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Edwardsiella ictaluri (E. ictaluri), a Gram-negative, intracellular, facultative bacterium, is

the causative agent of enteric septicemia of catfish (ESC), which is one of the most

significant diseases of farmed channel catfish. Macrophages have a critical role in major

defense mechanisms against bacterial infections by migrating to the site of infection,

engulfing and killing pathogens, and priming adaptive immune responses. Vaccination

of catfish with E. ictaluri live attenuated vaccine (LAV) strains increased the efficiency of

phagocytosis and bacterial killing in catfish peritoneal macrophages compared in vitro

with macrophages from non-vaccinated fish. Recently, our group developed several

protective LAV strains from E. ictaluri. However, their effects on the antigen uptake

and bacterial killing in catfish macrophages have not been evaluated. In this study,

we assessed the phagocytic and bactericidal activity of peritoneal macrophages in the

uptake of E. ictaluri wild-type (WT) and two LAV strains. We found that phagocytosis

of LAV strains was significantly higher compared to their WT counterpart in peritoneal

macrophages. Moreover, the uptake of E. ictaluri opsonized with sera from vaccinated

catfish was more efficient than when opsonized with sera from sham-vaccinated

fish. Notably, catfish macrophages did not lose their phagocytic properties at 4◦C,

as described previously in mammalian and zebrafish models. Also, opsonization of

E. ictaluri with inactivated sera from vaccinated and sham-vaccinated catfish decreased

significantly phagocytic uptake of bacteria at 32◦C, and virtually suppressed endocytosis

at 4◦C, suggesting the important role of complement-dependent mechanisms in catfish

macrophage phagocytosis. In conclusion, our data on enhanced phagocytic capacity

and effective killing ability in macrophages of vaccine strains suggested the LAVs’

advantage if processed and presented in the form of peptides to specific lymphocytes of

an adaptive immune system and emphasize the importance of macrophage-mediated

immunity against ESC. Furthermore, we showed the role of complement-dependent

mechanisms in the phagocytic uptakes of E. ictaluri in catfish peritoneal macrophages

at 4 and 32◦C. Finally, LAV vaccine-induced bacterial phagocytosis and killing properties

of peritoneal macrophages emphasized the importance of the innate immune responses

in ESC.
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INTRODUCTION

Edwardsiella ictaluri, a Gram-negative, intracellular, facultative
bacterium, is the causative agent of ESC, which is one of the
most significant diseases of farmed channel catfish (Hawke et al.,
1981; Miyazaki and Plumb, 1985; Wagner et al., 2006; Zhang and
Arias, 2007). Klesius and Shoemaker (1999) developed amodified
live E. ictaluri vaccine against ESC (commercialized later as
Aquavac-ESC) that stimulated protective immunity delivered by
bath immertion in juvenile catfish. Subsequent immersion studies
showed effective protection in catfish fry, fingerlings, and eyed
catfish eggs (Shoemaker et al., 1999, 2002, 2007;Wise et al., 2000),
which also demonstrated that E. ictaluri LAVs induced cell-
mediated immunity to protect catfish against ESC (Shoemaker
and Klesius, 1997; Ellis, 1999) because E. ictaluri could survive
and replicate in channel catfish macrophages (Booth et al., 2006).
Furthermore, vaccination of catfish with LAVs resulted in the
specific antibodies production that enhanced the bactericidal
activity of macrophages (Shoemaker and Klesius, 1997).

Macrophages are professional phagocytes that have multiple
functions in different species including immunity, inflammation,
and tissue repair (Godwin et al., 2013). New evidence has
accumulated on the progenitors of adult tissue resident
macrophages, embryonic macrophages (Schulz et al., 2012;
Hashimoto et al., 2013; Epelman et al., 2014; Hoeffel et al.,
2015; Sheng et al., 2015). Professional phagocytes, including
macrophages, in fish have a significant role in major defense
mechanisms against bacterial infections as these cells can migrate
to the site of infection and engulf and kill pathogens (Secombes
and Fletcher, 1992; Esteban et al., 2015). Multiple studies
documented strong phagocytic capability and bactericidal activity
of anterior kidney macrophages against intracellular pathogens
including parasites, yeast, and bacteria (Bennani et al., 1995;
Dieter and Katharina, 1997; Esteban et al., 1998; Muñoz et al.,
2000; Qiu et al., 2016). Importantly, macrophages are present
normally in the peritoneal cavity of fish; therefore, the peritoneal
macrophage approach has been documented well for in vitro
immunologic studies in catfish (Jenkins and Klesius, 1998).
Collection of peritoneal macrophages is relatively easy and
does not require special isolation and purification procedures
(Jenkins and Klesius, 1998). Moreover, phagocytes response to IP
inflammation is easily observed and measured both qualitatively
and quantitatively (Silva et al., 1989).

Peritoneal macrophages from sea bass had significantly
greater phagocytic activity against bacteria, such as Escherichia
coli and Salmonella enterica serovar Typhimurium, than did
monocytes and macrophages from blood and anterior kidney,
respectively (Esteban and Meseguer, 1997). Furthermore, a
higher number of phagocytosed bacteria was observed in
macrophages than other phagocytic cells in the peritoneal cavity
of sea bass (Do Vale et al., 2002). Phagocytosis of Yersinia
ruckeri in peritoneal macrophages was significantly greater

Abbreviations: APCs, antigen-presenting cells; BHI, brain heart infusion; CCD,
cytochalasin D; CCMM, Channel Catfish Macrophage Medium; CR, complement
receptor; E. ictaluri, Edwardsiella ictaluri; ESC, enteric septicemia of catfish; HI,
heat-inactivated; IN, intact serum; IP, intraperitoneal; LAV, live attenuated vaccine;
MFI, mean fluorescence intensity; SPF, specific pathogen free; WT, wild-type.

compared to the phagocytic activity of neutrophils in rainbow
trout (Oncorhynchus mykiss) (António et al., 1998). Winter
flounder (Pleuronectes americanus) peritoneal macrophages were
capable of engulfing formalin-fixed bacteria (Y. ruckeri and
Bacillus cereus) after a short exposure (Bodammer and Robohm,
1996). The phagocytic and microbicidal activity of peritoneal
macrophages were described in rohu (Labeo rohita) and walking
catfish (Clarias batrachus) (Mamnur Rashid et al., 2002; Awasthi
et al., 2015). Shoemaker et al. (1997) evaluated the role of
peritoneal macrophages in immunity to ESC after infection
with live E. ictaluri. Phagocytic and bactericidal activity was
significantly greater in macrophages from fish immunized with
AL-93-75 compared to their counterparts from pathogen-free
susceptible fingerling catfish (Russo et al., 2009). Interestingly,
opsonization of E. ictaluri with immune serum significantly
enhanced the killing ability of macrophages from susceptible fish
(Shoemaker et al., 1997; Russo et al., 2009).

One of the major manifestations of immunological autophagy
is the destruction and elimination of invading pathogens (Deretic
et al., 2013; Mizumura et al., 2014). Recently, autophagy has
been described in fish (van der Vaart et al., 2012; Yabu et al.,
2012; García-Valtanen et al., 2014). Engulfment of microbial
prey as part of autophagy is initiated at the plasma membrane
of the macrophage where a vast repertoire of phagocytic
receptors, in particular, CRs, recognize the bacterial surface
directly or indirectly through deposition of serum opsonins
such as IgG or the complement protein C3b (Herre et al.,
2004; Patel and Harrison, 2008). Complement activation is
a tightly regulated process that may proceed through three
distinct pathways: the alternative pathway, classical pathway,
and the lectin-dependent pathway. However, each pathway
converges on the complement protein C3b to generate the
bioactive components C3a and C3b (Merle et al., 2015). Similar
to higher vertebrates, the complement system in teleost fish
can be activated through all three pathways and shows many
effector functions identified in mammalian complement system,
such as opsonization, anaphylatoxic leukocyte stimulation, and
target cell killing (Holland and Lambris, 2002; Nakao et al.,
2011). However, some complement components in teleost fish
are present in multiple active isoforms, in particular the key
complement component, C3, is present in several isoforms
produced by different genes (Sunyer et al., 1996, 1997; Nakao
et al., 2000; Boshra et al., 2006). In addition, catalytic residues of
proteins of complement are different in teleost fish (Nakao and
Yano, 1998). Furthermore, unlike in mammals, fish complement
components are active at low temperatures and show higher
magnitude providing broader recognition of foreign substances
in fish (Sunyer and Tort, 1995; Sunyer and Lambris, 1998; Boshra
et al., 2006). It is well documented that opsonization of bacteria
with serum proteins and fixation of complement are formidable
barriers that must be overcome to establish infection (Flannagan
et al., 2015). Whereas the specific signaling molecules can vary,
the requirement for actin remodeling in the engulfment process
is absolute (Greenberg et al., 1991; Tse et al., 2003). The lumen of
phagolysosome is an inhospitable environment for intracellular
pathogens (Flannagan et al., 2015). Lysosomal proteases that
display a range of functions that shape the cellular immune
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response in macrophages, antimicrobial effectors that promote
killing of phagocytosed pathogens through direct proteolytic
attacks (Muller et al., 2014), and other active substances
comprise part of the macrophages antimicrobial arsenal that
exerts microbicidal effects by compromising directly bacterial
membranes or promoting the production of immunomodulatory
compounds (Weinrauch et al., 1996; Wu et al., 2010).

Recently, our research group has determined that evpB gene
in the Type VI secretion system (T6SS) operon is differentially
regulated during in vitro iron-restricted conditions (Dumpala
et al., 2015). We constructed Ei1evpB strain by in-frame
deletion of evpB gene and found that E. ictaluri is completely
attenuated in catfish fingerlings and fry. Vaccination with
Ei1evpB did not cause mortality in fingerlings (100% survival)
and low 3–4% mortality in fry catfish after WT E. ictaluri
challenge (Nho et al., 2017). Our finding corroborated an
earlier study showing that evpB plays a key role in E. tarda
pathogenesis (Zheng and Leung, 2007). Furthermore, our
laboratory reported that genes encoded tricarboxylic acid cycle
(sdhCfrdA) and one-carbon metabolism (gcvP) were essential
for E. ictaluri virulence (Dahal et al., 2013). Similarly, we
introduced an in-frame deletion of glycine dehydrogenase
(gcvP), succinate dehydrogenase (sdhC), and fumarate reductase
(frdA) genes in E. ictaluri 93–146 strain and named it
as ESC-NDKL1 (Ei1gcvP1sdhC1frdA) (Nho et al., 2017).
Vaccination of catfish fingerlings with ESC-NDKL1 showed
similar 100% survival rates as Ei1evpB, however, challenge
of fry with ESC-NDKL1 showed moderatly elevated 3–4%
mortality rates (Nho et al., 2017). The purpose of our study
was to compare the phagocytic and bacterial killing activity of
channel catfish peritoneal macrophages against E. ictaluri WT
and two LAV strains in the presence of sera obtained from
vaccinated fish. Increased phagocytic capacity and killing ability
of macrophages against opsonized LAV strains will support the
importance of macrophage-mediated immunity against ESC in
catfish.

MATERIALS AND METHODS

Animals
The fish hatchery at the College of Veterinary Medicine,
Mississippi State University, provided SPF channel catfish,
which were maintained at 25–28◦C. All fish experiments were
performed based on a protocol approved by the Mississippi
State University Institutional Animal Care and Use Committee
(IACUC). Tricaine methanesulfonate (MS-222, Western,
Chemical, Inc.) was used to sedate (100 mg/ml) and euthanize
(400 mg/ml) the catfish. Samples were obtained as described
below.

Cell Harvesting
Channel catfish (250–300 g) were used in this study. Peritoneal
macrophages were harvested as described previously as a simple
reliable method to obtain tissue resident macrophages that
displayed high oxygen production and phagocytic ability (Jenkins
and Klesius, 1998). Briefly, 1 ml squalene (Sigma–Aldrich,

St. Louis, MO, United States) was injected IP in sedated catfish.
After 4 days of injection, catfish were sedated, the peritoneal area
wiped with 70% ethanol, and cold, sterile phosphate-buffered
saline (PBS) injected IP via a three-way valve attached to a
syringe, 18-gauge needle, and Tygon tubing. The valve was then
closed, the fish’s abdominal region was massaged gently, and a
cell suspension collected into a centrifuge tube placed on ice.
Additional cold PBS was injected into the peritoneal cavity until
IP fluid was clear.

Bacterial Strains and Opsonization
Bacterial strains used in this work are listed in Table 1. E. ictaluri
93–146 WT strain and vaccine strains were cultured in BHI
agar or broth (Difco, Sparks, MD, United States) and incubated
throughout the study at 30◦C. Each vaccine strain was labeled
with bioluminescence by transferring pAKgfplux1 from an E. coli
donor strain (SM10λpir) by conjugation as described previously
(Karsi and Lawrence, 2007). When required, media were
supplemented with following antibiotics and reagents; ampicillin
(Amp: 100 mg/ml), and colistin sulfate (Col: 12.5 mg/ml,
Sigma–Aldrich, St. Louis, MN, United States).

Overnight cultures of E. ictaluri and vaccine strains were
grown and prepared as described above, followed by two PBS
washes before opsonizationwith channel catfish serum for 30min
at room temperature. Opsonized bacteria were then used for
antigen uptake and infection experiments.

Fish Vaccination and Serum Collection
A total of 100 SPF channel catfish fingerlings (6-month-old) with
fully developed innate and adaptive immune systems (Patrie-
Hanson and Ainsworth, 1999; Petrie-Hanson and Ainsworth,
2001; Rombout et al., 2005; Zapata et al., 2006) were stocked
into four 40-L tanks (25 fish per tank) with a continuous
water flow and aeration. Tanks were assigned randomly to
Ei1evpB, ESC-NDKL1, E. ictaluri WT (positive control), and
sham-vaccinated (negative control) groups. The fish were fed
twice daily and acclimatized for 1 week. The water temperature
was maintained at 24–26◦C throughout the trial. After a week
of acclimation, fish were exposed Ei1evpB, ESC-NDKL1, and
WT E. ictaluri 93–146 by immersion challenge as described
previously (Abdelhamed et al., 2013). Briefly, 100 ml of
overnight cultures were added to 10 L water to yield infection
dose of approximately 3.67 × 107 CFU/ml of water. The
negative control group was immersion challenged with BHI
broth.

TABLE 1 | Bacterial strains and plasmids.

Bacterial strain Description Reference

Edwardsiella

ictaluri Strain

93–146

WT; pEI1+; pEI2+; Colr;

pAKgfplux1

Lawrence et al., 1997

ESC-Ei1evpB 93–146 derivative; 1evpB;

pAKgfplux1

Dr. Attila Karsi Mississippi

State University

ESC-NDKL1 93–146 derivative;

1gcvP1sdhC1mdh;

pAKgfplux1

Dr. Mark Lawrence

Mississippi State University
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Blood samples were collected from caudal vein of 10 fish at
14 and 21 days post-infection and were allowed to coagulate
overnight at 4◦C. Serum was obtained by centrifugation at
8000 rpm for 10 min.

Phagocytosis and Flow Cytometry
Harvested cells were washed three times in PBS at 2000 rpm
for 10 min at 24◦C and resuspended in CCMM, which included
RPMI [(RPMI 1640 sans phenol red and L-glutamine, (0.407 mM
magnesium sulfate and 0.424 mM calcium nitrate) Lonza,
Walkersville, MD, United States) containing 1× glutamine
substitute (GlutaMAX-I CTS, Gibco, Invitrogen Corporation,
Carlsbad, CA, United States)], 15 mMHEPES buffer (GIBCO), in
0.18% sodium bicarbonate solution (GIBCO), 0.05 mM 2-beta-
mercaptoethanol (all from Sigma Chemical Co., St. Louis, MO,
United States), and 5% HI pooled channel catfish serum. Cells
were counted using a hemocytometer and trypan blue exclusion.
Cell suspension was transferred into a 6-well plate (Fisher
Scientific, Pittsburgh, PA, United States), and the phagocytic
capacities of peritoneal macrophages were determined by
addition of GFP transformed bacterial strains in 1: 50 ratio
and incubated at 32 (active uptake) and 4◦C (background
levels of endocytosis, negative control) for 2 h in the dark.
Following incubation, cells were harvested with cell scrapers
(Fisher Scientific, Pittsburgh, PA, United States), and washed
three times by centrifugation in cold PBS and analyzed using
FACSCalibur (Becton Dickinson), as follows. After setting a
gate on large granular cells, the LAVs incorporation was
measured and analyzed by using FlowJo 7.6.4 Software (Tree
Star Inc.). To inhibit actin formation selectively, catfish
macrophages were incubated for 10 min in the presence of
CCD (2.5 µg/ml, Sigma–Aldrich, St. Louis, MO, United States)
before the addition of LAVs bacterial strains (Watts and
Marsh, 1992). To determine differences between treatments,
MFI of engulfed bacteria in catfish peritoneal macrophages
was analyzed using single histogram and overlay histogram
statistics.

Cytospin and Light Microscopy
Peritoneal macrophages were incubated in the dark with GFP-
labeled WT E. ictaluri and LAVs at 32 and 4◦C for 2 h. Cells were
then harvested, washed, and the cytospin preparations applied
at 500 rpm for 1 min with a Cyto-Tek centrifuge machine. All
samples were fixed and stained with Wright’s stain (Hemacolor,
Merck) as described (Do Vale et al., 2002), analyzed, and
then photographed with Olympus BX60 microscope (Olympus
U-TV1 X) and Infinity software.

Bacterial Killing Assay
The bacterial killing assay was performed as described previously
with some modifications (Booth et al., 2006; Russo et al., 2009).
Briefly, harvested peritoneal macrophages were washed with
PBS by centrifugation, resuspended in CCMM, and transferred
to 96-well plates. WT strain and LAVs were added to catfish
macrophages in 1:1 ratio followed by centrifugation at 1500 rpm
for 5 min at 24◦C to compact cells and bacteria and then
incubated at 32◦C for 1 h. After incubation, plates were

centrifuged at 2000 rpm for 7–10 min, and supernatants
removed. Next, cell pellets were resuspended in CCMM
containing 100 µg/ml gentamicin (Gibco, Life Technologies,
Grand Island, NY, United States) to kill extracellular bacteria,
incubated at 32◦C for 1 h, and washed by centrifugation
in PBS. After washing, plates were incubated at 32◦C for
10 and 24 h in CCMM containing 10 µg/ml gentamycin.
For each time point, colony-counting method was performed,
as follows. Macrophages were lysed with 1× Triton X-
100 (Sigma, St. Louis, MO, United States), as described
(Russo et al., 2009). Lysed macrophages were diluted in PBS
and plated on a selective medium, and incubated at 32◦C
for 48 h.

Statistical Analysis
The significance of the differences betweenmeans was established
by one-way ANOVA and two-way ANOVA procedures with
Tukey’s test in SAS for Windows 9.4 (SAS Institute Inc., Cary,
NC, United States) to evaluate differences in MFIs. The level of
significance for all tests was set at P < 0.05.

RESULTS

Active Phagocytic Uptake of E. ictaluri

LAVs in Peritoneal Macrophages
In this study, we evaluated endocytic uptake of E. ictaluri and
the LAV strains in catfish peritoneal macrophages (Figure 1).
To ensure active phagocytosis in macrophages, we measured
the uptake of the GFP-labeled bacteria at 32◦C and background
endocytosis levels at 4◦C. Also, we assessed the intensity of
phagocytosis in peritoneal macrophages pre-incubated with the
phagocytosis inhibitor, CCD (Figures 1A,B). The phagocytic
intensity levels of both LAV strains at 32◦C were significantly
higher compared to the endocytosis of WT E. ictaluri in catfish
peritoneal macrophages (Figure 1B). However, the uptake of
Ei1evpB showed a significant increase compared to its ESC-
NDKL counterpart (Figure 1B). Significant decreases but not
the complete inhibition of uptake of LAVs and WT E. ictaluri
were evident in the presence of actin formation inhibitor CCD
(Figure 1B) and at 4◦C (data not shown). In conclusion,
active uptake of LAV strains was significantly higher compared
to their WT counterpart in peritoneal macrophages at both
temperatures.

The engulfed intracellular WT and the LAV strains were
evident in catfish peritoneal macrophages at both 32 and 4◦C
temperatures assessed, confirming our previous observation that
catfish peritoneal macrophages did not lose their phagocytic
properties at 4◦C (Figure 2). In summary, our data showed
the significant increases in bacterial uptake at 32◦C compared
to 4◦C, the inhibitory effects of CCD, and the presence
of engulfed intracellular bacteria demonstrated an active
uptake of WT and LAVs in catfish peritoneal macrophages.
Furthermore, both LAVs were taken more vigorously by
macrophages compared to their WT counterpart, suggesting the
LAVs advantage for elimination and/or processing for antigen
presentation.
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FIGURE 1 | Active phagocytic uptake of Ei1evpB and ESC-NDKL1 strains in catfish peritoneal macrophages. (A) Original flow data by using overlay histogram

statistics: Black line histograms indicate uptake of the LAVs and WT strains at 32◦C. Gray histograms indicate antigen uptake in the presence of CCD at 32◦C.

(B) Statistical analysis of the phagocytic uptake mean of fluorescent intensity (MFI). Black filled columns in the graph show MFI of LAVs and WT strains uptake at

32◦C. Gray filled columns show MFI of antigen uptake in the presence of CCD at 32◦C. The data represent the mean of MFI of macrophage phagocytic uptake from

five fish ± SD. The letters (a,b,c,d) show the significant differences between treatments (P < 0.05).

Active Uptake of E. ictaluri Opsonized
with the LAVs-Induced Immune Sera in
Peritoneal Macrophages
Opsonization of WT E. ictaluri with sera from fingerlings
vaccinated with both LAVs and non-vaccinated control was
applied to determine the protective effect of antibodies
and complement on E. ictaluri phagocytosis in peritoneal
macrophages. The MFI of phagocytosis of WT E. ictaluri
opsonized with intact (IN) and HI sera from vaccinated and
control catfish was assessed by flow cytometry (Figure 3).
We found significant group- and treatment-related differences
in the intensity of phagocytic uptake of WT E. ictaluri
compared to LAV’s induced phagocytosis in catfish peritoneal
macrophages. Namely, peritoneal macrophages had increased
significantly higher uptake of opsonized bacteria compared to
the non-opsonized E. ictaluri (data not shown). Phagocytosis
of WT E. ictaluri opsonized with ESC-NDKL1-derived serum
was increased significantly compared to the Ei1evpB, and IN
serum-opsonized bacteria and did not differ from the uptake

of WT E. ictaluri opsonized the WT-derived serum (Figure 3).
Additionally, we found significant increases in phagocytosis
of opsonized bacteria at 4◦C showing similar patterns to the
increases at 32◦C (Figure 4). These patterns of uptake at 4◦C,
however, had significantly less phagocytic activity compared
to phagocytosis occurring at 32◦C (Figure 3). As expected,
our results indicated that E. ictaluri opsonized with sera from
vaccinated fish were taken by peritoneal macrophages more
efficiently compared to the bacterium opsonized with sera
from control animals, suggesting an important role of humoral
responses at the early step of E. ictaluri antigen presentation.

Active Uptake of E. ictaluri Opsonized
with the LAVs-Induced Heat-Inactivated
Immune Sera
Opsonization of WT E. ictaluri with HI sera from fingerlings
vaccinated with both LAVs and non-vaccinated controls was
utilized to determine the effect of complement on E. ictaluri
phagocytosis in peritoneal macrophages. E. ictaluri opsonized
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FIGURE 2 | Active uptake of ESC vaccine strains in catfish peritoneal macrophages shown by light microscopy. The column on the left shows phagocytosis of

E. ictaluri strains at 32◦C, and the right column shows phagocytosis E. ictaluri strains at 4◦C. Arrows indicate intracellular, engulfed bacterial cells in the cytoplasm

and phagosomes of peritoneal macrophages.

FIGURE 3 | Active uptake of E. ictaluri LAVs opsonized with IN and HI sera

from challenged fingerlings in catfish peritoneal macrophages at 32◦C.

Ei1evpB and ESC-NDKL1S indicate serum of vaccinated fish with Ei1evpB

and ESC-NDKL1, respectively; WS indicates serum from fish challenged with

WT, and NS indicates serum from control fish. a,bPresence of letters on top of

bars indicates group differences in uptakes with bars with different letters

being different from each other and from bars without a letter designation

(P < 0.05). ∗ Indicates treatment differences in the uptakes (P < 0.05).
∧+ Indicate group differences in the uptakes (P < 0.05). The data represent

the mean of MFI of macrophage phagocytic uptake from five fish ± SD.

with complement-inactivated sera derived from normal and ESC-
NDKL-challenged fingerlings was phagocytosed at significantly
lower rates compared to the bacteria treated with Ei1evpB

and WT treatment derived sera (Figure 3). There were no
significant differences in the intensity of phagocytic uptake of
bacteria treated with HI Ei1evpB and WT sera (Figure 3).
Significant increases in the levels of phagocytosis were evident
in all E. ictaluri treatment groups compared to the uptake of
untreated bacterial cells (data not shown). However, inactivation
of complement did not affect the uptake of WT serum opsonized
E. ictaluri in peritoneal macrophages (Figure 3). Our results
showed clearly that active uptakes of E. ictaluri and LAVs
candidates in catfish peritoneal macrophages at 32◦C were
mediated through the complement-dependent pathway.

We assessed phagocytic activity in catfish peritoneal
macrophages exposed to WT E. ictaluri treated with IN
and HI sera obtained from the challenged and control fish at
4◦C (Figure 4). Phagocytic uptake of bacteria opsonized with
sera obtained from fish challenged with both LAVs did not show
significant differences. However, they did express significant
increases compared to E. ictaluri opsonized in the presence
of HI sera from challenged and control fish (Figure 4). As
expected, phagocytosis of E. ictaluri opsonized with sera from
control animals was significantly lower compared to the uptake
of bacteria opsonized with sera from all challenged fish groups
(Figure 4). Notably, phagocytosis in peritoneal macrophages
exposed to E. ictaluri opsonized with HI sera obtained from
the challenged and control fish showed dramatically decreased
background levels of phagocytic activity (Figure 4). These
results indicate strongly that complement was a crucial role in

Frontiers in Microbiology | www.frontiersin.org 6 January 2018 | Volume 8 | Article 2638

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


Kordon et al. LAVs-Induced Function of Catfish Macrophages

FIGURE 4 | Active uptake of E. ictaluri LAVs opsonized with IN and HI sera

from challenged fingerlings in catfish peritoneal macrophages at 4◦C.
a,b,cPresence of letters on top of bars indicates treatment differences in the

uptakes with bars with different letters being different from each other and

from bars without a letter designation (P < 0.05). ∗ Indicates treatment

differences in the uptakes (P < 0.05). The data represent the mean of MFI of

macrophage phagocytic uptake from five fish ± SD.

FIGURE 5 | Bacterial killing of E. ictaluri LAVs opsonized with sera from

challenged fingerlings in catfish peritoneal macrophages. Black columns

indicate the colony numbers at 0 h, and gray columns indicate the colony

numbers at 10 h, dark gray color columns indicate the colony numbers after

24 h of in vitro infection. a,bPresence of letters on top of bars indicates group

differences in the uptakes with bars with different letters being different from

each other and from bars without a letter designation (P < 0.05). The data

represent the mean of MFI of macrophage phagocytic uptake from five

fish ± SD.

phagocytosis of E. ictaluri and LAVs candidates by peritoneal
macrophages.

Macrophages Killing of E. ictaluri

Opsonized with the LAVs-Induced
Immune Sera
To examine how effective peritoneal macrophages are at
destroying ingested bacteria, we performed the bacterial killing
assay with E. ictaluri opsonized with IN sera from fish challenged
with E. ictaluri LAVs, the WT strain, and control non-vaccinated
fish (Figure 5). Initial numbers of colonies in all groups
exposed to E. ictaluri did not show significant differences.
However, the bacteria-killing capacity of peritoneal macrophages

exposed to non-opsonized WT E. ictaluri was significantly lower
compared to their counterparts treated with opsonized bacteria
(Figure 5). No significant differences in killing capacity were
evident in macrophages exposed to E. ictaluri treated with
control, WT, or LAV-challenged fish derived sera following 10 h
exposure (Figure 5). Numbers of bacterial colonies did not differ
significantly in all experimental groups exposed to opsonized
E. ictaluri 24 h after infection. However, consistent numerical
increases in numbers of colonies were evident in peritoneal
macrophages exposed to theWT strain, E. ictaluri opsonized with
sera derived from control, and the WT-infected fish compared
to their counterparts treated with bacteria opsonized with both
LAVs-induced immune sera (Figure 5). The virtually absent
bacterial colonies in peritoneal macrophages exposed to the
sera from fish challenged with E. ictaluri LAVs indicated that
peritoneal macrophages efficiently killed LAVs strains after 24 h
of in vitro infection. No bacterial colonies were evident in the
negative control of uninfected macrophages (Figure 5). The use
of HI sera in the bacterial killing assay, in general, showed the
patterns that did not differ significantly from IN serum–treated
bacteria (data not shown).

DISCUSSION

Recent studies show that monocytes and macrophages are
potent APCs that prime naïve T cells, and initiate adaptive
cellular and humoral immune responses (Sakaguchi et al., 1995,
1996; Asano et al., 1996). Phagocytosis, which depends on
membrane–cytoskeleton interactions, is an important step that
mediates innate immune recognition by professional antigen
presenting cells (APCs) and triggers adaptive immune responses
(Sakaguchi et al., 1995). The current research aimed to assess the
phagocytic and bactericidal activity of peritoneal macrophages
in the uptake of WT E. ictaluri and two LAV candidate strains.
Our conclusions agree with those of multiple studies that
document strong phagocytic capability and bactericidal activity
of peritoneal macrophages against intracellular pathogens
(Esteban and Meseguer, 1997; António et al., 1998; Do Vale
et al., 2002; Awasthi et al., 2015). We documented enhanced
vaccine strains phagocytic capacity and effective bacterial killing
ability of catfish peritoneal macrophages in vitro. Interestingly,
the intensity of Ei1evpB LAV pahgocytic uptake was significantly
higher compared to the ESC-NDKL1 LAV uptake in catfish
peritoneal macrophages suggesting its advantage to be destroyed
and processed into peptides by the APCs compared to ESC-
NDKL1 LAV strain. Our previous report showed that catfish
fry vaccinated with ESC-NDKL1 had higher mortality rates
compared to the fry vaccinated with in Ei1evp LAV in E. ictaluri
challenge (Nho et al., 2017). However, more research should
be done to establish the necessary mechanistic framework for
the LAV-dependent pathogenesis in catfish fry and fingerlings.
Several earlier reports in humans and other mammals showed
high-intensity antigen uptake at 37◦C and low background levels
of endocytosis at 4◦C in professional APCs (Boyd et al., 2004;
Ammari et al., 2014). Hohn et al. (2009) confirmed the data
obtained in the mammalian studies on the low background
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levels of E. ictaluri phagocytosis at 4◦C by using zebrafish
anterior kidney/monocyte/macrophage/granulocyte phagocytes.
However, contrary to the data derived from mammals, optimal
conditions of antigen uptake in fish professional APCs are
not well described yet. In contrast to previous observations,
we report that active bacterial uptake in catfish peritoneal
macrophages was detected at 32 and 4◦C with significantly
higher intensity at 32◦C. Differences from earlier observations in
our study regarding the intensity of active phagocytosis at 4◦C
could be due to several factors. First, there are phenotypic and
functional differences between species in particular macrophages,
and between APCs. Second, there are some fish species-specific
differences in APC functions. Finally, monocytes, macrophages,
and other professional phagocytes differ in the antigen uptake
capacity due to their different locations and functions.

Importantly, our data agree with and contribute to the
previous report that phagocytosis of LAV strains and WT
E. ictaluri at 32◦C was inhibited significantly in the presence
of the actin formation inhibitor CCD, suggesting active uptake
of E. ictaluri strains in catfish peritoneal macrophages (Hohn
et al., 2009; Ammari et al., 2014). In particular, similar results
were obtained with the uptake of WT E. ictaluri in the presence
of CCD by zebrafish kidney phagocytes in the presence of
CCD (Hohn et al., 2009). Also, a recent study showed that
endocytosis of FITC-OVA in bovine monocytes was decreased
significantly in the presence of CCD (Tomoda et al., 1989).
In addition to the significantly increased intensity of bacterial
phagocytosis at 32◦C and substantial inhibitory effect of CCD
on the endocytic uptake, we demonstrated the presence of
engulfed intracellular bacteria in the cytoplasm and phagosomes
of peritoneal macrophages, thus confirming the active endocytic
mechanisms of WT E. ictaluri and LAVs in catfish APCs.
Furthermore, both LAVs were endocytosed more vigorously
by peritoneal macrophages compared to their WT counterpart
suggesting the LAVs advantage to be processed and presented in
the form of peptides to specific lymphocytes, and subsequently
destroyed.

Phagocytosis is a receptor-mediated process, and these
receptors are classified into two groups: non-opsonic receptors
(e.g., Dectin-1 and CD36) and opsonic receptors (e.g., FcγRIIA
and Mac-1) (Araki et al., 1996; Schlam et al., 2015; Levin et al.,
2016). Non-opsonic receptors can recognize directly and bind to
chemical structures present on the surface of pathogens, whereas
opsonic receptors can recognize indirectly phagocytic targets
via binding to immunoglobulins (e.g., IgG) or complement
C3b (Flannagan et al., 2012; Levin et al., 2016). Opsonin
C3b molecules are generated by complement activation, bind
covalently to the pathogen surface to create a destruction by
phagocytes, which have receptors [e.g., CR1 (CD35) and CRIg]
for complement C3b protein (Erdei et al., 2016). In this study,
we assessed the role of complement and antibodies in active
uptake of E. ictaluri by peritoneal macrophages in catfish at
4 and 32◦C. As expected, our results indicated that E. ictaluri
opsonized with sera from vaccinated fish was endocytosed
by peritoneal macrophages more efficiently compared to the
bacteria opsonized with sera from control animals, suggesting
an important role of secondary humoral responses at an early

stage of LAVs antigen presentation. Our results agree with
previous reports on the enhanced phagocytosis of bacteria in
the presence of immune sera from vaccinated fish. Namely,
Russo et al. (2009) showed that opsonization of E. ictaluri with
serum from vaccinated fish augmented the in vitro phagocytic
ability of macrophages in catfish. Also, another study (Esteban
and Meseguer, 1997) reported that macrophages from sea bass
showed greater phagocytic activity against opsonized bacteria.
Recently, human monocyte-derived macrophages infected with
Francisella tularensis showed 40 times more phagocytic activity
in the presence of serum (Dai et al., 2013).

To confirm the significant contribution of complement-
dependent mechanisms in the phagocytosis of E. ictaluri, we
examined the uptake of the bacteria opsonized with HI sera
from fish vaccinated with ESC-LAVs. We reported significant
decreases in phagocytosis activity of peritoneal macrophages
at both temperatures, which suggest the importance of CR
ligation in E. ictaluri phagocytosis. Notably, the intensity of
bacterial endocytosis was reduced dramatically to virtually
background levels at 4◦C, suggesting that bacterial uptake in
catfish peritoneal macrophages at low temperatures, unlike
that at 32◦C, is predominantly CR-mediated. In contrast, the
increased phagocytic activity of bacteria opsonized with HI
WT serum in macrophages was evident at 32◦C, suggesting a
dominant role of the opsonic Fc receptors. Our findings are in
agreement with earlier reports on the role of complement opsonic
receptors in the endocytic activity of professional phagocytes.
Namely, phagocytic activity of rainbow trout macrophages
decreased significantly when Mycobacterium marine was treated
with HI serum (Shih-Chu et al., 1998). HT serum also suppressed
significantly phagocytosis of Staphylococcus aureus and zymosan
particles in human macrophages (Peterson et al., 1977; Shih-Chu
et al., 1998; Mankovich et al., 2013). Heat inactivation disturbs
the complement cascade and removes C3 opsonins thereby
decreasing phagocytic activity in monocyte-derived human
macrophages (Chan et al., 2001). Taken together, various data
indicate the importance of complement molecules engagement
for efficient phagocytosis of bacterial cells. Our results also
demonstrate that complement-mediated phagocytosis is
temperature dependent in catfish peritoneal macrophages. Our
data are in agreement with several previous observations that
complement system in teleost fish is functionally active at low
temperatures suggesting the enhanced complement-dependent
phagocytosis compared to the mammalian counterpart (Sunyer
and Tort, 1995; Sunyer and Lambris, 1998; Boshra et al., 2006).

Finally, we applied a bacterial killing assay to assess the
efficacy of the opsonized E. ictaluri destruction compared to
the killing ability of the non-opsonized WT bacterial strain. We
confirmed the previously reported observation by Shoemaker
et al. (1997) on the effective killing of opsonized E. ictaluri
by catfish peritoneal macrophages compared to the phagocytes
exposed to the non-opsonized WT strain. Our bacterial killing
data in peritoneal macrophages showed that the numbers of
bacterial colonies in peritoneal macrophages exposed to the
opsonized WT E. ictaluri were significantly reduced compared
to the phagocytes exposed to the non-opsonized WT strain
showing significant differences at time 10 h post-exposure.
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In our study, the intensity of the immune sera opsonized WT
E. ictaluri uptakes did not correlate with the bacterial uptake
in peritoneal macrophages, suggesting the different sensitivity
of the experimental approaches with active uptake by flow
cytometry being more sensitive. We supported the data on
active bacterial uptake in peritoneal macrophages by flow
cytometry with significant inhibition of phagocytosis in the
presence of actin formation inhibitor, CCD (1); significantly
decreased uptake at 4◦C compared to the uptake at 32◦C
(2), and finally, with the evidence of the internalized bacterial
strains by light microscopy. However, in order to assess the
bactericidal properties in professional phagocytes, we performed
bacterial killing assay. Absence of bacterial colonies in peritoneal
macrophages exposed to the sera from fish challenged with
E. ictaluri LAVs indicated that peritoneal macrophages efficiently
killed WT E. ictaluri strain after 24 h of in vitro infection.
Taken together, both approaches can provide valuable data
on phagocytic properties and effective killing properties in
professional phagocytes.

CONCLUSION

Efficacious E. ictaluri LAVs are expected to induce active antigen
uptake by phagocytosis and antigen presentation in catfish
APCs such that infected monocytes/macrophages can initiate
early activation of the innate immune system and acquired
immunity mediated by T and B cells. Our study demonstrated
that both vaccine candidates were endocytosed efficiently by
catfish peritoneal macrophages showing significant increases
in the intensity of uptake compared to their WT E. ictaluri
counterpart. Importantly, both LAVs induced humoral immunity
in the challenged fish resulting in significant increases in WT
E. ictaluri uptake and bacterial destruction in catfish peritoneal

macrophages in vitro. Our data on enhanced phagocytic capacity
and effective killing ability of macrophages against ESC vaccine
strains suggest the LAVs advantage to be processed and presented
in the form of peptides to the specific lymphocytes of the adaptive
immune system and support the importance of macrophage-
mediated immunity against ESC in catfish.
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