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Abstract

We report the Simons Genome Diversity Project (SGDP) dataset: high quality genomes from 300
individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs

that are not present in the human reference genome. Our analysis reveals key features of the
landscape of human genome variation, including that the rate of accumulation of mutations has
accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the
ancestors of some pairs of present-day human populations were substantially separated by 100,000
years ago, well before the archaeologically attested onset of behavioral modernity. We also
demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial
ancestry from an early dispersal of modern humans; instead, their modern human ancestry is
consistent with coming from the same source as that in other non-Africans.

To obtain a complete picture of human diversity, it is necessary to sequence the genomes of
many individuals from diverse locations. To date, the largest whole-genome sequencing
survey, the 1000 Genomes Project, analyzed 26 populations of European, East Asian, South
Asian, American, and sub-Saharan African ancéskpwever, this and most other

sequencing studies have focused on demographically large populations. Such studies tend to
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ignore smaller populations that are also important for understanding human diversity. In
addition, many of these studies have sequenced genomes to only 4—6-fold coverage. Here,
we report the Simons Genome Diversity Project (SGDP): deep genome sequences of 300
individuals from 142 populations chosen to span much of human genetic, linguistic, and
cultural variation (Supplementary Data Table 1).

Data set and catalog of novel variants

We sequenced the samples to an average coverage of 43-fold (range 34—83 fold) at lllumina
Ltd.; almost all samples (278) were prepared using the same PCR-free library preparation
We aligned reads to the human reference genome hs37d5/hg19 using BWA-MEM
(BWA-0.7.12) (Supplementary Information section 1). We genotyped each sample
separately using the Genome Analysis Toolkit (GATK)ith a modification to eliminate

bias toward genotypes matching the reference (Supplementary Information section 1). We
developed a filtering procedure that generates a sample-specific mask. At “filter level 1”
which we recommend for most analyses, we retain an average of 2.13 Gb of sequence per
sample and identify 34.4 million single nucleotide polymorphisms (SNPs) and 2.1 million
insertion/deletion polymorphisms (indels) (Supplementary Information section 2). We have
made the GATK-processed data available in a file small enough to download by FTP, along
with software to analyze these data (Supplementary Information section 3). The SGDP
dataset highlights the incompleteness of current catalogs of human variation, with the
fraction of heterozygous positions not discovered by the 1000 Genomes Project being 11%
in the KhoeSan and 5% in New Guineans and Australians (Extended Data Fig. 1;
Supplementary Data Table 1). We used FerrRit¢itmap short reads against each other,

store the assemblies in a compressed form that retains all the information required for
polymorphism discovery and analysis, and identified SNPs by comparing against the human
reference. We find that FermiKit has comparable sensitivity and specificity to GATK for

SNP discovery and genotyping, and is more accurate for indels (Supplementary Information
section 4). FermiKit also identified 5.8 Mb of contigs that are present in the SGDP but
absent in the human reference genome presumably because they are deleted there; these
contigs which we have made publicly available can be used as “decoys” to improve read
mapping (Supplementary Information section 5). Finally, we called copy number Variants
and used lobSTRB to genotype 1.6 million short tandem repeats (STRs) (Supplementary
Information section 6). The high quality of the STR genotype®(82 to capillary

sequencing calls) is evident from their accurate reconstruction of population relationships,
even for difficult-to-genotype mononucleotide repeats (Extended Data Fig. 2).

The structure of human genetic diversity

To obtain an overview of population relationships, we carried out ADMIXTU(EEtended

Data Fig. 3) and principal component anal{f${&xtended Data Fig. 4a). We also built
neighbor-joining trees based on pairwise divergence per nucleotide (Fig. 1ayrand F
(Extended Data Fig. 4b) whose topologies are consistent with previous findings that the
deepest splits among human populations are among Africans. We computed heterozygosity
— the proportion of diallelic genotypes per base pair — and recapitulate previous findings that
the highest genetic diversity is found in sub-Saharan Africa and that there is a much lower
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ratio of X-to-autosome diversity in non-Africans than in Africans (Figli1# surprise is

that African “Pygmy” hunter-gatherers have reduced X-to-autosome diversity ratios relative

to all other sub-Saharan Africans. This pattern remains even after we remove the third of
chromosome X known to be subject to the strongest natural selection, suggesting that the
finding is driven by demographic history rather than by natural selection (Supplementary
Information section 7). It has been suggested that the reduced X-to-autosome heterozygosity
ratio in non-Africans is due to ongoing male-driven admixtuté Male non-Pygmy

admixture into Pygmies is well-documentéd? so this process could explain these

findings.

Comparisons of ancient to present-day human genomes have shown that all non-Africans
today possess Neanderthal ancé8twith more in eastern non-Africals!’ and that
Australo-Melanesians and to a lesser extent other eastern non-Africans possess Denisovan
ancestry8-20 However, these studies only analyzed genomes from a handful of populations.
We computed statistics informative about Neanderthal and Denisovan ancestry and provide a
fine-scale view of these ancestry distributions worldwide (Fig. 1c,d; Supp. Data Table 1;
Supplementary Information section 8). We do not detect any population with a higher
proportion of Neanderthal ancestry than is present in East Asians. However, we do find
suggestive evidence of an excess of Denisovan ancestry in some South Asians compared to
other Eurasians. This signal may not have been detected before because earlier surveys of
archaic introgression largely excluded South Asians (Fig. 1d; Supp. Data Table 1).

The time course of human population separation

We studied demographic history by leveraging the fact that variation across the genome in
divergent sites per base pair can be used to reconstruct population size changes and
separations. We used the Pairwise Sequential Markovian Coalescent @$C)

reconstruct population size changes ,and the multiple sequentially Markovian codfescent
(MSMC) to study the time course of population separations. We infer that the population
ancestral to all present day humans began to develop substructure at least two hundred
thousand years ago (kya), which is most apparent when comparing the ancestors of some
present-day African hunter-gatherers (southern African KhoeSan and central African Mbuti
Pygmies) and other populations (Fig. 2a). However, it is also clear that this substructure
developed slowly, as all pairs of present-day populations including African hunter-gatherer
share a substantial subset of their ancestors as recently as a hundred thousand years
ag3-26 Quoting the time at which MSMC infers that more than 50% (25-75%) of lineages
for a pair of populations are descended from the same ancestral population, we estimate that
non-Africans separated substantially from KhoeSan 131 (82-173) kya and almost as
anciently from the Mbuti around 112 (67-171) kya. Within Africa (Fig. 2a—b), we infer that
the Yoruba separated substantially from the KhoeSan 87 (58-120) kya; from the Mbuti 56
(32-85) kya; and from the Dinka 19 (9-25) kya. We estimate a relatively rapid 21 (21-36)
kya separation of northern and southern Khoé&&fpotentially reflecting isolation since

the last glacial maximum; and 38 (27-44) kya separation between western (Biaka) and
eastern (Mbuti) Pygmies, confirming very old substructure between these two central
African hunter gatherer grous Outside Africa, the most ancient structure dates to around
50 kya (Fig. 2c) during or shortly after the deepest part of the shared non-African bottleneck
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40-60 kya, consistent with the archaeological evidence of the dispersal of modern humans
into Eurasia during this period. We are not confident about the estimates of the date of
separation of Australians, New Guineans and Andamanese from other populations because
we find that these inferences change depending on the computational method we use for
phasing, likely due to these populations not being represented in the 1000 Genomes haploid
genome reference panel (Supplementary Information section 9). We caution that the date
estimates also do not take into account uncertainty about the true value of the human
mutation rate, which could plausibly be 30% higher or lower than the point estimate we
use,

Early modern human dispersals contributed little to non-African

populations

There is intense debate about whether present-day Australians, New Guineans and Asian
“Negrito” populations are descended from the same source population as mainland
Eurasians, or whether they also derive some ancestry from an early, independent dispersal of
modern humans into Asi%32 To explore this scenario rigorously, we fit an admixture
graph?3—a phylogenetic tree incorporating mixture events—to the allele frequency
correlations among Neanderthals, Denisovans, Upper Paleolithic Europeans, East Asians,
New Guineans, Australians, and Andamanese. We obtain a good fit to the data if we include
known Neanderthal and Denisovan introgression and model all modern human ancestry in
New Guineans, Australians and Andamanese as part of an eastern clade together with
mainland East Asians (Supplementary Information section 11; Fig. 3). Furthermore, when
we manually introduce a deeply diverging modern human lineage contributing ancestry to
Australians, New Guineans, and Andamanese (or when we repeat the analysis in a model
without Andamanese), no position or proportion of the deep lineage improves the fit. If this
putative source population branched off the main lineage leading to non-Africans more than
about 10-20 ky prior to the separation of European and East Asian ancestors, we obtain an
upper bound of a few percent for the possible contribution to Australians and New Guineans
(Fig. 3 inset; Supplementary Information section 11). These results are at odds with an
inference of substantial early dispersal ancestry in a previous analysis of an Australian
genoméZ however, that study used a less complete model that, notably, did not include the
known Denisovan admixture into Australo-Melanesténshe findings for Australians are

also unlikely to be due to some unusual feature of the individuals we sequenced, as when we
compared three different Australian samples for which there is published genome-wide data,
they are all consistent with descending from a common homogeneous population since
separation from New Guineans (Supplementary Information section 10). These results are
not in conflict with skeletal and archaeological evidence of an early modern human presence
outside of Afric&%-34 as early migrations could have occurred but not contributed
substantially to present-day populations. The possibility of populations that once flourished
but did not contribute substantially to living groups is especially plausible now that ancient
DNA from the ~45 kya Ust'-Ishif? and the ~40 kya Oase 1 individi®lsas documented
directly their existence.
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More mutation accumulation in non-Africans than in Africans

The SGDP data provide an opportunity to compare the rates at which mutations have
accumulated across populations. We restricted our analyses to samples for which our
genotypes are likely to be most reliable (this included restricting to samples which were all
processed in the same way), and we used the highest level of filtering (“level 9”)
(Supplementary Information section 7). We pooled samples by region to increase power, and
for all pairs of regions, computed the expected number of positions where, if we picked a
random chromosome from both, region A would mismatch chimpanzee and region B would
be identical to chimpanzee (or vice versa). If the rate of accumulation of mutation has been
the same since the two populations diverged, these numbers are expected tc*Be equal
However, when we compute the ratio of mutations on one lineage or the other since
separation, we find a subtle (average of 0.5%) but significant excess of mutations in non-
Africans relative to sub-Saharan Africans (3.3<|Z|<9.4 standard errors from zero; Extended
Data Table 1). Because any difference must reflect events since non-African / African
population divergence which is a less than a tenth of average genetic divergence (Fig. 2a),
this implies a greater difference in mutation accumulation rates since population divergence
(~5%). We were concerned that these results might be biased by the fact that the human
genome reference sequence is more closely related to non-Africans than to Africans, or by
higher levels of heterozygosity in Africans, as both these issues could make detection of
divergent sites in Africans more difficult. However, we replicated the findings after
remapping to chimpanzee, which is equally distant to all present populations, and after
restricting analyses to the X chromosome in males (males only have a single X
chromosome, and so this procedure avoids bias due to different error rates in detecting
heterozygous genotypes in populations with different rates of heterozygosity) (Extended
Data Fig. 5). These observations are most likely to be explained by acceleration in the rate of
mutation accumulation in non-Africans, since the same signal appears in comparisons to
sub-Saharan Africans related in different ways to non-Africans (Extended Data Table 1). It
is known that the rate of CCT>CTT mutations differs across human populations. However,
this particular mutation class was found to be enriched relative to Africans in Europeans but
not in East Asians, and thus cannot explain our si{§r@he of several possible

explanations for these findings is a decrease in the generation interval in non-Africans
compared to Africans since separaffon

No evidence for species-wide sweeps since the origin of anatomically
modern humans

We finally used the SGDP dataset to address the hypothesis that the widespread appearance
of modern human behavior in the archaeological record after ~50 kya was driven by one or a
few changes in neurological genes that swept through the population shortly before this
time39, We first applied the 3P-CLR metHttto search for locations in the genome with

low allele frequency differentiation between KhoeSan and other modern humans, combined
with high differentiation between modern and archaic (Neanderthal and Denisovan) humans,
as might be expected from a selective sweep in the ancestors of all modern humans
(Supplementary Information section 12) (Extended Data Figure 6). We found no strong
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outlier signals, although a caveat is that our scan has imperfect power and we could not
apply it to filtered sections of the genome. We also applied the PSMC rktbastimate

the average time since the most recent common ancestor (TMRCA) of individuals’ two
chromosomes in the genomic regions within the largest 3P-CLR peaks (38 peaks
corresponding the top 0.1%). In none of the regions did we find that the great majority of all
pairs of modern humans are inferred to share a common ancestor <100 kya, as would be
expected for a sweep just prior to ~50 kya years ago (Supplementary Data Table 2).

As a second approach to scanning for species-wide selective sweeps, we applied the PSMC
to infer TMRCA for SGDP samples across the entire genome. This analysis found no

regions where the great majority of pairs of human genomes are inferred to share a common
ancestor <100 kya (the largest fraction seen anywhere in the genome is 68%; Extended Data
Fig. 7).

Taken together, these results do not rule out the possibility that genetic changes played a
meaningful role in the changes in human behaviors after 50 kya; for example, changing
selection can produce shifts in the frequencies of pre-existing mutations to bring a
population to a new and advantageous set-point for a phenotype as occurred in the case of
height differences between northern and southern Eurde&os polygenic selection,

however, genetics is not the creative force, but instead is responding to selection pressures
imposed by new environmental conditions or lifestyles. Thus, our results provide evidence
against a model in which one or a few mutations were responsible for the rapid
developments in human behavior in the last 50 kya. Instead, changes in lifestyles due to
cultural innovation or exposure to new environments are likely to have been the ultimate
driving forces behind the rapid transformations in human behavior that became evident after
50 ky?2:43
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Extended Data
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Extended Data Figure 1. Heatmap of fraction of heterozygous sites missed in the 1000 Genomes
Project

For each sample, we examine all heterozygous sites passing filter level 1, and compute the
fraction included as known polymorphisms in the 1000 Genomes Project.
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Extended Data Figure 2. Worldwide variation in human short tandem repeats
A: Mean STR length is reported as the average of the length difference (in base pairs) from

the GRCh37 reference for each genotype. Bubble area scales with the number of calls
compared at each point. B: and C: show the first two principal components after performing
principal component analysis on tetranucleotide and homopolymer genotypes, respectively.
Colors represent the region of origin of each sample. D: Pairwiseatues between

populations computed using only SNPs vs. using combined SNP+STR loci. E: Block
jackknife standard errors for the SNP vs. SNP+SERdnalysis. The red dashed lines give

the best-fit line, described by the formula in red. The black dashed line denotes the diagonal.
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Extended Data Figure 3. ADMIXTURE analysis
We carried out unsupervised ADMIXTURE 1%% analysis over the 300 SGDP

individuals in 20 replicates with randomly chosen initial seeds, varying the number of
ancestral populations between K=2 and K=12 and using default 5-fold cross-validation (--cv
flag). We used genotypes of at least filter level 1, and restricted analysis to sites where at
least two individuals carried the variant allele (as singleton variants are non-informative for
population clustering). After further filtering sites with at least 99% completeness and
performing linkage-disequilibrium based pruning in PLINK*2:4with parameters (-
indep-pairwise 1000 100 0.2), a total of 482,515 single nucleotide polymorphisms remained.
This figure shows the highest likelihood replicate for each value of K. We found that log
likelihood monotonically increases with K, while the value K=5 minimizes cross-validation
error (not shown). The solution at K=5 corresponds to major continental groups (Sub-
Saharan Africans, Oceanians, East Asians, Native Americans, and West Eurasians), but we
show the full range of K here as they illustrate finer-scale population structure that may be
useful to users of the data.
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Extended Data Figure 5. Fewer accumulated mutations in Africans than in non-Africans
confirmed by mapping to chimpanzee

We compute a statisti®(Population A, Population B, Chinymmeasuring the difference in

the rate of matching to chimpanzeeRapulation Acompared tdPopulation BThe

evidence of mismatching to chimpanzee is seen when we restrict to the male X chromosome
to eliminate possible effects due to differences in heterozygosity across populations, and
map to the chimpanzee genome which is phylogenetically symmetrically related to all
present-day humans. We find that in 78 randomly ché&¥gw/ation A= African and

Population B= non-African pairs of males, transversion substitutions show no consistent
skew from zero, but transition substitutions do.
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branch. C: Scan for selection on the ancestral modern human branch.
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Extended Data Figure 7. Scan for genomic locations where the great majority of present-day
humans share a recent common ancestor

We carried out PSMC analysis on 40 pairs of haploid genomes chosen to sample some of the
most deeply divergent present-day human lineages. We recorded the time since the most
recent common ancestor (TMRCA) at each position, and rescaled to obtain an estimate of
absolute time (Supplementary Information section 12). A: Distribution across the genome of
the fraction of TMRCASs below specified date cutoffs. For the 100 kya cutoff, the maximum
fraction observed anywhere in the genome is 68%. B: Distribution across the genome of the
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date 7 at which specified fractions of sample pairs are inferred to have a TMRCA less than

7. C: Percentile points of the cumulative distribution function of B.

Extended Data Table 1

Fewer accumulated mutations in Africans than in non-Africans.

Page 14

All All X Lowest B Highest B

autosomes chromosome quintile quintile
Population A Population B Dx100 Z Dx100 Z Dx100 Z Dx100 z
Khoesan Oceania -035 -82 -0.70 -2.7 -068 -6.4 -0.14 -1.7
Africa America -0.33 -94 -0.73 -28 -065 -7.3 -0.18 -2.6
Khoesan WestEurasia -030 -75 -068 -31 -063 -63 -017 -21
Africa Oceania -029 -85 -066 -32 -055 -6.6 -0.07 -1.0
Africa WestEurasia -025 -85 -066 -31 -049 -64 -011 -138
Khoesan SouthAsia -024 -6.0 -056 -2.7/ -061 -63 -011 -14
Africa EastAsia -0.20 -6.6  -0.65 -25 -042 -52 -0.10 -1.5
Africa CentralAsiaSiberia. -0.20 -6.2 = -0.55 -2.2| -048 -6.3 -0.05 -0.7
Pygmy WestEurasia -0.19-48 | -046 -14 -043 -46 -004 -05
Africa SouthAsia -0.18 -6.4 -050 -2.0 -046 -6.3 -0.03 -0.5
CentralAsiaSiberia  Oceania -0.13-39 -0.15 -06 -0.09 -11 -0.03 -04
Pygmy SouthAsia -0.13 -3.3 -0.38 -11, -0.38 -4.2 0.02 0.2
EastAsia Oceania -0.13-4.1 0.00 0.0 -0.17 -2.1 0.04 0.p
Khoesan Pygmy -0.10 -2.6 -0.14 -04 -0.16 -1.6 -0.12 1.5
SouthAsia WestEurasia -0.08-43 -020 -12 -0.05 -10 -0.10 -2f
CentralAsiaSiberia  WestEurasia -0.06 -22 -0.16 -08 -0.01 -0.2 -0.09 |-1.6
EastAsia WestEurasia -0.06 -21 -0.00 -0.0 -0.08 -1.0 -0.02 {0.3
CentralAsiaSiberia  EastAsia -0.00 -02 -018 -1.1 0.07 12 -0.08 t1.8
Africa Pygmy -0.00 -0.1 -0.06 -0.2 0.03 0.4 -0.06 -0.8
EastAsia SouthAsia 0.02 0.7 0.22 1.7 -0.04 -0.7 0.08 1.7
CentralAsiaSiberia  SouthAsia 0.02 0.7 0.05 0.3 0.02 04 -0.00 0.0
America Oceania 0.03 0.9 0.11 0.4 0.10 11 0.13 .7
Oceania WestEurasia 0.08 23 -0.03 -0.1 0.10 1.1 -0.04 {06
Africa Khoesan 0.10 2.9 0.17 0.7 0.28 2.6 0.07 1.0
America WestEurasia 0.11 3.6 0.11 0.4 0.19 2.2 0.08 1B
CentralAsiaSiberia  Pygmy 0.14 3.4 0.32 0.9 0.43 45 -0.04 -04
Oceania SouthAsia 0.14 438 0.22 0.9 0.13 17 0.04 0.
EastAsia Pygmy 0.15 3.6 0.49 1.4 037 3.9 0.04 0.5
America EastAsia 0.18 5.9 0.09 0.3 0.28 3.6 0.11 1.8
America CentralAsiaSiberia 0.18 6.2 0.34 17 023 29 0.18 3.1
America SouthAsia 0.18 6.4 0.34 15 0.22 3.0 0.18 31
Oceania Pygmy 024 54 0.46 13 045 46 0.02 0.2
CentralAsiaSiberia  Khoesan 0.25 6.0 0.57 2.9 0.64 6.3 0.09 11
EastAsia Khoesan 025 6.2 0.68 3.2 059 59 0.14 1.7
America Pygmy 0.26 5.9 0.58 1.6 058 57 0.09 1.0
America Khoesan 0.37 8.7 0.76 3.3 0.77 7.3 0.22 25
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We compute a statisti®(Population A, Population B, Chirppmeasuring the difference in the rate of matching to

chimpanzee iPopulation Acompared tPopulation BFor all the autosomes, we observe highly significant signals (3.3<|
Z|<9.4) of excess mismatching to chimpanzee in non-Africans compared to Africans, using a standard error from a Block
Jackknife. We highlight |D|>0.002 in blue, and |Z|>3 in yellow. The deviations from zero are greatest in subsets of the
genome where the time since two populations split comprises a relatively larger fraction of the total genetic divergence time
between the populations; this is the direction expected from a mutation accumulation change since divergence. Compared

to all the autosomes as a baseline, a least squares fit indicate that the deviations are 2.2-times higher on chromosome X, 2.0
times higher in the quintile of lowest B-statistic (closest to functionally important regions), and 0.43 times as high in the
quintile of lowest B-statistic (furthest from functional regions).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genetic variation in the SGDP
A: Neighbor-joining tree of relationships based on pairwise divergence. B: Plot of autosomal

heterozygosity against the X-to-autosome heterozygosity ratio, showing the reduction in this
ratio in non-Africans and Pygmies. C: Estimate of Neanderthal ancestry with a heatmap
scale of 0—3%. D: Estimate of Denisovan ancestry with a heatmap scale of 0-0.5% to bring
out subtle differences in mainland Eurasia (Oceanian groups with as much as 5% Denisovan
ancestry are saturated in bright red).
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Figure 2. Cross-coalescence rates and effective population sizes for selected population pairs
A-C: Cross-coalescence rates as a function of time in thousands of years ago (kya)

estimated using MSMC, with four haplotypes per pair. In each subfigure legend, we give the
point estimate of the date at which 25%, 50% and 75% of lineages in the pair of populations
have coalesced into a common ancestral population. We generated these plots using data
phased with the 1000 Genomes reference panel (method PS1 described in supplementary
information section 9), but only show pairs of populations for which the cross-coalescence
rates are relatively insensitive to the phasing approach. A: Selected African cross-
coalescence rates. B: Central African rainforest hunter-gatherer cross-coalescence rates. C:
Ancient non-African cross coalescence rates. D—F: Effective population sizes inferred using
PSMC, using one diploid genome per population, for the same populations that we used in

A-C.
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Figure 3. Present-day populations have negligible ancestry from an early dispersal of modern
humans out of Africa

Best-fitting admixture graph model of relationships among Australians, New Guineans,
Andamanese and other diverse populations. Present-day populations are shown in blue,
ancient samples in red, and select inferred ancestral nodes in green. Dotted lines indicate
admixture events, all of which involve archaic humans fAthatistic relationships are
accurately fit to within 2.1 standard errors. (Inset) Results of adding putative early dispersal
admixture to the graph model for different assumptions about when the early lineage split
off. We specify the split time in terms of the genetic drift above the "Non-African" node,
with 0.01 units of drift representing on the order of ten thousand years. The (approximate)

Nature Author manuscript; available in PMC 2017 March 21.



1duosnuey Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Mallick et al.

Page 23

model likelihood is maximized with zero early dispersal ancestry, and no more than a few
percent is consistent with the data.
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