

1 **Title**

2 Persistent Decision-Making in Mice, Monkeys, and Humans

3 **Authors**

4 Veldon-James Laurie,¹ Akram Shourkeshti,¹ Cathy S. Chen,² Alexander B. Herman,³
5 Nicola M. Grissom,² R. Becket Ebitz^{1*}
6

7 **Affiliations**

8 ¹Department of Neuroscience, University of Montreal, Quebec, Canada.

9 ²Department of Psychology, University of Minnesota, Minneapolis, United States.

10 ³Department of Psychiatry, University of Minnesota, Minneapolis, United States.

11 Corresponding Author:

12 R. Becket Ebitz^{*1}

13 *Corresponding Author: rebitz@gmail.com

14 **Abstract**

15 Humans have the capacity to persist in behavioural policies, even in challenging
16 environments that lack immediate reward. Our persistence is the scaffold on which many
17 higher executive functions are built. However, it remains unclear whether humans are
18 uniquely persistent or, instead, if this capacity is widely conserved across species. To
19 address this question, we compared humans with mice and monkeys in harmonised
20 versions of an uncertain decision-making task. The task encouraged all species to strike a
21 balance between persistently exploiting one policy and exploring alternative policies that
22 could become better at any moment. Although all three species had similar strategies, we
23 found that both primate species—humans and monkeys—were able to persist in
24 exploitation for much longer than the mice. We speculate that the similarities in
25 persistence patterns in humans and monkeys, as opposed to mice, may be linked to
26 ecological, neurobiological, or cognitive factors that differ systematically between these
27 species.

28 **Teaser**

29 Humans, monkeys and mice use similar decision-making strategies, but exploit valuable
30 options for different lengths of time.

31 **MAIN TEXT**

32 **Introduction**

33 Decision-making in an uncertain environment requires a fine balance between two goals.
34 Decision-makers must persist in exploiting previously rewarded options, but also regularly
35 explore alternatives that have the potential to be even better. In humans, exploratory
36 decision-making drives our everyday interactions (Rich and Gureckis, 2018), problem
37 resolutions (Knox et al., 2012), goal achievements (Wilson et al., 2021) and predicts
38 individual differences in self-reported engagement (Yan et al., 2023). However, our
39 capacity to strike a balance between exploitation and exploration is also fragile. The
40 balance is easily thrown off by stress (Kaske et al., 2023) and drug addiction (Verdejo-
41 García et al., 2006) and is dysregulated in many neurological conditions, like obsessive-
42 compulsive disorder (Tolin et al., 2009), depression (Blanco et al., 2013), anxiety (Teng et
43

48 al., 2016), and ADHD (Mäntylä et al., 2012). Because evolution tends to canalise
49 phenotypes over time (Waddington, 1942; Siegal and Bergman, 2002)—making behaviour
50 more robust against influence of environmental and developmental perturbations—these
51 results could suggest that the human capacity to balance exploration and exploitation may
52 have evolved relatively recently. However, in part because of the difficulty of harmonising
53 tasks and data collection across species, we do not know how exploratory decision-making
54 in humans compares against other species.

55
56 The need for comparative analyses of human and non-human exploratory decision-making
57 is especially urgent because animal models are increasingly being used to model human
58 decision-making. This is most obvious in the mouse, where the rise of optogenetics and
59 other techniques dependent on genetic expression (Boyden et al., 2005) means that there
60 has been an increasing use of mice for cognitive function research in recent years
61 (Ellenbroek and Youn, 2016). This is especially true in the area of decision-making under
62 uncertainty, where there has been a recent explosion of research using rodent models
63 (Saddoris et al., 2015; Groman et al., 2016; Bari et al., 2019; Izquierdo et al., 2019;
64 Soltani and Izquierdo, 2019; Chen et al., 2021a, 2021b; Grossman et al., 2022; Iyer et al.,
65 2022). Although these studies have led to fundamental insights, the overarching goal in
66 both psychology and neuroscience remains understanding human cognition and diseases,
67 by translating findings from animal studies into applications in humans. Achieving this
68 ultimate goal requires comparative studies (Manger et al., 2008; Stevenson et al., 2018;
69 Woo et al., 2023), which can uncover the variability, similarities, and differences within
70 and across species by contrasting their strategies in tasks.

71
72 Here, we asked if human patterns of exploratory decision-making are unique or else
73 shared with other related species. We focused on comparing humans against two of the
74 most commonly used animal models in psychology and cognitive neuroscience: *Mus*
75 *musculus* (the mouse) and *Macaca mulatta* (the rhesus monkey). Because these species
76 deviated from the human lineage at different times (monkey: 23-25 million years ago
77 (Disotell and Tosi, 2007; Gibbs et al., 2007); mice: ~90 million years ago (Ernst and
78 Carvunis, 2018)), we reasoned that any feature of exploratory decision-making that was
79 unique to humans would most likely have evolved within the last 23-25 million years (or
80 else been lost over time in one or both of the other species). Conversely, any feature that
81 was shared between all three species would most likely have evolved over roughly 90
82 million years ago (or else proven so adaptive that it independently evolved in all three
83 species via convergent evolution).

84
85 To identify the similarities and differences between humans, mice, and monkeys, all three
86 species performed harmonised versions of a classic explore/exploit task known as a
87 restless multi-armed bandit. In this task, participants are presented with a series of trials
88 where they had to make choices between identical targets. Each target's reward
89 probability changes independently and unpredictably over time. In consequence, all three
90 species confront the same conundrum: should they persist in exploiting an already
91 rewarding option or should they explore new alternative options? Although all three

92 species exhibited distinct signatures of exploration and exploitation, there were large
93 differences in how often the species switched between targets. Computational modelling
94 revealed that the key difference between mice (who switched frequently) and monkeys
95 and humans (who did not) lay in the primate species' capacity to persistently exploit
96 options for much longer than the mouse did. Control analyses and experiments in humans
97 ruled out several low-level explanations for these species' differences. Together, these
98 results suggest that the primate lineage may have only recently evolved an increased
99 capacity to persist in exploitative states. If this is the case, then it may be this capacity for
100 persistence that is perturbed by environmental and/or neurobiological challenges.

101

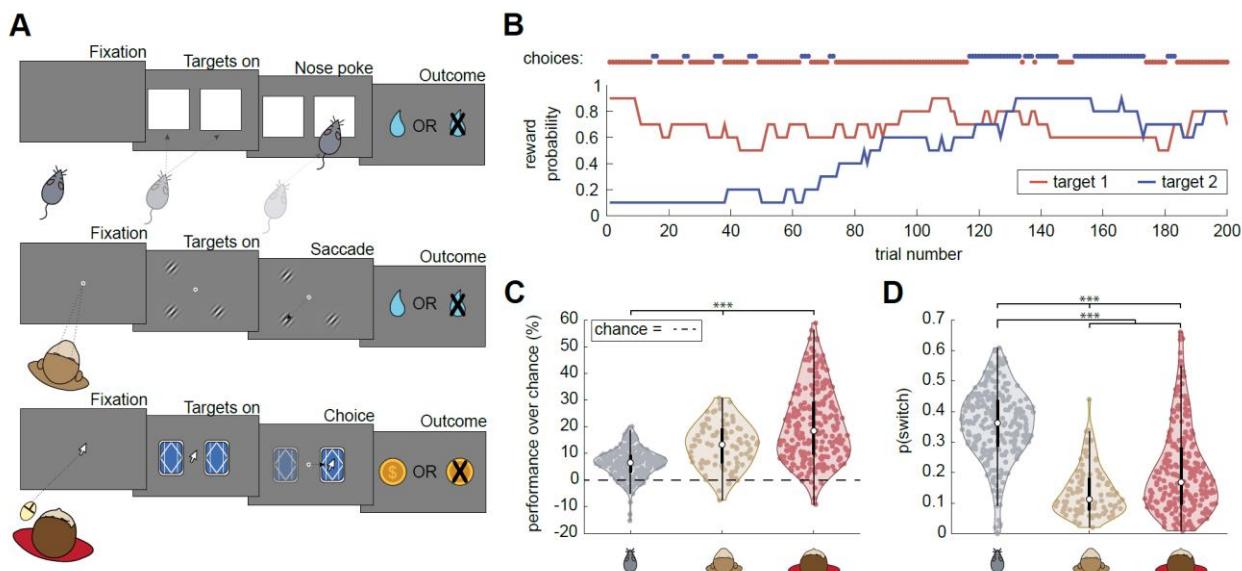
102

103 Results

104 In **Experiment 1**, mice (N=32, 8 sessions each, total of S = 256 sessions, 70 778 total
105 trials), monkeys (N=5, average of 18.6 sessions each, total of S = 93 sessions, 57 878
106 trials) and humans (N=258, 1 session each, total of S = 258 sessions, 77 400 total trials)
107 performed comparable spatial restless k-armed bandit tasks (**Figure 1A**). Each target
108 offered a probability of reward which changed slowly and independently over time
109 (**Figure 1B**). As a result, the task encouraged participants to both exploit rewarding targets
110 and explore new targets to learn about other potential rewards. Mice indicated their
111 choices via nose pokes, monkeys via saccadic eye movements, and humans with a
112 computer mouse (**Figure 1A**). There were some minor differences between species in the
113 timing of the task and the number of targets (see **Methods**), which we controlled for via 2
114 additional experiments in humans (**Experiment 2** and **Experiment 3**).

115

116 There were differences in performance measures between mice, monkeys, and humans.
117 The species differed in the likelihood of getting rewards (normalised difference from
118 chance; **Figure 1C**; 3-way ANOVA: $F_{2, 311} = 265.95$, $p < 0.0001$, $S = 607$ total sessions),
119 with humans performing better than monkeys who performed better than mice. There were
120 also species differences in the probability of switching between the targets (**Figure 1D**; 3-
121 way ANOVA: $F_{2, 311} = 353.64$, $p < 0.0001$, $S = 607$ total sessions), with primates
122 switching less often than mice (3-way ANOVA: $F_{1, 315} = 370.81$, $p < 0.0001$, $S = 607$ total
123 sessions).



124
125 **Figure 1. Task design and behaviour across species.** **A)** A schematic representation of the bandit task in
126 each species (mice = top, monkeys = middle, humans = bottom). **B)** Example reward schedule, including
127 200 trials from one session with one human. The reward probabilities of each of the 2 targets (blue and red
128 traces) walk randomly, independently across trials. The humans' choices are illustrated as coloured dots
129 along the top. **C)** Percentage of reward relative to chance in all species. Thick black lines = IQR, thin =
130 whiskers, open circle = median. Black dotted line = chance performance. **D)** Probability of switching targets
131 during the task between species. Same conventions as C. In figure, asterisks represent significance levels as
132 follows: * indicates $p < 0.05$, ** indicates $p < 0.001$, and *** indicates $p < 0.0001$.

133 Switching dynamics and exploratory behaviour

134 Switching happens for multiple reasons in this task (Ebitz et al., 2018; Chen et al., 2021b).
135 Sometimes animals switch options because they are engaging in rapid trial and error
136 sampling. Other times they switch because the option they have been choosing is no
137 longer rewarding. To determine how the types of switching behaviours differed across all
138 species, we fit a “mixture model” to the distribution of interswitch intervals (number of
139 trials between switches) in each species (Figure 2A; see Methods for more details; (Ebitz
140 et al., 2018; Chen et al., 2021b)).

141
142 We found that the behaviour of all species could be best described as a mixture of two
143 modes (Figure 2A, Table S1). Participants sometimes switched between targets at a fast
144 pace (“switching regime”) and they sometimes stuck to choosing one target repeatedly
145 (“persistent regime”). The species differed in their (1) average switching probability
146 during the persistent regime (3-way ANOVA: $F_{2, 308} = 85.6$, $p < 0.0001$, $S = 596$ total
147 sessions), (2) the average switching probability during the switching regime (3-way
148 ANOVA: $F_{2, 308} = 50.79$, $p < 0.0001$, $S = 596$ total sessions), and (3) the relative frequency
149 of both regimes (3-way ANOVA: $F_{2, 308} = 4.66$, $p < 0.02$; Table S2), with primates
150 switching less often, and therefore being more persistent with their goals while in the
151 persistent regime (3-way ANOVA: $F_{1, 312} = 82.44$, $p < 0.0001$; Figure 2B, $S = 596$ total
152 sessions). Monkeys and humans did not differ in their probability of switching in the
153 persistent regime (3-way ANOVA: $F_{1, 87} = 0.74$, $p > 0.39$, $S = 343$ total sessions).
154 Together, these results suggest that species differences in switching in Figure 1B were
155 largely driven by the primates' increased tendency to persist, compared to mice.

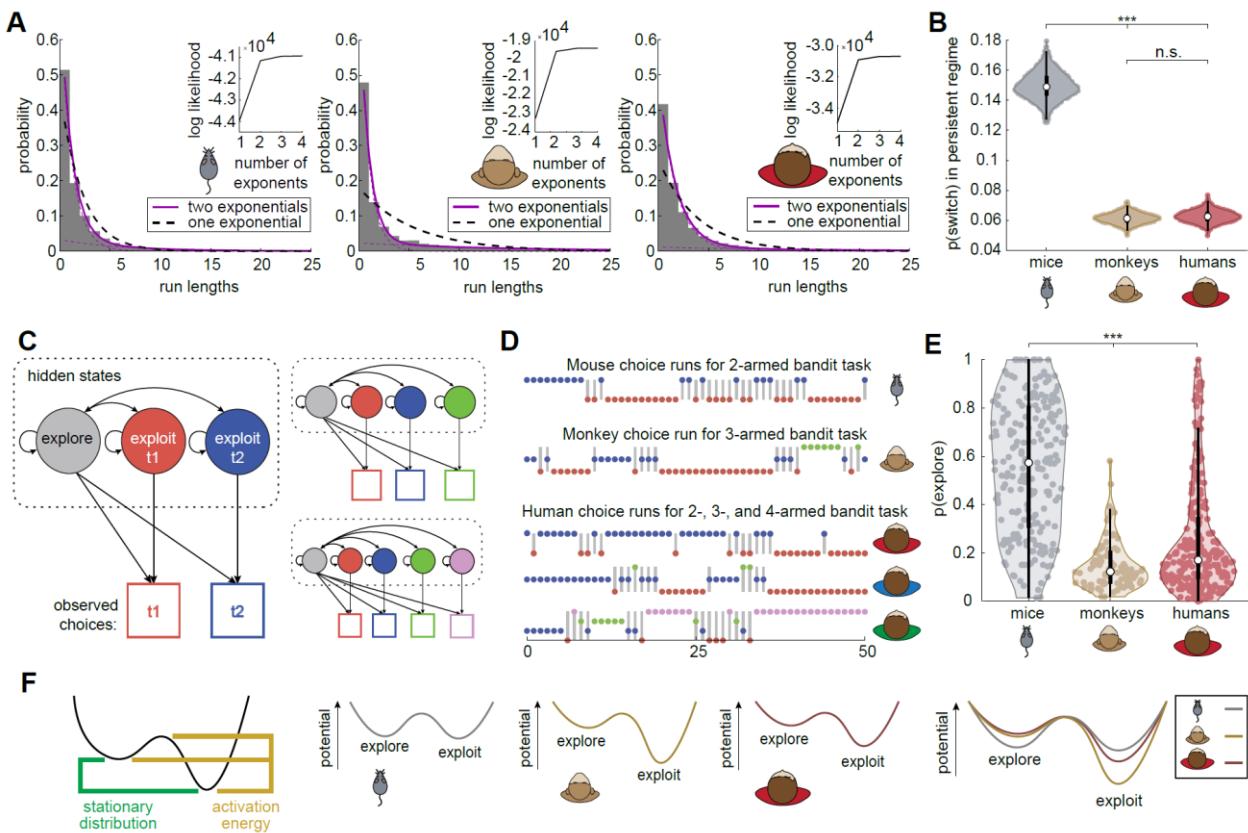
156

157 In order to determine why primates switched less frequently during the persistent regime,
158 we categorised individual choices based on the underlying reason for those decisions.
159 Specifically, we used a Hidden Markov Model (HMM; **Figure 2C**; see **Methods**) to infer
160 whether individual choices were more likely to be due to a state of exploratory, trial-and-
161 error sampling or a state of exploitative choices to a single option (Ebitz et al., 2018, 2019;
162 Chen et al., 2021b; Kaske et al., 2023). Example choice sequences, with labels, are in
163 **Figure 2D**. Based on the HMM labels, the probability of exploring differed across all
164 species (**Figure 2E**; 3-way ANOVA: $F_{2, 284} = 212.72$, $p < 0.0001$, $S = 567$ total sessions).
165 The difference between mice and primates explained the most variance between the
166 groups (primates vs mice, $\eta^2 = 0.1766$, 17.66% of the variance; 3-way ANOVA: $F_{1, 288} =$
167 233.7 , $p < 0.0001$, $S = 567$ total sessions; monkeys vs humans, $\eta^2 = 0.0372$, 3.72% of the
168 variance, 3-way ANOVA: $F_{1, 87} = 71.71$, $p < 0.0001$, $S = 338$ total sessions). These results
169 suggest that primates switched less on average because they were less exploratory than
170 mice.

171

172 One reason for the decrease in exploration in primates compared to mice could be a
173 change in the stability of explore and exploit states across species. To determine if there
174 were differences in the stability of these states, we analysed the parameters and dynamics
175 of the fitted HMM (Ebitz et al., 2018, 2019; Chen et al., 2021b). We found species
176 differences in the likelihood of staying in exploitation (exploit-to-exploit transition
177 probability: 3-way ANOVA: $F_{2, 287} = 78.77$, $p < 0.0001$, $S = 562$ total sessions), where
178 mice were less likely to stay in exploitation than either primate (mice: 0.78 ± 0.13 STD
179 across sessions, monkeys: 0.95 ± 0.03 , humans: 0.87 ± 0.13). In analysing model
180 dynamics, we considered (1) the difference in potential energy between exploration and
181 exploitation (see Methods), and (2) the activation energy needed to transition from
182 exploitation to exploration (**Figure 2F**). In mice, we found that exploration and
183 exploitation had roughly the same level of stability (mean difference in energy = $0.16 \pm$
184 1.45 STD across sessions), whereas exploitation tended to be a deeper, more energetically
185 stable state than exploration in both primates (monkeys: -2.15 ± 0.77 ; humans: $-1.35 \pm$
186 1.79 ; sig. differences across species, 3-way ANOVA: $F_{2, 282} = 186.1$, $p < 0.0001$, $S = 558$
187 total sessions). The amount of energy required to end a bout of exploration also differed
188 between species: less energy was required to start to explore in the mouse compared to the
189 monkeys and humans (differences in activation energy; 3-way ANOVA: $F_{2, 282} = 66.85$, p
190 < 0.0001 , $S = 558$ total sessions; mice = 1.80 ± 1.28 STD, monkeys = 3.18 ± 0.52 , humans
191 = 2.61 ± 1.71 STD). In short, primates had a deeper, more energetically stable kind of
192 exploitation than mice, suggesting that the differences we observed in switching behaviour
193 and exploration could be due to the fact that primates are capable of persisting in their
194 exploitative policies for longer than mice.

195



196
197 **Figure 2. Different patterns of switching and exploration across species.** **A)** Distributions of the number
198 of trials between switch decisions (“run lengths”) in mice, monkeys and humans. If the species had a fixed
199 probability of switching, run lengths would be exponentially distributed (black dotted line). A mixture
200 of two exponential distributions (purple line) suggests 2 distinct probabilities of switching. Dotted purple lines
201 show each mixing distribution, one slow-switching and another fast-switching. (Inset) Log likelihoods for
202 different mixture models containing a range of 1 to 4 exponential distributions in each species. **B)**
203 Bootstrapped estimates of switch probability for the slow-switching distribution (the “persistent regime”)
204 across species. Thick black lines = IQR, thin = whiskers, open circle = median. **C)** Hidden Markov models
205 (HMMs) were used to infer the goal state on each trial from the sequence of choices. The model included
206 one persistent state for each target (“exploit”) and one state in which subjects could choose any of the
207 targets (“explore”). Right) The model can be extended to account for different numbers of targets by adding
208 exploit states. **D)** Fifty-trial example choice sequences for mice, monkeys and humans. The coloured circles
209 represent the chosen target and the grey lines highlight the explore choices identified with the HMM. **E)**
210 Probability of exploration across species, as inferred by the HMM. Same conventions as B. **F)** Fitting the
211 HMM involves identifying a set of equations that describe the dynamics of exploration and exploitation,
212 meaning the rate at which participants explore, exploit, and switch between states. Left) Certain analytic
213 measures of these equations, namely their stationary distributions (Boltzmann, 1868) and activation energies
214 (Arrhenius, 1889) can be used to derive an intuitive picture of the landscape of state dynamics. Middle)
215 Average state dynamic landscapes for each species. Right) State dynamic landscapes for all species overlaid.
216 In figure, asterisks represent significance levels as follows: * indicates $p < 0.05$, ** indicates $p < 0.001$, and
217 *** indicates $p < 0.0001$.

218 Manipulating task variables to understand species differences

219 Putative species differences in rewards and persistence could be artifacts of variations in
220 task design across species. For example, 2 of the monkeys experienced reward walks that
221 were slightly richer on average than the other monkeys, mice, and humans. These 2
222 monkeys also switched less than the 3 monkeys whose reward schedule matched the other
223 participants (3-way ANOVA: $F_{1,90} = 6.59$, $p < 0.02$, $S = 93$ total sessions). However, we
224 found that excluding these 2 monkeys from the analyses did not alter the major results.

225 Mice still switched more than either primate species (comparing mice to all primates (all
226 humans and all monkeys; 3-way ANOVA: $F_{1,315} = 370.81$, $p < 0.0001$, $\eta^2 = 0.1670$,
227 16.70%, $S = 607$ total sessions; comparing mice to all humans and 3 monkeys with same
228 reward walks: 3-way ANOVA: $F_{1,280} = 333.32$, $p < 0.0001$, $\eta^2 = 0.1665$, 16.65%, $S = 572$
229 total sessions). Mice also explored more (comparing mice to all human and all monkeys:
230 3-way ANOVA: $F_{1,288} = 233.7$, $p < 0.0001$, $\eta^2 = 0.1766$, 17.66%, $S = 567$ total sessions;
231 comparing mice to all humans and 3 monkeys with same reward walks: 3-way ANOVA:
232 $F_{1,253} = 196.69$, $p < 0.0001$, $\eta^2 = 0.1734$, 17.34%, $S = 532$ total sessions).

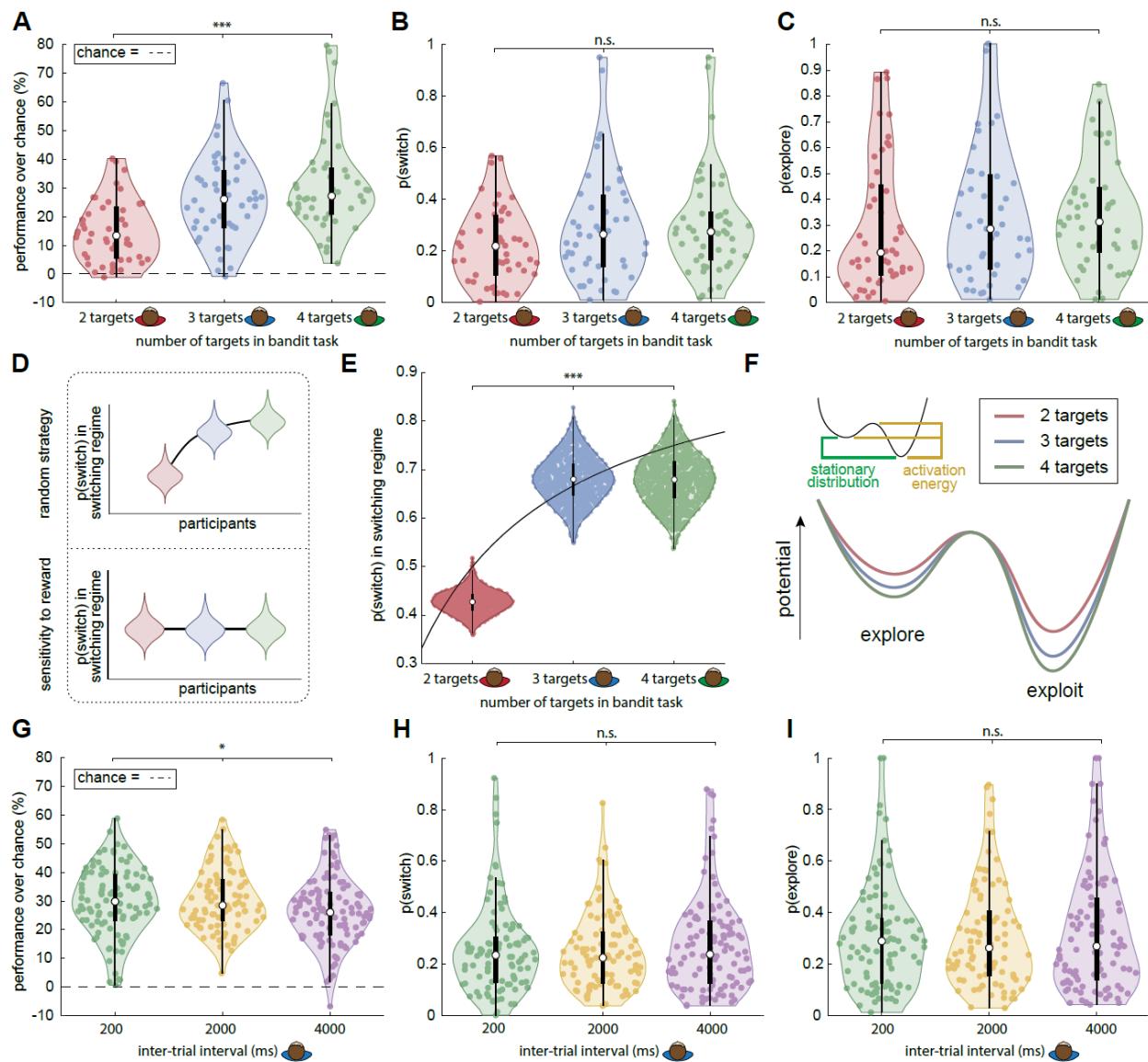
233
234 To control for other potential confounds, we looked at the effects of variations in the
235 number of targets (**Experiment 2**) and task timing (**Experiment 3**) in humans. Monkeys
236 did a 3 target version of the task, but both mice and humans did a 2 target version.

237 Therefore, it is possible that monkeys were more similar to humans only because adding a
238 third target (1) improved reward acquisition, (2) reduced switching, and (3) decreased
239 exploration. In an online sample of 150 humans (1 session each, 45 000 total trials), we
240 manipulated the number of targets and found variations in the likelihood of getting
241 rewards across the number of targets (normalised difference from chance; 2-way
242 ANOVA: $F_{2,143} = 15.82$, $p < 0.0001$, $S = 144$ total sessions; **Figure 3A**). However, the
243 effect of increasing the number of arms had only a trend-level effect on switching (2-way
244 ANOVA: $F_{2,143} = 2.79$, $p = 0.065$, $S = 144$ total sessions; **Figure 3B**) and no effect on
245 exploration (2-way ANOVA: $F_{2,135} = 0.59$, $p = 0.586$; $S = 136$ total sessions; **Figure 3C**).
246 Thus, differences in the number of targets is not likely to explain differences in persistence
247 between species.

248
249 Manipulating the number of targets did suggest that humans may, like monkeys (Ebitz et
250 al., 2018; Wilson et al., 2021), use random strategies for exploration in this task. If
251 humans were exploring randomly, we would expect the rate of switching during
252 exploratory switching regime to vary systematically with the number of targets. Random
253 choices between a smaller number of targets (i.e. 2) are more likely to repeat (i.e. 50% of
254 the time) than random choices between a large number of targets (4 targets will repeat
255 25% of the time). Thus, random exploration predicts a specific upward trend in the rate of
256 switching with the number of targets (**Figure 3D, top**; see **Methods**). Many other types of
257 exploration would produce no trend in switch probability as a function of the number of
258 targets, however. If exploration focused only on the rewards of the chosen target, for
259 example, switching would be unaffected by the number of alternatives (**Figure 3D,**
260 **bottom**). We found that humans switched more frequently as more targets were available
261 (2-way ANOVA: $F_{2,138} = 10.2$, $p < 0.0001$; $S = 142$ total sessions; see **Methods**, **Figure**
262 **3E, Table S3**). Critically, the pattern of switching closely followed the prediction from the
263 random exploration strategy, calculated directly with 0 free parameters (see **Methods**).
264 Manipulating the number of targets also increased the probability of staying in
265 exploitation (2-way ANOVA: $F_{2,133} = 8.13$, $p < 0.0005$; $S = 137$ total sessions; **Figure**
266 **3F**), though it did not alter the relative energy of exploration and exploitation (2-way
267 ANOVA: $F_{2,133} = 0.80$, $p = 0.45$; $S = 137$) or the energy barrier between states (2-way
268 ANOVA: $F_{2,133} = 0.87$, $p = 0.42$; $S = 137$). Nonetheless, differences in the number of
269 targets could therefore at least partly explain why monkeys had a deeper exploitation basin
270 compared to humans and mice.

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

Exploratory decision-making is affected by physiological and psychological processes that operate in the time scale of the body, not just in the time scale of trials (Shourkeshti et al., 2023). Therefore, it is possible mice were less persistent than primates because each trial took longer in this species, compared to humans and monkeys. Therefore, in **Experiment 3**, we manipulated trial lengths in humans via lengthening inter-trial interval times. In an online sample of 299 human participants (1 session each, 89 699 total trials), we found slight variations in the likelihood of getting rewards across the inter-trial-interval (normalised difference from chance; 2-way ANOVA: $F_{2, 295} = 3.04$, $p < 0.05$, $S = 299$ total sessions; **Figure 3G**). However, there was no significant effect of the inter-trial interval times on switching (2-way ANOVA: $F_{2, 295} = 0.38$, $p = 0.685$, $S = 299$ total sessions; **Figure 3H**) or exploration (2-way ANOVA: $F_{2, 285} = 0.16$, $p = 0.849$; $S = 289$ total sessions **Figure 3I**). These results suggest that trial lengths did not impact the behaviours that differed between species in this task and thus is not likely to explain species differences.



286

287
288

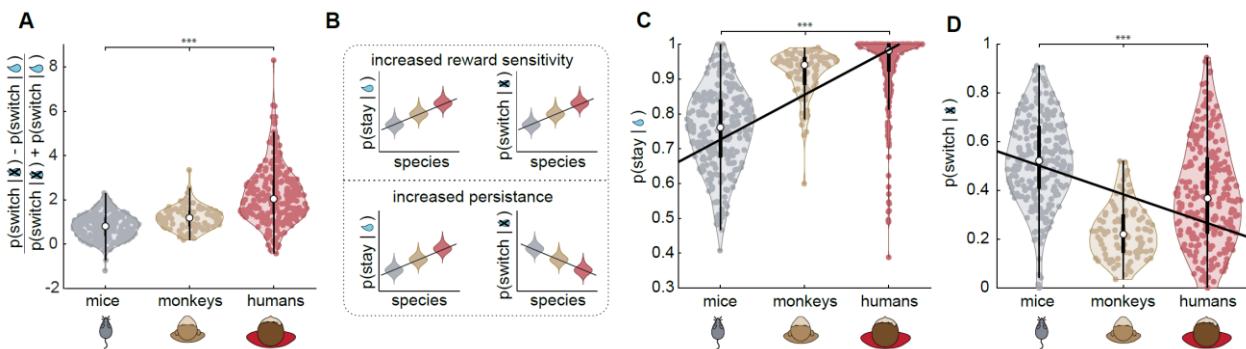
Figure 3. Effects of manipulating the number of targets and the trial length in humans performing the bandit task (Experiment 2 and 3). A) Percentage of reward relative to chance by number of targets (2, 3,

289 or 4). Thick black lines = IQR, thin = whiskers, open circle = median. **B)** Switch probability by number of
290 targets. **C)** Probability of exploration by number of targets. **D)** Cartoon illustrating predicted relationships
291 between the switching-regime switch probability and the number of arms under the hypothesis of random
292 exploration (top) or reward-dependent exploration (bottom). **E)** Switch probability for the fast-switching
293 distribution (the “switching regime”) by number of targets. **F)** State dynamic landscapes for varying
294 numbers of targets (Same conventions as Figure 2F). **G-I)** Same as A-C across varying inter-trial interval
295 times (200ms, 2000ms, 4000ms). Thick black lines = IQR, thin = whiskers, open circle = median. In figure,
296 asterisks represent significance levels as follows: * indicates $p < 0.05$, ** indicates $p < 0.001$, and ***
297 indicates $p < 0.0001$.

298 **Learning index analysis and reward sensitivity**

299 The primates’ tendency to exploit more than mice did not appear to be an artifact of minor
300 differences in task design or timing. Therefore, we next considered the possibility that
301 these differences between species were due to differences in their capacity to learn from
302 rewards. We evaluated this using a common “learning index” (a 1-trial-back measure of
303 the effect of reward outcomes on switch decisions, normalised by the probability of
304 switching; see **Methods**). For this analysis, we returned to the data from **Experiment 1**
305 (cross-species experiment). We found variations across species (**Figure 4A**; 3-way
306 ANOVA: $F_{2,308} = 575.44$, $p < 0.0001$, $S = 600$ total sessions), with humans appearing to
307 learn the fastest, then monkeys, then mice. However, the interpretation of this learning
308 index is complicated because it is normalised by the overall probability of switching and
309 primates switched less overall. This means that the learning index could change across
310 species either because of differences in learning from reward outcomes or because of
311 differences in switching frequently (i.e. persistence).

312
313 To differentiate between these possible explanations, we separately analysed choice
314 patterns after rewarded or unrewarded trials. If the major difference between species was
315 in learning from rewards, then the tendency to repeat rewarding options should positively
316 co-vary with the tendency to switch away from non-rewarding options (**Figure 4B**, top).
317 In short, humans should be most sensitive to reward outcomes, followed by monkeys, then
318 mice. Conversely, if the major difference between species was in persistence, then the
319 tendency to repeat rewarding options should be inversely related to the tendency to switch
320 away from non-rewarding options across species (**Figure 4B**, bottom). In short, humans
321 should be the most persistent, followed by monkeys, and then mice. Compared to mice,
322 we found that primates persisted more with their choices, both after being rewarded
323 (**Figure 4C**; 3-way ANOVA: $F_{1,311} = 323.34$, $p < 0.0001$, $S = 607$ total sessions), and after
324 not receiving a reward (**Figure 4D**; 3-way ANOVA: $F_{1,311} = 211.84$, $p < 0.0001$, $S = 607$
325 total sessions). Together, these results suggest the major systematic difference between
326 species was an increase in persistence rather than increased sensitivity to rewards, though
327 some increase in reward sensitivity may also have been at play in humans.



328
329 **Figure 4. Learning and persistence across species** **A)** Index of reward learning across species. Thick black
330 lines = IQR, thin = whiskers, open circle = median. **B)** Hypothesis cartoon illustrating predictions under the
331 hypothesis that species differences in switching were due to reward sensitivity (top) or persistence
332 (bottom). **C)** Probability of selecting the same option after obtaining a reward, compared across species.
333 Same conventions as A. **D)** Probability of selecting a different option after not obtaining a reward, compared
334 across species. Same conventions as A. In figure, asterisks represent significance levels as follows: *
335 indicates $p < 0.05$, ** indicates $p < 0.001$, and *** indicates $p < 0.0001$.

336 **Discussion**

337 This study compared the performance and decision-making strategies of mice, monkeys,
338 and humans in an uncertain decision-making task. All three species performed the task
339 similarly, alternating between a strategy of rapidly switching between the options, and a
340 strategy of persistently choosing the same option. Despite these shared strategies, we
341 found species differences in the average performance and the tendency to switch between
342 targets. Mice switched more frequently than primates. Computational analysis of the
343 switching patterns revealed that the increase in switching in the mice was driven by their
344 tendency to explore more frequently, compared to primates. Species differences were not
345 due to low level differences between the tasks like the number of options or the timing of
346 the trials. Instead, primates, and especially humans, appeared to persist in exploiting
347 valuable options for longer than the mice did.

348 One reason why primates might persist more in their choices, could be that they had more
349 cognitive self-control: the ability to regulate their impulses, letting them weigh long-term
350 benefits against immediate rewards. The capacity for self control is more prevalent in
351 species with larger brain sizes (MacLean et al., 2014). Here, self-control could help
352 sustain a choice policy in the absence of reward, for example, or to help animals avoid the
353 temptation to try something new (Stillman et al., 2017). Indeed, we found that primates
354 were more persistent in their choices and were able to resist switching options
355 immediately in the absence of a reward, while mice lost interest more quickly. Thus,
356 species differences in the capacity for self-control could help explain why both primates
357 persisted for longer than mice did.

359
360 A second, complementary explanation for why primates persisted more than mice could
361 be differences in neural timescales across species. Single neurons and neural populations
362 process information with characteristic time constants, often called “neural timescales”
363 (Zilio et al., 2021). Previous studies have shown that different brain regions have differing
364 neural timescales (Murray et al., 2014; Golesorkhi et al., 2021; Zilio et al., 2021), perhaps
365 tailored to the functions for each region (Hasson et al., 2008). Brain regions with longer
366 neural timescales are better suited for integrating information over longer periods of time,
367 like in working memory, while brain regions with shorter neural timescales are better

368 suited for processing information that needs quick integration, like sensory cues (Zilio et
369 al., 2021). Notably, the prefrontal cortex (PFC), crucial for cognitive self-control (Cohen
370 et al., 2013), cognitive functions, and decision-making (Krawczyk, 2002; Domenech and
371 Koechlin, 2015), has been found to have longer neural timescales (Murray et al., 2014).
372 The PFC is also more elaborated in primates compared to mice (Laubach et al., 2018;
373 Preuss and Wise, 2022). This implies the elaborated primate PFC could improve
374 persistence in decision-making tasks by facilitating the sustained integration of
375 information. This contrasts with mice, whose less elaborated PFC could suggest shorter
376 neural timescales and a reduced capacity for persistent exploitation. Of course, species
377 differences in neural time scales could also be the underlying neural mechanism for
378 species differences in cognitive functions, like self-control and future studies are needed to
379 determine how individual differences in self-control and neural timescales predict
380 differences in persistence.
381

382 There is also a third reason why primates might persist more than mice: differences in
383 their ecological niches. Social primates, like rhesus macaques, benefit from collective
384 vigilance within their groups (Iki and Kutsukake, 2021), this allows each individual
385 monkey to be slightly less vigilant, and therefore lets them focus on exploiting resources
386 for longer before looking up to scan for threats. Mice, on the other hand, are mostly prey
387 species (Dickman, 1992) which might require them to be more vigilant and favour less
388 sustained focus on other tasks. Differences in ecological niches across species could also
389 result in the task being less suitable for mice as specified here. Perhaps mice are better
390 adapted to more volatile environments, and therefore, perhaps the differences in
391 persistence found in this task could be minimised if the task environment was more
392 volatile.
393

394 Ultimately, comparative work is essential both for understanding how the human brain
395 evolved and for ensuring that preclinical research can translate into real-world impact in
396 human lives. Comparative studies also have unique challenges. Whenever data is collected
397 across multiple labs over multiple years, it introduces variability. Species also necessarily
398 differ in factors like training time and researchers tend to use different response and
399 reward modalities in different species, due to differences in physicality and familiarity
400 with certain apparatuses. While none of these factors appeared to be a sufficient
401 explanation for our major results, we cannot rule out the possibility that task or training
402 differences interacted with real species differences in complex ways. We made efforts to
403 harmonise the datasets across species, include important control experiments and analyses,
404 and to transparently describe the methodological differences between the tasks, but our
405 results remain suggestive. We found that humans and other primates persisted more than
406 mice in a stochastic decision-making task, but future studies are still needed to determine
407 if species differences in persistence are apparent in other tasks and whether these species
408 differences can be modulated by altering certain aspects of task design. This is especially
409 important because preclinical studies in mice do not always translate well into clinically
410 relevant human interventions (Worp et al., 2010; Perrin, 2014; Walker and Eggel, 2020).
411 If our results are correct, they suggest that monkeys could and should be used as a vital
412 step in cross-species translation, particularly in the domains of decision-making and
413 executive function.
414
415
416
417

418 **Materials and Methods**

419
420 **Experimental Design**

421
422 For each study, participants performed a spatial restless k-armed bandit task. In this task,
423 physically identical targets are presented in spatial locations that are associated with a
424 probability of reward. Reward probabilities ranged between 0.9 and 0.1 and could
425 diminish or increase over time at a rate that was fixed across experiments (10% chance of
426 a step of 0.1). For 2/5 monkeys, the floor probability of reward was 0.3, rather than 0.1, to
427 improve motivation. Although these 2 animals switched slightly less frequently than the
428 other 3 animals (11.89% vs 17.14%), excluding these animals from the analyses did not
429 change any major results (see **Results**).

430
431 Because rewards were variable, independent, and probabilistic, participants could only
432 infer values through sampling the targets and integrating reward history over multiple
433 trials. There were minor variations between the mouse, monkey, and human studies due to
434 a combination of factors: (1) the data was collected independently across multiple labs, (2)
435 the tasks were adapted to the typical research approaches used in each species. For
436 example, mice and monkeys both received a primary, liquid reinforcer as reward. Humans
437 on the other hand received money, a secondary reinforcer. Monkeys received a 3 target
438 version of the bandit task, mice received a 2 target version, and humans received a 2, 3
439 and 4 target version. Additional variations between the tasks are described below:

440
441 **Mice**

442
443 Mice indicated their choices by nose-poking on a touchscreen display with two identical
444 squares. Rewards were given in the form of food pellets. Mice completed either 300 trials
445 or spent a maximum of two hours in the operant chamber. On average, mice performed
446 276.50 trials (min: 46 trials, max: 300 trials) per session.

447 **Monkeys**

448
449 Monkeys indicated their choices by making saccadic eye movements towards one of three
450 identical gabor kernels. Choices were registered when the monkeys fixated on the
451 eccentric target for a specified minimum period (150ms). Eye position was monitored at
452 1000Hz via an infrared eye tracker (SR Research). Rewards were given in the form of
453 juice. On average, monkeys performed 622.34 trials (min: 144 trials, max: 1377 trials) per
454 session.

455
456 **Humans**

457
458 Humans indicated their choices by moving a computer mouse towards one of the backs of
459 playing cards on the screen. In experiment 1, human participants had to choose between 2
460 identical blue backs of playing cards. In Experiment 2, human participants had to choose
461 between 2, 3, or 4 backs of playing cards, with each card being identical except for their
462 colour. In Experiment 3, human participants had to choose between 3 identical blue backs
463 of playing cards. They used a computer mouse to click the desired options and register
464 their response. Rewards were given in the form of money (\$0.02 per reward). Every
465 human participant completed 300 trials per session, except for 1 participant who
466 completed 299 trials during their session. Prior to the experiment, the humans completed

467 an additional 20-25 practise trials, which were meant to familiarise them with the task but
468 were not included in the analyses.
469

470 **Experimental models and participant details**
471

472 All animal care and experimental procedures were approved by the relevant ethical review
473 board (**mice**: the guidelines of the National Institution of Health and the University of
474 Minnesota; **monkeys**: the guidelines of Stanford University Institutional Animal Care and
475 Use Committee and the Rochester University Committee on Animal Resources; **humans**
476 **for Experiment 1 and 3**: the guidelines of the Comité d'Éthique de la Recherche en
477 Sciences et Santé (CERSES) of the University of Montreal; **humans for Experiment 2**:
478 the guidelines of Princeton University Institutional Review Board). The human data and
479 much of the monkey data has not been analysed or reported previously. Some sessions
480 from two of the five monkeys have been analysed previously (28/58 sessions; [\(Ebitz et al.,
481 2018\)](#). The mouse data has been reported previously ([\(Chen et al., 2021b\)](#) but all analyses
482 here are new.

483
484 All species were presented with a series of trials in which they made choices between
485 physically identical targets that were presented in front of them on a computer screen.
486 Specific details of each experimental setup are as follows:
487

488 **Mice**
489

490 Thirty-two BL6129SF1/J mice (16 males and 16 females) were obtained from Jackson
491 Laboratories (stock #101043). Mice arrived at the lab at 7 weeks of age and were housed
492 in groups of four with *ad libitum* access to water and mild food restriction (85–95% of
493 free feeding weight) for the experiment. Animals engaging in operant testing were housed
494 in a 9AM to 9PM reversed light cycle to permit testing during the dark period. Before
495 operant chamber training, animals were food restricted to 85–90% of free feeding body
496 weight. Operant testing occurred five days a week (Monday-Friday). Additional
497 information regarding mouse data collection has been reported previously ([\(Chen et al.,
498 2021b\)](#).
499

500 **Monkeys**
501

502 Five male rhesus macaques (between 5 and 15 years of age; between 6 and 16 kg)
503 participated in this study. Three of the monkeys were singly housed and two were pair
504 housed. All were housed in small colony rooms (6-10 animals per room). Animals were
505 surgically prepared with head restraint prostheses before training began. Analgesics were
506 used to minimise discomfort. After recovery, monkeys were acclimated to the laboratory
507 and head restraint, then placed on controlled access to fluids and trained to perform the
508 task over the course of 3 months. One animal was naive at the start of the experiment, the
509 other four had previously participated in oculomotor and visual attention studies (2
510 monkeys) or decision-making studies (2 monkeys). Data was collected 5 days a week
511 (Monday-Friday). Additional information regarding two of the monkeys has been reported
512 previously ([\(Ebitz et al., 2018\)](#) Data from the other 3 have not been previously analysed or
513 reported.
514

515 **Human**
516

517 Humans were recruited via the online platform, Amazon Mechanical (mTurk). To avoid
518 bots and improve data quality, participants were only accepted when they had a minimum
519 of 5000 approved human intelligence tasks (HIT) and a minimal percentage of 98% in
520 proportions of completed tasks that are approved by requesters. Geographical restrictions
521 were set for US participants only. Participants were not allowed to repeat the experiment.
522 All participants who successfully submitted the HIT were paid a base rate of \$0.50 USD,
523 plus a bonus of \$3.85 mean \pm \$0.90 SD (for all 3 experiments, n = 707) based on their
524 performance (for each trial that ended with a reward, participants were given a \$0.02
525 compensation). For experiment 1, a total of 258 participants (120 females, 137 males, 1
526 preferred not to say) completed the task. Data was collected from 9AM to 2PM EST, to
527 minimise data collection during night hours across coasts. For experiment 2, a total of 150
528 participants (gender not collected) completed the task. Data was collected from 9AM to
529 5PM EST. For experiment 3, a total of 299 participants (139 females, 158 males, 2
530 preferred not to say) completed the task. Data was collected from 9AM to 2PM EST, to
531 minimise data collection during night hours across coasts.
532

533 **Statistical Analysis**

534

535 Data was analysed with custom MATLAB scripts and p-values were compared against the
536 standard $\alpha = .05$ threshold. 3-way ANOVAs were used to determine decision-making
537 differences across species, unless otherwise specified. The ANOVAs modelled session-
538 averaged data and included main effects of species, individuals (nested within species) and
539 session number (nested within species and individuals). To minimise redundancy, only the
540 main effect of species was reported in the paper. In experiment 1, the sample size for mice
541 was n = 32, 256 total sessions, for monkeys n = 5, 93 total sessions, for humans (2-armed
542 bandit task) n = 258, 258 total sessions. In experiment 2, the sample size for humans was
543 (2-armed bandit task) n = 50, 50 total sessions, for humans (3-armed bandit task) n = 50,
544 50 total sessions, for humans (4-armed bandit task) n = 50, 50 total sessions. In
545 experiment 3, the sample size for humans was (ITI 200ms) n = 99, 99 total sessions, for
546 humans (ITI 2000ms) n = 93, 93 total sessions, for humans (ITI 4000ms) n = 107, 107
547 total sessions.
548

549 A small number of sessions from some participants were excluded from analysis.
550 Specifically, 6 sessions out of 150 were excluded in **Experiment 2** because participants
551 did not select all available targets during the session and this experiment specifically
552 looked at the behavioural effects of manipulating the number of targets. Otherwise,
553 sessions were only excluded from specific analyses when these analyses were impossible,
554 given the participants' behaviour. For example, in **Experiment 1**, 7 sessions out of 607 (3
555 for mice, 0 for monkeys, 4 for humans) were excluded from certain analyses of switching
556 behaviour (i.e. the learning index, the HMM and the mixture model) because the
557 participant did not switch during those sessions. However, these sessions were included in
558 all other analyses, including of the probability of switching (i.e. **Figure 1**). The specific
559 exclusion criteria for each analysis as well as the number of excluded sessions is described
560 within the relevant section of the Methods and the results give the N for each analysis.
561

562 **Random Exploration Among k-Arms**

563

564 In a random exploration strategy, a target is selected at random on each trial. This means
565 that the probability of repeating a choice is the same as the independent probability of
566 making that choice (i.e. it is always 1/k, where k is the number of options). The

567 probability of switching away from a previous option is then the probability of choosing
568 any other option:
569
570

$$p(\text{switch}) = \frac{(k-1)}{k} \quad (1)$$

574
575 Note that as k increases, as the number of targets increases, the probability of switching
576 increases systematically, under the hypothesis that decisions are made randomly. This is
577 the explicit equation, with 0 free parameters, that is plotted in **Figure 3E**.
578

579 **Exponential Mixture Distribution**

580

581 We analysed the temporal structure of the participants' choice sequences with a mixture
582 model. If a single time constant (probability of switching) governed the behaviour, we
583 would expect to see exponentially distributed inter-switch intervals. That is, the
584 distribution of inter-switch intervals should be well described by the following model:
585

$$f(x) = \frac{1}{\beta} e^{-\frac{x}{\beta}} \quad (2)$$

586
587
588
589
590
591 Where β is the "survival parameter" of the model: the average inter-switch interval.
592 However, although the time between switch decisions was largely monotonically
593 decreasing and concave upwards, the distribution was not well described by a single
594 exponential distribution (**Figure 2A**). Participants had more short-latency and more long-
595 latency choice runs, indicating that a single switching probability could not have generated
596 the data. Therefore, we fit mixtures of varying numbers of exponential distributions (1-4)
597 to all species (**Figure 2A**), in order to infer the number of switching regimes in these
598 choice processes. For continuous-time processes, these mixture distributions would be of
599 the form:
600

$$f(x) = \sum_{i=1}^n \pi_i e^{-\frac{x}{\beta_i}} \quad (3)$$

601
602
603
604
605
606 Where $1 \geq \pi_i \geq 0$ for all π_i , and $\sum_i \pi_i = 1$. Here, each β_i reflects the survival parameter
607 (average inter-switch interval) for each component distribution i and the π_i reflects the
608 relative weight of each component. Because trials were discrete, we fit the discrete analog
609 of this distribution: mixtures of 1-4 discrete exponential (geometric) distributions (Barger,
610 2006). Mixtures were fit via the expectation-maximisation algorithm and we used standard
611 model comparison (Burnham and Anderson, 2002) to determine the most probable
612 number of mixing components (**Figure 2A, Results**).
613

614
615 We used a bootstrap procedure to illustrate the distribution of mixture model parameters in
616 **Figure 2B** and **Figure 3E**. This meant that we resampled, with replacement, from the

617 sessions collected in each species to generate bootstrapped distributions of run lengths (n
618 distributions = 1000, number of sessions equal to the data). We then fit the exponential
619 mixture model to each sample of run lengths, giving a bootstrapped estimate of mixture
620 model parameters. (N.B. Statistical analyses were done on the raw, non-bootstrapped,
621 data, the bootstrapping was only done for illustration.)

622
623 Some participants had to be excluded from mixture model analyses because their
624 distribution of run lengths prevented the identification of model parameters. This could
625 happen either because they either had fewer than 2 switches between options (i.e. it was
626 impossible to measure any run lengths) or because their run lengths lacked the variation
627 required for the expectation maximisation algorithm to function (i.e. all run lengths were
628 identical). In **Experiment 1**, 4 sessions (of 607) were excluded, all in humans (11 total,
629 including the 7 excluded previously because no switches were observed). In **Experiment**
630 **2**, 2 sessions out of 150 were excluded (8 total, including the 6 excluded previously for not
631 choosing all available targets).

632 **Hidden Markov Model (HMM)**

633 In order to identify how often different species were exploring or exploiting, we fit an
634 HMM to each session of each species. Here, choices (y) are “emissions” that are generated
635 by an unobserved decision process that is in some latent, hidden state (z). Latent states are
636 defined by both the probability of making each choice k (out of N_k possible options), and
637 by the probability of transitioning from each state to every other state. Our model
638 consisted of two types of states, the explore state and the exploit state. The emissions
639 model for the explore state was uniform across the options:

$$643 \quad 644 \quad p(y_t = k | z_t = \text{explore}) = \frac{1}{N_k} \quad (4)$$

645

646 This is the maximum entropy distribution for a categorical variable—the distribution that
647 makes the fewest number of assumptions about the true distribution and thus does not bias
648 the model towards or away from any particular type of high-entropy choice period. This
649 does not require, imply, impose, or exclude that decision-making happening under
650 exploration is random (Ebitz et al., 2019, 2020). Because exploitation involves repeated
651 sampling of each option, exploit states only permitted choice emissions that matched one
652 option. That is:

$$655 \quad \begin{cases} p(y_t = k | z_t = \text{exploit}_i, k \in \text{exploit}_i) = 1 \\ p(y_t = k | z_t = \text{exploit}_i, k \notin \text{exploit}_i) = 0 \end{cases} \quad (5)$$

656

658 The latent states in this model are Markovian, meaning that they are time-independent.
659 They depend only on the most recent state (z_t):

$$662 \quad p(z_t | z_{t-1}, y_{t-1}, \dots, z_1, y_1) = p(z_t | z_{t-1}) \quad (6)$$

663

664 This means that we can describe the entire pattern of dynamics in terms of a single
665 transition matrix. This matrix is a system of stochastic equations describing the one-time-
666 step probability of transitioning between every combination of past and future states (i, j).

$$p(z_t = i | z_{t-1} = j) \quad (7)$$

Due to task differences, mice and humans had three possible states (two exploit states and one explore state), whereas monkeys had four possible states (three exploit states and one explore state) in Experiment 1. To produce long, exponentially-distributed runs of repeated choices to a single target, the HMM had one latent exploitative state for each target. To produce short, random run lengths, the HMM had one shared explore state from which decisions to any of the choices were equally likely. For all three species, parameters were tied across exploit states such that each exploit state had the same probability of beginning (from exploring) and of sustaining itself. Transitions out of the exploration, into exploitative states, were similarly tied. The model also assumed that the participants had to pass through exploration in order to start exploiting a new option, even if only for a single trial. This is because the utility of exploration is to maximise information about the environment (Mehlhorn et al., 2015). If an animal switches from a bout of exploiting one option to another option, that very first trial after switching should be exploratory because the outcome or reward contingency of that new option is unknown, and that behaviour of switching aims to gain information. Through fixing the emissions model, constraining the structure of the transmission matrix, and tying the parameters, the final HMM had only two free parameters: one corresponding to the probability of exploring, given exploration on the last trial, and one corresponding to the probability of exploiting, given exploitation on the last trial.

The model was fit via expectation-maximisation using the Baum Welch algorithm (Bilmes, 2000). This algorithm finds a (possibly local) maxima of the complete-data likelihood. A complete set of parameters θ includes the emission and transition models, discussed already, but also initial distribution over states. Because the participants had no knowledge of the environment at the first trial of the session, we assumed they began by exploring, rather than adding another parameter to the model here. The algorithm was reinitialized with random seeds 20 times, and the model that maximised the observed (incomplete) data log likelihood across all the sessions for each animal was ultimately taken as the best. To ultimately infer latent states from choices, we used the Viterbi algorithm to discover the most probable posteriori sequence of latent states.

Some participants were excluded from analyses that depended on the HMM because the model did not fit these participants. This totalled 58 sessions out of 1056 (>5.5%, 27 for mice, 0 for monkeys, 13 for humans in **Experiment 1**, 8 for humans in **Experiment 2**, and 10 in humans in **Experiment 3**). The HMM model could fail to fit for 2 reasons: (1) because participants only chose a single target for the whole session (making model parameters unidentifiable) or (2) because fitting procedure resulted in a solution that violated the assumption of longer choice runs under exploitation compared to exploration (where the probability of stopping a bout of exploitation was an obvious outlier in the distribution of this parameter across all species; threshold for exclusion set at 0.4).

Analysing HMM Dynamics (State Dynamic Landscapes)

In order to understand the dynamics of exploration and exploitation, we analysed the HMMs. Here, we use the term “dynamics” to mean the equations that govern how a system evolves over time. In fitting our HMMs, we were fitting a set of equations that

717 describe these dynamics: the probability of transitions between exploration and
718 exploitation and vice versa. To illustrate how goal dynamics differed across species, we
719 performed certain thermodynamic analyses of the long-term behaviour of the fitted
720 equations, generating insight into the potential energy of each state in each species
721 (**Figure 2C**).
722

723 In statistical mechanics, processes within a system (like a decision-maker at some moment
724 in time) occupy states (like exploration or exploitation). States have energy associated
725 with them, related to the long-time scale probability of observing a process in those states.
726 A low-energy state is one that is very stable and deep, much like a valley between two
727 mountain peaks. Low-energy states will be over-represented in the system's long-term
728 behaviour. A high energy state, like the top of a mountain, is less stable. High-energy
729 states will be under-represented in the system's behaviour. The probability of observing a
730 process in a given state i is related to the energy of that state (E_i) via the Boltzman
731 distribution:
732

$$733 \quad p_i = \frac{1}{Z} e^{\frac{-E_i}{k_B T}} \quad (8)$$

734

735
736 where Z is the partition function of the system, k_B is the Boltzman constant, and T is the
737 temperature. If we focus on the ratio between two state probabilities, the partition
738 functions cancel out and the relative occupancy of the two states is now a function of the
739 difference in energy between them:
740

$$741 \quad \frac{p_i}{p_j} = e^{\frac{-(E_i - E_j)}{k_B T}} \quad (9)$$

742

743 Rearranging, we express the difference in energy between two states as a function of the
744 difference in the long-term probability of those states being occupied:
745

$$746 \quad \ln \left(\frac{p_i}{p_j} \right) k_B T = E_j - E_i \quad (10)$$

747

748 Meaning that the difference in the energetic depth of the states (the Gibbs Free Energy) is
749 proportional to the natural log of the probability of each state, up to some multiplicative
750 factor $k_B T$. To calculate the probability of exploration and exploitation (p_i and p_j), we
751 solved for the stationary distribution of the fitted HMMs. The stationary distribution is the
752 equilibrium probability distribution over states. This means that this distribution is the
753 relative frequency of each state that we would observe if the model's dynamics were run
754 for an infinite period of time. Each entry of the model's transition matrix reflects the
755 probability that the participant would move from one state (e.g. exploring) to another (e.g.
756 exploiting) at each moment in time. Because the parameters for all the exploitation states
757 were tied, each transition matrix effectively had two states—an explore state and a generic
758 exploit that described the dynamics of all exploit states. Each of the k sessions had its own
759 transition matrix (A_k), which describes how the entire system—an entire probability
760 distribution over states—would evolve from time point to time point. We observe how the
761

767 dynamics evolve any probability distribution over states (π) by applying the dynamics to
768 this distribution:
769

$$\pi_{t+1} = \pi_t A_k \quad (11)$$

772 Over many time steps, ergodic systems reach a point where the state distributions are
773 unchanged by continued application of the transition matrix as the distribution of states
774 reaches its equilibrium. That is, in stationary systems, there exists a stationary distribution,
775 π , such that:
776

$$\pi = \pi A_k \quad (12)$$

779 If it exists, this distribution is a (normalised) left eigenvector of the transition matrix A_k
780 with an eigenvalue of 1, so we solved for this eigenvector to determine the stationary
781 distribution of each A_k . A small number of sessions were excluded because their fitted
782 HMM transition matrices did not admit a stationary distribution (**Experiment 1**: 49 out of
783 607 sessions; 29 for mice, 0 for monkeys, 20 for humans; **Experiment 2**: 7 of 150
784 sessions). For **Experiment 2**, this was in addition to the sessions excluded for not
785 choosing all the available targets (6/150). We then took an average of these stationary
786 distributions across all sessions for each species and plugged these back into the Boltzman
787 equations to calculate the relative energy (depth) of exploration and exploitation as
788 illustrated in **Figure 2F**.
789

790 In order to understand the dynamics of exploration and exploitation, we need to not only
791 understand the depth of the two states, but also the height of the energetic barrier between
792 them: the energy required to transition from exploration to exploitation and back again.
793 Here, we build on the Arrhenius equation from chemical kinetics that relates the rate of
794 transitions (k) between some pair of states to the activation energy required to affect these
795 transitions (E_a):
796

$$k = A e^{\frac{E_a}{k_B T}} \quad (13)$$

800 where A is a constant pre-exponential factor related to the readiness of reactants to
801 undergo the transformation. We set this to one. Again, $k_B T$ is the product of temperature
802 and the Boltzman constant. Note the similarities between this equation and the Boltzman
803 distribution illustrated earlier. Rearranging to solve for activation energy yields:
804

$$E_a = -\ln\left(\frac{k}{A}\right) k_B T \quad (14)$$

805 Thus, activation energy, much like the relative depth of each state, is also proportional to
806 some measurable function of behaviour, up to some multiplicative factor $k_B T$. Note that
807 our approach has only identified the energy of three discrete states (an explore state, an
808 exploit state, and the peak of the barrier between them). These are illustrated by tracing a
809 continuous potential through these three points to provide a physical intuition for the
810 differences in explore/exploit dynamics between species.
811

816 To create the attractor basin graphs, transition matrices were calculated individually for all
817 participants (Seed = 20), and then averaged for all 3 species, see Methods section:
818 Analysing HMM Dynamics (state dynamic landscapes) for more details. All statistical
819 tests and statistical details were reported in the results.
820
821

822 References

823

824 Arrhenius S (1889) Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch
825 Säuren. Z Für Phys Chem 4U:226–248.

826 Barger KJ-A (2006) Mixtures of Exponential Distributions to Describe the Distribution of
827 Poisson Means in Estimating the Number of Unobserved Classes. Available at:
828 <https://ecommons.cornell.edu/handle/1813/2953> [Accessed June 16, 2022].

829 Bari BA, Grossman CD, Lubin EE, Rajagopalan AE, Cressy JI, Cohen JY (2019) Stable
830 Representations of Decision Variables for Flexible Behavior. Neuron 103:922-933.e7.

831 Bilmes J (2000) A Gentle Tutorial of the EM Algorithm and its Application to Parameter
832 Estimation for Gaussian Mixture and Hidden Markov Models. Tech Rep ICSI-TR-97-021
833 Univ Berkeley 4.

834 Blanco NJ, Otto AR, Maddox WT, Beevers CG, Love BC (2013) The influence of depression
835 symptoms on exploratory decision-making. Cognition 129:563–568.

836 Boltzmann L (1868) Studien über das gleichgewicht der lebenden kraft. Wissenschaftliche Abh
837 1:49–96.

838 Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale,
839 genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268.

840 Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical
841 information-theoretic approach, 2nd ed. New York: Springer.

842 Chen CS, Ebitz RB, Bindas SR, Redish AD, Hayden BY, Grissom NM (2021a) Divergent
843 Strategies for Learning in Males and Females. Curr Biol CB 31:39-50.e4.

844 Chen CS, Knep E, Han A, Ebitz RB, Grissom NM (2021b) Sex differences in learning from
845 exploration Izquierdo A, Wassum KM, Izquierdo A, eds. eLife 10:e69748.

846 Cohen JR, Berkman ET, Lieberman MD (2013) Intentional and Incidental Self-Control in
847 Ventrolateral Prefrontal Cortex. In: Principles of Frontal Lobe Function (Tranel D, Stuss
848 DT, Knight RT, eds), pp 0. Oxford University Press. Available at:
849 <https://doi.org/10.1093/med/9780199837755.003.0030> [Accessed April 19, 2024].

850 Dickman CR (1992) Predation and Habitat Shift in the House Mouse, *Mus Domesticus*. Ecology
851 73:313–322.

852 Disotell TR, Tosi AJ (2007) The monkey's perspective. Genome Biol 8:226.

853 Domenech P, Koechlin E (2015) Executive control and decision-making in the prefrontal cortex.
854 Curr Opin Behav Sci 1:101–106.

855 Ebitz RB, Albarran E, Moore T (2018) Exploration Disrupts Choice-Predictive Signals and Alters
856 Dynamics in Prefrontal Cortex. Neuron 97:450-461.e9.

857 Ebitz RB, Sleezer BJ, Jedema HP, Bradberry CW, Hayden BY (2019) Tonic exploration governs
858 both flexibility and lapses. PLoS Comput Biol 15:e1007475.

859 Ebitz RB, Tu JC, Hayden BY (2020) Rules warp feature encoding in decision-making circuits.
860 *PLOS Biol* 18:e3000951.

861 Ellenbroek B, Youn J (2016) Rodent models in neuroscience research: is it a rat race? *Dis Model
862 Mech* 9:1079–1087.

863 Ernst PB, Carvunis A-R (2018) Of mice, men and immunity: a case for evolutionary systems
864 biology. *Nat Immunol* 19:421–425.

865 Gibbs RA et al. (2007) Evolutionary and biomedical insights from the rhesus macaque genome.
866 *Science* 316:222–234.

867 Golesorkhi M, Gomez-Pilar J, Zilio F, Berberian N, Wolff A, Yagoub MCE, Northoff G (2021)
868 The brain and its time: intrinsic neural timescales are key for input processing. *Commun
869 Biol* 4:1–16.

870 Groman SM, Smith NJ, Petrulli JR, Massi B, Chen L, Ropchan J, Huang Y, Lee D, Morris ED,
871 Taylor JR (2016) Dopamine D3 Receptor Availability Is Associated with Inflexible
872 Decision Making. *J Neurosci Off J Soc Neurosci* 36:6732–6741.

873 Grossman CD, Bari BA, Cohen JY (2022) Serotonin neurons modulate learning rate through
874 uncertainty. *Curr Biol* 32:586–599.e7.

875 Hasson U, Yang E, Vallines I, Heeger DJ, Rubin N (2008) A Hierarchy of Temporal Receptive
876 Windows in Human Cortex. *J Neurosci* 28:2539–2550.

877 Iki S, Kutsukake N (2021) Japanese macaques relax vigilance when surrounded by kin. *Anim
878 Behav* 179:173–181.

879 Iyer ES, Weinberg A, Bagot RC (2022) Ambiguity and conflict: Dissecting uncertainty in
880 decision-making. *Behav Neurosci* 136:1–12.

881 Izquierdo A, Aguirre C, Hart EE, Stolyarova A (2019) Rodent Models of Adaptive Value
882 Learning and Decision-Making. *Methods Mol Biol Clifton NJ* 2011:105–119.

883 Kaske EA, Chen CS, Meyer C, Yang F, Ebitz B, Grissom N, Kapoor A, Darrow DP, Herman AB
884 (2023) Prolonged physiological stress is associated with a lower rate of exploratory
885 learning that is compounded by depression. *Biol Psychiatry Cogn Neurosci Neuroimaging*
886 8:703–711.

887 Knox W, Otto A, Stone P, Love B (2012) The Nature of Belief-Directed Exploratory Choice in
888 Human Decision-Making. *Front Psychol* 2 Available at:
889 <https://www.frontiersin.org/articles/10.3389/fpsyg.2011.00398> [Accessed October 24,
890 2023].

891 Krawczyk DC (2002) Contributions of the prefrontal cortex to the neural basis of human decision
892 making. *Neurosci Biobehav Rev* 26:631–664.

893 Laubach M, Amarante LM, Swanson K, White SR (2018) What, If Anything, Is Rodent
894 Prefrontal Cortex? *eNeuro* 5 Available at:
895 <https://www.eneuro.org/content/5/5/ENEURO.0315-18.2018> [Accessed April 19, 2024].

896 MacLean EL et al. (2014) The evolution of self-control. *Proc Natl Acad Sci* 111:E2140–E2148.

897 Manger P, Cort J, Ebrahim N, Goodman A, Henning J, Karolia M, Rodrigues S-L, Strkalj G
898 (2008) Is 21st century neuroscience too focussed on the rat/mouse model of brain function
899 and dysfunction? *Front Neuroanat* 2 Available at:
900 <https://www.frontiersin.org/articles/10.3389/neuro.05.005.2008> [Accessed October 18,
901 2023].

902 Mäntylä T, Still J, Gullberg S, Del Missier F (2012) Decision Making in Adults With ADHD. *J
903 Atten Disord* 16:164–173.

904 Mehlhorn K, Newell BR, Todd PM, Lee MD, Morgan K, Braithwaite VA, Hausmann D, Fiedler
905 K, Gonzalez C (2015) Unpacking the exploration–exploitation tradeoff: A synthesis of
906 human and animal literatures. *Decision* 2:191–215.

907 Murray JD, Bernacchia A, Freedman DJ, Romo R, Wallis JD, Cai X, Padoa-Schioppa C,
908 Pasternak T, Seo H, Lee D, Wang X-J (2014) A hierarchy of intrinsic timescales across
909 primate cortex. *Nat Neurosci* 17:1661–1663.

910 Perrin S (2014) Preclinical research: Make mouse studies work. *Nature* 507:423–425.

911 Preuss TM, Wise SP (2022) Evolution of prefrontal cortex. *Neuropsychopharmacol Off Publ Am
912 Coll Neuropsychopharmacol* 47:3–19.

913 Rich AS, Gureckis TM (2018) Exploratory choice reflects the future value of information.
914 *Decision* 5:177–192.

915 Saddoris MP, Sugam JA, Stuber GD, Witten IB, Deisseroth K, Carelli RM (2015) Mesolimbic
916 Dopamine Dynamically Tracks, and Is Causally Linked to, Discrete Aspects of Value-
917 Based Decision Making. *Biol Psychiatry* 77:903–911.

918 Shourkeshti A, Marrocco G, Jurewicz K, Moore T, Ebitz RB (2023) Pupil size predicts the onset
919 of exploration in brain and behavior. *BioRxiv Prepr Serv Biol*:2023.05.24.541981.

920 Siegal ML, Bergman A (2002) Waddington’s canalization revisited: Developmental stability and
921 evolution. *Proc Natl Acad Sci* 99:10528–10532.

922 Soltani A, Izquierdo A (2019) Adaptive learning under expected and unexpected uncertainty. *Nat
923 Rev Neurosci* 20:635–644.

924 Stevenson TJ, Alward BA, Ebling FJP, Fernald RD, Kelly A, Ophir AG (2018) The Value of
925 Comparative Animal Research: Krogh’s Principle Facilitates Scientific Discoveries.
926 *Policy Insights Behav Brain Sci* 5:118.

927 Stillman PE, Medvedev D, Ferguson MJ (2017) Resisting Temptation: Tracking How Self-
928 Control Conflicts Are Successfully Resolved in Real Time. *Psychol Sci* 28:1240–1258.

929 Teng C, Otero M, Geraci M, Blair RJR, Pine DS, Grillon C, Blair KS (2016) Abnormal decision-
930 making in generalized anxiety disorder: Aversion of risk or stimulus-reinforcement
931 impairment? *Psychiatry Res* 237:351–356.

932 Tolin DF, Kiehl KA, Worhunsky P, Book GA, Maltby N (2009) An exploratory study of the
933 neural mechanisms of decision making in compulsive hoarding. *Psychol Med* 39:325–336.

934 Verdejo-García A, Pérez-García M, Bechara A (2006) Emotion, Decision-Making and Substance
935 Dependence: A Somatic-Marker Model of Addiction. *Curr Neuropharmacol* 4:17–31.

936 Waddington CH (1942) Canalization of Development and the Inheritance of Acquired Characters.
937 *Nature* 150:563–565.

938 Walker RL, Eggel M (2020) From Mice to Monkeys? Beyond Orthodox Approaches to the Ethics
939 of Animal Model Choice. *Animals* 10:77.

940 Wilson RC, Bonawitz E, Costa VD, Ebitz RB (2021) Balancing exploration and exploitation with
941 information and randomization. *Curr Opin Behav Sci* 38:49–56.

942 Woo JH, Aguirre CG, Bari BA, Tsutsui K-I, Grabenhorst F, Cohen JY, Schultz W, Izquierdo A,
943 Soltani A (2023) Mechanisms of adjustments to different types of uncertainty in the
944 reward environment across mice and monkeys. *Cogn Affect Behav Neurosci* 23:600–619.

945 Worp HB van der, Howells DW, Sena ES, Porritt MJ, Rewell S, O'Collins V, Macleod MR
946 (2010) Can Animal Models of Disease Reliably Inform Human Studies? PLOS Med
947 7:e1000245.

948 Yan X, Ebitz RB, Grissom N, Darrow DP, Herman AB (2023) A low dimensional manifold of
949 human exploratory behavior reveals opposing roles for apathy and anxiety. BioRxiv Prepr
950 Serv Biol:2023.06.19.545645.

951 Zilio F, Gomez-Pilar J, Cao S, Zhang J, Zang D, Qi Z, Tan J, Hiromi T, Wu X, Fogel S, Huang Z,
952 Hohmann MR, Fomina T, Synofzik M, Grosse-Wentrup M, Owen AM, Northoff G (2021)
953 Are intrinsic neural timescales related to sensory processing? Evidence from abnormal
954 behavioral states. NeuroImage 226:117579.

955
956 **Acknowledgments**

957
958 The authors would like to thank Devin Heinz-Kehoe, Meriam Zid and Rishabh Singhal for
959 invaluable discussion, A. David Redish for feedback on a prior version of this manuscript,
960 and Bastian Bechtold for developing software for the violin plots in the results.

961
962 **Funding:**

963 NSERC Discovery Grant RGPIN-2020-05577 (RBE)
964 Research Corporation for Science Advancement (RBE)
965 Frederick Gardner Cottrell Foundation Project #29087 (RBE)
966 Canada Research Chair Dynamics of Cognition FD507106 (RBE)
967 Research Fellowship from the Jacobs Foundation (RBE)
968 Unifying Neuroscience and Artificial Intelligence – Québec UNIQUE (VJL)
969 National Institutes of Health grants R21 MH127607 and K23 MH050909 (ABH)
970 National Institutes of Health grants P50 MH119569 and R01 MH123661 (NMG)

971
972 **Author contributions:**

973 Conceptualization: VJL, RBE
974 Methodology: RBE, NMG, ABH
975 Investigation: RBE, CSC, AS, ABH
976 Visualization: VJL
977 Supervision: RBE, NMG, ABH
978 Writing—original draft: VJL, RBE
979 Writing—review & editing: VJL, RBE, CSC, NMG, ABH

980
981 **Competing interests:** Authors declare that they have no competing interests.

982
983 **Data and Code Availability:** Data and software are available upon request to the Lead
984 Contact (Becket Ebitz, rebitz@gmail.com)

995

996

Figures and Tables

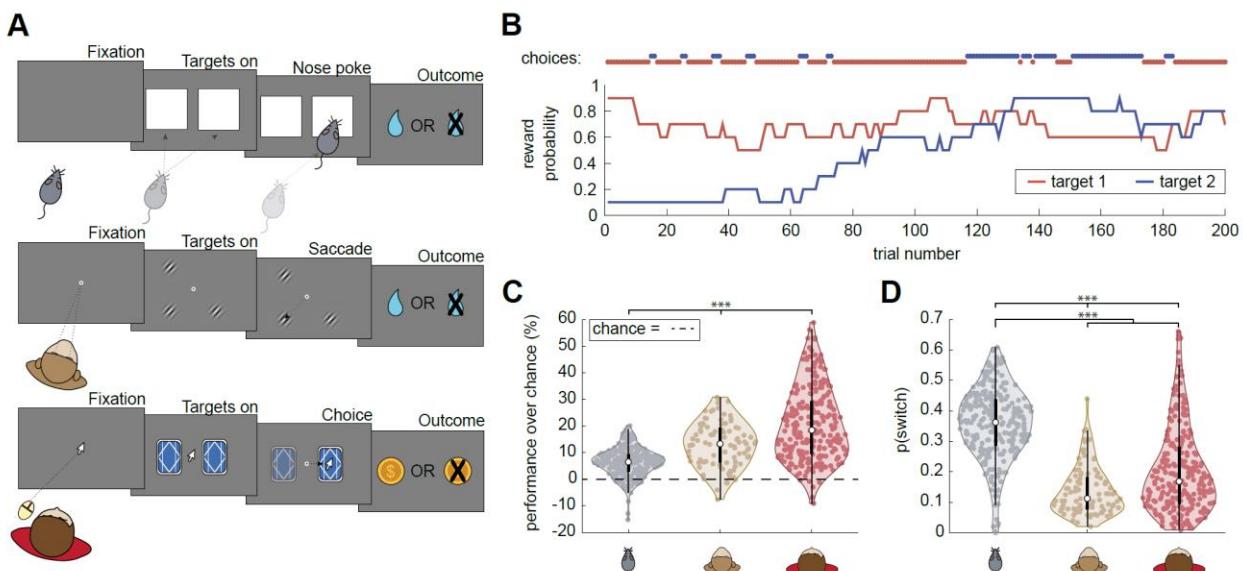


Figure 1. Task design and behaviour across species. **A**) A schematic representation of the bandit task in each species (mice = top, monkeys = middle, humans = bottom). **B**) Example reward schedule, including 200 trials from one session with one human. The reward probabilities of each of the 2 targets (blue and red traces) walk randomly, independently across trials. The humans' choices are illustrated as coloured dots along the top. **C**) Percentage of reward relative to chance in all species. Thick black lines = IQR, thin = whiskers, open circle = median. Black dotted line = chance performance. **D**) Probability of switching targets during the task between species. Same conventions as C. In figure, asterisks represent significance levels as follows: * indicates $p < 0.05$, ** indicates $p < 0.001$, and *** indicates $p < 0.0001$.

997

998

999

1000

1001

1002

1003

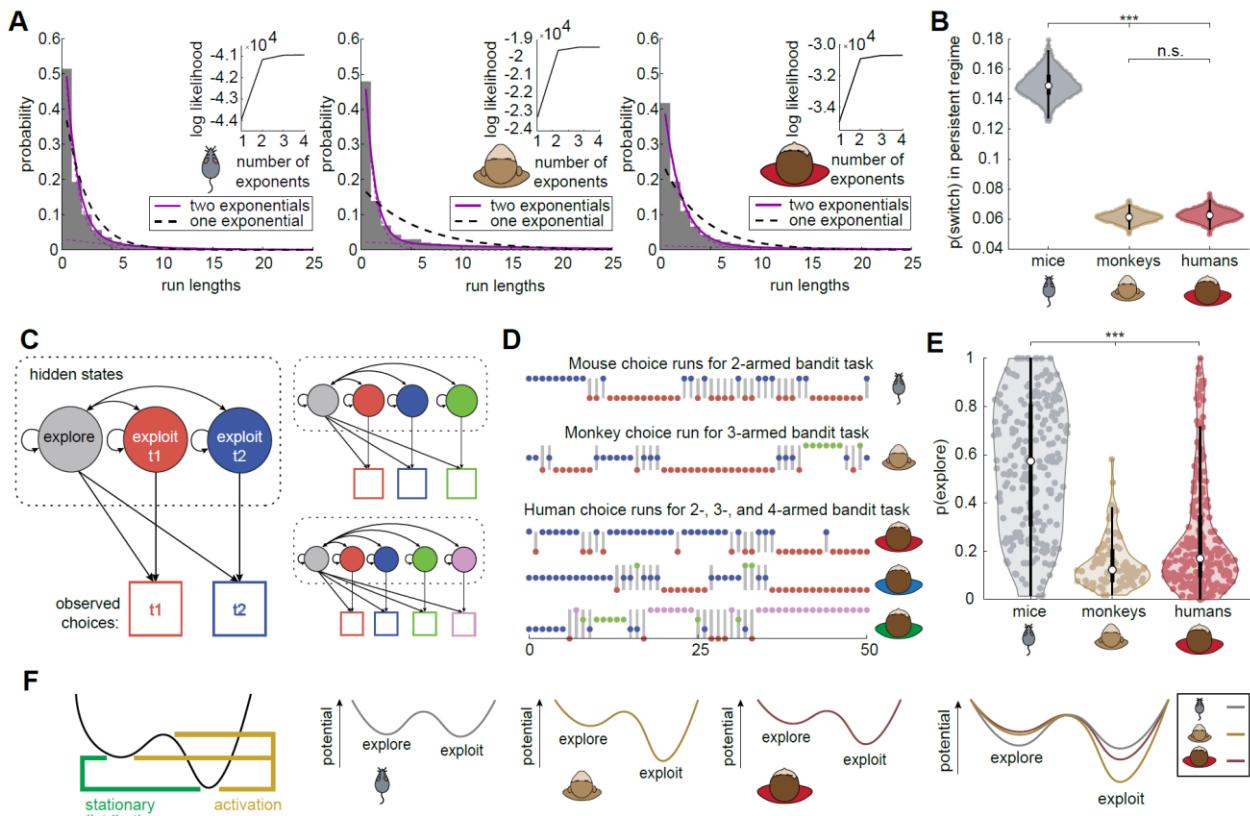
1004

1005

1006

1007

1008



1009

1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030

Figure 2. Different patterns of switching and exploration across species. **A**) Distributions of the number of trials between switch decisions (“run lengths”) in mice, monkeys and humans. If the species had a fixed probability of switching, run lengths would be exponentially distributed (black dotted line). A mixture of two exponential distributions (purple line) suggests 2 distinct probabilities of switching. Dotted purple lines show each mixing distribution, one slow-switching and another fast-switching. (Inset) Log likelihoods for different mixture models containing a range of 1 to 4 exponential distributions in each species. **B**) Bootstrapped estimates of switch probability for the slow-switching distribution (the “persistent regime”) across species. Thick black lines = IQR, thin = whiskers, open circle = median. **C**) Hidden Markov models (HMMs) were used to infer the goal state on each trial from the sequence of choices. The model included one persistent state for each target (“exploit”) and one state in which subjects could choose any of the targets (“explore”). Right) The model can be extended to account for different numbers of targets by adding exploit states. **D**) Fifty-trial example choice sequences for mice, monkeys and humans. The coloured circles represent the chosen target and the grey lines highlight the explore choices identified with the HMM. **E**) Probability of exploration across species, as inferred by the HMM. Same conventions as B. **F**) Fitting the HMM involves identifying a set of equations that describe the dynamics of exploration and exploitation, meaning the rate at which participants explore, exploit, and switch between states. Left) Certain analytic measures of these equations, namely their stationary distributions (Boltzmann, 1868) and activation energies (Arrhenius, 1889) can be used to derive an intuitive picture of the landscape of state dynamics. Middle) Average state dynamic landscapes for each species. Right) State dynamic landscapes for all species overlaid. In figure, asterisks represent significance levels as follows: * indicates $p < 0.05$, ** indicates $p < 0.001$, and *** indicates $p < 0.0001$.

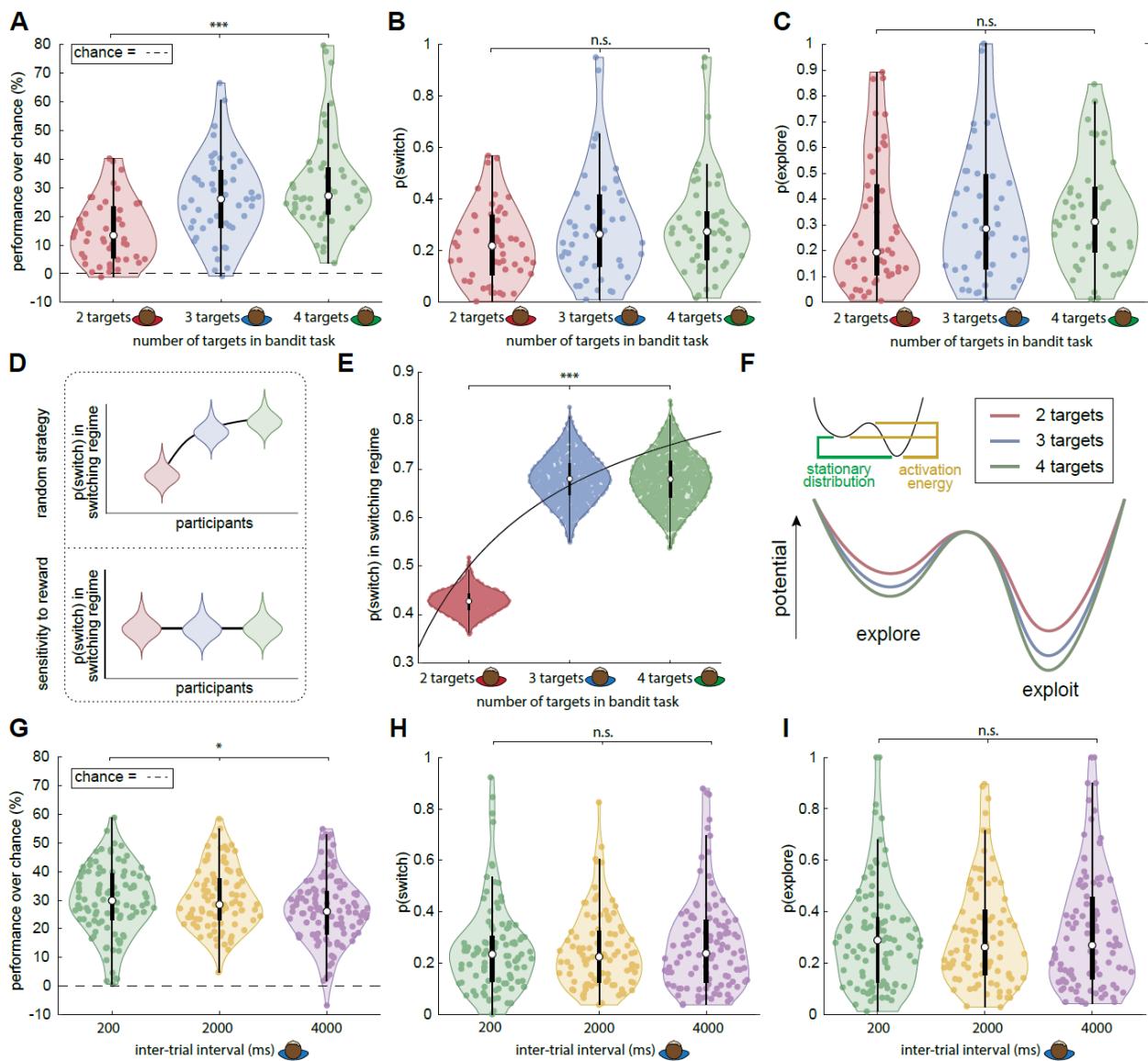
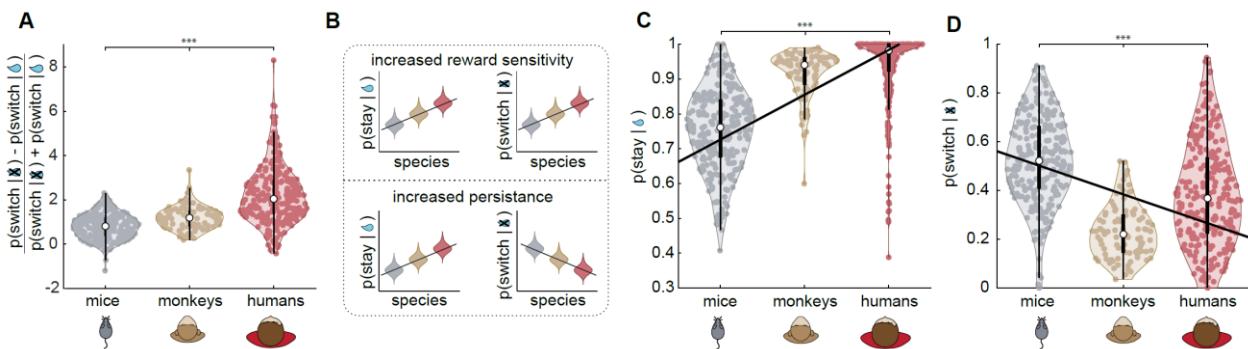


Figure 3. Effects of manipulating the number of targets and the trial length in humans performing the bandit task (Experiment 2 and 3). **A**) Percentage of reward relative to chance by number of targets (2, 3, or 4). Thick black lines = IQR, thin = whiskers, open circle = median. **B**) Switch probability by number of targets. **C**) Probability of exploration by number of targets. **D**) Cartoon illustrating predicted relationships between the switching-regime switch probability and the number of arms under the hypothesis of random exploration (top) or reward-dependent exploration (bottom). **E**) Switch probability for the fast-switching distribution (the “switching regime”) by number of targets. **F**) State dynamic landscapes for varying numbers of targets (Same conventions as Figure 2F). **G-I**) Same as A-C across varying inter-trial interval times (200ms, 2000ms, 4000ms). Thick black lines = IQR, thin = whiskers, open circle = median. In figure, asterisks represent significance levels as follows: * indicates $p < 0.05$, ** indicates $p < 0.001$, and *** indicates $p < 0.0001$.

1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042



1043

1044
1045
1046
1047
1048
1049
1050

Figure 4. Learning and persistence across species **A)** Index of reward learning across species. Thick black lines = IQR, thin = whiskers, open circle = median. **B)** Hypothesis cartoon illustrating predictions under the hypothesis that species differences in switching were due to reward sensitivity (top) or persistence (bottom). **C)** Probability of selecting the same option after obtaining a reward, compared across species. Same conventions as A. **D)** Probability of selecting a different option after not obtaining a reward, compared across species. Same conventions as A. In figure, asterisks represent significance levels as follows: * indicates $p < 0.05$, ** indicates $p < 0.001$, and *** indicates $p < 0.0001$.