

1 Biological aging of different blood cell types

2 Saara Marttila^{1,2,3*}, Sonja Rajić¹, Joanna Ciantar¹, Jonathan KL Mak^{4,5}, Ilkka S Junntila⁶⁻⁹,
3 Laura Kummola⁶, Sara Hägg⁴, Emma Raitoharju^{1,3}, Laura Kananen^{2,4,10,11*}

4 Affiliations

5 1 Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere
6 University, Tampere, Finland
7 2 Gerontology Research Center, Tampere University, Tampere, Finland
8 3 Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University
9 Hospital, Tampere, Finland
10 4 Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm,
11 Sweden
12 5 Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The
13 University of Hong Kong, Hong Kong, China
14 6 Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
15 7 Fimlab Laboratories, Tampere, Finland
16 8 Northern Finland Laboratory Centre (NordLab), Oulu, Finland
17 9 Research Unit of Biomedicine, University of Oulu, Oulu, Finland
18 10 Faculty of Social Sciences (Health Sciences), Tampere University, Tampere, Finland
19 11 Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institute,
20 Stockholm, Sweden
21
22

23 * Corresponding authors:

24 Marttila Saara, sara.marttila@tuni.fi

25 Kananen Laura, laura.kananen@ki.se, laura.kananen@tuni.fi

26 ORCID IDs:

27 SM: 0000-0003-3071-3784

28 SR: 0000-0002-0497-3577

29 JC: 0000-0002-3715-480X

30 ISJ: 0000-0002-9830-0823

31 ER: 0000-0002-7023-8706

32 LKa: 0000-0003-3742-8927

33

34

35

36

37

38

39

40

41

42

43

44

45

46 **Abstract**

47 A biological age (BA) indicator is intended to capture detrimental age-related changes
48 occurring with passing time. To date, the best-known and used BA indicators include DNA-
49 methylation-based epigenetic ages (epigenetic clocks) and telomere length. The most common
50 biological sample material for epidemiological aging studies is composed of different cell
51 types, whole blood. We aimed to compare differences in BAs between blood cell types and
52 assessed BA indicators' cell type-specific associations with donor's calendar age.

53

54 Analysis on DNA methylation-based BA indicators including telomere length, methylation
55 level at cg16867657 (a CpG-site in *ELOVL2*) and the Hannum, Horvath, DNAmPhenoAge and
56 DunedinPACE epigenetic clocks was performed in 428 biological samples from 12 blood cell
57 types. BA values were different ($p < 0.05$) in the majority of pairwise comparisons between the
58 cell types. Most cell types also displayed differences as compared to whole blood ($p < 0.05$).
59 Some of the observed differences persisted across blood donor's calendar ages from 20 to 80
60 years (50-years-difference in DNAmPhenoAge between naïve CD4+ T cells and monocytes),
61 while others did not (up to four-fold difference in DunedinPACE values between monocytes
62 and B cells). All BA indicators, except DunedinPACE, had mostly a very strong correlation
63 with donor's calendar age within a cell type.

64

65 Our findings demonstrate that DNA methylation-based indicators of biological age exhibit cell
66 type-specific characteristics, underscoring the importance of accounting for cell composition
67 in related studies. Our results have implications for understanding the molecular mechanisms
68 underlying epigenetic clocks and provide guidance for utilizing them as indicators for
69 success of aging interventions.

70

71 **Keywords:** biological age, epigenetic clock, telomere length, DNA methylation, biological
72 aging, blood cell subtypes

73 **Introduction**

74 By definition, biological age (BA), or an aging biomarker, should better predict future health
75 status as compared to chronological age. By AFAR (American Federation for Aging Research)
76 criteria “It must monitor a basic process that underlies the aging process, not the effects of
77 disease.”¹⁻⁴. Of the many established BA indicators ^{4,5}, the most well-known and used are
78 DNA-methylation-based epigenetic ages (epigenetic clocks) and telomere length, a hallmark
79 of aging⁶. Ideally, these indicators should reflect how health interventions influence biological
80 aging. However, the underlying molecular mechanisms of the epigenetic clocks are still
81 unknown.

82

83 Accelerated biological aging (or aging rate) indicated by telomere length⁷ and epigenetic
84 clocks⁶ predicts health span, lifespan or both in large-scale cohort studies. Typically, these
85 analyses are performed in whole blood samples that are mixtures of various blood cell subtypes.
86 As such, blood cell composition is a potential confounder in the analyses, because blood cell
87 composition changes with advancing age ⁸, already before middle-age ⁹. Typical characteristics
88 of age-related remodeling of the immune system include decreasing naïve CD8 and CD4 T cell
89 and increasing exhausted CD28- T cell counts, declining CD4 to CD8 T cell ratio, and
90 potentially also altered NK cell count and functionality ^{10,11}. This remodeling is highlighted by
91 the existence of IMM-AGE¹², a blood cell composition-based, potential BA indicator. Further,
92 changes in blood cell composition are seen in many age-related conditions (e.g. frailty ¹³) and
93 diseases e.g. cancer ¹⁴ , Alzheimer’s ¹⁵ , and cardiovascular diseases ^{16,17}. The age-related
94 remodeling of the blood cell composition is not limited to these changes, but these are the well-
95 known examples for which there is epidemiological evidence of their relationship to aging and
96 aging phenotypes.

97

98 A better understanding on the biological aging at the cell subtype-level within tissues is needed.
99 Previous studies have shown telomere length ¹⁸⁻²¹ and DNA methylation level at cg16867657,
100 a CpG site in *ELOVL2*²², are tissue- and cell type-specific in their absolute values and age-
101 related changes. A few previous studies have shown that epigenetic ages by DNAmPhenoAge
102 and Horvath differ between blood cell types²³, but BA or biological aging rate indicated by
103 epigenetic clocks developed more recently are studied less in separated cell subtypes.
104 Importantly, previous such analyses have been made typically using separated cells originating
105 from different individuals and datasets with less than 10 individuals each²⁴. Further, it is
106 unknown in what way cell subtype-specific epigenetic age values indicated by the 2nd and 3rd

107 generation epigenetic clocks change with advancing calendar age across adulthood. Thus, in
108 this study, we aimed to **1)** assess differences in values of DNA-methylation-based BA
109 indicators between blood cell types originating from the same blood donors and with more
110 adequate sample size. **2)** We also aimed to assess BA indicators' cell type-specific associations
111 with donor's calendar age. The BA indicators included 'the 1st generation clocks' (ELOVL2-
112 CpG-site, cg16867657 ²³, Horvath ²⁶ and Hannum ²⁷), 'the 2nd generation clock'
113 (DNAmPhenoAge²⁸), 'the 3rd generation clock' (DunedinPACE ²⁹) as well as telomere length
114 (DNAmTL, estimated based on DNA methylation data ³⁰). In our main analyses, we performed
115 pairwise comparisons for BA indicator values between whole blood, peripheral blood
116 mononuclear cells (PBMCs) and up to ten separated blood cell subtypes in four separate data
117 sets with 428 biological samples, originating from the same blood donors. Then, we assessed
118 cell subtype-specific associations of the different BA indicators with calendar age. In our
119 additional analyses, we repeated pairwise comparison analysis with principal component
120 derivates of the clocks³¹, assessed cell subtype-specific correlations of the different BA
121 indicators with each other, and last, exemplified blood cell subtype count trajectories over
122 decades in a longitudinal cohort sample (The Swedish Adoption/Twin Study of Aging
123 [SATSA], n=328).

124

125 **Methods**

126 *Data sets*

127 We included four datasets available in NCBI GEO ^{32,33} (GSE35069 ³⁴, GSE131989 ³⁵,
128 GSE166844 ²³, GSE78942 ³⁶) in which DNA methylation data was available from separated
129 immune cell subtypes (Table 1) for this study. These subtypes were separated using
130 fluorescence-activated cell sorting (FACS) as described in detail in the original publications
131 ^{23,34-36}. Surface markers used for the FACS analyses are summarized in Supplementary Table
132 S1. We included only datasets in which the different immune cell populations were available
133 from the same individuals as complete cases. For the cell count trajectory analysis, DNA-
134 methylation-based cell count estimates in whole blood samples in the Swedish Adoption/Twin
135 Study of Aging (SATSA, n=328 with 657 observations, baseline ages 48-98, mean age 68.5)
136 were used ³⁷.

137

138 *BA indicators*

139 We assessed different BA indicators using DNA methylation data from the aforementioned
140 datasets (Table 1). The indicators of BA (or biological aging rate) investigated were telomere
141 length estimated based on DNA methylation (DNAmTL) ³⁰, methylation level of *ELOVL2* at
142 one CpG (cg16867657)²⁵, Hannum²⁷, Horvath²⁶, DNAmPhenoAge²⁸ and DunedinPACE²⁹ as
143 well as the principal component derivates of Horvath, Hannum, DNAmPhenoAge and
144 DNAmTL³¹. In three of the included datasets, DNA methylation was measured using Illumina
145 450K (GSE35069, GSE13198) or Illumina EPIC (GSE166844) array, allowing us to calculate
146 all the ten indicators of BA. In dataset GSE78942, methylation data were measured using
147 Illumina 27K array, allowing us to calculate only Horvath and DNAmPhenoAge. All BA
148 indicators were calculated from the normalized and preprocessed data available in GEO.

149

150 Horvath (for datasets GSE35069, GSE13198 and GSE166844), Hannum, DNAmPhenoAge
151 and DNAmTL (for all included datasets) were calculated using the DNAmAge function of the
152 methylclock package version 0.8.2³⁸. For GSE78942, Horvath was calculated using the
153 webpage tool available in <https://dnamage.clockfoundation.org/>. DunedinPACE was
154 calculated as described in the original publication²⁹ with the R package DunedinPACE. The
155 principal component derivates of the clocks were calculated as previously described ³¹.
156 Methylation value of the probe cg16867657 in *ELOVL2* was extracted directly from
157 methylation data available in GEO for each dataset.

158

159 *Statistical analysis*

160 Statistical significance for the pairwise comparisons were assessed using the Mann Whitney
161 U-test. BA values were compared between the cell subtypes at group-level within a data set.
162 Cell subtype-specific BA values were visualized as boxplots with dots and line plots, and
163 pairwise differences as boxplots. Cell subtype-specific relationships between values of
164 different BA indicators and calendar age were assessed using correlation statistics (Spearman),
165 and the relationships were visualized as scatterplots.

166

167 In our additional analyses, we assessed cell subtype-specific relationships between values of
168 different BA indicators using correlation statistics (Spearman) and the relationships were
169 visualized as scatterplots. In the longitudinal cohort data, cell subtype count trajectories were
170 visualized as line plots and significance for the cell count change with calendar age was
171 obtained using mixed linear model. In GSE131989 and SATSA, calendar age was used as
172 individual-level phenotypic data in our statistical analyses. Data were analysed and visualized
173 using R statistical software (version 4.2.2) and R-packages ggplot2. P-value threshold for
174 statistical significance was set to 0.05.

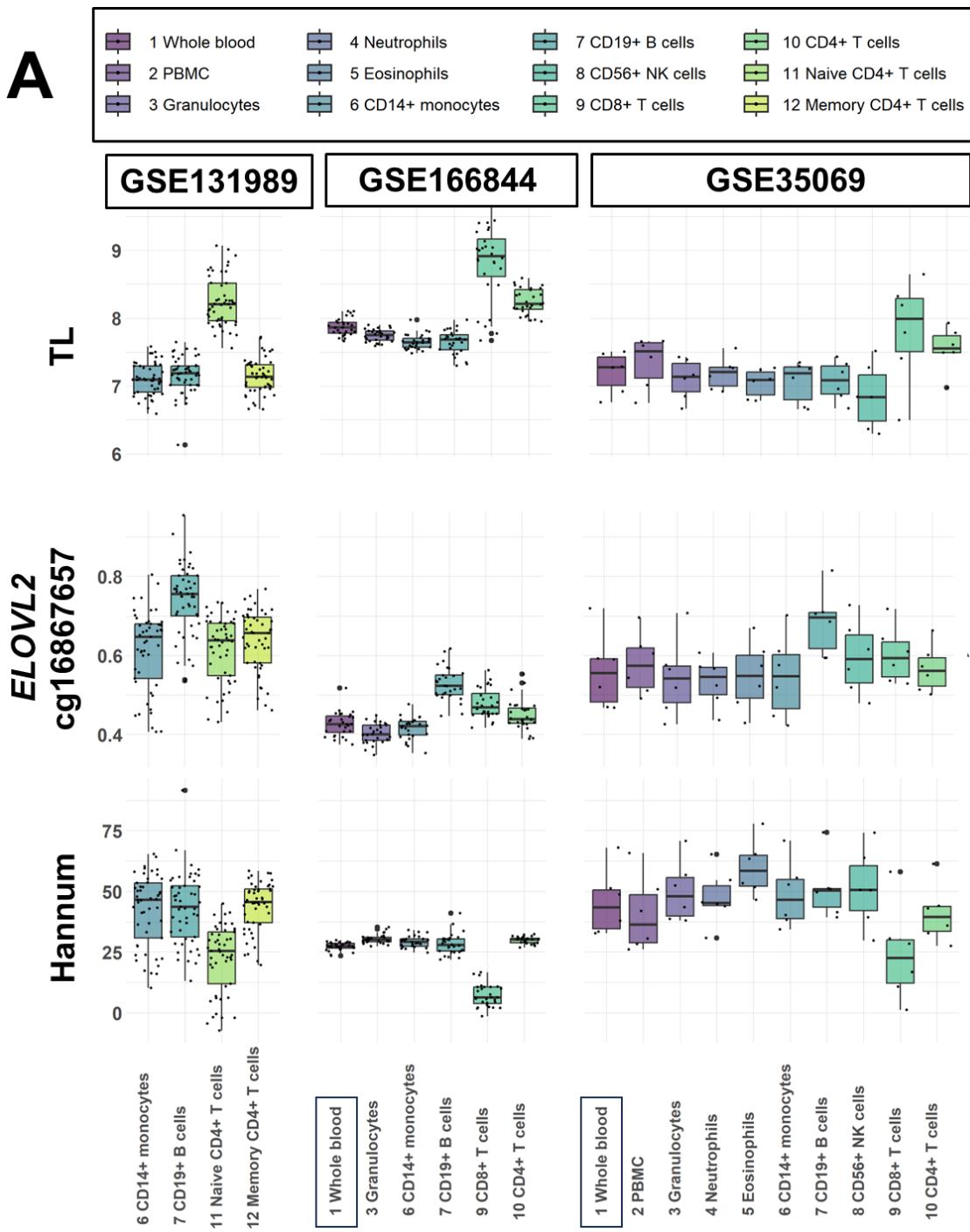
175 **Table 1. Data sets in pairwise comparisons**

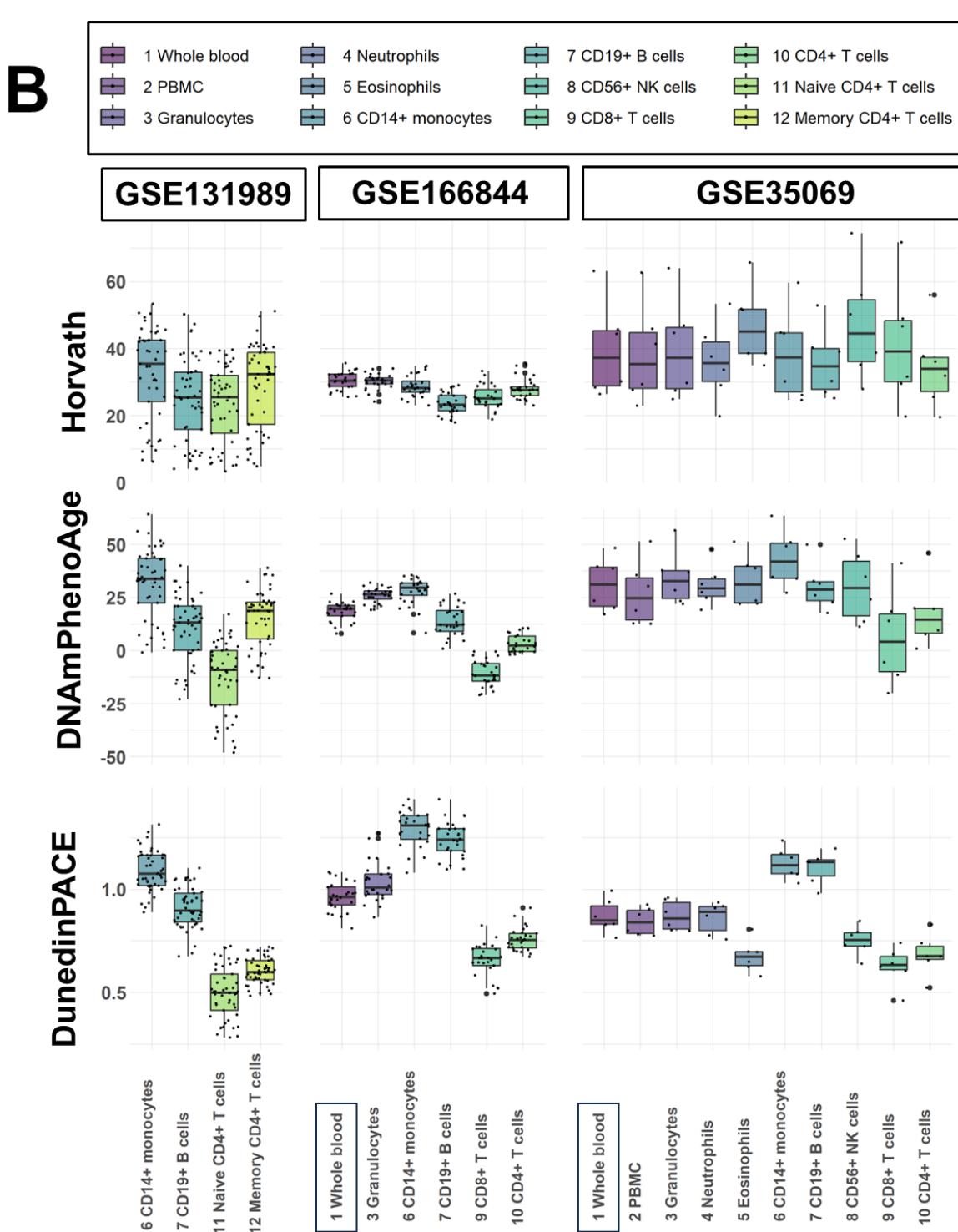
176 Details on how different cell types were separated are provided in Supplementary Table 1.

Data set	Individuals, n	Calendar age (years)	Calendar age available for each individual	Female, %	Cell sample types, n	Available cell sample types	Pairwise cell type comparisons, n
GSE131989	49	54 ± 17.5	Yes	100	4	CD14+, CD19+, CD4 memory T cells, CD4 naïve T cells	6
GSE166844	28	19 ± 0	Yes	40	6	Whole blood, Granulocytes, CD14+ monocytes, CD19+ B cells, CD8+ T cells, CD4+ T cells	15
GSE35069	6	38 ± 13.6	No	0	10	Whole blood, PBMC, Granulocytes, Neutrophils, Eosinophils, CD14+ monocytes, CD19+ B cells, CD56+ NK cells, CD8+ T cells, CD4+ T cells	45
GSE78942	24*	62.1 ± 9.9	No	NA	2	CD4+CD28+ T cells, CD4+CD28- T cells	1

*DNA methylation measured from two pooled samples of separated cells; 12 individuals in a sample

177


178 **Results**


179

180 *Pairwise comparisons*

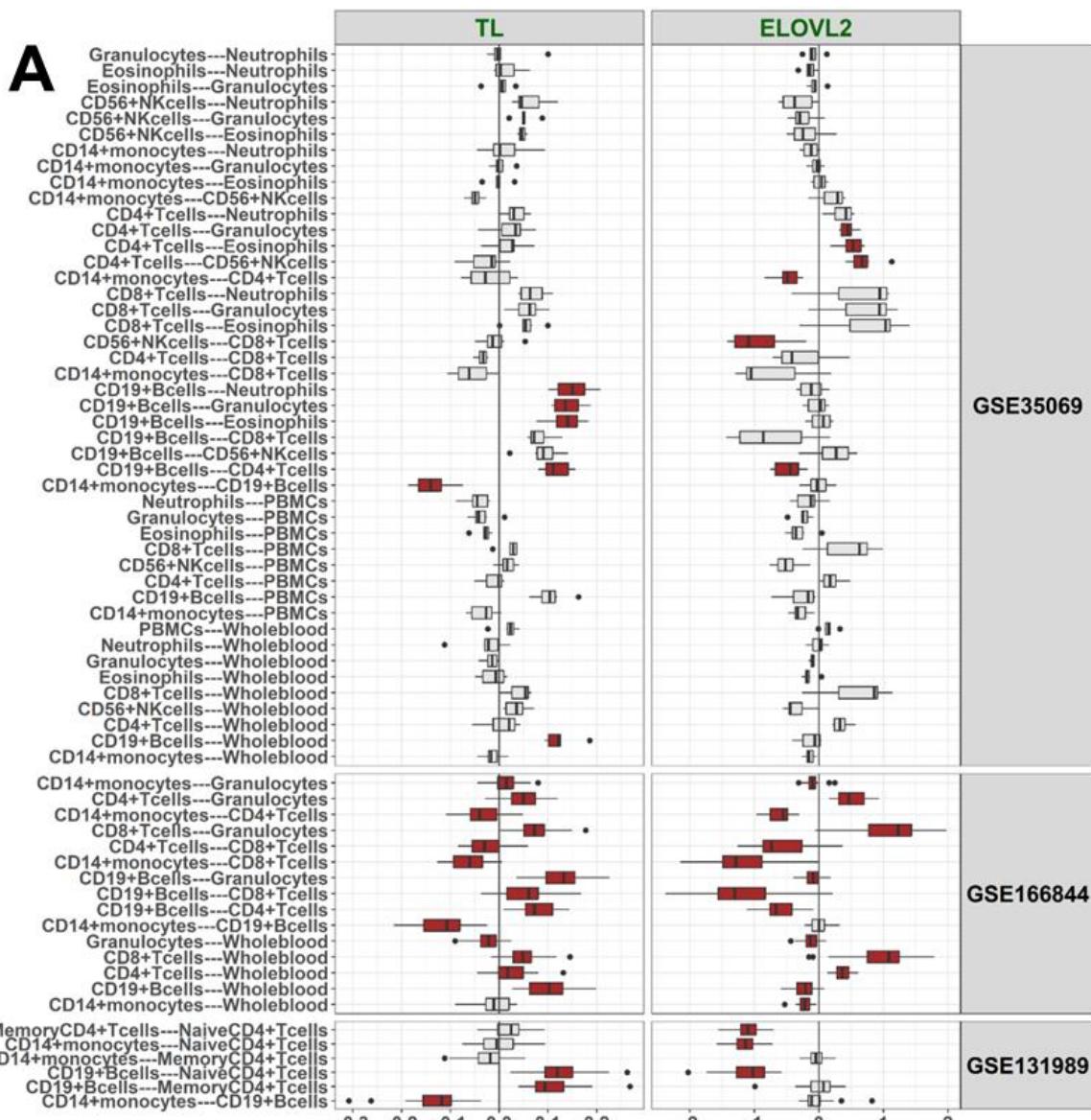
181 BA values for each cell type in the different data sets (Table 1) in our analysis are shown in
182 Figure 1, Table 2, Supplementary Figure S1 and Supplementary Table S2. We performed as
183 our main analysis pairwise comparisons of the BA indicator values between the blood cell
184 subtypes. In summary, BA values, including principal component derivates of the epigenetic
185 clocks, were different (Mann-Whitney U-test $p<0.05$) in the majority of pairwise comparisons
186 between the cell types (Table 2, Figure 2, Supplementary Table S3-S5, Supplementary
187 Results). Most cell types also displayed differences as compared to whole blood (Mann-
188 Whitney U-test $p<0.05$, Figure 2, Supplementary Table S3-S5). Some of the observed
189 differences persisted across blood donor's calendar ages from 20 to 80 years, for example the
190 50-years-difference in DNAmPhenoAge values between naïve CD4+ T cells and monocytes
191 (Figure 3). However, for example, the up to four-fold difference in DunedinPACE values
192 between monocytes and B cells did not persist over time (Figure 3).

193 As expected, pairwise comparisons were more often statistically significant (Mann-Whitney U
194 test p -value <0.05) in GSE166844 and GSE131989 with larger number of individuals than in
195 GSE35069 which included six individuals (Table 1, Table 3). Other important details for results
196 interpretation are that GSE131989 and GSE35069 included individuals with wide calendar age
197 range while individuals in GSE166844 were all 19 years old. While most cell types were
198 available in at least two datasets, neutrophils, eosinophils and CD56+ NK cells were available
199 for analysis in GSE35069 only. In GSE78942, the difference in BA values was apparent but
200 statistical analysis was not possible as it comprised four biological samples only.

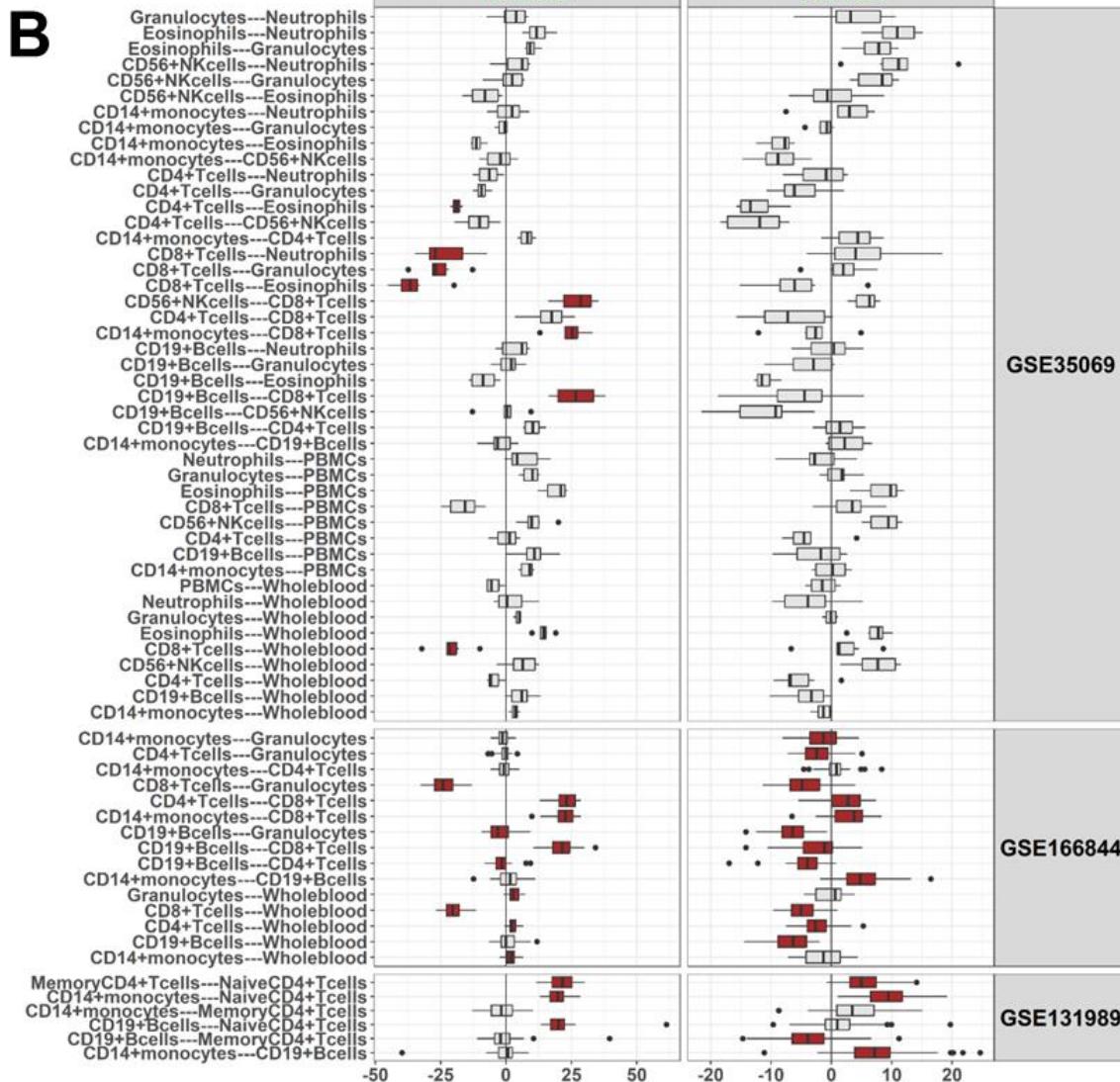
203
204

205

Figure 1. Blood cell type-specific biological ages (BAs) and a BA rate

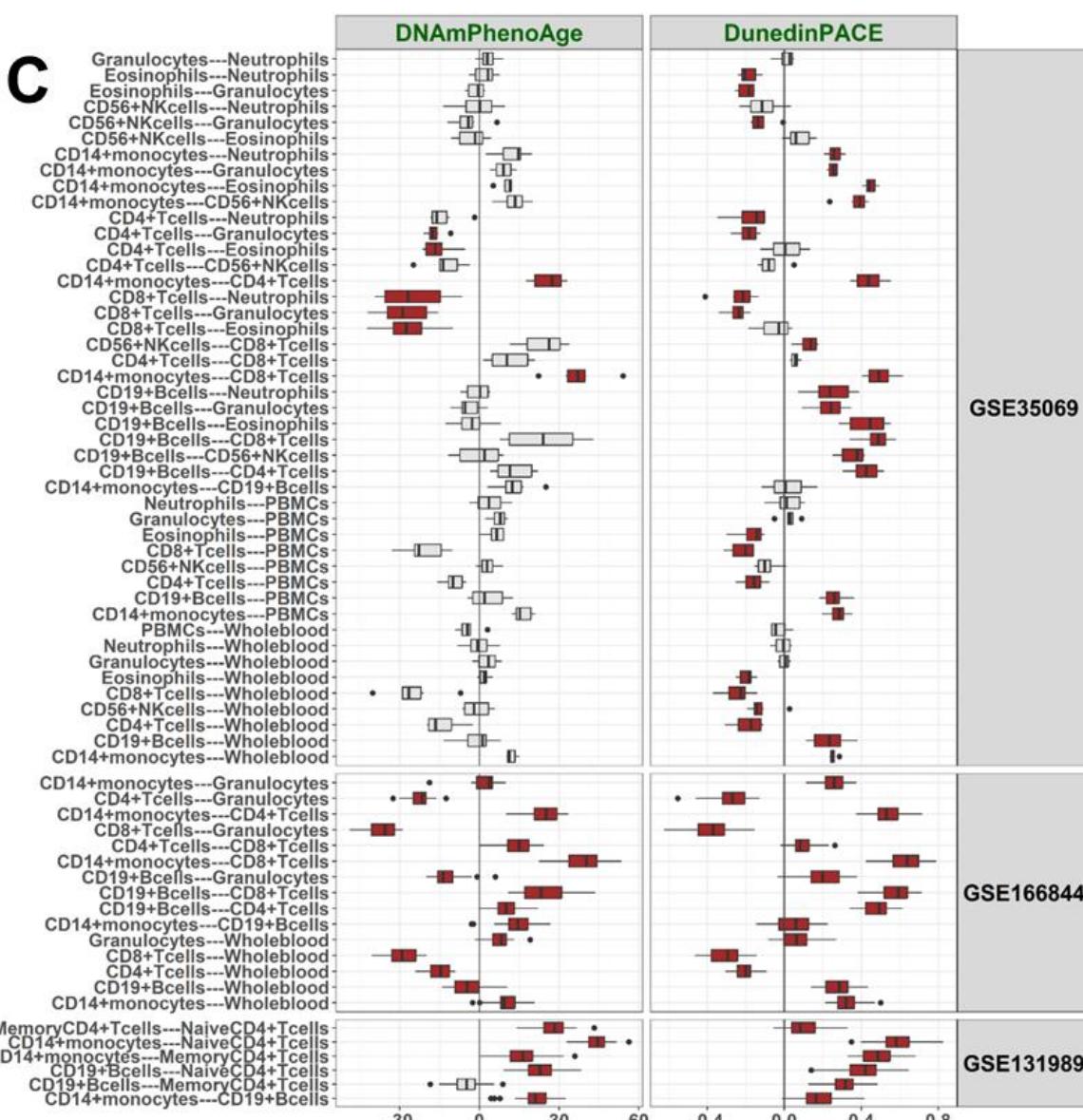

206 Values of DNAmTL (TL), cg16867657 in *ELOVL2*, and Hannum are summarized as boxplot
207 with dots in panel A, and Horvath, DNAmPhenoAge and DunedinPACE in panel B. These
208 DNA methylation-based BA indicators were assessed in three DNA methylation data sets
209 (GSE131989, GSE166844, GSE35069) with 424 biological samples from 83 individuals and
210 including 12 cell sample types. Boxes are colored according to cell type (1-12). Each dot
211 represents one individual.

212


213

Dataset	Sample type, sample id	Horvath	DNAmPhenoAge
GSE78942	CD4+CD28- T cells, pool1	65.9	50.8
	CD4+CD28- T cells, pool2	72.9	57.0
	CD4+CD28+ T cells, pool1	39.0	8.5
	CD4+CD28+ T cells, pool2	35.1	10.7

214
215 **Table 2. BA values according Horvath and DNAmPhenoAge in displayed 'younger'
216 values in CD4+CD28+ T cells as compared to CD4+CD28- T cells in GSE78942**
217 DNA methylation was measured from four pooled biological samples of purified cells. In
218 pool1, cells were separated from 12 individuals and the cells were pooled as two biological
219 samples (CD28+ and CD28- cells), and in pool2, cells originated from other set of 12
220 individuals and the separated cells were pooled in a similar way as pool 1. Calendar age of
221 these healthy blood donors was 45-75 years (mean[SD]=62.1[9.9]).
222
223
224


225

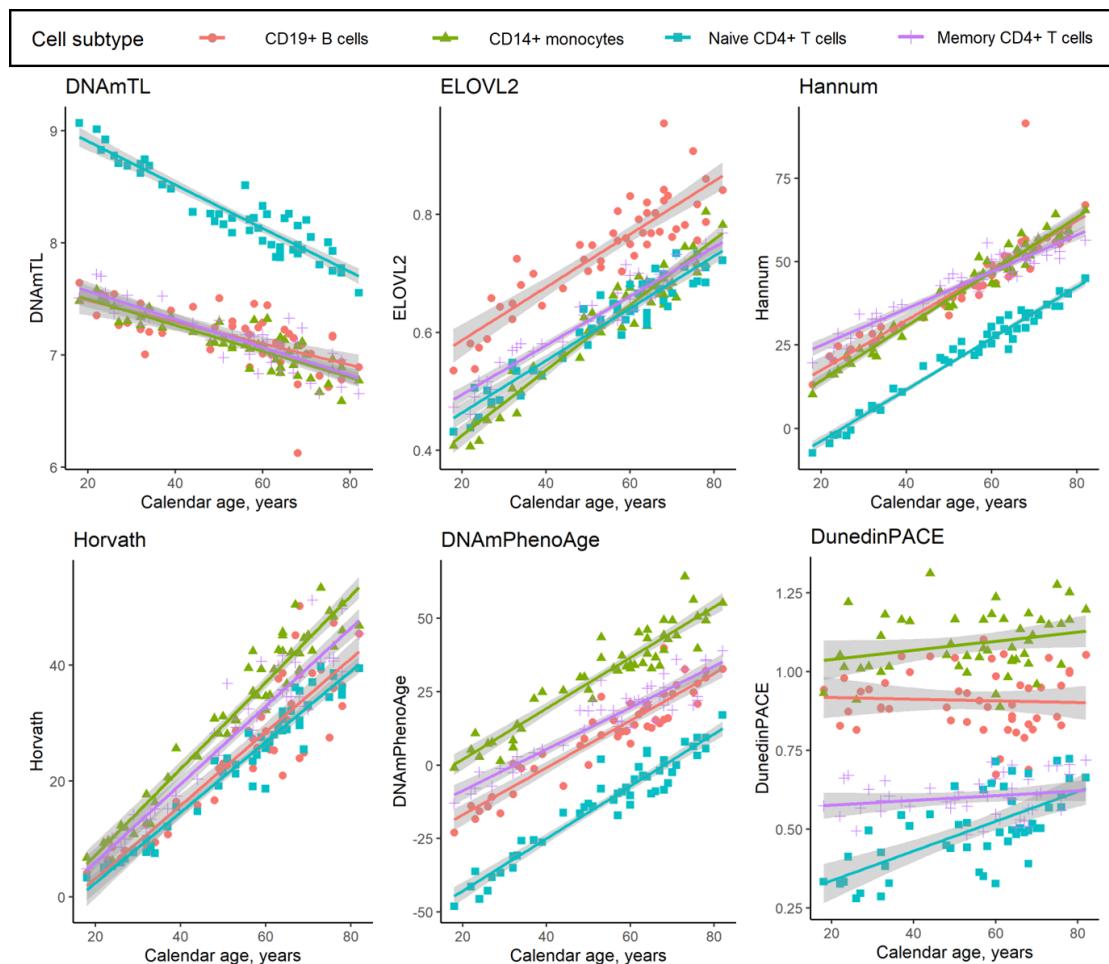
226

227

228

229
230
231
232

Figure 2. Pairwise differences in values of DNAmtL (TL) and cg16867657 at ELOVL2 (ELOVL2) (A), Horvath and Hannum (B), and DunedinPACE and DNAmPhenoAge (C) between the cell types


233 Cell pairs with statistically significant difference in BA values (Mann Whitney U, $p < 0.05$) are
234 colored with red, otherwise with grey. Difference in BA indicator values between a cell-pair
235 (Δ) was calculated for each individual and these differences are shown as boxplots for the three
236 data sets. Δ -value for a BA indicator is shown on the x-axis. In GSE131989 including 49 blood
237 donors, there were 6 cell type pairs, in GSE166844 including 28 blood donors, 15 pairs, and in
238 GSE35069 including six blood donors, 45 cell type pairs to be compared. Cell type-specific
239 BA values within a dataset are summarised in Figure 1, Supplementary Figure 1 and Table S2,
240 and p-values for the comparisons are presented in Supplementary Tables S3-S5.
241
242
243
244
245
246
247

248 **Table 3. Number of cell pairs showing differences for each indicator of BA in three**
249 **datasets**
250 Mann-Whitney U test p-values are shown in Supplementary Table S3-S5.

	Data set		
	GSE131989	GSE166844	GSE35069
Number of pairwise comparisons	6	15	45
Number of cell pairs showing pairwise differences(%)			
DNAmTL	3(50)	14(93)	6(13)
ELOVL2	3(50)	14(93)	6(13)
Hannum	3(50)	10(67)	8(18)
Horvath	4(67)	12(80)	0(0)
DNAmPhenoAge	5(83)	15(100)	7(16)
DunedinPACE	6(100)	15(100)	31(69)

251

252

253
254 **Figure 3. Cell type-specific associations of DNA-methylation-based BA indicators (and**
255 **biological aging rate) with blood donors' calendar age in GSE131989**
256 DNA methylation data within four separated cell subtypes (CD19+ B cells, CD14+
257 monocytes, naïve CD4+ T cells, memory CD4+ T cells) originated from 49 individuals aged
258 18-82 years (all females). Correlation statistics showing the significance for the associations
259 with calendar age are shown in Supplementary Table S6. Grey areas indicate 95%
260 Confidence Intervals for the linear fit lines.

261

262 *CD19+ B cells*

263 Methylation data in CD19+ B cells was available in three datasets. As compared to other cell
264 types, CD19+ B cells displayed a statistically significant difference (Mann-Whitney U test p-
265 value <0.05) in majority of the pairwise comparisons in GSE131989 and GSE166844 (Figure
266 2, Supplementary S3-S4). In the smallest dataset, GSE35069, statistically significant
267 differences were mainly observed for DunedinPACE (Figure 2, Supplementary Figure S1,
268 Supplementary Table S5). In summary, our results suggest CD19+ B cells are, according to the
269 studied BA indicators, ‘younger’ as compared to CD14+ cells, but ‘older’ as compared to naïve
270 CD4+ cells and total CD8+ T cells, although there are some discrepancies between the different
271 BAs (Figure 2, Supplementary Table S3-S5). In comparison to whole blood, no clear pattern
272 was observed for CD19+ B cells.

273

274 *T cell subsets*

275 Data on various subsets of T cells was available in four datasets, including total CD4+ and
276 CD8+ T cells (GSE166844 and GSE35069), CD4+ naïve and memory T cells (GSE131989)
277 and CD4+CD28- and CD4+CD28+ T cells (GSE78942). Majority of pairwise comparisons
278 across these cell types were statistically significant (Figure 2, Table 2, Supplementary Tables
279 S3-S5). Our results suggest that CD8+ T cells are ‘younger’ as compared to CD4+ T cells, and
280 that naïve CD4+ T cells are ‘younger’ as compared to memory CD4+ T cells (Figure 2,
281 Supplementary Table S3-S5). In addition, CD4+CD28+ cells were identified to be ‘younger’
282 as compared to CD4+CD28- according to both BA indicators available for this dataset, Horvath
283 and DNAmPhenoAge (Table 2), although for this data no statistical tests could be performed,
284 as there were only four biological samples. As compared to whole blood, both CD4+ and CD8+
285 T cells are ‘younger’, although there are discrepancies between different BA indicators (Figure
286 2, Supplementary Table S3-S5). The magnitude of difference was larger between CD8+ T cells
287 and whole blood as compared to CD4+ T cells and whole blood (Figure 1, Figure 2).

288

289 *CD14+ monocytes*

290 Data on CD14+ monocytes was available in three datasets. As compared to other cell types,
291 majority of pairwise comparisons between CD14+ monocytes were statistically significant in
292 GSE166844 and GSE131989 (Figure 2, Supplementary Figure S1, Supplementary Table S3
293 and S4). Our results suggest that CD14+ monocytes are ‘older’ as compared to various T cell
294 subsets, ‘older’ as compared to CD19+ B cells, and also ‘older’ as compared to whole blood
295 samples (Figure 2, Supplementary Tables S3-S5).

296

297 *Cell-subtype specific BA values across adult calendar ages*

298 All BA indicators, except DunedinPACE, correlated strongly with calendar age within a cell
299 type in dataset GSE131988 (>0.8 or <-0.7 , Figure 3, Supplementary Table S6). DunedinPACE
300 values increased most consistently with a higher calendar age within naïve CD4+ T cells
301 (Spearman’s $p=0.636$), but in other cell types tested the correlations were more modest or
302 nonsignificant (Figure 3, Supplementary Table S6). The analysis could only be performed in
303 this one dataset, as calendar age was not available, or all individuals were of the same age, in
304 others.

305

306 *Additional analyses*

307 *Pairwise comparisons for principal component clocks*

308 The epigenetic clocks have been reported to suffer from technical noise³¹. The proposed
309 solution is to utilize principal components instead of the individual level CpG data to calculate
310 the clocks i.e. PC-clocks. To verify that the observed differences in BA indicators across cell
311 types are not due to technical noise of the Illumina array, as an additional analysis, we repeated
312 the pairwise comparison analysis with the principal component derivates for Horvath, Hannum,
313 DNAmPhenoAge and DNAmTL (Supplementary Table S2). Our results show that the
314 observed differences between the cell types in the main analysis remained significant for the
315 studied PC-clocks (Supplementary Table S3, S4 and S5).

316

317 *Relationships between different BAs*

318 Then, we explored relationships between the values of different BA indicators (Supplementary
319 Figure S2) and focused on the relationships within each cell subtype population

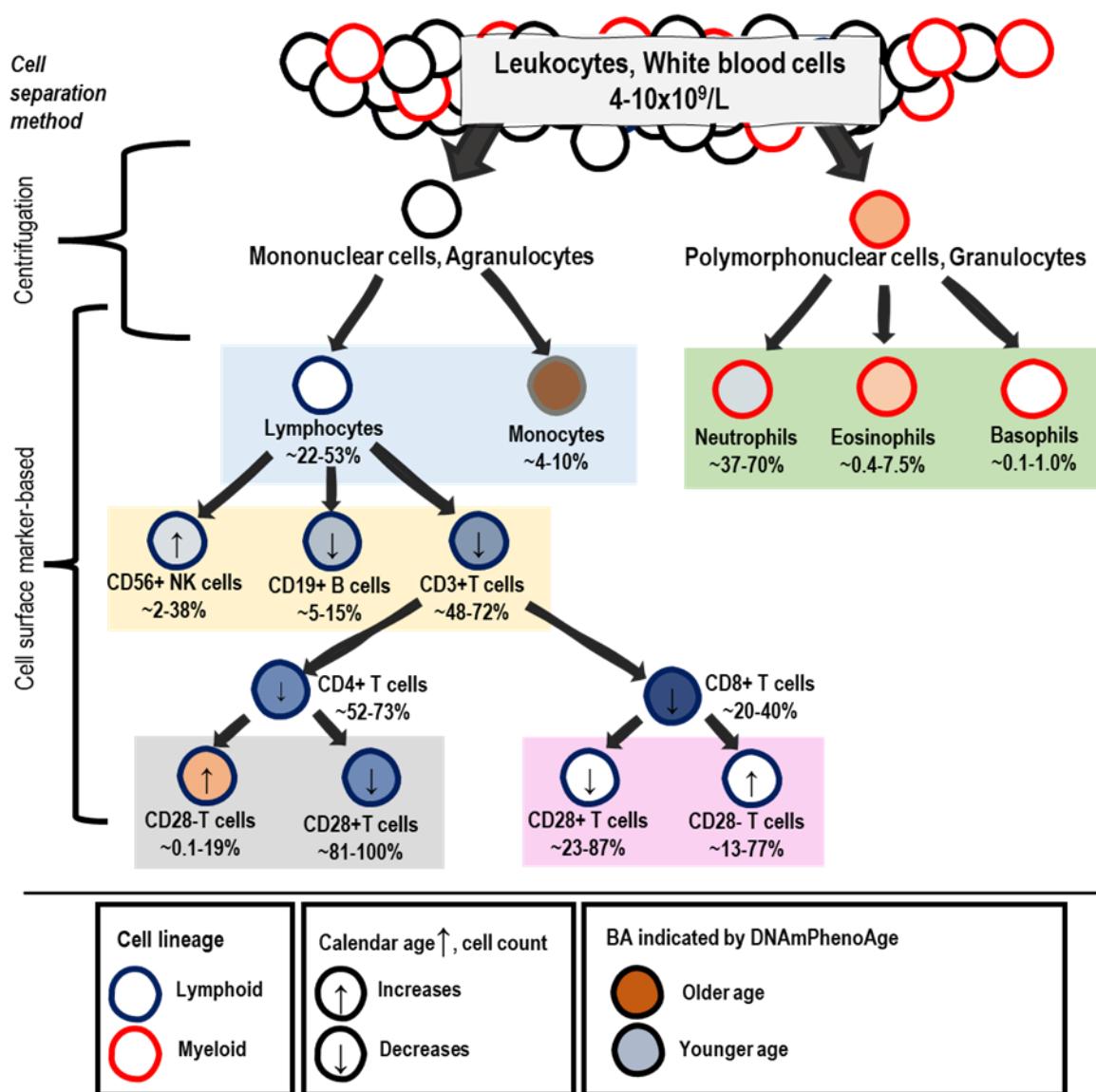
320 (Supplementary Table S6-S8). The majority of BA indicators showed strong or very strong
321 correlations (>0.7 or < -0.7) with each other within the different cell subtype populations in
322 GSE131989 and GSE35069 (Supplementary Table S6 and S8), which have wide age ranges.
323 However, only a very few moderate or stronger correlations (>0.5 or < -0.5) were observed in
324 GSE166844 (Supplementary Table S7), which includes individuals with the same calendar age.
325 An exception in the cell type-specific correlations was seen for DunedinPACE as the
326 correlations were, overall, lower or non-existing (Figure 3A, Supplementary Table S6-S8).

327

328 *Blood cell composition trajectories*

329 In the last additional analysis, we visualized estimated blood cell composition trajectories in a
330 longitudinal cohort (SATSA) with decades of follow-up (Supplementary Figure S3) and
331 observed changes in cell counts with advancing calendar age for all blood cell subtypes that
332 were in our pairwise comparisons and also available in SATSA ($p<0.005$). The counts of B
333 cells, CD4+ and CD8+ T cells, naïve CD4+ and CD8+ T cells decrease, while the counts of
334 CD8+CD28-CD45RA- T and NK cells, plasmablasts, monocytes and granulocytes increase
335 from midlife into old age (Supplementary Figure S3).

336


337

338

339 **Discussion**

340

341 We assessed ten DNA-methylation-based BA indicators, Horvath²⁶, Hannum²⁷,
342 DNAmPhenoAge²⁸, DNAmTL³⁰, their principal component derivates³¹, DunedinPACE²⁹ and
343 methylation level of *ELOVL2* at cg16867657²⁵ in 428 biological samples, in up to 12 blood
344 cell types, collected and separated from the same set of individuals. Our results show a
345 significant difference ($p < 0.05$) in BA values, including principal component derivates of the
346 epigenetic clocks, in the majority of pairwise comparisons between the cell types and as
347 compared to whole blood. As a new finding, we show that the cell type-specific BA values of
348 the blood cells appear to persist across human adulthood, with the exception of DunedinPACE.
349 For example, the 50-years-difference in DNAmPhenoAge values between naïve CD4+ T cells
350 and CD14+ monocytes, persists across calendar ages from 20 to 80 years. To put the 50-years-
351 difference into perspective, the BA value difference is approximately 60 years between a 20-
352 and 80-years-old person, but the cell type-specific difference is a few years between two
353 persons with the same calendar age. Thus, in line with Zhang et al (2023)²⁴, we conclude that
354 calendar age and blood cell composition together explain the great majority of variation in BA
355 values. As an exception among the BA indicators, the DunedinPACE values can have up to
356 four-fold differences between the cell types, but the differences appear not to persist across
357 human life course across all cell types studied here. Furthermore, by using longitudinal cohort
358 data, we highlight how thoroughly blood cell composition changes with age during adulthood,
359 in line with previous reports^{12,39-46}. The synthesis of this research evidence implies that the
360 proportion of many of the cell types with ‘younger’ BA values in blood circulation, such as
361 naïve CD4+ and naïve CD8+ T cells, decline with advancing calendar age, while the proportion
362 of cells with mostly ‘older’ BA values, such as monocytes, become more prevalent (Figure 4).

363

364 **Figure 4. Graphical summary of typical blood cell subtype separation with cell type-
365 specific biological ages (BAs), as well as cell proportion ranges and age-related changes
366 at human population-level**

367 Cell count prevalence ranges and changes with advancing age at population-level are
368 according to previous reports^{39,40,42,44-47} and Supplementary Figure S3. Biological age (BA)
369 indicated by DNAmPhenoAge is colored according to rank-orders of cell type-specific group
370 mean values for DNAmPhenoAge in GSE131989, GSE166844, GSE35069 and GSE78942 in
371 this study (Table 2, Supplementary Table S2). Our results suggest a trend of cell types with
372 'older' BA values increasing in numbers with increasing calendar age, and vice versa, cell
373 types with 'younger' BA values decreasing with age.
374

375 So far, reports on blood cell type-specificity in Horvath, DNAmPhenoAge and DunedinPACE
376 values have been based on pairwise comparisons between cell subtypes originating from
377 different individuals²⁴, small datasets (number of individuals<10)²⁴, on whole blood data,
378 where cell proportions have been estimated using deconvolution methods^{24,48} or for a single

379 BA indicator at a time^{23,43}. The strength of our approach was the inclusion of purified cell
380 populations from four independent data sets, six BA indicators and the PC-clocks, and datasets
381 consisting of the same sets of individuals for each cell type. Furthermore, we were able to
382 assess relationships between DNAmPhenoAge and DunedinPACE values and donor's calendar
383 age within a cell type for a larger number of individuals than in previous studies.

384 Our observations are in line with previous studies^{23,24,43,48}, in those parts where comparable. In
385 our analysis, subsets of T cells, especially naïve CD4+ and total CD8+ T cells displayed
386 generally the 'youngest' values of different BA indicators. Both CD19+ B cells and CD14+
387 monocytes displayed 'older' BA indicator values as compared to T cells, and of the two,
388 CD14+ monocytes displayed the 'oldest' BA values. The differences between CD4+CD28+
389 and CD4+CD28- T cells were especially pronounced. That is, naïve CD4+ T cells showed
390 'younger' BA as compared to memory CD4+ T cells, and that CD4+CD28+ T cells showed
391 'younger' values of Horvath and DNAmPhenoAge as compared to CD4+CD28- T cells, and
392 the differences were up to 40 years.

393 We identified statistically significant differences for the Horvath pan-tissue clock²⁶ in the
394 majority of pairwise comparisons in two independent data sets in line with our previous
395 findings⁴³ as well as other literature^{23,24,48}. This finding is interesting as this 1st generation clock
396 was trained with data from altogether 53 somatic tissues²⁶, and one could expect that different
397 cell types would display similar values of this BA. In Kananen et al. (2016), Horvath values
398 were higher with a higher FACS-analysis-based proportions of CD4+CD28- T cells as
399 compared to CD4+CD28+ T cells when assessed from cells originating from individuals with
400 the same calendar age. The other previous studies have reported up to twenty-years difference
401 in Horvath values between different cell subtypes^{23,24,48}.

402 Zhang et al. (2023) reported lowest values for Horvath, Hannum, DNAmPhenoAge and
403 DunedinPACE for naïve CD8+ T cells. Our datasets did not include naïve CD8+ T cells, only
404 total CD8+ T cells, and they were generally observed to have lower values of BAs as compared
405 to whole blood. In addition, in both datasets containing CD8+ T cells, they showed the lowest
406 values of BAs among the different cell types. It is important to note that although naïve T cells
407 are more prevalent in blood than CD28- T cells, especially in younger calendar ages^{41,49}, and
408 we observed dramatic differences in their BA values when compared to whole blood, while
409 BA values of CD4+CD28- T cells are closer those of whole blood. Thus, the magnitude of the
410 possible contribution by naïve T cells to the BA values in a whole blood sample is substantial.

411 The DunedinPACE²⁹ values, when measured in whole blood, have been shown to increase with
412 a higher calendar age, even though this association is much weaker as compared to other
413 epigenetic clocks⁵⁰. The association between the donor's calendar age and DunedinPACE²⁹
414 values within a separated blood cell type has been assessed previously in data with only a few
415 individuals²⁴. Our correlation statistics from dataset (GSE131989) with 49 blood donors
416 indicate that the association between DunedinPACE and calendar age may not be the same in
417 all cell types. In naïve CD4+ T cells, the Spearman's correlation ρ was 0.64 while in memory
418 CD4+ T cells, CD14+ monocytes and CD19+ B cells, the correlation was weak or non-existing
419 (Spearman's $\rho < 0.3$). This highlights the need to further study the effect of naïve CD4+ T cell
420 counts on the DunedinPACE values measured in whole blood samples. For the other BA
421 indicators (DNAmTL, methylation level at the *ELOVL2* CpG-site, Hannum, Horvath and
422 DNAmPhenoAge), cell type-specific values correlated with calendar age strongly or very
423 strongly (Spearman's $\rho > 0.7$ or < -0.7).

424

425 The majority of our results show a similar direction and magnitude for pairwise comparisons
426 in the different BA values between the cell types. Certain cell types were either 'younger' or
427 'older' according to most of the indicators, for example, naïve CD4+ T cells were very often
428 'younger' than the other cells. The similarities might be explained by the fact that these BA
429 indicators are based on DNA methylation which is tightly linked with cellular identity⁵¹. In
430 parallel, according to some BA indicators, such as DNAmPhenoAge, monocytes are 'older'
431 than B cells, naïve and memory CD4+ T cells, but according to Hannum they are not. The
432 differences for the BA indicators may be explained by the fact that the different BAs are
433 representing different domains in biological aging (e.g. DNA methylation in a gene vs telomere
434 length vs epigenetic clocks) and of course, utilize varying sets of DNA methylation sites in the
435 genome. Further, the epigenetic clocks can also be categorized into generations depending on
436 the building strategy. The 1st generation epigenetic clocks, such as Horvath²⁶ and Hannum
437 clocks²⁷ were built to predict calendar age, the 2nd generation epigenetic clocks, such as
438 DNAmPhenoAge²⁸, were built to predict biological age utilizing biomarkers and calendar age,
439 while the 3rd generation clock, DunedinPACE²⁹ was built to predict pace of aging, utilizing
440 longitudinal biomarker and health data, and not calendar age as such. Horvath was trained in
441 blood and multiple tissues²⁶, and the rest are only based on measurements from blood samples.

442

443 The significance of cell proportion for epigenetic ages has been noted, to some extent, in
444 previous literature and is an important consideration for the concepts of intrinsic and extrinsic

445 epigenetic ages⁵². These measures of aging are both residual values of an epigenetic clock, such
446 as Horvath or Hannum, after adjusting for calendar age, but intrinsic epigenetic age aims to be
447 independent of blood cell composition as the composition is adjusted for. However, for the
448 extrinsic epigenetic age, the cell composition is incorporated into its values as an additive
449 element. Thus, extrinsic age is not intended to be a measure of the deep cellular mechanism in
450 the aging process, but it is a composite measure. In a meta-analysis of 13 cohorts by Chen et
451 al. (2016), extrinsic age values resulted a higher hazard ratio for mortality with more narrow
452 confidence intervals than intrinsic age⁵². This implies that cell counts may give additive value
453 for, for example, lifespan prediction, and the cell composition is not solely a potential
454 confounding factor.

455

456 DNA methylation-based BA indicators are often developed for and measured in whole blood
457 or PBMC samples. They can be used in trials or interventions targeted at rejuvenation or reversing
458 biological aging, but they can also be used to study physiological or pathological conditions
459 not related directly to ageing as such. As ageing and various other physiological or pathological
460 conditions can have an effect on blood cell composition, great care should be taken to
461 disentangle the relationship between cell composition and these indicators. For example, a
462 physically active lifestyle has been reported to rejuvenate the immune system by increasing the
463 numbers of naïve T lymphocytes or by altering the CD4/CD8 ratio⁵³. Fahy et al. (2019) have
464 reported reversal of epigenetic aging in PBMCs indicated by four different epigenetic clocks
465 with a thymus regenerating treatment. In a parallel analysis, they showed that treatment-related
466 changes in circulating blood cell types include a decrease in monocytes and an increase in naïve
467 CD4+ and CD8+ T cell, but did not account for the cell counts in the statistical analysis for the
468 epigenetic clocks⁵⁴. As our results indicate that monocytes have ‘older’ BA values while naïve
469 T cells have ‘younger’ values, their results on the epigenetic clocks may have been influenced
470 by the changes in immune cell proportions. In other studies on potential aging interventions,
471 cell proportions have not been taken into account⁵⁵ or only the baseline cell proportions have
472 been accounted for⁵⁶. In general, when interpreting the results of potential aging interventions,
473 great care should be taken to define what is meant and aimed by rejuvenation. Is the aim to
474 change the cells’ intrinsic processes or not? One can ask, is a change in immune cell proportions
475 alone a sufficient outcome for an intervention to be considered successful?

476

477 As an example of a physiological condition, it has been recently reported that pregnancy is
478 associated with increased biological age, and that this increase is reversible postpartum^{57,58}.

479 Pregnancy is associated with reversible changes in blood cell composition, with changes in
480 both total number and proportions of different cell types^{59–61}. In the analysis by Pham et al.
481 (2024), adjusting the statistical models with estimated cell proportions attenuated the
482 association between biological age and course of pregnancy. However, not all potentially
483 relevant blood cell subtypes were accounted for in the analysis, and these findings should be
484 replicated with measured, instead of estimated, blood cell proportions (see *Limitations and*
485 *future perspectives*).

486

487 *Limitations and future perspectives*

488

489 We show extreme and abundant differences for the values of ten BA indicators between the
490 blood cell subtypes using four independent data sets. Importantly, we are able to show that the
491 differences between the cell types appear to persist during adulthood, except for
492 DunedinPACE. These results, together with the knowledge on wide ranges and age-associated
493 changes in cell subtype proportions at population-level (Figure 4), highlight the need for
494 additional efforts when using the existing epigenetic clocks or building up new ones. The cell
495 composition in the blood samples may be accounted for in the statistical analysis if the
496 composition is measured, however, measured cell type proportions are rarely available in large
497 human cohort studies. One solution is to estimate the cell counts in a tissue sample using DNA
498 methylation reference libraries for the various cell subtypes^{62–64}. However, this cell count
499 estimation is limited in two ways. First, DNA methylation-based cell count estimates may show
500 only modest correlations with the cell counts obtained using other DNA methylation-based
501 estimation algorithm⁶⁵, and the reliability of the cell count estimation algorithms should be
502 further evaluated in relation to e.g. FACS-based cell counts in larger, independent population
503 cohorts. Second, current libraries do not cover all the different blood cell subtypes with diverse
504 functionalities such as the more specific CD4+⁶⁶ including regulatory T cell subpopulations⁶⁷,
505 or various B cell⁶⁸ or NK cell⁶⁹ subpopulations. For example, NK cell subtypes show drastic
506 changes in their abundance and/or functionality/properties in aging and/or age-related
507 pathologies⁷⁰. This limitation also extends to our analysis. Even though our observations are
508 from sets of purified cell types that are often considered as ‘detailed cell separation’ (Figure
509 4), many potentially relevant blood cell subtypes couldn’t be analysed in our study because
510 DNA methylation data is not available for them. Overall, our results highlight the need for
511 analyses on the BA indicators in single cells.

512

513 In addition, even when the cell separation protocols and purity levels are according to the high
514 standards in the field, cell subsets are hardly ever completely purified. In the four data sets used
515 in this study, cells were separated using varying FACS protocols, and, for example, sometimes
516 a cell subtype was determined with only one surface antigen while it was sometimes
517 determined using more than one (Supplementary Table S1). The impurity may have influenced
518 our results and caused noise in the cell subtype-specific BA values. Consistency in our findings
519 suggest the extent of this noise is likely small but further studies are needed.

520

521 **Conclusions**

522

523 Different blood cell subtypes generally show distinct biological ages (BAs), according to six
524 BA indicators representing various aspects of biological aging. The differences between the
525 cells can be substantial and they appear to persist across adult ages from 20 to 80 years for all
526 BA indicators, except for DunedinPACE. When studying DNA methylation-based BA
527 indicators in whole blood samples, the contribution of differing blood cell proportions needs
528 to be considered. This is relevant for studies on physiological and pathological conditions
529 known to have a significant effect on blood cell proportions, but especially for any potential
530 aging interventions.

531

532

533 **Ethical statement**

534 All datasets are in compliance with the Declaration of Helsinki and have been approved by
535 local ethical committees, details can be found from the original publications (GSE35069 ³⁴,
536 GSE131989 ³⁵, GSE166844 ²³, GSE78942 ³⁶ and SATSA ³⁷.

537

538 **Funding**

539 SM: The Yrjö Jahnsson Foundation, The Finnish Cultural Foundation, State funding for
540 university-level health research, Tampere University Hospital, Wellbeing services county of
541 Pirkanmaa.

542 ISJ: The Competitive State Research Financing of the Expert Responsibility Area of Fimlab
543 Laboratories (grant X51409), Nordlab Laboratories (grant: X3710-KT0011) and Tampere
544 Tuberculosis Foundation.

545 ER: Research Council of Finland (338395), Signe och Ane Gyllenbergs stiftelse, state
546 funding for university-level health research, Tampere University Hospital, the Wellbeing
547 Services County of Pirkanmaa, the Yrjö Jahnsson Foundation and the Finnish Foundation for
548 Cardiovascular Research.

549 LKa: The Yrjö Jahnsson Foundation, the Juho Vainio Foundation, the Päivikki and Sakari
550 Sohlberg Foundation, and the Tampere Tuberculosis Foundation.

551

552 **Conflict of interest statement**

553 The authors declare no conflict of interest.

554

555 **Author contributions**

556 Conceptualization: SM, LKa; Methodology: SM, LKa; Formal analysis and investigation:
557 SM, SR, JC, JM, LKa; Writing - original draft preparation: SM, LKa; Writing - review and
558 editing: SM, SR, JC, JM, ISJ, LKu, SH, ER, LKa; Funding acquisition: SM, ER, LKa;
559 Resources: SM, SH, ER, LKa; Supervision: SM, LKa.

560

561

562 **Supplementary material**

563 Supplementary_Tables_S1-S8_2024-05-03.xlsx

564 Supplementary_Figures_and_Results_2024-05-03.docx

565

566 **References**

- 567 1. Baker III, G. T. & Sprott, R. L. Biomarkers of aging. *Exp. Gerontol.* **23**, 223–239 (1988).
- 568 2. Butler, R. N. *et al.* Biomarkers of aging: from primitive organisms to humans. *J. Gerontol. A. Biol. Sci. Med. Sci.* **59**, B560-567 (2004).
- 569 3. Johnson, T. E. Recent results: Biomarkers of aging. *Annu. Rev. Biogerontology* **41**, 1243–1246 (2006).
- 570 4. Jylhava, J., Pedersen, N. L. & Hagg, S. Biological Age Predictors. *EBioMedicine* (2017).
- 571 5. Rutledge, J., Oh, H. & Wyss-Coray, T. Measuring biological age using omics data. *Nat. Rev. Genet.* **23**, 715–727 (2022).
- 572 6. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. *Nat. Rev.* **19**, 371–384 (2018).
- 573 7. Vaiserman, A. & Krasnienkov, D. Telomere Length as a Marker of Biological Age: State-of-the-Art, Open Issues, and Future Perspectives. *Front. Genet.* **11**, 630186 (2021).
- 574 8. Santoro, A., Bientinesi, E. & Monti, D. Immunosenescence and inflammaging in the aging process: age-related diseases or longevity? *Ageing Res. Rev.* **71**, 101422 (2021).
- 575 9. Muyayalo, K. P., Tao, D., Lin, X.-X. & Zhang, Y.-J. Age-related changes in CD4+ T and NK cell compartments may contribute to the occurrence of pregnancy loss in advanced maternal age. *J. Reprod. Immunol.* **155**, 103790 (2023).
- 576 10. Aiello, A. *et al.* Immunosenescence and Its Hallmarks: How to Oppose Aging Strategically? A Review of Potential Options for Therapeutic Intervention. *Front. Immunol.* **10**, 2247 (2019).
- 577 11. Camous, X., Pera, A., Solana, R. & Larbi, A. NK Cells in Healthy Aging and Age-Associated Diseases. *J. Biomed. Biotechnol.* **2012**, 1–8 (2012).
- 578 12. Alpert, A. *et al.* A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring. *Nat. Med.* **25**, 487–495 (2019).
- 579 13. Jia, H. *et al.* Immunosenescence is a therapeutic target for frailty in older adults: a narrative review. *Ann. Transl. Med.* **10**, 1142–1142 (2022).

593 14. Templeton, A. J. *et al.* Prognostic Role of Neutrophil-to-Lymphocyte Ratio in Solid
594 Tumors: A Systematic Review and Meta-Analysis. *JNCI J. Natl. Cancer Inst.* **106**, (2014).

595 15. Huang, L.-T., Zhang, C.-P., Wang, Y.-B. & Wang, J.-H. Association of Peripheral Blood
596 Cell Profile With Alzheimer's Disease: A Meta-Analysis. *Front. Aging Neurosci.* **14**,
597 888946 (2022).

598 16. Jung, M. K. & Shin, E.-C. Aged T cells and cardiovascular disease. *Cell. Mol. Immunol.*
599 **14**, 1009–1010 (2017).

600 17. Dumitriu, I. E., Araguas, E. T., Baboonian, C. & Kaski, J. C. CD4+CD28null T cells in
601 coronary artery disease: when helpers become killers. *Cardiovasc. Res.* **81**, 11–19 (2009).

602 18. Lin, J. *et al.* Systematic and Cell Type-Specific Telomere Length Changes in Subsets of
603 Lymphocytes. *J. Immunol. Res.* **2016**, 1–9 (2016).

604 19. Chalouni, M. *et al.* Correlation between blood telomere length and CD4+ CD8+ T-cell
605 subsets changes 96 weeks after initiation of antiretroviral therapy in HIV-1-positive
606 individuals. *PLOS ONE* **15**, e0230772 (2020).

607 20. Demanelis, K. *et al.* Determinants of telomere length across human tissues. *Science* **369**,
608 eaaz6876 (2020).

609 21. Matthe, D. M., Thoma, O.-M., Sperka, T., Neurath, M. F. & Waldner, M. J. Telomerase
610 deficiency reflects age-associated changes in CD4+ T cells. *Immun. Ageing* **19**, 16 (2022).

611 22. Bacalini, M. G. *et al.* Systemic Age-Associated DNA Hypermethylation of ELOVL2 Gene:
612 In Vivo and In Vitro Evidences of a Cell Replication Process. *J. Gerontol. Ser. A* **72**, 1015–
613 1023 (2017).

614 23. Hannon, E. *et al.* Assessing the co-variability of DNA methylation across peripheral cells
615 and tissues: Implications for the interpretation of findings in epigenetic epidemiology.
616 *PLOS Genet.* **17**, e1009443 (2021).

617 24. Zhang, Z. *et al.* Deciphering the role of immune cell composition in epigenetic age
618 acceleration: Insights from CELL-TYPE deconvolution applied to human blood epigenetic
619 clocks. *Aging Cell* e14071 (2023) doi:10.1111/acel.14071.

620 25. Garagnani, P. *et al.* Methylation of ELOVL2 gene as a new epigenetic marker of age. *Aging*
621 *Cell* **11**, 1132–1134 (2012).

622 26. Horvath, S. DNA methylation age of human tissues and cell types. *Genome Biol.* **14**, R115
623 (2013).

624 27. Hannum, G. *et al.* Genome-wide Methylation Profiles Reveal Quantitative Views of
625 Human Aging Rates. *Mol. Cell* **49**, 359–367 (2013).

626 28. Levine, M. E. *et al.* An epigenetic biomarker of aging for lifespan and healthspan. *Aging*
627 **10**, 573–591 (2018).

628 29. Belsky, D. W. *et al.* DunedinPACE, a DNA methylation biomarker of the pace of aging.
629 *eLife* **11**, e73420 (2022).

630 30. Lu, A. T. *et al.* DNA methylation-based estimator of telomere length. *Aging* **11**, 5895–
631 5923 (2019).

632 31. Higgins-Chen, A. T. *et al.* A computational solution for bolstering reliability of epigenetic
633 clocks: implications for clinical trials and longitudinal tracking. *Nat. Aging* **2**, 644–661
634 (2022).

635 32. Edgar, R. Gene Expression Omnibus: NCBI gene expression and hybridization array data
636 repository. *Nucleic Acids Res.* **30**, 207–210 (2002).

637 33. Barrett, T. *et al.* NCBI GEO: archive for functional genomics data sets—update. *Nucleic*
638 *Acids Res.* **41**, D991–D995 (2012).

639 34. Reinius, L. E. *et al.* Differential DNA methylation in purified human blood cells:
640 implications for cell lineage and studies on disease susceptibility. *PLoS One* **7**, e41361
641 (2012).

642 35. Rhead, B. *et al.* Rheumatoid Arthritis Naive T Cells Share Hypermethylation Sites With
643 Synoviocytes. *Arthritis Rheumatol.* **69**, 550–559 (2017).

644 36. Suarez-Alvarez, B. *et al.* Phenotypic characteristics of aged CD4(+) CD28(null) T
645 lymphocytes are determined by changes in the whole-genome DNA methylation pattern.
646 *Aging Cell* **16**, 293–303 (2017).

647 37. Wang, Y. *et al.* Epigenetic influences on aging: a longitudinal genome-wide methylation
648 study in old Swedish twins. *Epigenetics* **13**, 975–987 (2018).

649 38. Pelegí-Sisó, D., De Prado, P., Ronkainen, J., Bustamante, M. & González, J. R.
650 *methylclock*: a Bioconductor package to estimate DNA methylation age. *Bioinformatics*
651 **37**, 1759–1760 (2021).

652 39. Saule, P. *et al.* Accumulation of memory T cells from childhood to old age: Central and
653 effector memory cells in CD4+ versus effector memory and terminally differentiated
654 memory cells in CD8+ compartment. *Mech. Ageing Dev.* **127**, 274–281 (2006).

655 40. Morbach, H., Eichhorn, E. M., Liese, J. G. & Girschick, H. J. Reference values for B cell
656 subpopulations from infancy to adulthood. *Clin. Exp. Immunol.* **162**, 271–279 (2010).

657 41. Marttila, S. *et al.* IL-7 concentration is increased in nonagenarians but is not associated
658 with markers of T cell immunosenescence. *Exp. Gerontol.* **46**, 1000–1002 (2011).

659 42. Choi, J. *et al.* Reference Values for Peripheral Blood Lymphocyte Subsets in a Healthy
660 Korean Population. *Immune Netw.* **14**, 289 (2014).

661 43. Kananen, L. *et al.* The trajectory of the blood DNA methylome ageing rate is largely set
662 before adulthood: evidence from two longitudinal studies. *Age Dordr. Neth.* **38**, 65-016-
663 9927-9. Epub 2016 Jun 14 (2016).

664 44. Blanco, E. *et al.* Age-associated distribution of normal B-cell and plasma cell subsets in
665 peripheral blood. *J. Allergy Clin. Immunol.* **141**, 2208-2219.e16 (2018).

666 45. Nah, E.-H., Kim, S., Cho, S. & Cho, H.-I. Complete Blood Count Reference Intervals and
667 Patterns of Changes Across Pediatric, Adult, and Geriatric Ages in Korea. *Ann. Lab. Med.*
668 **38**, 503–511 (2018).

669 46. Merkt, W. *et al.* Blood CD3-(CD56 or 16)+ natural killer cell distributions are
670 heterogeneous in healthy adults and suppressed by azathioprine in patients with ANCA-
671 associated vasculitides. *BMC Immunol.* **22**, 26 (2021).

672 47. Marttila, S. *et al.* IL-7 concentration is increased in nonagenarians but is not associated
673 with markers of T cell immunosenescence. *Exp. Gerontol.* **46**, 1000–1002 (2011).

674 48. Jonkman, T. H. *et al.* Functional genomics analysis identifies T and NK cell activation as
675 a driver of epigenetic clock progression. *Genome Biol.* **23**, 24 (2022).

676 49. Maly, K. & Schirmer, M. The story of CD4+ CD28- T cells revisited: solved or still
677 ongoing? *J. Immunol. Res.* **2015**, 348746 (2015).

678 50. McMurran, C. E. *et al.* Advanced biological ageing predicts future risk for neurological
679 diagnoses and clinical examination findings. *Brain* **146**, 4891–4902 (2023).

680 51. Loyfer, N. *et al.* A DNA methylation atlas of normal human cell types. *Nature* **613**, 355–
681 364 (2023).

682 52. Chen, B. H. *et al.* DNA methylation-based measures of biological age: meta-analysis
683 predicting time to death. *Aging* **8**, 1844–1865 (2016).

684 53. Tylutka, A., Morawin, B., Gramacki, A. & Zembron-Lacny, A. Lifestyle exercise
685 attenuates immunosenescence; flow cytometry analysis. *BMC Geriatr.* **21**, 200 (2021).

686 54. Fahy, G. M. *et al.* Reversal of epigenetic aging and immunosenescent trends in humans.
687 *Aging Cell* **18**, e13028 (2019).

688 55. Fitzgerald, K. N. *et al.* Potential reversal of epigenetic age using a diet and lifestyle
689 intervention: a pilot randomized clinical trial. *Aging* **13**, 9419–9432 (2021).

690 56. Chen, L. *et al.* Effects of Vitamin D3 Supplementation on Epigenetic Aging in Overweight
691 and Obese African Americans With Suboptimal Vitamin D Status: A Randomized Clinical
692 Trial. *J. Gerontol. Ser. A* **74**, 91–98 (2019).

693 57. Pham, H. *et al.* The effects of pregnancy, its progression, and its cessation on human
694 (maternal) biological aging. *Cell Metab.* S1550413124000792 (2024)
695 doi:10.1016/j.cmet.2024.02.016.

696 58. Poganik, J. R. *et al.* Biological age is increased by stress and restored upon recovery. *Cell*
697 *Metab.* **35**, 807-820.e5 (2023).

698 59. Zhu, J., Li, Z., Deng, Y., Lan, L. & Yang, J. Comprehensive reference intervals for white
699 blood cell counts during pregnancy. *BMC Pregnancy Childbirth* **24**, 35 (2024).

700 60. Dockree, S., Shine, B., Pavord, S., Impey, L. & Vatish, M. White blood cells in pregnancy:
701 reference intervals for before and after delivery. *eBioMedicine* **74**, 103715 (2021).

702 61. Abu-Raya, B., Michalski, C., Sadarangani, M. & Lavoie, P. M. Maternal Immunological
703 Adaptation During Normal Pregnancy. *Front. Immunol.* **11**, 575197 (2020).

704 62. Houseman, E. A. *et al.* DNA methylation arrays as surrogate measures of cell mixture
705 distribution. *BMC Bioinformatics* **13**, 86-2105-13-86 (2012).

706 63. Titus, A. J., Gallimore, R. M., Salas, L. A. & Christensen, B. C. Cell-type deconvolution
707 from DNA methylation: a review of recent applications. *Hum. Mol. Genet.* **26**, R216–R224
708 (2017).

709 64. Salas, L. A. *et al.* An optimized library for reference-based deconvolution of whole-blood
710 biospecimens assayed using the Illumina HumanMethylationEPIC BeadArray. *Genome*
711 *Biol.* **19**, 64-018-1448-7 (2018).

712 65. Natri, H. M. *et al.* Genome-wide DNA methylation and gene expression patterns reflect
713 genetic ancestry and environmental differences across the Indonesian archipelago. *PLOS*
714 *Genet.* **16**, e1008749 (2020).

715 66. Okada, R., Kondo, T., Matsuki, F., Takata, H. & Takiguchi, M. Phenotypic classification
716 of human CD4+ T cell subsets and their differentiation. *Int. Immunol.* **20**, 1189–1199
717 (2008).

718 67. Palatella, M., Guillaume, S. M., Linterman, M. A. & Huehn, J. The dark side of Tregs
719 during aging. *Front. Immunol.* **13**, 940705 (2022).

720 68. De Mol, J., Kuiper, J., Tsiantoulas, D. & Foks, A. C. The Dynamics of B Cell Aging in
721 Health and Disease. *Front. Immunol.* **12**, 733566 (2021).

722 69. Fu, B., Tian, Z. & Wei, H. Subsets of human natural killer cells and their regulatory effects.
723 *Immunology* **141**, 483–489 (2014).

724 70. Brauning, A. *et al.* Aging of the Immune System: Focus on Natural Killer Cells Phenotype
725 and Functions. *Cells* **11**, 1017 (2022).

726