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Abstract

We report the Simons Genome Diversity Project (SGDP) dataset: high quality genomes from 300 

individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs 

that are not present in the human reference genome. Our analysis reveals key features of the 

landscape of human genome variation, including that the rate of accumulation of mutations has 

accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the 

ancestors of some pairs of present-day human populations were substantially separated by 100,000 

years ago, well before the archaeologically attested onset of behavioral modernity. We also 

demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial 

ancestry from an early dispersal of modern humans; instead, their modern human ancestry is 

consistent with coming from the same source as that in other non-Africans.

To obtain a complete picture of human diversity, it is necessary to sequence the genomes of 

many individuals from diverse locations. To date, the largest whole-genome sequencing 

survey, the 1000 Genomes Project, analyzed 26 populations of European, East Asian, South 

Asian, American, and sub-Saharan African ancestry1. However, this and most other 

sequencing studies have focused on demographically large populations. Such studies tend to 
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ignore smaller populations that are also important for understanding human diversity. In 

addition, many of these studies have sequenced genomes to only 4–6-fold coverage. Here, 

we report the Simons Genome Diversity Project (SGDP): deep genome sequences of 300 

individuals from 142 populations chosen to span much of human genetic, linguistic, and 

cultural variation (Supplementary Data Table 1).

Data set and catalog of novel variants

We sequenced the samples to an average coverage of 43-fold (range 34–83 fold) at Illumina 

Ltd.; almost all samples (278) were prepared using the same PCR-free library preparation2. 

We aligned reads to the human reference genome hs37d5/hg19 using BWA-MEM 

(BWA-0.7.12)3 (Supplementary Information section 1). We genotyped each sample 

separately using the Genome Analysis Toolkit (GATK)4, with a modification to eliminate 

bias toward genotypes matching the reference (Supplementary Information section 1). We 

developed a filtering procedure that generates a sample-specific mask. At “filter level 1” 

which we recommend for most analyses, we retain an average of 2.13 Gb of sequence per 

sample and identify 34.4 million single nucleotide polymorphisms (SNPs) and 2.1 million 

insertion/deletion polymorphisms (indels) (Supplementary Information section 2). We have 

made the GATK-processed data available in a file small enough to download by FTP, along 

with software to analyze these data (Supplementary Information section 3). The SGDP 

dataset highlights the incompleteness of current catalogs of human variation, with the 

fraction of heterozygous positions not discovered by the 1000 Genomes Project being 11% 

in the KhoeSan and 5% in New Guineans and Australians (Extended Data Fig. 1; 

Supplementary Data Table 1). We used FermiKit5 to map short reads against each other, 

store the assemblies in a compressed form that retains all the information required for 

polymorphism discovery and analysis, and identified SNPs by comparing against the human 

reference. We find that FermiKit has comparable sensitivity and specificity to GATK for 

SNP discovery and genotyping, and is more accurate for indels (Supplementary Information 

section 4). FermiKit also identified 5.8 Mb of contigs that are present in the SGDP but 

absent in the human reference genome presumably because they are deleted there; these 

contigs which we have made publicly available can be used as “decoys” to improve read 

mapping (Supplementary Information section 5). Finally, we called copy number variants6 

and used lobSTR7,8 to genotype 1.6 million short tandem repeats (STRs) (Supplementary 

Information section 6). The high quality of the STR genotypes (r2=0.92 to capillary 

sequencing calls) is evident from their accurate reconstruction of population relationships, 

even for difficult-to-genotype mononucleotide repeats (Extended Data Fig. 2).

The structure of human genetic diversity

To obtain an overview of population relationships, we carried out ADMIXTURE9 (Extended 

Data Fig. 3) and principal component analysis10 (Extended Data Fig. 4a). We also built 

neighbor-joining trees based on pairwise divergence per nucleotide (Fig. 1a) and FST 

(Extended Data Fig. 4b) whose topologies are consistent with previous findings that the 

deepest splits among human populations are among Africans. We computed heterozygosity 

– the proportion of diallelic genotypes per base pair – and recapitulate previous findings that 

the highest genetic diversity is found in sub-Saharan Africa and that there is a much lower 
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ratio of X-to-autosome diversity in non-Africans than in Africans (Fig. 1b)11. A surprise is 

that African “Pygmy” hunter-gatherers have reduced X-to-autosome diversity ratios relative 

to all other sub-Saharan Africans. This pattern remains even after we remove the third of 

chromosome X known to be subject to the strongest natural selection, suggesting that the 

finding is driven by demographic history rather than by natural selection (Supplementary 

Information section 7). It has been suggested that the reduced X-to-autosome heterozygosity 

ratio in non-Africans is due to ongoing male-driven admixture11,12. Male non-Pygmy 

admixture into Pygmies is well-documented13,14, so this process could explain these 

findings.

Comparisons of ancient to present-day human genomes have shown that all non-Africans 

today possess Neanderthal ancestry15 with more in eastern non-Africans16,17, and that 

Australo-Melanesians and to a lesser extent other eastern non-Africans possess Denisovan 

ancestry18–20. However, these studies only analyzed genomes from a handful of populations. 

We computed statistics informative about Neanderthal and Denisovan ancestry and provide a 

fine-scale view of these ancestry distributions worldwide (Fig. 1c,d; Supp. Data Table 1; 

Supplementary Information section 8). We do not detect any population with a higher 

proportion of Neanderthal ancestry than is present in East Asians. However, we do find 

suggestive evidence of an excess of Denisovan ancestry in some South Asians compared to 

other Eurasians. This signal may not have been detected before because earlier surveys of 

archaic introgression largely excluded South Asians (Fig. 1d; Supp. Data Table 1).

The time course of human population separation

We studied demographic history by leveraging the fact that variation across the genome in 

divergent sites per base pair can be used to reconstruct population size changes and 

separations. We used the Pairwise Sequential Markovian Coalescent (PSMC)21 to 

reconstruct population size changes ,and the multiple sequentially Markovian coalescent22 

(MSMC) to study the time course of population separations. We infer that the population 

ancestral to all present day humans began to develop substructure at least two hundred 

thousand years ago (kya), which is most apparent when comparing the ancestors of some 

present-day African hunter-gatherers (southern African KhoeSan and central African Mbuti 

Pygmies) and other populations (Fig. 2a). However, it is also clear that this substructure 

developed slowly, as all pairs of present-day populations including African hunter-gatherer 

share a substantial subset of their ancestors as recently as a hundred thousand years 

ago23–26. Quoting the time at which MSMC infers that more than 50% (25–75%) of lineages 

for a pair of populations are descended from the same ancestral population, we estimate that 

non-Africans separated substantially from KhoeSan 131 (82–173) kya and almost as 

anciently from the Mbuti around 112 (67–171) kya. Within Africa (Fig. 2a–b), we infer that 

the Yoruba separated substantially from the KhoeSan 87 (58–120) kya; from the Mbuti 56 

(32–85) kya; and from the Dinka 19 (9–25) kya. We estimate a relatively rapid 21 (21–36) 

kya separation of northern and southern KhoeSan24,27 potentially reflecting isolation since 

the last glacial maximum; and 38 (27–44) kya separation between western (Biaka) and 

eastern (Mbuti) Pygmies, confirming very old substructure between these two central 

African hunter gatherer groups28. Outside Africa, the most ancient structure dates to around 

50 kya (Fig. 2c) during or shortly after the deepest part of the shared non-African bottleneck 
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40–60 kya, consistent with the archaeological evidence of the dispersal of modern humans 

into Eurasia during this period. We are not confident about the estimates of the date of 

separation of Australians, New Guineans and Andamanese from other populations because 

we find that these inferences change depending on the computational method we use for 

phasing, likely due to these populations not being represented in the 1000 Genomes haploid 

genome reference panel (Supplementary Information section 9). We caution that the date 

estimates also do not take into account uncertainty about the true value of the human 

mutation rate, which could plausibly be 30% higher or lower than the point estimate we 

use29.

Early modern human dispersals contributed little to non-African 

populations

There is intense debate about whether present-day Australians, New Guineans and Asian 

“Negrito” populations are descended from the same source population as mainland 

Eurasians, or whether they also derive some ancestry from an early, independent dispersal of 

modern humans into Asia30–32. To explore this scenario rigorously, we fit an admixture 

graph33—a phylogenetic tree incorporating mixture events—to the allele frequency 

correlations among Neanderthals, Denisovans, Upper Paleolithic Europeans, East Asians, 

New Guineans, Australians, and Andamanese. We obtain a good fit to the data if we include 

known Neanderthal and Denisovan introgression and model all modern human ancestry in 

New Guineans, Australians and Andamanese as part of an eastern clade together with 

mainland East Asians (Supplementary Information section 11; Fig. 3). Furthermore, when 

we manually introduce a deeply diverging modern human lineage contributing ancestry to 

Australians, New Guineans, and Andamanese (or when we repeat the analysis in a model 

without Andamanese), no position or proportion of the deep lineage improves the fit. If this 

putative source population branched off the main lineage leading to non-Africans more than 

about 10–20 ky prior to the separation of European and East Asian ancestors, we obtain an 

upper bound of a few percent for the possible contribution to Australians and New Guineans 

(Fig. 3 inset; Supplementary Information section 11). These results are at odds with an 

inference of substantial early dispersal ancestry in a previous analysis of an Australian 

genome32; however, that study used a less complete model that, notably, did not include the 

known Denisovan admixture into Australo-Melanesians18. The findings for Australians are 

also unlikely to be due to some unusual feature of the individuals we sequenced, as when we 

compared three different Australian samples for which there is published genome-wide data, 

they are all consistent with descending from a common homogeneous population since 

separation from New Guineans (Supplementary Information section 10). These results are 

not in conflict with skeletal and archaeological evidence of an early modern human presence 

outside of Africa30,34, as early migrations could have occurred but not contributed 

substantially to present-day populations. The possibility of populations that once flourished 

but did not contribute substantially to living groups is especially plausible now that ancient 

DNA from the ~45 kya Ust’-Ishim29 and the ~40 kya Oase 1 individuals35 has documented 

directly their existence.
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More mutation accumulation in non-Africans than in Africans

The SGDP data provide an opportunity to compare the rates at which mutations have 

accumulated across populations. We restricted our analyses to samples for which our 

genotypes are likely to be most reliable (this included restricting to samples which were all 

processed in the same way), and we used the highest level of filtering (“level 9”) 

(Supplementary Information section 7). We pooled samples by region to increase power, and 

for all pairs of regions, computed the expected number of positions where, if we picked a 

random chromosome from both, region A would mismatch chimpanzee and region B would 

be identical to chimpanzee (or vice versa). If the rate of accumulation of mutation has been 

the same since the two populations diverged, these numbers are expected to be equal36. 

However, when we compute the ratio of mutations on one lineage or the other since 

separation, we find a subtle (average of 0.5%) but significant excess of mutations in non-

Africans relative to sub-Saharan Africans (3.3<|Z|<9.4 standard errors from zero; Extended 

Data Table 1). Because any difference must reflect events since non-African / African 

population divergence which is a less than a tenth of average genetic divergence (Fig. 2a), 

this implies a greater difference in mutation accumulation rates since population divergence 

(~5%). We were concerned that these results might be biased by the fact that the human 

genome reference sequence is more closely related to non-Africans than to Africans, or by 

higher levels of heterozygosity in Africans, as both these issues could make detection of 

divergent sites in Africans more difficult. However, we replicated the findings after 

remapping to chimpanzee, which is equally distant to all present populations, and after 

restricting analyses to the X chromosome in males (males only have a single X 

chromosome, and so this procedure avoids bias due to different error rates in detecting 

heterozygous genotypes in populations with different rates of heterozygosity) (Extended 

Data Fig. 5). These observations are most likely to be explained by acceleration in the rate of 

mutation accumulation in non-Africans, since the same signal appears in comparisons to 

sub-Saharan Africans related in different ways to non-Africans (Extended Data Table 1). It 

is known that the rate of CCT>CTT mutations differs across human populations. However, 

this particular mutation class was found to be enriched relative to Africans in Europeans but 

not in East Asians, and thus cannot explain our signal37. One of several possible 

explanations for these findings is a decrease in the generation interval in non-Africans 

compared to Africans since separation38.

No evidence for species-wide sweeps since the origin of anatomically 

modern humans

We finally used the SGDP dataset to address the hypothesis that the widespread appearance 

of modern human behavior in the archaeological record after ~50 kya was driven by one or a 

few changes in neurological genes that swept through the population shortly before this 

time39. We first applied the 3P-CLR method40 to search for locations in the genome with 

low allele frequency differentiation between KhoeSan and other modern humans, combined 

with high differentiation between modern and archaic (Neanderthal and Denisovan) humans, 

as might be expected from a selective sweep in the ancestors of all modern humans 

(Supplementary Information section 12) (Extended Data Figure 6). We found no strong 
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outlier signals, although a caveat is that our scan has imperfect power and we could not 

apply it to filtered sections of the genome. We also applied the PSMC method21 to estimate 

the average time since the most recent common ancestor (TMRCA) of individuals’ two 

chromosomes in the genomic regions within the largest 3P-CLR peaks (38 peaks 

corresponding the top 0.1%). In none of the regions did we find that the great majority of all 

pairs of modern humans are inferred to share a common ancestor <100 kya, as would be 

expected for a sweep just prior to ~50 kya years ago (Supplementary Data Table 2).

As a second approach to scanning for species-wide selective sweeps, we applied the PSMC 

to infer TMRCA for SGDP samples across the entire genome. This analysis found no 

regions where the great majority of pairs of human genomes are inferred to share a common 

ancestor <100 kya (the largest fraction seen anywhere in the genome is 68%; Extended Data 

Fig. 7).

Taken together, these results do not rule out the possibility that genetic changes played a 

meaningful role in the changes in human behaviors after 50 kya; for example, changing 

selection can produce shifts in the frequencies of pre-existing mutations to bring a 

population to a new and advantageous set-point for a phenotype as occurred in the case of 

height differences between northern and southern Europeans41. For polygenic selection, 

however, genetics is not the creative force, but instead is responding to selection pressures 

imposed by new environmental conditions or lifestyles. Thus, our results provide evidence 

against a model in which one or a few mutations were responsible for the rapid 

developments in human behavior in the last 50 kya. Instead, changes in lifestyles due to 

cultural innovation or exposure to new environments are likely to have been the ultimate 

driving forces behind the rapid transformations in human behavior that became evident after 

50 ky42,43.
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Extended Data

Extended Data Figure 1. Heatmap of fraction of heterozygous sites missed in the 1000 Genomes 
Project
For each sample, we examine all heterozygous sites passing filter level 1, and compute the 

fraction included as known polymorphisms in the 1000 Genomes Project.
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Extended Data Figure 2. Worldwide variation in human short tandem repeats
A: Mean STR length is reported as the average of the length difference (in base pairs) from 

the GRCh37 reference for each genotype. Bubble area scales with the number of calls 

compared at each point. B: and C: show the first two principal components after performing 

principal component analysis on tetranucleotide and homopolymer genotypes, respectively. 

Colors represent the region of origin of each sample. D: Pairwise FST values between 

populations computed using only SNPs vs. using combined SNP+STR loci. E: Block 

jackknife standard errors for the SNP vs. SNP+STR FST analysis. The red dashed lines give 

the best-fit line, described by the formula in red. The black dashed line denotes the diagonal.
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Extended Data Figure 3. ADMIXTURE analysis
We carried out unsupervised ADMIXTURE 1.239,44 analysis over the 300 SGDP 

individuals in 20 replicates with randomly chosen initial seeds, varying the number of 

ancestral populations between K=2 and K=12 and using default 5-fold cross-validation (--cv 

flag). We used genotypes of at least filter level 1, and restricted analysis to sites where at 

least two individuals carried the variant allele (as singleton variants are non-informative for 

population clustering). After further filtering sites with at least 99% completeness and 

performing linkage-disequilibrium based pruning in PLINK 1.945,46 with parameters (--

indep-pairwise 1000 100 0.2), a total of 482,515 single nucleotide polymorphisms remained. 

This figure shows the highest likelihood replicate for each value of K. We found that log 

likelihood monotonically increases with K, while the value K=5 minimizes cross-validation 

error (not shown). The solution at K=5 corresponds to major continental groups (Sub-

Saharan Africans, Oceanians, East Asians, Native Americans, and West Eurasians), but we 

show the full range of K here as they illustrate finer-scale population structure that may be 

useful to users of the data.
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Extended Data Figure 4. Principal component analysis and neighbor joining tree
A: Principal component analysis. B: Neighbor-joining tree based on FST values for all 

populations with at least two samples.
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Extended Data Figure 5. Fewer accumulated mutations in Africans than in non-Africans 
confirmed by mapping to chimpanzee
We compute a statistic D(Population A, Population B, Chimp), measuring the difference in 

the rate of matching to chimpanzee in Population A compared to Population B. The 

evidence of mismatching to chimpanzee is seen when we restrict to the male X chromosome 

to eliminate possible effects due to differences in heterozygosity across populations, and 

map to the chimpanzee genome which is phylogenetically symmetrically related to all 

present-day humans. We find that in 78 randomly chosen Population A = African and 

Population B = non-African pairs of males, transversion substitutions show no consistent 

skew from zero, but transition substitutions do.
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Extended Data Figure 6. 3P-CLR scan for positive selection
The red line denotes the 99.9% quantile cutoff. The genes in the top 5 regions are labeled. A: 

Scan for selection on the San terminal branch. B: Scan for selection on the non-San terminal 

branch. C: Scan for selection on the ancestral modern human branch.
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Extended Data Figure 7. Scan for genomic locations where the great majority of present-day 
humans share a recent common ancestor
We carried out PSMC analysis on 40 pairs of haploid genomes chosen to sample some of the 

most deeply divergent present-day human lineages. We recorded the time since the most 

recent common ancestor (TMRCA) at each position, and rescaled to obtain an estimate of 

absolute time (Supplementary Information section 12). A: Distribution across the genome of 

the fraction of TMRCAs below specified date cutoffs. For the 100 kya cutoff, the maximum 

fraction observed anywhere in the genome is 68%. B: Distribution across the genome of the 
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date T at which specified fractions of sample pairs are inferred to have a TMRCA less than 

T. C: Percentile points of the cumulative distribution function of B.

Extended Data Table 1

Fewer accumulated mutations in Africans than in non-Africans.

All
autosomes

All X
chromosome

Lowest B
quintile

Highest B
quintile

Population A Population B D×100 Z D×100 Z D×100 Z D×100 Z

Khoesan Oceania −0.35 −8.2 −0.70 −2.7 −0.68 −6.4 −0.14 −1.7

Africa America −0.33 −9.4 −0.73 −2.8 −0.65 −7.3 −0.18 −2.6

Khoesan WestEurasia −0.30 −7.5 −0.68 −3.1 −0.63 −6.3 −0.17 −2.1

Africa Oceania −0.29 −8.5 −0.66 −3.2 −0.55 −6.6 −0.07 −1.0

Africa WestEurasia −0.25 −8.5 −0.66 −3.1 −0.49 −6.4 −0.11 −1.8

Khoesan SouthAsia −0.24 −6.0 −0.56 −2.7 −0.61 −6.3 −0.11 −1.4

Africa EastAsia −0.20 −6.6 −0.65 −2.5 −0.42 −5.2 −0.10 −1.5

Africa CentralAsiaSiberia −0.20 −6.2 −0.55 −2.2 −0.48 −6.3 −0.05 −0.7

Pygmy WestEurasia −0.19 −4.8 −0.46 −1.4 −0.43 −4.6 −0.04 −0.5

Africa SouthAsia −0.18 −6.4 −0.50 −2.0 −0.46 −6.3 −0.03 −0.5

CentralAsiaSiberia Oceania −0.13−3.9 −0.15 −0.6 −0.09 −1.1 −0.03 −0.4

Pygmy SouthAsia −0.13 −3.3 −0.38 −1.1 −0.38 −4.2 0.02 0.2

EastAsia Oceania −0.13 −4.1 0.00 0.0 −0.17 −2.1 0.04 0.6

Khoesan Pygmy −0.10 −2.6 −0.14 −0.4 −0.16 −1.6 −0.12 −1.5

SouthAsia WestEurasia −0.08−4.3 −0.20 −1.2 −0.05 −1.0 −0.10 −2.7

CentralAsiaSiberia WestEurasia −0.06 −2.2 −0.16 −0.8 −0.01 −0.2 −0.09 −1.6

EastAsia WestEurasia −0.06 −2.1 −0.00 −0.0 −0.08 −1.0 −0.02 −0.3

CentralAsiaSiberia EastAsia −0.00 −0.2 −0.18 −1.1 0.07 1.2 −0.08 −1.8

Africa Pygmy −0.00 −0.1 −0.06 −0.2 0.03 0.4 −0.06 −0.8

EastAsia SouthAsia 0.02 0.7 0.22 1.7 −0.04 −0.7 0.08 1.7

CentralAsiaSiberia SouthAsia 0.02 0.7 0.05 0.3 0.02 0.4 −0.00 −0.0

America Oceania 0.03 0.9 0.11 0.4 0.10 1.1 0.13 1.7

Oceania WestEurasia 0.08 2.3 −0.03 −0.1 0.10 1.1 −0.04 −0.6

Africa Khoesan 0.10 2.9 0.17 0.7 0.23 2.6 0.07 1.0

America WestEurasia 0.11 3.6 0.11 0.4 0.19 2.2 0.08 1.3

CentralAsiaSiberia Pygmy 0.14 3.4 0.32 0.9 0.43 4.5 −0.04 −0.4

Oceania SouthAsia 0.14 4.8 0.22 0.9 0.13 1.7 0.04 0.7

EastAsia Pygmy 0.15 3.6 0.49 1.4 0.37 3.9 0.04 0.5

America EastAsia 0.18 5.9 0.09 0.3 0.28 3.6 0.11 1.8

America CentralAsiaSiberia 0.18 6.2 0.34 1.7 0.23 2.9 0.18 3.1

America SouthAsia 0.18 6.4 0.34 1.5 0.22 3.0 0.18 3.1

Oceania Pygmy 0.24 5.4 0.46 1.3 0.45 4.6 0.02 0.2

CentralAsiaSiberia Khoesan 0.25 6.0 0.57 2.9 0.64 6.3 0.09 1.1

EastAsia Khoesan 0.25 6.2 0.68 3.2 0.59 5.9 0.14 1.7

America Pygmy 0.26 5.9 0.58 1.6 0.58 5.7 0.09 1.0

America Khoesan 0.37 8.7 0.76 3.3 0.77 7.3 0.22 2.5
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We compute a statistic D(Population A, Population B, Chimp), measuring the difference in the rate of matching to 
chimpanzee in Population A compared to Population B. For all the autosomes, we observe highly significant signals (3.3<|
Z|<9.4) of excess mismatching to chimpanzee in non-Africans compared to Africans, using a standard error from a Block 
Jackknife. We highlight |D|>0.002 in blue, and |Z|>3 in yellow. The deviations from zero are greatest in subsets of the 
genome where the time since two populations split comprises a relatively larger fraction of the total genetic divergence time 
between the populations; this is the direction expected from a mutation accumulation change since divergence. Compared 
to all the autosomes as a baseline, a least squares fit indicate that the deviations are 2.2-times higher on chromosome X, 2.0 
times higher in the quintile of lowest B-statistic (closest to functionally important regions), and 0.43 times as high in the 
quintile of lowest B-statistic (furthest from functional regions).
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Figure 1. Genetic variation in the SGDP
A: Neighbor-joining tree of relationships based on pairwise divergence. B: Plot of autosomal 

heterozygosity against the X-to-autosome heterozygosity ratio, showing the reduction in this 

ratio in non-Africans and Pygmies. C: Estimate of Neanderthal ancestry with a heatmap 

scale of 0–3%. D: Estimate of Denisovan ancestry with a heatmap scale of 0–0.5% to bring 

out subtle differences in mainland Eurasia (Oceanian groups with as much as 5% Denisovan 

ancestry are saturated in bright red).
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Figure 2. Cross-coalescence rates and effective population sizes for selected population pairs
A–C: Cross-coalescence rates as a function of time in thousands of years ago (kya) 

estimated using MSMC, with four haplotypes per pair. In each subfigure legend, we give the 

point estimate of the date at which 25%, 50% and 75% of lineages in the pair of populations 

have coalesced into a common ancestral population. We generated these plots using data 

phased with the 1000 Genomes reference panel (method PS1 described in supplementary 

information section 9), but only show pairs of populations for which the cross-coalescence 

rates are relatively insensitive to the phasing approach. A: Selected African cross-

coalescence rates. B: Central African rainforest hunter-gatherer cross-coalescence rates. C: 

Ancient non-African cross coalescence rates. D–F: Effective population sizes inferred using 

PSMC, using one diploid genome per population, for the same populations that we used in 

A–C.
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Figure 3. Present-day populations have negligible ancestry from an early dispersal of modern 
humans out of Africa
Best-fitting admixture graph model of relationships among Australians, New Guineans, 

Andamanese and other diverse populations. Present-day populations are shown in blue, 

ancient samples in red, and select inferred ancestral nodes in green. Dotted lines indicate 

admixture events, all of which involve archaic humans. All f-statistic relationships are 

accurately fit to within 2.1 standard errors. (Inset) Results of adding putative early dispersal 

admixture to the graph model for different assumptions about when the early lineage split 

off. We specify the split time in terms of the genetic drift above the "Non-African" node, 

with 0.01 units of drift representing on the order of ten thousand years. The (approximate) 
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model likelihood is maximized with zero early dispersal ancestry, and no more than a few 

percent is consistent with the data.
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