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Abstract 17 

Humans have the capacity to persist in behavioural policies, even in challenging 18 

environments that lack immediate reward. Our persistence is the scaffold on which many 19 

higher executive functions are built. However, it remains unclear whether humans are 20 

uniquely persistent or, instead, if this capacity is widely conserved across species. To 21 

address this question, we compared humans with mice and monkeys in harmonised 22 

versions of an uncertain decision-making task. The task encouraged all species to strike a 23 

balance between persistently exploiting one policy and exploring alternative policies that 24 

could become better at any moment. Although all three species had similar strategies, we 25 

found that both primate species—humans and monkeys—were able to persist in 26 

exploitation for much longer than the mice. We speculate that the similarities in 27 

persistence patterns in humans and monkeys, as opposed to mice, may be linked to 28 

ecological, neurobiological, or cognitive factors that differ systematically between these 29 

species. 30 

Teaser 31 

Humans, monkeys and mice use similar decision-making strategies, but exploit valuable 32 

options for different lengths of time. 33 

 34 

MAIN TEXT 35 

 36 

Introduction 37 

Decision-making in an uncertain environment requires a fine balance between two goals. 38 

Decision-makers must persist in exploiting previously rewarded options, but also regularly 39 

explore alternatives that have the potential to be even better. In humans, exploratory 40 

decision-making drives our everyday interactions (Rich and Gureckis, 2018), problem 41 

resolutions (Knox et al., 2012), goal achievements (Wilson et al., 2021) and predicts 42 

individual differences in self-reported engagement (Yan et al., 2023). However, our 43 

capacity to strike a balance between exploitation and exploration is also fragile. The 44 

balance is easily thrown off by stress (Kaske et al., 2023) and drug addiction (Verdejo-45 

García et al., 2006) and is dysregulated in many neurological conditions, like obsessive-46 

compulsive disorder (Tolin et al., 2009), depression (Blanco et al., 2013), anxiety (Teng et 47 
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al., 2016), and ADHD (Mäntylä et al., 2012). Because evolution tends to canalise 48 

phenotypes over time (Waddington, 1942; Siegal and Bergman, 2002)—making behaviour 49 

more robust against influence of environmental and developmental perturbations—these 50 

results could suggest that the human capacity to balance exploration and exploitation may 51 

have evolved relatively recently. However, in part because of the difficulty of harmonising 52 

tasks and data collection across species, we do not know how exploratory decision-making 53 

in humans compares against other species. 54 

 55 

The need for comparative analyses of human and non-human exploratory decision-making 56 

is especially urgent because animal models are increasingly being used to model human 57 

decision-making. This is most obvious in the mouse, where the rise of optogenetics and 58 

other techniques dependent on genetic expression (Boyden et al., 2005) means that there 59 

has been an increasing use of mice for cognitive function research in recent years 60 

(Ellenbroek and Youn, 2016). This is especially true in the area of decision-making under 61 

uncertainty, where there has been a recent explosion of research using rodent models 62 

(Saddoris et al., 2015; Groman et al., 2016; Bari et al., 2019; Izquierdo et al., 2019; 63 

Soltani and Izquierdo, 2019; Chen et al., 2021a, 2021b; Grossman et al., 2022; Iyer et al., 64 

2022). Although these studies have led to fundamental insights, the overarching goal in 65 

both psychology and neuroscience remains understanding human cognition and diseases, 66 

by translating findings from animal studies into applications in humans. Achieving this 67 

ultimate goal requires comparative studies (Manger et al., 2008; Stevenson et al., 2018; 68 

Woo et al., 2023), which can uncover the variability, similarities, and differences within 69 

and across species by contrasting their strategies in tasks. 70 

 71 

Here, we asked if human patterns of exploratory decision-making are unique or else 72 

shared with other related species. We focused on comparing humans against two of the 73 

most commonly used animal models in psychology and cognitive neuroscience: Mus 74 

musculus (the mouse) and Macaca mulatta (the rhesus monkey). Because these species 75 

deviated from the human lineage at different times (monkey: 23-25 million years ago 76 

(Disotell and Tosi, 2007; Gibbs et al., 2007); mice: ~90 million years ago (Ernst and 77 

Carvunis, 2018)), we reasoned that any feature of exploratory decision-making that was 78 

unique to humans would most likely have evolved within the last 23-25 million years (or 79 

else been lost over time in one or both of the other species). Conversely, any feature that 80 

was shared between all three species would most likely have evolved over roughly 90 81 

million years ago (or else proven so adaptive that it independently evolved in all three 82 

species via convergent evolution). 83 

 84 

To identify the similarities and differences between humans, mice, and monkeys, all three 85 

species performed harmonised versions of a classic explore/exploit task known as a 86 

restless multi-armed bandit. In this task, participants are presented with a series of trials 87 

where they had to make choices between identical targets. Each target’s reward 88 

probability changes independently and unpredictably over time. In consequence, all three 89 

species confront the same conundrum: should they persist in exploiting an already 90 

rewarding option or should they explore new alternative options? Although all three 91 
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species exhibited distinct signatures of exploration and exploitation, there were large 92 

differences in how often the species switched between targets. Computational modelling 93 

revealed that the key difference between mice (who switched frequently) and monkeys 94 

and humans (who did not) lay in the primate species’ capacity to persistently exploit 95 

options for much longer than the mouse did. Control analyses and experiments in humans 96 

ruled out several low-level explanations for these species’ differences. Together, these 97 

results suggest that the primate lineage may have only recently evolved an increased 98 

capacity to persist in exploitative states. If this is the case, then it may be this capacity for 99 

persistence that is perturbed by environmental and/or neurobiological challenges. 100 

 101 

 102 

Results  103 

In Experiment 1, mice (N=32, 8 sessions each, total of S = 256 sessions, 70 778 total 104 

trials), monkeys (N=5, average of 18.6 sessions each, total of S = 93 sessions, 57 878 105 

trials) and humans (N=258, 1 session each, total of S = 258 sessions, 77 400 total trials) 106 

performed comparable spatial restless k-armed bandit tasks (Figure 1A). Each target 107 

offered a probability of reward which changed slowly and independently over time 108 

(Figure 1B). As a result, the task encouraged participants to both exploit rewarding targets 109 

and explore new targets to learn about other potential rewards. Mice indicated their 110 

choices via nose pokes, monkeys via saccadic eye movements, and humans with a 111 

computer mouse (Figure 1A). There were some minor differences between species in the 112 

timing of the task and the number of targets (see Methods), which we controlled for via 2 113 

additional experiments in humans (Experiment 2 and Experiment 3).  114 

 115 

There were differences in performance measures between mice, monkeys, and humans. 116 

The species differed in the likelihood of getting rewards (normalised difference from 117 

chance; Figure 1C; 3-way ANOVA: F2, 311 = 265.95, p < 0.0001, S = 607 total sessions), 118 

with humans performing better than monkeys who performed better than mice. There were 119 

also species differences in the probability of switching between the targets (Figure 1D; 3-120 

way ANOVA: F2, 311 = 353.64, p < 0.0001, S = 607 total sessions), with primates 121 

switching less often than mice (3-way ANOVA: F1, 315 = 370.81, p < 0.0001, S = 607 total 122 

sessions). 123 
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 124 

Figure 1. Task design and behaviour across species. A) A schematic representation of the bandit task in 125 

each species (mice = top, monkeys = middle, humans = bottom). B) Example reward schedule, including 126 

200 trials from one session with one human. The reward probabilities of each of the 2 targets (blue and red 127 

traces) walk randomly, independently across trials. The humans’ choices are illustrated as coloured dots 128 

along the top. C) Percentage of reward relative to chance in all species. Thick black lines = IQR, thin = 129 

whiskers, open circle = median. Black dotted line = chance performance. D) Probability of switching targets 130 

during the task between species. Same conventions as C. In figure, asterisks represent significance levels as 131 

follows: * indicates p < 0.05, ** indicates p < 0.001, and *** indicates p < 0.0001. 132 

Switching dynamics and exploratory behaviour 133 

Switching happens for multiple reasons in this task (Ebitz et al., 2018; Chen et al., 2021b). 134 

Sometimes animals switch options because they are engaging in rapid trial and error 135 

sampling. Other times they switch because the option they have been choosing is no 136 

longer rewarding. To determine how the types of switching behaviours differed across all 137 

species, we fit a “mixture model” to the distribution of interswitch intervals (number of 138 

trials between switches) in each species (Figure 2A; see Methods for more details; (Ebitz 139 

et al., 2018; Chen et al., 2021b)).  140 

 141 

We found that the behaviour of all species could be best described as a mixture of two 142 

modes (Figure 2A, Table S1). Participants sometimes switched between targets at a fast 143 

pace (“switching regime”) and they sometimes stuck to choosing one target repeatedly 144 

(“persistent regime”). The species differed in their (1) average switching probability 145 

during the persistent regime (3-way ANOVA: F2, 308 = 85.6, p < 0.0001, S = 596 total 146 

sessions), (2) the average switching probability during the switching regime (3-way 147 

ANOVA: F2, 308 = 50.79, p < 0.0001, S = 596 total sessions), and (3) the relative frequency 148 

of both regimes (3-way ANOVA: F2, 308 = 4.66, p < 0.02; Table S2), with primates 149 

switching less often, and therefore being more persistent with their goals while in the 150 

persistent regime (3-way ANOVA: F1, 312 = 82.44, p < 0.0001; Figure 2B, S = 596 total 151 

sessions). Monkeys and humans did not differ in their probability of switching in the 152 

persistent regime (3-way ANOVA: F1, 87 = 0.74, p > 0.39, S = 343 total sessions). 153 

Together, these results suggest that species differences in switching in Figure 1B were 154 

largely driven by the primates’ increased tendency to persist, compared to mice. 155 
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 156 

In order to determine why primates switched less frequently during the persistent regime, 157 

we categorised individual choices based on the underlying reason for those decisions. 158 

Specifically, we used a Hidden Markov Model (HMM; Figure 2C; see Methods) to infer 159 

whether individual choices were more likely to be due to a state of exploratory, trial-and-160 

error sampling or a state of exploitative choices to a single option (Ebitz et al., 2018, 2019; 161 

Chen et al., 2021b; Kaske et al., 2023). Example choice sequences, with labels, are in 162 

Figure 2D. Based on the HMM labels, the probability of exploring differed across all 163 

species (Figure 2E; 3-way ANOVA: F2, 284 = 212.72, p < 0.0001, S = 567 total sessions). 164 

The difference between mice and primates explained the most variance between the 165 

groups (primates vs mice, η2 = 0.1766, 17.66% of the variance; 3-way ANOVA: F1, 288 = 166 

233.7, p < 0.0001, S = 567 total sessions; monkeys vs humans, η2 = 0.0372, 3.72% of the 167 

variance, 3-way ANOVA: F1, 87 = 71.71, p < 0.0001, S = 338 total sessions). These results 168 

suggest that primates switched less on average because they were less exploratory than 169 

mice. 170 

 171 

One reason for the decrease in exploration in primates compared to mice could be a 172 

change in the stability of explore and exploit states across species. To determine if there 173 

were differences in the stability of these states, we analysed the parameters and dynamics 174 

of the fitted HMM (Ebitz et al., 2018, 2019; Chen et al., 2021b). We found species 175 

differences in the likelihood of staying in exploitation (exploit-to-exploit transition 176 

probability: 3-way ANOVA: F2, 287 = 78.77, p < 0.0001, S = 562 total sessions), where 177 

mice were less likely to stay in exploitation than either primate (mice: 0.78 ± 0.13 STD 178 

across sessions, monkeys: 0.95 ± 0.03, humans: 0.87 ± 0.13). In analysing model 179 

dynamics, we considered (1) the difference in potential energy between exploration and 180 

exploitation (see Methods), and (2) the activation energy needed to transition from 181 

exploitation to exploration (Figure 2F). In mice, we found that exploration and 182 

exploitation had roughly the same level of stability (mean difference in energy = 0.16 ± 183 

1.45 STD across sessions), whereas exploitation tended to be a deeper, more energetically 184 

stable state than exploration in both primates (monkeys: -2.15 ± 0.77; humans: -1.35 ± 185 

1.79; sig. differences across species, 3-way ANOVA: F2, 282 = 186.1, p < 0.0001, S = 558 186 

total sessions). The amount of energy required to end a bout of exploration also differed 187 

between species: less energy was required to start to explore in the mouse compared to the 188 

monkeys and humans (differences in activation energy; 3-way ANOVA: F2, 282 = 66.85, p 189 

< 0.0001, S = 558 total sessions; mice = 1.80 ± 1.28 STD, monkeys = 3.18 ± 0.52, humans 190 

= 2.61 ± 1.71 STD). In short, primates had a deeper, more energetically stable kind of 191 

exploitation than mice, suggesting that the differences we observed in switching behaviour 192 

and exploration could be due to the fact that primates are capable of persisting in their 193 

exploitative policies for longer than mice. 194 

  195 
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 196 

Figure 2. Different patterns of switching and exploration across species. A) Distributions of the number 197 

of trials between switch decisions (“run lengths”) in mice, monkeys and humans. If the species had a fixed 198 

probability of switching, run lengths would be exponentially distributed (black dotted line). A mixture of 199 

two exponential distributions (purple line) suggests 2 distinct probabilities of switching. Dotted purple lines 200 

show each mixing distribution, one slow-switching and another fast-switching. (Inset) Log likelihoods for 201 

different mixture models containing a range of 1 to 4 exponential distributions in each species. B) 202 

Bootstrapped estimates of switch probability for the slow-switching distribution (the “persistent regime”) 203 

across species. Thick black lines = IQR, thin = whiskers, open circle = median. C) Hidden Markov models 204 

(HMMs) were used to infer the goal state on each trial from the sequence of choices. The model included 205 

one persistent state for each target (‘‘exploit’’) and one state in which subjects could choose any of the 206 

targets (“explore”). Right) The model can be extended to account for different numbers of targets by adding 207 

exploit states. D) Fifty-trial example choice sequences for mice, monkeys and humans. The coloured circles 208 

represent the chosen target and the grey lines highlight the explore choices identified with the HMM. E) 209 

Probability of exploration across species, as inferred by the HMM. Same conventions as B. F) Fitting the 210 

HMM involves identifying a set of equations that describe the dynamics of exploration and exploitation, 211 

meaning the rate at which participants explore, exploit, and switch between states. Left) Certain analytic 212 

measures of these equations, namely their stationary distributions (Boltzmann, 1868) and activation energies 213 

(Arrhenius, 1889) can be used to derive an intuitive picture of the landscape of state dynamics. Middle) 214 

Average state dynamic landscapes for each species. Right) State dynamic landscapes for all species overlaid. 215 

In figure, asterisks represent significance levels as follows: * indicates p < 0.05, ** indicates p < 0.001, and 216 

*** indicates p < 0.0001. 217 

Manipulating task variables to understand species differences 218 

Putative species differences in rewards and persistence could be artifacts of variations in 219 

task design across species. For example, 2 of the monkeys experienced reward walks that 220 

were slightly richer on average than the other monkeys, mice, and humans. These 2 221 

monkeys also switched less than the 3 monkeys whose reward schedule matched the other 222 

participants (3-way ANOVA: F1,90 = 6.59, p < 0.02, S = 93 total sessions). However, we 223 

found that excluding these 2 monkeys from the analyses did not alter the major results. 224 
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Mice still switched more than either primate species (comparing mice to all primates (all 225 

humans and all monkeys; 3-way ANOVA: F1,315 = 370.81, p < 0.0001, η2 = 0.1670, 226 

16.70%, S = 607 total sessions; comparing mice to all humans and 3 monkeys with same 227 

reward walks: 3-way ANOVA: F1,280 = 333.32, p < 0.0001,  η2 = 0.1665, 16.65%, S = 572 228 

total sessions). Mice also explored more (comparing mice to all human and all monkeys: 229 

3-way ANOVA: F1,288 = 233.7, p < 0.0001, η2 = 0.1766, 17.66%, S = 567 total sessions; 230 

comparing mice to all humans and 3 monkeys with same reward walks: 3-way ANOVA: 231 

F1,253 = 196.69, p < 0.0001, η2 = 0.1734, 17.34%, S = 532 total sessions).   232 

 233 

To control for other potential confounds, we looked at the effects of variations in the 234 

number of targets (Experiment 2) and task timing (Experiment 3) in humans. Monkeys 235 

did a 3 target version of the task, but both mice and humans did a 2 target version. 236 

Therefore, it is possible that monkeys were more similar to humans only because adding a 237 

third target (1) improved reward acquisition, (2) reduced switching, and (3) decreased 238 

exploration. In an online sample of 150 humans (1 session each, 45 000 total trials), we 239 

manipulated the number of targets and found variations in the likelihood of getting 240 

rewards across the number of targets (normalised difference from chance; 2-way 241 

ANOVA: F2, 143 = 15.82, p < 0.0001, S = 144 total sessions; Figure 3A). However, the 242 

effect of increasing the number of arms had only a trend-level effect on switching (2-way 243 

ANOVA: F2, 143 = 2.79, p = 0.065, S = 144 total sessions; Figure 3B) and no effect on 244 

exploration (2-way ANOVA: F2,135 = 0.59, p = 0.586; S = 136 total sessions; Figure 3C). 245 

Thus, differences in the number of targets is not likely to explain differences in persistence 246 

between species.          247 

 248 

Manipulating the number of targets did suggest that humans may, like monkeys (Ebitz et 249 

al., 2018; Wilson et al., 2021), use random strategies for exploration in this task. If 250 

humans were exploring randomly, we would expect the rate of switching during 251 

exploratory switching regime to vary systematically with the number of targets. Random 252 

choices between a smaller number of targets (i.e. 2) are more likely to repeat (i.e. 50% of 253 

the time) than random choices between a large number of targets (4 targets will repeat 254 

25% of the time). Thus, random exploration predicts a specific upward trend in the rate of 255 

switching with the number of targets (Figure 3D, top; see Methods). Many other types of 256 

exploration would produce no trend in switch probability as a function of the number of 257 

targets, however. If exploration focused only on the rewards of the chosen target, for 258 

example, switching would be unaffected by the number of alternatives (Figure 3D, 259 

bottom). We found that humans switched more frequently as more targets were available 260 

(2-way ANOVA: F2, 138 = 10.2, p < 0.0001; S = 142 total sessions; see Methods, Figure 261 

3E, Table S3). Critically, the pattern of switching closely followed the prediction from the 262 

random exploration strategy, calculated directly with 0 free parameters (see Methods). 263 

Manipulating the number of targets also increased the probability of staying in 264 

exploitation (2-way ANOVA: F2, 133 = 8.13, p < 0.0005; S = 137 total sessions; Figure 265 

3F), though it did not alter the relative energy of exploration and exploitation (2-way 266 

ANOVA: F2, 133 = 0.80, p = 0.45; S = 137) or the energy barrier between states (2-way 267 

ANOVA: F2, 133 = 0.87, p = 0.42; S = 137). Nonetheless, differences in the number of 268 

targets could therefore at least partly explain why monkeys had a deeper exploitation basin 269 

compared to humans and mice. 270 
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 271 

Exploratory decision-making is affected by physiological and psychological processes that 272 

operate in the time scale of the body, not just in the time scale of trials (Shourkeshti et al., 273 

2023). Therefore, it is possible mice were less persistent than primates because each trial 274 

took longer in this species, compared to humans and monkeys. Therefore, in Experiment 275 

3, we manipulated trial lengths in humans via lengthening inter-trial interval times. In an 276 

online sample of 299 human participants (1 session each, 89 699 total trials), we found 277 

slight variations in the likelihood of getting rewards across the inter-trial-interval 278 

(normalised difference from chance; 2-way ANOVA: F2, 295 = 3.04, p < 0.05, S = 299 total 279 

sessions; Figure 3G). However, there was no significant effect of the inter-trial interval 280 

times on switching (2-way ANOVA: F2, 295 = 0.38, p = 0.685, S = 299 total sessions; 281 

Figure 3H) or exploration (2-way ANOVA: F2, 285 = 0.16, p = 0.849; S = 289 total 282 

sessions Figure 3I). These results suggest that trial lengths did not impact the behaviours 283 

that differed between species in this task and thus is not likely to explain species 284 

differences. 285 

 286 

Figure 3. Effects of manipulating the number of targets and the trial length in humans performing the 287 

bandit task (Experiment 2 and 3). A)  Percentage of reward relative to chance by number of targets (2, 3, 288 
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or 4). Thick black lines = IQR, thin = whiskers, open circle = median. B) Switch probability by number of 289 

targets. C) Probability of exploration by number of targets. D) Cartoon illustrating predicted relationships 290 

between the switching-regime switch probability and the number of arms under the hypothesis of random 291 

exploration (top) or reward-dependent exploration (bottom). E) Switch probability for the fast-switching 292 

distribution (the “switching regime”) by number of targets. F)  State dynamic landscapes for varying 293 

numbers of targets (Same conventions as Figure 2F). G-I) Same as A-C across varying inter-trial interval 294 

times (200ms, 2000ms, 4000ms). Thick black lines = IQR, thin = whiskers, open circle = median. In figure, 295 

asterisks represent significance levels as follows: * indicates p < 0.05, ** indicates p < 0.001, and *** 296 

indicates p < 0.0001. 297 

Learning index analysis and reward sensitivity 298 

The primates’ tendency to exploit more than mice did not appear to be an artifact of minor 299 

differences in task design or timing. Therefore, we next considered the possibility that 300 

these differences between species were due to differences in their capacity to learn from 301 

rewards. We evaluated this using a common "learning index" (a 1-trial-back measure of 302 

the effect of reward outcomes on switch decisions, normalised by the probability of 303 

switching; see Methods). For this analysis, we returned to the data from Experiment 1 304 

(cross-species experiment). We found variations across species (Figure 4A; 3-way 305 

ANOVA: F2,308 = 575.44, p < 0.0001, S = 600 total sessions), with humans appearing to 306 

learn the fastest, then monkeys, then mice. However, the interpretation of this learning 307 

index is complicated because it is normalised by the overall probability of switching and 308 

primates switched less overall. This means that the learning index could change across 309 

species either because of differences in learning from reward outcomes or because of 310 

differences in switching frequently (i.e. persistence). 311 

 312 

To differentiate between these possible explanations, we separately analysed choice 313 

patterns after rewarded or unrewarded trials. If the major difference between species was 314 

in learning from rewards, then the tendency to repeat rewarding options should positively 315 

co-vary with the tendency to switch away from non-rewarding options (Figure 4B, top). 316 

In short, humans should be most sensitive to reward outcomes, followed by monkeys, then 317 

mice. Conversely, if the major difference between species was in persistence, then the 318 

tendency to repeat rewarding options should be inversely related to the tendency to switch 319 

away from non-rewarding options across species (Figure 4B, bottom). In short, humans 320 

should be the most persistent, followed by monkeys, and then mice. Compared to mice, 321 

we found that primates persisted more with their choices, both after being rewarded 322 

(Figure 4C; 3-way ANOVA: F1,311 = 323.34, p < 0.0001, S = 607 total sessions), and after 323 

not receiving a reward (Figure 4D; 3-way ANOVA: F1, 311 = 211.84, p < 0.0001, S = 607 324 

total sessions). Together, these results suggest the major systematic difference between 325 

species was an increase in persistence rather than increased sensitivity to rewards, though 326 

some increase in reward sensitivity may also have been at play in humans. 327 
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 328 

Figure 4. Learning and persistence across species A) Index of reward learning across species. Thick black 329 

lines = IQR, thin = whiskers, open circle = median. B) Hypothesis cartoon illustrating predictions under the 330 

hypothesis that species differences in switching were due to reward sensitivity (top) or persistence 331 

(bottom).  C) Probability of selecting the same option after obtaining a reward, compared across species. 332 

Same conventions as A. D) Probability of selecting a different option after not obtaining a reward, compared 333 

across species. Same conventions as A. In figure, asterisks represent significance levels as follows: * 334 

indicates p < 0.05, ** indicates p < 0.001, and *** indicates p < 0.0001. 335 

Discussion  336 

This study compared the performance and decision-making strategies of mice, monkeys, 337 

and humans in an uncertain decision-making task. All three species performed the task 338 

similarly, alternating between a strategy of rapidly switching between the options, and a 339 

strategy of persistently choosing the same option. Despite these shared strategies, we 340 

found species differences in the average performance and the tendency to switch between 341 

targets. Mice switched more frequently than primates. Computational analysis of the 342 

switching patterns revealed that the increase in switching in the mice was driven by their 343 

tendency to explore more frequently, compared to primates. Species differences were not 344 

due to low level differences between the tasks like the number of options or the timing of 345 

the trials. Instead, primates, and especially humans, appeared to persist in exploiting 346 

valuable options for longer than the mice did. 347 

 348 

One reason why primates might persist more in their choices, could be that they had more 349 

cognitive self-control: the ability to regulate their impulses, letting them weigh long-term 350 

benefits against immediate rewards. The capacity for self control is more prevalent in 351 

species with larger brain sizes (MacLean et al., 2014). Here, self-control could help 352 

sustain a choice policy in the absence of reward, for example, or to help animals avoid the 353 

temptation to try something new (Stillman et al., 2017). Indeed, we found that primates 354 

were more persistent in their choices and were able to resist switching options 355 

immediately in the absence of a reward, while mice lost interest more quickly. Thus, 356 

species differences in the capacity for self-control could help explain why both primates 357 

persisted for longer than mice did. 358 

 359 

A second, complementary explanation for why primates persisted more than mice could 360 

be differences in neural timescales across species. Single neurons and neural populations 361 

process information with characteristic time constants, often called “neural timescales” 362 

(Zilio et al., 2021). Previous studies have shown that different brain regions have differing 363 

neural timescales (Murray et al., 2014; Golesorkhi et al., 2021; Zilio et al., 2021), perhaps 364 

tailored to the functions for each region (Hasson et al., 2008). Brain regions with longer 365 

neural timescales are better suited for integrating information over longer periods of time, 366 

like in working memory, while brain regions with shorter neural timescales are better 367 
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suited for processing information that needs quick integration, like sensory cues (Zilio et 368 

al., 2021). Notably, the prefrontal cortex (PFC), crucial for cognitive self-control (Cohen 369 

et al., 2013), cognitive functions, and decision-making (Krawczyk, 2002; Domenech and 370 

Koechlin, 2015), has been found to have longer neural timescales (Murray et al., 2014). 371 

The PFC is also more elaborated in primates compared to mice (Laubach et al., 2018; 372 

Preuss and Wise, 2022). This implies the elaborated primate PFC could improve 373 

persistence in decision-making tasks by facilitating the sustained integration of 374 

information. This contrasts with mice, whose less elaborated PFC could suggest shorter 375 

neural timescales and a reduced capacity for persistent exploitation. Of course, species 376 

differences in neural time scales could also be the underlying neural mechanism for 377 

species differences in cognitive functions, like self-control and future studies are needed to 378 

determine how individual differences in self-control and neural timescales predict 379 

differences in persistence. 380 

 381 

There is also a third reason why primates might persist more than mice: differences in 382 

their ecological niches. Social primates, like rhesus macaques, benefit from collective 383 

vigilance within their groups (Iki and Kutsukake, 2021), this allows each individual 384 

monkey to be slightly less vigilant, and therefore lets them focus on exploiting resources 385 

for longer before looking up to scan for threats. Mice, on the other hand, are mostly prey 386 

species (Dickman, 1992) which might require them to be more vigilant and favour less 387 

sustained focus on other tasks. Differences in ecological niches across species could also 388 

result in the task being less suitable for mice as specified here. Perhaps mice are better 389 

adapted to more volatile environments, and therefore, perhaps the differences in 390 

persistence found in this task could be minimised if the task environment was more 391 

volatile. 392 

 393 

Ultimately, comparative work is essential both for understanding how the human brain 394 

evolved and for ensuring that preclinical research can translate into real-world impact in 395 

human lives. Comparative studies also have unique challenges. Whenever data is collected 396 

across multiple labs over multiple years, it introduces variability. Species also necessarily 397 

differ in factors like training time and researchers tend to use different response and 398 

reward modalities in different species, due to differences in physicality and familiarity 399 

with certain apparatuses. While none of these factors appeared to be a sufficient 400 

explanation for our major results, we cannot rule out the possibility that task or training 401 

differences interacted with real species differences in complex ways. We made efforts to 402 

harmonise the datasets across species, include important control experiments and analyses, 403 

and to transparently describe the methodological differences between the tasks, but our 404 

results remain suggestive. We found that humans and other primates persisted more than 405 

mice in a stochastic decision-making task, but future studies are still needed to determine 406 

if species differences in persistence are apparent in other tasks and whether these species 407 

differences can be modulated by altering certain aspects of task design. This is especially 408 

important because preclinical studies in mice do not always translate well into clinically 409 

relevant human interventions (Worp et al., 2010; Perrin, 2014; Walker and Eggel, 2020). 410 

If our results are correct, they suggest that monkeys could and should be used as a vital 411 

step in cross-species translation, particularly in the domains of decision-making and 412 

executive function. 413 

 414 

 415 

 416 

 417 
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Materials and Methods 418 

 419 

Experimental Design 420 

 421 

For each study, participants performed a spatial restless k-armed bandit task. In this task, 422 

physically identical targets are presented in spatial locations that are associated with a 423 

probability of reward. Reward probabilities ranged between 0.9 and 0.1 and could 424 

diminish or increase over time at a rate that was fixed across experiments (10% chance of 425 

a step of 0.1). For 2/5 monkeys, the floor probability of reward was 0.3, rather than 0.1, to 426 

improve motivation. Although these 2 animals switched slightly less frequently than the 427 

other 3 animals (11.89% vs 17.14%), excluding these animals from the analyses did not 428 

change any major results (see Results). 429 

 430 

Because rewards were variable, independent, and probabilistic, participants could only 431 

infer values through sampling the targets and integrating reward history over multiple 432 

trials. There were minor variations between the mouse, monkey, and human studies due to 433 

a combination of factors: (1) the data was collected independently across multiple labs, (2) 434 

the tasks were adapted to the typical research approaches used in each species. For 435 

example, mice and monkeys both received a primary, liquid reinforcer as reward. Humans 436 

on the other hand received money, a secondary reinforcer. Monkeys received a 3 target 437 

version of the bandit task, mice received a 2 target version, and humans received a 2, 3 438 

and 4 target version. Additional variations between the tasks are described below:  439 

 440 

Mice 441 

 442 

Mice indicated their choices by nose-poking on a touchscreen display with two identical 443 

squares. Rewards were given in the form of food pellets. Mice completed either 300 trials 444 

or spent a maximum of two hours in the operant chamber. On average, mice performed 445 

276.50 trials (min: 46 trials, max: 300 trials) per session. 446 

Monkeys 447 

 448 

Monkeys indicated their choices by making saccadic eye movements towards one of three 449 

identical gabor kernels. Choices were registered when the monkeys fixated on the 450 

eccentric target for a specified minimum period (150ms). Eye position was monitored at 451 

1000Hz via an infrared eye tracker (SR Research). Rewards were given in the form of 452 

juice. On average, monkeys performed 622.34 trials (min: 144 trials, max: 1377 trials) per 453 

session. 454 

 455 

Humans 456 

 457 

Humans indicated their choices by moving a computer mouse towards one of the backs of 458 

playing cards on the screen. In experiment 1, human participants had to choose between 2 459 

identical blue backs of playing cards. In Experiment 2, human participants had to choose 460 

between 2, 3, or 4 backs of playing cards, with each card being identical except for their 461 

colour. In Experiment 3, human participants had to choose between 3 identical blue backs 462 

of playing cards. They used a computer mouse to click the desired options and register 463 

their response. Rewards were given in the form of money ($0.02 per reward). Every 464 

human participant completed 300 trials per session, except for 1 participant who 465 

completed 299 trials during their session. Prior to the experiment, the humans completed 466 
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an additional 20-25 practise trials, which were meant to familiarise them with the task but 467 

were not included in the analyses.  468 

 469 

Experimental models and participant details 470 

 471 

All animal care and experimental procedures were approved by the relevant ethical review 472 

board (mice: the guidelines of the National Institution of Health and the University of 473 

Minnesota; monkeys: the guidelines of Stanford University Institutional Animal Care and 474 

Use Committee and the Rochester University Committee on Animal Resources; humans 475 

for Experiment 1 and 3: the guidelines of the Comité d’Éthique de la Recherche en 476 

Sciences et Santé (CERSES) of the University of Montreal; humans for Experiment 2: 477 

the guidelines of Princeton University Institutional Review Board). The human data and 478 

much of the monkey data has not been analysed or reported previously. Some sessions 479 

from two of the five monkeys have been analysed previously (28/58 sessions; (Ebitz et al., 480 

2018). The mouse data has been reported previously (Chen et al., 2021b) but all analyses 481 

here are new. 482 

 483 

All species were presented with a series of trials in which they made choices between 484 

physically identical targets that were presented in front of them on a computer screen. 485 

Specific details of each experimental setup are as follows: 486 

 487 

Mice 488 

 489 

Thirty-two BL6129SF1/J mice (16 males and 16 females) were obtained from Jackson 490 

Laboratories (stock #101043). Mice arrived at the lab at 7 weeks of age and were housed 491 

in groups of four with ad libitum access to water and mild food restriction (85–95% of 492 

free feeding weight) for the experiment. Animals engaging in operant testing were housed 493 

in a 9AM to 9PM reversed light cycle to permit testing during the dark period. Before 494 

operant chamber training, animals were food restricted to 85–90% of free feeding body 495 

weight. Operant testing occurred five days a week (Monday-Friday). Additional 496 

information regarding mouse data collection has been reported previously (Chen et al., 497 

2021b). 498 

 499 

Monkeys 500 

 501 

Five male rhesus macaques (between 5 and 15 years of age; between 6 and 16 kg) 502 

participated in this study. Three of the monkeys were singly housed and two were pair 503 

housed. All were housed in small colony rooms (6-10 animals per room). Animals were 504 

surgically prepared with head restraint prostheses before training began. Analgesics were 505 

used to minimise discomfort. After recovery, monkeys were acclimated to the laboratory 506 

and head restraint, then placed on controlled access to fluids and trained to perform the 507 

task over the course of 3 months. One animal was naive at the start of the experiment, the 508 

other four had previously participated in oculomotor and visual attention studies (2 509 

monkeys) or decision-making studies (2 monkeys). Data was collected 5 days a week 510 

(Monday-Friday). Additional information regarding two of the monkeys has been reported 511 

previously (Ebitz et al., 2018) Data from the other 3 have not been previously analysed or 512 

reported. 513 

 514 

Human 515 

 516 
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Humans were recruited via the online platform, Amazon Mechanical (mTurk). To avoid 517 

bots and improve data quality, participants were only accepted when they had a minimum 518 

of 5000 approved human intelligence tasks (HIT) and a minimal percentage of 98% in 519 

proportions of completed tasks that are approved by requesters. Geographical restrictions 520 

were set for US participants only. Participants were not allowed to repeat the experiment. 521 

All participants who successfully submitted the HIT were paid a base rate of $0.50 USD, 522 

plus a bonus of $3.85 mean ± $0.90 SD (for all 3 experiments, n = 707) based on their 523 

performance (for each trial that ended with a reward, participants were given a $0.02 524 

compensation). For experiment 1, a total of 258 participants (120 females, 137 males, 1 525 

preferred not to say) completed the task. Data was collected from 9AM to 2PM EST, to 526 

minimise data collection during night hours across coasts. For experiment 2, a total of 150 527 

participants (gender not collected) completed the task. Data was collected from 9AM to 528 

5PM EST.  For experiment 3, a total of 299 participants (139 females, 158 males, 2 529 

preferred not to say) completed the task. Data was collected from 9AM to 2PM EST, to 530 

minimise data collection during night hours across coasts. 531 

 532 

Statistical Analysis 533 

 534 

Data was analysed with custom MATLAB scripts and p-values were compared against the 535 

standard ɑ = .05 threshold. 3-way ANOVAs were used to determine decision-making 536 

differences across species, unless otherwise specified. The ANOVAs modelled session-537 

averaged data and included main effects of species, individuals (nested within species) and 538 

session number (nested within species and individuals). To minimise redundancy, only the 539 

main effect of species was reported in the paper. In experiment 1, the sample size for mice 540 

was n = 32, 256 total sessions, for monkeys n = 5, 93 total sessions, for humans (2-armed 541 

bandit task) n = 258, 258 total sessions. In experiment 2, the sample size for humans was 542 

(2-armed bandit task) n = 50, 50 total sessions, for humans (3-armed bandit task) n = 50, 543 

50 total sessions, for humans (4-armed bandit task) n = 50, 50 total sessions. In 544 

experiment 3, the sample size for humans was (ITI 200ms) n = 99, 99 total sessions, for 545 

humans (ITI 2000ms) n = 93, 93 total sessions, for humans (ITI 4000ms) n = 107, 107 546 

total sessions.  547 

 548 

A small number of sessions from some participants were excluded from analysis. 549 

Specifically, 6 sessions out of 150 were excluded in Experiment 2 because participants 550 

did not select all available targets during the session and this experiment specifically 551 

looked at the behavioural effects of manipulating the number of targets. Otherwise, 552 

sessions were only excluded from specific analyses when these analyses were impossible, 553 

given the participants’ behaviour. For example, in Experiment 1, 7 sessions out of 607 (3 554 

for mice, 0 for monkeys, 4 for humans) were excluded from certain analyses of switching 555 

behaviour (i.e. the learning index, the HMM and the mixture model) because the 556 

participant did not switch during those sessions. However, these sessions were included in 557 

all other analyses, including of the probability of switching (i.e. Figure 1). The specific 558 

exclusion criteria for each analysis as well as the number of excluded sessions is described 559 

within the relevant section of the Methods and the results give the N for each analysis. 560 

 561 

Random Exploration Among k-Arms 562 

 563 

In a random exploration strategy, a target is selected at random on each trial. This means 564 

that the probability of repeating a choice is the same as the independent probability of 565 

making that choice (i.e. it is always 1/k, where k is the number of options). The 566 
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probability of switching away from a previous option is then the probability of choosing 567 

any other option: 568 

 569 

 570 

 571 

                                                                                                       (1) 572 

 573 

 574 

Note that as k increases, as the number of targets increases, the probability of switching 575 

increases systematically, under the hypothesis that decisions are made randomly. This is 576 

the explicit equation, with 0 free parameters, that is plotted in Figure 3E. 577 

 578 

Exponential Mixture Distribution  579 

 580 

We analysed the temporal structure of the participants’ choice sequences with a mixture 581 

model. If a single time constant (probability of switching) governed the behaviour, we 582 

would expect to see exponentially distributed inter-switch intervals. That is, the 583 

distribution of inter-switch intervals should be well described by the following model: 584 

 585 

                                               586 

 587 

                                                                                                               (2) 588 

 589 

 590 

 591 

Where β is the “survival parameter” of the model: the average inter-switch interval. 592 

However, although the time between switch decisions was largely monotonically 593 

decreasing and concave upwards, the distribution was not well described by a single 594 

exponential distribution (Figure 2A). Participants had more short-latency and more long-595 

latency choice runs, indicating that a single switching probability could not have generated 596 

the data. Therefore, we fit mixtures of varying numbers of exponential distributions (1-4) 597 

to all species (Figure 2A), in order to infer the number of switching regimes in these 598 

choice processes. For continuous-time processes, these mixture distributions would be of 599 

the form: 600 

 601 

                                                                           602 
 603 

                                         (3) 604 

 605 

 606 

Where 1 ≥ πi ≥ 0 for all πi, and Σi πi = 1. Here, each βi reflects the survival parameter 607 

(average inter-switch interval) for each component distribution i and the πi reflects the 608 

relative weight of each component. Because trials were discrete, we fit the discrete analog 609 

of this distribution: mixtures of 1-4 discrete exponential (geometric) distributions (Barger, 610 

2006). Mixtures were fit via the expectation-maximisation algorithm and we used standard 611 

model comparison (Burnham and Anderson, 2002) to determine the most probable 612 

number of mixing components (Figure 2A, Results). 613 

 614 

We used a bootstrap procedure to illustrate the distribution of mixture model parameters in 615 

Figure 2B and Figure 3E. This meant that we resampled, with replacement, from the 616 
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sessions collected in each species to generate bootstrapped distributions of run lengths (n 617 

distributions = 1000, number of sessions equal to the data). We then fit the exponential 618 

mixture model to each sample of run lengths, giving a bootstrapped estimate of mixture 619 

model parameters. (N.B. Statistical analyses were done on the raw, non-bootstrapped, 620 

data, the bootstrapping was only done for illustration.) 621 

 622 

Some participants had to be excluded from mixture model analyses because their 623 

distribution of run lengths prevented the identification of model parameters. This could 624 

happen either because they either had fewer than 2 switches between options (i.e. it was 625 

impossible to measure any run lengths) or because their run lengths lacked the variation 626 

required for the expectation maximisation algorithm to function (i.e. all run lengths were 627 

identical). In Experiment 1, 4 sessions (of 607) were excluded, all in humans (11 total, 628 

including the 7 excluded previously because no switches were observed). In Experiment 629 

2, 2 sessions out of 150 were excluded (8 total, including the 6 excluded previously for not 630 

choosing all available targets).           631 

 632 

Hidden Markov Model (HMM) 633 

 634 

In order to identify how often different species were exploring or exploiting, we fit an 635 

HMM to each session of each species. Here, choices (y) are “emissions” that are generated 636 

by an unobserved decision process that is in some latent, hidden state (z). Latent states are 637 

defined by both the probability of making each choice k (out of Nk possible options), and 638 

by the probability of transitioning from each state to every other state. Our model 639 

consisted of two types of states, the explore state and the exploit state. The emissions 640 

model for the explore state was uniform across the options: 641 

 642 

 643 

                                                                                                                              (4) 644 

 645 

 646 

This is the maximum entropy distribution for a categorical variable—the distribution that 647 

makes the fewest number of assumptions about the true distribution and thus does not bias 648 

the model towards or away from any particular type of high-entropy choice period. This 649 

does not require, imply, impose, or exclude that decision-making happening under 650 

exploration is random (Ebitz et al., 2019, 2020). Because exploitation involves repeated 651 

sampling of each option, exploit states only permitted choice emissions that matched one 652 

option. That is: 653 

 654 

 655 

                                                                                   (5) 656 

 657 

 658 

The latent states in this model are Markovian, meaning that they are time-independent. 659 

They depend only on the most recent state (zt): 660 

 661 

                                                                                    (6) 662 

 663 

This means that we can describe the entire pattern of dynamics in terms of a single 664 

transition matrix. This matrix is a system of stochastic equations describing the one-time- 665 

step probability of transitioning between every combination of past and future states (i, j). 666 
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 667 

                                                                                                                    (7) 668 

 669 

 670 

Due to task differences, mice and humans had three possible states (two exploit states and 671 

one explore state), whereas monkeys had four possible states (three exploit states and one 672 

explore state) in Experiment 1. To produce long, exponentially-distributed runs of 673 

repeated choices to a single target, the HMM had one latent exploitative state for each 674 

target. To produce short, random run lengths, the HMM had one shared explore state from 675 

which decisions to any of the choices were equally likely. For all three species, parameters 676 

were tied across exploit states such that each exploit state had the same probability of 677 

beginning (from exploring) and of sustaining itself. Transitions out of the exploration, into 678 

exploitative states, were similarly tied.  The model also assumed that the participants had 679 

to pass through exploration in order to start exploiting a new option, even if only for a 680 

single trial. This is because the utility of exploration is to maximise information about the 681 

environment (Mehlhorn et al., 2015). If an animal switches from a bout of exploiting one 682 

option to another option, that very first trial after switching should be exploratory because 683 

the outcome or reward contingency of that new option is unknown, and that behaviour of 684 

switching aims to gain information. Through fixing the emissions model, constraining the 685 

structure of the transmission matrix, and tying the parameters, the final HMM had only 686 

two free parameters: one corresponding to the probability of exploring, given exploration 687 

on the last trial, and one corresponding to the probability of exploiting, given exploitation 688 

on the last trial. 689 

 690 

The model was fit via expectation-maximisation using the Baum Welch algorithm 691 

(Bilmes, 2000). This algorithm finds a (possibly local) maxima of the complete-data 692 

likelihood. A complete set of parameters θ includes the emission and transition models, 693 

discussed already, but also initial distribution over states. Because the participants had no 694 

knowledge of the environment at the first trial of the session, we assumed they began by 695 

exploring, rather than adding another parameter to the model here. The algorithm was 696 

reinitialized with random seeds 20 times, and the model that maximised the observed 697 

(incomplete) data log likelihood across all the sessions for each animal was ultimately 698 

taken as the best. To ultimately infer latent states from choices, we used the Viterbi 699 

algorithm to discover the most probable posteriori sequence of latent states. 700 

 701 

Some participants were excluded from analyses that depended on the HMM because the 702 

model did not fit these participants. This totalled 58 sessions out of 1056 (>5.5%, 27 for 703 

mice, 0 for monkeys, 13 for humans in Experiment 1, 8 for humans in Experiment 2, 704 

and 10 in humans in Experiment 3). The HMM model could fail to fit for 2 reasons: (1) 705 

because participants only chose a single target for the whole session (making model 706 

parameters unidentifiable) or (2) because fitting procedure resulted in a solution that 707 

violated the assumption of longer choice runs under exploitation compared to exploration 708 

(where the probability of stopping a bout of exploitation was an obvious outlier in the 709 

distribution of this parameter across all species; threshold for exclusion set at 0.4). 710 

 711 

Analysing HMM Dynamics (State Dynamic Landscapes) 712 

 713 

In order to understand the dynamics of exploration and exploitation, we analysed the 714 

HMMs. Here, we use the term “dynamics” to mean the equations that govern how a 715 

system evolves over time. In fitting our HMMs, we were fitting a set of equations that 716 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 8, 2024. ; https://doi.org/10.1101/2024.05.07.592970doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?C4k33R
https://www.zotero.org/google-docs/?BG1ASz
https://doi.org/10.1101/2024.05.07.592970
http://creativecommons.org/licenses/by-nc-nd/4.0/


describe these dynamics: the probability of transitions between exploration and 717 

exploitation and vice versa. To illustrate how goal dynamics differed across species, we 718 

performed certain thermodynamic analyses of the long-term behaviour of the fitted 719 

equations, generating insight into the potential energy of each state in each species 720 

(Figure 2C). 721 

 722 

In statistical mechanics, processes within a system (like a decision-maker at some moment 723 

in time) occupy states (like exploration or exploitation). States have energy associated 724 

with them, related to the long-time scale probability of observing a process in those states. 725 

A low-energy state is one that is very stable and deep, much like a valley between two 726 

mountain peaks. Low-energy states will be over-represented in the system’s long-term 727 

behaviour. A high energy state, like the top of a mountain, is less stable. High-energy 728 

states will be under-represented in the system’s behaviour. The probability of observing a 729 

process in a given state i is related to the energy of that state (Ei) via the Boltzman 730 

distribution: 731 

 732 

 733 

                                                                                                                          (8) 734 

 735 

 736 

where Z is the partition function of the system, kB is the Boltzman constant, and T is the 737 

temperature. If we focus on the ratio between two state probabilities, the partition 738 

functions cancel out and the relative occupancy of the two states is now a function of the 739 

difference in energy between them: 740 

 741 

 742 

 743 

                                                                                                                    (9) 744 

 745 

 746 

Rearranging, we express the difference in energy between two states as a function of the 747 

difference in the long-term probability of those states being occupied: 748 

 749 

 750 

                                                                                                                     (10) 751 

 752 

 753 

Meaning that the difference in the energetic depth of the states (the Gibbs Free Energy) is 754 

proportional to the natural log of the probability of each state, up to some multiplicative 755 

factor kBT. To calculate the probability of exploration and exploitation (pi and pj), we 756 

solved for the stationary distribution of the fitted HMMs. The stationary distribution is the 757 

equilibrium probability distribution over states. This means that this distribution is the 758 

relative frequency of each state that we would observe if the model’s dynamics were run 759 

for an infinite period of time. Each entry of the model’s transition matrix reflects the 760 

probability that the participant would move from one state (e.g. exploring) to another (e.g. 761 

exploiting) at each moment in time. Because the parameters for all the exploitation states 762 

were tied, each transition matrix effectively had two states—an explore state and a generic 763 

exploit that described the dynamics of all exploit states. Each of the k sessions had its own 764 

transition matrix (Ak), which describes how the entire system—an entire probability 765 

distribution over states—would evolve from time point to time point. We observe how the 766 
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dynamics evolve any probability distribution over states (π) by applying the dynamics to 767 

this distribution: 768 

 769 

                                                                                                                           (11) 770 

 771 

Over many time steps, ergodic systems reach a point where the state distributions are 772 

unchanged by continued application of the transition matrix as the distribution of states 773 

reaches its equilibrium. That is, in stationary systems, there exists a stationary distribution, 774 

π, such that: 775 

 776 

                                                                                                                                     (12) 777 

 778 

If it exists, this distribution is a (normalised) left eigenvector of the transition matrix Ak 779 

with an eigenvalue of 1, so we solved for this eigenvector to determine the stationary 780 

distribution of each Ak. A small number of sessions were excluded because their fitted 781 

HMM transition matrices did not admit a stationary distribution (Experiment 1: 49 out of 782 

607 sessions; 29 for mice, 0 for monkeys, 20 for humans; Experiment 2: 7 of 150 783 

sessions). For Experiment 2, this was in addition to the sessions excluded for not 784 

choosing all the available targets (6/150). We then took an average of these stationary 785 

distributions across all sessions for each species and plugged these back into the Boltzman 786 

equations to calculate the relative energy (depth) of exploration and exploitation as 787 

illustrated in Figure 2F. 788 

 789 

In order to understand the dynamics of exploration and exploitation, we need to not only 790 

understand the depth of the two states, but also the height of the energetic barrier between 791 

them: the energy required to transition from exploration to exploitation and back again. 792 

Here, we build on the Arrhenius equation from chemical kinetics that relates the rate of 793 

transitions (k) between some pair of states to the activation energy required to affect these 794 

transitions (Ea): 795 

 796 

                                                                                                                               (13) 797 

 798 

 799 

where A is a constant pre-exponential factor related to the readiness of reactants to 800 

undergo the transformation. We set this to one. Again, kBT is the product of temperature 801 

and the Boltzman constant. Note the similarities between this equation and the Boltzman 802 

distribution illustrated earlier. Rearranging to solve for activation energy yields: 803 

 804 

 805 

                                                                                                                    (14) 806 

 807 

 808 

Thus, activation energy, much like the relative depth of each state, is also proportional to 809 

some measurable function of behaviour, up to some multiplicative factor kBT. Note that 810 

our approach has only identified the energy of three discrete states (an explore state, an 811 

exploit state, and the peak of the barrier between them). These are illustrated by tracing a 812 

continuous potential through these three points to provide a physical intuition for the 813 

differences in explore/exploit dynamics between species. 814 

 815 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 8, 2024. ; https://doi.org/10.1101/2024.05.07.592970doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.07.592970
http://creativecommons.org/licenses/by-nc-nd/4.0/


To create the attractor basin graphs, transition matrices were calculated individually for all 816 

participants (Seed = 20), and then averaged for all 3 species, see Methods section: 817 

Analysing HMM Dynamics (state dynamic landscapes) for more details. All statistical 818 

tests and statistical details were reported in the results. 819 

 820 

 821 
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Figures and Tables 995 

 996 

 997 
Figure 1. Task design and behaviour across species. A) A schematic representation of the bandit task in 998 

each species (mice = top, monkeys = middle, humans = bottom). B) Example reward schedule, including 999 

200 trials from one session with one human. The reward probabilities of each of the 2 targets (blue and red 1000 

traces) walk randomly, independently across trials. The humans’ choices are illustrated as coloured dots 1001 

along the top. C) Percentage of reward relative to chance in all species. Thick black lines = IQR, thin = 1002 

whiskers, open circle = median. Black dotted line = chance performance. D) Probability of switching targets 1003 

during the task between species. Same conventions as C. In figure, asterisks represent significance levels as 1004 

follows: * indicates p < 0.05, ** indicates p < 0.001, and *** indicates p < 0.0001. 1005 

 1006 
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 1008 

 1009 
Figure 2. Different patterns of switching and exploration across species. A) Distributions of the number 1010 

of trials between switch decisions (“run lengths”) in mice, monkeys and humans. If the species had a fixed 1011 

probability of switching, run lengths would be exponentially distributed (black dotted line). A mixture of 1012 

two exponential distributions (purple line) suggests 2 distinct probabilities of switching. Dotted purple lines 1013 

show each mixing distribution, one slow-switching and another fast-switching. (Inset) Log likelihoods for 1014 

different mixture models containing a range of 1 to 4 exponential distributions in each species. B) 1015 

Bootstrapped estimates of switch probability for the slow-switching distribution (the “persistent regime”) 1016 

across species. Thick black lines = IQR, thin = whiskers, open circle = median. C) Hidden Markov models 1017 

(HMMs) were used to infer the goal state on each trial from the sequence of choices. The model included 1018 

one persistent state for each target (‘‘exploit’’) and one state in which subjects could choose any of the 1019 

targets (“explore”). Right) The model can be extended to account for different numbers of targets by adding 1020 

exploit states. D) Fifty-trial example choice sequences for mice, monkeys and humans. The coloured circles 1021 

represent the chosen target and the grey lines highlight the explore choices identified with the HMM. E) 1022 

Probability of exploration across species, as inferred by the HMM. Same conventions as B. F) Fitting the 1023 

HMM involves identifying a set of equations that describe the dynamics of exploration and exploitation, 1024 

meaning the rate at which participants explore, exploit, and switch between states. Left) Certain analytic 1025 

measures of these equations, namely their stationary distributions (Boltzmann, 1868) and activation energies 1026 

(Arrhenius, 1889) can be used to derive an intuitive picture of the landscape of state dynamics. Middle) 1027 

Average state dynamic landscapes for each species. Right) State dynamic landscapes for all species overlaid. 1028 

In figure, asterisks represent significance levels as follows: * indicates p < 0.05, ** indicates p < 0.001, and 1029 

*** indicates p < 0.0001. 1030 
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 1031 
Figure 3. Effects of manipulating the number of targets and the trial length in humans performing the 1032 

bandit task (Experiment 2 and 3). A)  Percentage of reward relative to chance by number of targets (2, 3, 1033 

or 4). Thick black lines = IQR, thin = whiskers, open circle = median. B) Switch probability by number of 1034 

targets. C) Probability of exploration by number of targets. D) Cartoon illustrating predicted relationships 1035 

between the switching-regime switch probability and the number of arms under the hypothesis of random 1036 

exploration (top) or reward-dependent exploration (bottom). E) Switch probability for the fast-switching 1037 

distribution (the “switching regime”) by number of targets. F)  State dynamic landscapes for varying 1038 

numbers of targets (Same conventions as Figure 2F). G-I) Same as A-C across varying inter-trial interval 1039 

times (200ms, 2000ms, 4000ms). Thick black lines = IQR, thin = whiskers, open circle = median. In figure, 1040 

asterisks represent significance levels as follows: * indicates p < 0.05, ** indicates p < 0.001, and *** 1041 

indicates p < 0.0001. 1042 
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 1043 

Figure 4. Learning and persistence across species A) Index of reward learning across species. Thick black 1044 

lines = IQR, thin = whiskers, open circle = median. B) Hypothesis cartoon illustrating predictions under the 1045 

hypothesis that species differences in switching were due to reward sensitivity (top) or persistence 1046 

(bottom).  C) Probability of selecting the same option after obtaining a reward, compared across species. 1047 

Same conventions as A. D) Probability of selecting a different option after not obtaining a reward, compared 1048 

across species. Same conventions as A. In figure, asterisks represent significance levels as follows: * 1049 

indicates p < 0.05, ** indicates p < 0.001, and *** indicates p < 0.0001. 1050 
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