 

represents one individual. 211 

 212 

 213 
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Dataset Sample type, sample id Horvath DNAmPhenoAge 

GSE78942 CD4+CD28- T cells, pool1 65.9 50.8 

 CD4+CD28- T cells, pool2 72.9 57.0 

 CD4+CD28+ T cells, pool1 39.0 8.5 

 CD4+CD28+ T cells, pool2 35.1 10.7 

 214 

Table 2.  BA values according Horvath and DNAmPhenoAge in displayed ‘younger’ 215 

values in CD4+CD28+ T cells as compared to CD4+CD28- T cells in GSE78942 216 

DNA methylation was measured from four pooled biological samples of purified cells. In 217 

pool1, cells were separated from 12 individuals and the cells were pooled as two biological 218 

samples (CD28+ and CD28- cells), and in pool2, cells originated from other set of 12 219 

individuals and the separated cells were pooled in a similar way as pool 1. Calendar age of 220 

these healthy blood donors was 45-75 years (mean[SD]=62.1[9.9]). 221 

 222 

 223 

 224 

 225 
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229 
Figure 2. Pairwise differences in values of DNAmTL (TL) and cg16867657 at ELOVL2 230 

(ELOVL2) (A), Horvath and Hannum (B), and DunedinPACE and DNAmPhenoAge (C) 231 

between the cell types 232 

Cell pairs with statistically significant difference in BA values (Mann Whitney U, p<0.05) are 233 

colored with red, otherwise with grey. Difference in BA indicator values between a cell-pair 234 

(Δ) was calculated for each individual and these differences are shown as boxplots for the three 235 

data sets. Δ-value for a BA indicator is shown on the x-axis. In GSE131989 including 49 blood 236 

donors, there were 6 cell type pairs, in GSE166844 including 28 blood donors, 15 pairs, and in 237 

GSE35069 including six blood donors, 45 cell type pairs to be compared. Cell type-specific 238 

BA values within a dataset are summarised in Figure 1, Supplementary Figure 1 and Table S2, 239 

and p-values for the comparisons are presented in Supplementary Tables S3-S5. 240 

 241 

 242 

 243 

 244 

 245 

 246 

 247 
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Table 3. Number of cell pairs showing differences for each indicator of BA in three 248 

datasets  249 

Mann-Whitney U test p-values are shown in Supplementary Table S3-S5. 250 

 Data set 

 GSE131989  GSE166844 GSE35069 

Number of pairwise comparisons  
6 15 45 

Number of cell pairs showing pairwise differences(%) 

DNAmTL 3(50) 14(93) 6(13) 

ELOVL2 3(50) 14(93) 6(13) 

Hannum 3(50) 10(67) 8(18) 

Horvath 4(67) 12(80) 0(0) 

DNAmPhenoAge 5(83) 15(100) 7(16) 

DunedinPACE 6(100) 15(100) 31(69) 
 251 

 252 

 253 
Figure 3. Cell type-specific associations of DNA-methylation-based BA indicators (and 254 

biological aging rate) with blood donors’ calendar age in GSE131989 255 

DNA methylation data within four separated cell subtypes (CD19+ B cells, CD14+ 256 

monocytes, naïve CD4+ T cells, memory CD4+ T cells) originated from 49 individuals aged 257 

18-82 years (all females). Correlation statistics showing the significance for the associations 258 

with calendar age are shown in Supplementary Table S6. Grey areas indicate 95% 259 

Confidence Intervals for the linear fit lines.   260 
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 261 

CD19+ B cells 262 

Methylation data in CD19+ B cells was available in three datasets. As compared to other cell 263 

types, CD19+ B cells displayed a statistically significant difference (Mann-Whitney U test p-264 

value <0.05) in majority of the pairwise comparisons in GSE131989 and GSE166844 (Figure 265 

2, Supplementary S3-S4). In the smallest dataset, GSE35069, statistically significant 266 

differences were mainly observed for DunedinPACE (Figure 2, Supplementary Figure S1, 267 

Supplementary Table S5). In summary, our results suggest CD19+ B cells are, according to the 268 

studied BA indicators, ‘younger’ as compared to CD14+ cells, but ‘older’ as compared to naïve 269 

CD4+ cells and total CD8+ T cells, although there are some discrepancies between the different 270 

BAs (Figure 2, Supplementary Table S3-S5). In comparison to whole blood, no clear pattern 271 

was observed for CD19+ B cells. 272 

 273 

T cell subsets 274 

Data on various subsets of T cells was available in four datasets, including total CD4+ and 275 

CD8+ T cells (GSE166844 and GSE35069), CD4+ naïve and memory T cells (GSE131989) 276 

and CD4+CD28- and CD4+CD28+ T cells (GSE78942). Majority of pairwise comparisons 277 

across these cell types were statistically significant (Figure 2, Table 2, Supplementary Tables 278 

S3-S5). Our results suggest that CD8+ T cells are ‘younger’ as compared to CD4+ T cells, and 279 

that naïve CD4+ T cells are ‘younger’ as compared to memory CD4+ T cells (Figure 2, 280 

Supplementary Table S3-S5). In addition, CD4+CD28+ cells were identified to be ‘younger’ 281 

as compared to CD4+CD28- according to both BA indicators available for this dataset, Horvath 282 

and DNAmPhenoAge (Table 2), although for this data no statistical tests could be performed, 283 

as there were only four biological samples. As compared to whole blood, both CD4+ and CD8+ 284 

T cells are ‘younger’, although there are discrepancies between different BA indicators (Figure 285 

2, Supplementary Table S3-S5). The magnitude of difference was larger between CD8+ T cells 286 

and whole blood as compared to CD4+ T cells and whole blood (Figure 1, Figure 2). 287 

 288 

CD14+ monocytes 289 
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Data on CD14+ monocytes was available in three datasets. As compared to other cell types, 290 

majority of pairwise comparisons between CD14+ monocytes were statistically significant in 291 

GSE166844 and GSE131989 (Figure 2, Supplementary Figure S1, Supplementary Table S3 292 

and S4). Our results suggest that CD14+ monocytes are ‘older’ as compared to various T cell 293 

subsets, ‘older’ as compared to CD19+ B cells, and also ‘older’ as compared to whole blood 294 

samples (Figure 2, Supplementary Tables S3-S5). 295 

 296 

Cell-subtype specific BA values across adult calendar ages  297 

All BA indicators, except DunedinPACE, correlated strongly with calendar age within a cell 298 

type in dataset GSE131988 (>0.8 or < -0.7, Figure 3, Supplementary Table S6).  DunedinPACE 299 

values increased most consistently with a higher calendar age within naïve CD4+ T cells 300 

(Spearman’s ρ=0.636), but in other cell types tested the correlations were more modest or 301 

nonsignificant (Figure 3, Supplementary Table S6). The analysis could only be performed in 302 

this one dataset, as calendar age was not available, or all individuals were of the same age, in 303 

others. 304 

 305 

Additional analyses 306 

Pairwise comparisons for principal component clocks 307 

The epigenetic clocks have been reported to suffer from technical noise31. The proposed 308 

solution is to utilize principal components instead of the individual level CpG data to calculate 309 

the clocks i.e. PC-clocks. To verify that the observed differences in BA indicators across cell 310 

types are not due to technical noise of the Illumina array, as an additional analysis, we repeated 311 

the pairwise comparison analysis with the principal component derivates for Horvath, Hannum, 312 

DNAmPhenoAge and DNAmTL (Supplementary Table S2). Our results show that the 313 

observed differences between the cell types in the main analysis remained significant for the 314 

studied PC-clocks (Supplementary Table S3, S4 and S5). 315 

 316 

Relationships between different BAs 317 

Then, we explored relationships between the values of different BA indicators (Supplementary 318 

Figure S2) and focused on the relationships within each cell subtype population 319 
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(Supplementary Table S6-S8).  The majority of BA indicators showed strong or very strong 320 

correlations (>0.7 or < -0.7) with each other within the different cell subtype populations in 321 

GSE131989 and GSE35069 (Supplementary Table S6 and S8), which have wide age ranges. 322 

However, only a very few moderate or stronger correlations (>0.5 or < -0.5) were observed in 323 

GSE166844 (Supplementary Table S7), which includes individuals with the same calendar age. 324 

An exception in the cell type-specific correlations was seen for DunedinPACE as the 325 

correlations were, overall, lower or non-existing (Figure 3A, Supplementary Table S6-S8).  326 

 327 

Blood cell composition trajectories 328 

In the last additional analysis, we visualized estimated blood cell composition trajectories in a 329 

longitudinal cohort (SATSA) with decades of follow-up (Supplementary Figure S3) and 330 

observed changes in cell counts with advancing calendar age for all blood cell subtypes that 331 

were in our pairwise comparisons and also available in SATSA (p<0.005). The counts of B 332 

cells, CD4+ and CD8+ T cells, naïve CD4+ and CD8+ T cells decrease, while the counts of 333 

CD8+CD28-CD45RA- T and NK cells, plasmablasts, monocytes and granulocytes increase 334 

from midlife into old age (Supplementary Figure S3).  335 

 336 

 337 

  338 
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Discussion 339 

 340 

We assessed ten DNA-methylation-based BA indicators, Horvath26, Hannum27, 341 

DNAmPhenoAge28, DNAmTL30, their principal component derivates 31, DunedinPACE29 and 342 

methylation level of ELOVL2 at cg1686765725 in 428 biological samples,  in up to 12 blood 343 

cell types, collected and separated from the same set of individuals. Our results show a 344 

significant difference (p < 0.05) in BA values, including principal component derivates of the 345 

epigenetic clocks, in the majority of pairwise comparisons between the cell types and as 346 

compared to whole blood. As a new finding, we show that the cell type-specific BA values of 347 

the blood cells appear to persist across human adulthood, with the exception of DunedinPACE. 348 

For example, the 50-years-difference in DNAmPhenoAge values between naïve CD4+ T cells 349 

and CD14+ monocytes, persists across calendar ages from 20 to 80 years. To put the 50-years-350 

difference into perspective, the BA value difference is approximately 60 years between a 20- 351 

and 80-years-old person, but the cell type-specific difference is a few years between two 352 

persons with the same calendar age. Thus, in line with Zhang et al (2023)24, we conclude that 353 

calendar age and blood cell composition together explain the great majority of variation in BA 354 

values. As an exception among the BA indicators, the DunedinPACE values can have up to 355 

four-fold differences between the cell types, but the differences appear not to persist across 356 

human life course across all cell types studied here. Furthermore, by using longitudinal cohort 357 

data, we highlight how thoroughly blood cell composition changes with age during adulthood, 358 

in line with previous reports 12,39–46. The synthesis of this research evidence implies that the 359 

proportion of many of the cell types with ‘younger’ BA values in blood circulation, such as 360 

naïve CD4+ and naïve CD8+ T cells, decline with advancing calendar age, while the proportion 361 

of cells with mostly ‘older’ BA values, such as monocytes, become more prevalent (Figure 4).  362 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 10, 2024. ; https://doi.org/10.1101/2024.05.07.592895doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.07.592895
http://creativecommons.org/licenses/by/4.0/


page 19 

 

 363 

Figure 4. Graphical summary of typical blood cell subtype separation with cell type-364 

specific biological ages (BAs), as well as cell proportion ranges and age-related changes 365 

at human population-level  366 

Cell count prevalence ranges and changes with advancing age at population-level are 367 

according to previous reports39,40,42,44–47and Supplementary Figure S3. Biological age (BA) 368 

indicated by DNAmPhenoAge is colored according to rank-orders of cell type-specific group 369 

mean values for DNAmPhenoAge in GSE131989, GSE166844, GSE35069 and GSE78942 in 370 

this study (Table 2, Supplementary Table S2). Our results suggest a trend of cell types with 371 

‘older’ BA values increasing in numbers with increasing calendar age, and vice versa, cell 372 

types with ‘younger’ BA values decreasing with age. 373 

 374 

So far, reports on blood cell type-specificity in Horvath, DNAmPhenoAge and DunedinPACE 375 

values have been based on pairwise comparisons between cell subtypes originating from 376 

different individuals24, small datasets (number of individuals<10)24, on whole blood data, 377 

where cell proportions have been estimated using deconvolution methods24,48 or for a single 378 
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BA indicator at a time23,43. The strength of our approach was the inclusion of purified cell 379 

populations from four independent data sets, six BA indicators and the PC-clocks, and datasets 380 

consisting of the same sets of individuals for each cell type. Furthermore, we were able to 381 

assess relationships between DNAmPhenoAge and DunedinPACE values and donor’s calendar 382 

age within a cell type for a larger number of individuals than in previous studies.  383 

Our observations are in line with previous studies23,24,43,48, in those parts where comparable. In 384 

our analysis, subsets of T cells, especially naïve CD4+ and total CD8+ T cells displayed 385 

generally the ‘youngest’ values of different BA indicators. Both CD19+ B cells and CD14+ 386 

monocytes displayed ‘older’ BA indicator values as compared to T cells, and of the two, 387 

CD14+ monocytes displayed the ‘oldest’ BA values. The differences between CD4+CD28+ 388 

and CD4+CD28- T cells were especially pronounced. That is, naïve CD4+ T cells showed 389 

‘younger’ BA as compared to memory CD4+ T cells, and that CD4+CD28+ T cells showed 390 

‘younger’ values of Horvath and DNAmPhenoAge as compared to CD4+CD28- T cells, and 391 

the differences were up to 40 years. 392 

We identified statistically significant differences for the Horvath pan-tissue clock26 in the 393 

majority of pairwise comparisons in two independent data sets in line with our previous 394 

findings43 as well as other literature23,24,48. This finding is interesting as this 1st generation clock 395 

was trained with data from altogether 53 somatic tissues26, and one could expect that different 396 

cell types would display similar values of this BA.  In Kananen et al. (2016), Horvath values 397 

were higher with a higher FACS-analysis-based proportions of CD4+CD28- T cells as 398 

compared to CD4+CD28+ T cells when assessed from cells originating from individuals with 399 

the same calendar age. The other previous studies have reported up to twenty-years difference 400 

in Horvath values between different cell subtypes 23,24,48. 401 

Zhang et al. (2023) reported lowest values for Horvath, Hannum, DNAmPhenoAge and 402 

DunedinPACE for naïve CD8+ T cells. Our datasets did not include naïve CD8+ T cells, only 403 

total CD8+ T cells, and they were generally observed to have lower values of BAs as compared 404 

to whole blood. In addition, in both datasets containing CD8+ T cells, they showed the lowest 405 

values of BAs among the different cell types. It is important to note that although naïve T cells 406 

are more prevalent in blood than CD28- T cells, especially in younger calendar ages 41,49, and 407 

we observed dramatic differences in their BA values when compared to whole blood, while 408 

BA values of CD4+CD28- T cells are closer those of whole blood. Thus, the magnitude of the 409 

possible contribution by naïve T cells to the BA values in a whole blood sample is substantial.  410 
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The DunedinPACE29 values, when measured in whole blood, have been shown to increase with 411 

a higher calendar age, even though this association is much weaker as compared to other 412 

epigenetic clocks50. The association between the donor’s calendar age and DunedinPACE29 413 

values within a separated blood cell type has been assessed previously in  data with only a few 414 

individuals24. Our correlation statistics from dataset (GSE131989) with 49 blood donors 415 

indicate that the association between DunedinPACE and calendar age may not be the same in 416 

all cell types. In naïve CD4+ T cells, the Spearman’s correlation ρ was 0.64 while in memory 417 

CD4+ T cells, CD14+ monocytes and CD19+ B cells, the correlation was weak or non-existing 418 

(Spearman’s ρ<0.3). This highlights the need to further study the effect of naïve CD4+ T cell 419 

counts on the DunedinPACE values measured in whole blood samples. For the other BA 420 

indicators (DNAmTL, methylation level at the ELOVL2 CpG-site, Hannum, Horvath and 421 

DNAmPhenoAge), cell type-specific values correlated with calendar age strongly or very 422 

strongly (Spearman’s ρ >0.7 or < -0.7).  423 

 424 

The majority of our results show a similar direction and magnitude for pairwise comparisons 425 

in the different BA values between the cell types. Certain cell types were either ‘younger’ or 426 

‘older’ according to most of the indicators, for example, naïve CD4+ T cells were very often 427 

‘younger’ than the other cells. The similarities might be explained by the fact that these BA 428 

indicators are based on DNA methylation which is tightly linked with cellular identity51. In 429 

parallel, according to some BA indicators, such as DNAmPhenoAge, monocytes are ‘older’ 430 

than B cells, naïve and memory CD4+ T cells, but according to Hannum they are not. The 431 

differences for the BA indicators may be explained by the fact that the different BAs are 432 

representing different domains in biological aging (e.g. DNA methylation in a gene vs telomere 433 

length vs epigenetic clocks) and of course, utilize varying sets of DNA methylation sites in the 434 

genome. Further, the epigenetic clocks can also be categorized into generations depending on 435 

the building strategy. The 1st generation epigenetic clocks, such as Horvath 26  and Hannum 436 

clocks 27 were built to predict calendar age, the 2nd generation epigenetic clocks, such as 437 

DNAmPhenoAge28, were built to predict biological age utilizing biomarkers and calendar age, 438 

while the 3rd generation clock, DunedinPACE 29 was built to predict pace of aging, utilizing 439 

longitudinal biomarker and health data, and not calendar age as such. Horvath was trained in 440 

blood and multiple tissues26, and the rest are only based on measurements from blood samples. 441 

 442 

The significance of cell proportion for epigenetic ages has been noted, to some extent, in 443 

previous literature and is an important consideration for the concepts of intrinsic and extrinsic 444 
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epigenetic ages52. These measures of aging are both residual values of an epigenetic clock, such 445 

as Horvath or Hannum, after adjusting for calendar age, but intrinsic epigenetic age aims to be 446 

independent of blood cell composition as the composition is adjusted for. However, for the 447 

extrinsic epigenetic age, the cell composition is incorporated into its values as an additive 448 

element. Thus, extrinsic age is not intended to be a measure of the deep cellular mechanism in 449 

the aging process, but it is a composite measure. In a meta-analysis of 13 cohorts by Chen et 450 

al. (2016), extrinsic age values resulted a higher hazard ratio for mortality with more narrow 451 

confidence intervals than intrinsic age52. This implies that cell counts may give additive value 452 

for, for example, lifespan prediction, and the cell composition is not solely a potential 453 

confounding factor.  454 

 455 

DNA methylation-based BA indicators are often developed for and measured in whole blood 456 

or PBMC samples. They can used in trials or interventions targeted at rejuvenation or reversing 457 

biological aging, but they can also be used to study physiological or pathological conditions 458 

not related directly to ageing as such. As ageing and various other physiological or pathological 459 

conditions can have an effect on blood cell composition, great care should be taken to 460 

disentangle the relationship between cell composition and these indicators. For example, a 461 

physically active lifestyle has been reported to rejuvenate the immune system by increasing the 462 

numbers of naïve T lymphocytes or by altering the CD4/CD8 ratio53. Fahy et al. (2019) have 463 

reported reversal of epigenetic aging in PBMCs indicated by four different epigenetic clocks 464 

with a thymus regenerating treatment. In a parallel analysis, they showed that treatment-related 465 

changes in circulating blood cell types include a decrease in monocytes and an increase in naïve 466 

CD4+ and CD8+ T cell, but did not account for the cell counts in the statistical analysis for the 467 

epigenetic clocks54. As our results indicate that monocytes have ‘older’ BA values while naïve 468 

T cells have ‘younger’ values, their results on the epigenetic clocks may have been influenced 469 

by the changes in immune cell proportions. In other studies on potential aging interventions, 470 

cell proportions have not been taken into account 55
 or only the baseline cell proportions have 471 

been accounted for56. In general, when interpreting the results of potential aging interventions, 472 

great care should be taken to define what is meant and aimed by rejuvenation. Is the aim to 473 

change the cells’ intrinsic processes or not? One can ask, is a change in immune cell proportions 474 

alone a sufficient outcome for an intervention to be considered successful? 475 

 476 

As an example of a physiological condition, it has been recently reported that pregnancy is 477 

associated with increased biological age, and that this increase is reversible postpartum57,58. 478 
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Pregnancy is associated with reversible changes in blood cell composition, with changes in 479 

both total number and proportions of different cell types 59–61. In the analysis by Pham et al. 480 

(2024), adjusting the statistical models with estimated cell proportions attenuated the 481 

association between biological age and course of pregnancy. However, not all potentially 482 

relevant blood cell subtypes were accounted for in the analysis, and these findings should be 483 

replicated with measured, instead of estimated, blood cell proportions (see Limitations and 484 

future perspectives). 485 

 486 

Limitations and future perspectives 487 

 488 

We show extreme and abundant differences for the values of ten BA indicators between the 489 

blood cell subtypes using four independent data sets. Importantly, we are able to show that the 490 

differences between the cell types appear to persist during adulthood, except for 491 

DunedinPACE. These results, together with the knowledge on wide ranges and age-associated 492 

changes in cell subtype proportions at population-level (Figure 4), highlight the need for 493 

additional efforts when using the existing epigenetic clocks or building up new ones. The cell 494 

composition in the blood samples may be accounted for in the statistical analysis if the 495 

composition is measured, however, measured cell type proportions are rarely available in large 496 

human cohort studies. One solution is to estimate the cell counts in a tissue sample using DNA 497 

methylation reference libraries for the various cell subtypes62–64. However, this cell count 498 

estimation is limited in two ways. First, DNA methylation-based cell count estimates may show 499 

only modest correlations with the cell counts obtained using other DNA methylation-based 500 

estimation algorithm65, and the reliability of the cell count estimation algorithms should be 501 

further evaluated in relation to e.g. FACS-based cell counts in larger, independent population 502 

cohorts. Second, current libraries do not cover all the different blood cell subtypes with diverse 503 

functionalities such as the more specific CD4+ 66 including regulatory T cell subpopulations67, 504 

or various B cell 68 or NK cell69 subpopulations. For example, NK cell subtypes show drastic 505 

changes in their abundance and/or functionality/properties in aging and/or age-related 506 

pathologies70. This limitation also extends to our analysis. Even though our observations are 507 

from sets of purified cell types that are often considered as ‘detailed cell separation’ (Figure 508 

4), many potentially relevant blood cell subtypes couldn’t be analysed in our study because 509 

DNA methylation data is not available for them. Overall, our results highlight the need for 510 

analyses on the BA indicators in single cells. 511 

 512 
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In addition, even when the cell separation protocols and purity levels are according to the high 513 

standards in the field, cell subsets are hardly ever completely purified. In the four data sets used 514 

in this study, cells were separated using varying FACS protocols, and, for example, sometimes 515 

a cell subtype was determined with only one surface antigen while it was sometimes 516 

determined using more than one (Supplementary Table S1). The impurity may have influenced 517 

our results and caused noise in the cell subtype-specific BA values. Consistency in our findings 518 

suggest the extent of this noise is likely small but further studies are needed.  519 

 520 

Conclusions 521 

 522 

Different blood cell subtypes generally show distinct biological ages (BAs), according to six 523 

BA indicators representing various aspects of biological aging. The differences between the 524 

cells can be substantial and they appear to persist across adult ages from 20 to 80 years for all 525 

BA indicators, except for DunedinPACE. When studying DNA methylation-based BA 526 

indicators in whole blood samples, the contribution of differing blood cell proportions needs 527 

to be considered. This is relevant for studies on physiological and pathological conditions 528 

known to have a significant effect on blood cell proportions, but especially for any potential 529 

aging interventions. 530 

 531 

  532 
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