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Global warming has become the focus of attention of the international community, and the control of carbon dioxide emissions
has become one of the necessary choices for the development strategies of countries around the world. Cities are places where
carbon dioxide emissions are concentrated. The key to controlling carbon emissions is to control the carbon emissions of cities.
My country is currently in the process of rapid urbanization. Quantitative studies of the carbon cycle at the city level will help to
take stock of carbon dioxide emissions in cities. On the other hand, it is helpful to understand the status and role of the urban
carbon cycle in the process of the regional carbon cycle. Through the analysis and prediction of the elements influencing the
carbon cycle of smart cities, this paper first determines the factors affecting smart cities in the carbon cycle process as industrial
carbon emission strength factors, industrial structure effects, economic development factors, and population elements. It is found
that the major positive factors affecting the significant add of CO2 emissions in smart cities from 2010 to 2019 are economic
development factors and demographic factors, including economic development factors GDP/per capita GDP. The per capita
contribution to CO2 emissions is higher than the model established by adjusting the affecting elements of overall CO2 emissions,
except that the proportion of economic development factors in total CO2 emissions from 2013 to 2015 was lower than the increase
in total CO2 emissions. The comparison can better reflect the relation between CO2 emissions and influencing elements. The main
determinants affecting CO2 emissions are the expansion of the financial condition, the increase in the average daily population,
and the increase in construction work. The adaptation index is judged to be consistent, indicating that the model adjustment effect
is good; finally, the green computing in the smart city predicts the carbon cycle process, and the actual value trend line and the
predicted value trend line are not much different from the practical value, the forecast error is small, and the prediction results are
credible. Global warming has become the focus of attention of the international community, and carbon emission control has
become one of the necessary options in the development strategies of countries around the world. Cities are the places where
carbon emissions are concentrated. The key to controlling carbon emissions is to control urban carbon emissions. At present, my
country is in the process of rapid urbanization. Quantitative research on the carbon cycle at the city level will help to establish an
inventory accounting of urban carbon emissions. On the other hand, it is convenient to deeply understand the status and role of
the urban carbon cycle in the process of the regional carbon cycle.

geographically proximate, has the lowest cost of electricity,
and emits the least amount of carbon dioxide per request.

The cost of electricity varies from plant to plant, and each
plant emits a different amount of carbon for every certain
amount of electricity produced. Traffic for this infrastructure
service can come from anywhere in the world. Due to la-
tency, it is desirable to path traffic to the data center that is

Achieving all of these goals is not always possible, so the
network and compute modules of the base station have been
modeled as a figure and a proposed stratus system that uses
Voronoi partitioning to decide which data center should be
given to the cloud due to relatively priority communicate to
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the operator [1]. The purpose of load balancing is to reduce
resource consumption and reduce the consumption effi-
ciency required by cloud computing. This confirms the need
for new measures to balance energy efficiency, energy
consumption, and carbon emissions in the cloud. The article
discusses cloud load balancing techniques and further
compares them based on various parameters using the
different techniques considered such as performance, scal-
ability, and associated overhead. [2]. Green computing refers
to the practice of using computing resources more efficiently
while maintaining or improving overall performance. Sus-
tainable IT services require the integration of green IT
practices such as energy management, virtualization, im-
proved cooling technologies, recycling, e-waste disposal, and
IT infrastructure optimization to meet growth demands.
Recent research shows that IT departments can cover nearly
50% of a company’s total energy costs for electricity, review
the supporting IT literature, build interest, and identify a set
of core principles for designing sustainable IT services [3].
The advent of Mobile Cloud Computing (MCC) technology,
which enables mobile users to use cloud computing in an
environmentally friendly manner, is an effective strategy to
meet the needs of today’s industry. But, the limitations of
wireless network bandwidth and equipment bandwidth pose
some obstacles to the implementation of MCC which are
additional power consumption and delay. To solve this
problem, there is a dynamic mobile cloud computing
(DECM) model, which focuses on handling the extra power
consumption during wireless communication by using a
dynamic cloud-based model (DCL) and validates models by
simulating real-world scenarios and providing reliable
evaluation results. The first study addresses the problem of
energy waste in a dynamic network environment; second,
the proposed model provides direction and theoretical
support for future research [4]. One of the challenges of
cloud computing is frequent optimization of cloud servers,
mainly focusing on load balancing in cloud data centers to
improve host performance and reduce the number of active
hosts to support the concept of green computing for a fee. To
balance the weight of the data center, migration equipment
is required so that virtual machines can be migrated from an
overloaded army to a lighter army. This document provides
Threshold-Based Dynamic Balancing Optimization and
Algorithm (DCABA) for cloud servers. Unlike traditional
server optimization strategies that only trade off the scale
and balance of map resources used by CPU, RAM, and BW
on physical servers, DCABA also reduces the number of
active hosts that can reduce cloud service costs. The cost of
services in the cloud industry can be reduced through ef-
ficient use of available resources [5] and research of the law
of calculating carbon emissions based on the physico-
chemical stage. According to the characteristics of green
buildings, life cycle analysis (LCA) is used to quantitatively
analyze the CO2 emissions of buildings. Vensim (system
dynamics software package) is used to analyze the carbon
emissions in the physicochemical phase, identify the main
subsystems that affect carbon emissions, and extensively
consider the differences in carbon dioxide emissions of each
subsystem under different construction technologies. In the
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physical and chemical emissions trading mechanism, the
total amount of emissions trading remains unchanged, and
the market price of each subsystem is adjusted. In this case, it
is recommended to gradually increase the price calculation
coefficient. By introducing a pricing system, construction
companies are encouraged to use high-efficiency emission
reduction technologies; at the same time, the system is also
used to establish an emission rights trading system, which
accelerates the process of energy conservation and emission
reduction in China and the world [6]. An Integrated Sus-
tainable Waste Management System (IWMS) is now a
priority as it contributes to the EU 2020 strategic goals. New
web-based technologies can now be used to monitor,
manage, and analyze spatially distributed systems through
processes. There is an increasing focus on applying these
technologies to the production of systems and utilities to
provide flexibility and efficiency. The main objective of the
DSS is to reduce the net CO2 emissions from the IWMS, and
a comparative analysis of the improvement of independent
acquisitions of the entire IWMS was carried out using the
model in a medium-sized city in southern Italy. The results
in each case show a multiflow aggregation system for the dry
discontinuous and a single-flow circulation system for the
organic and glass sections. At the same time, various
combinations of methods and information were found in
both cases [7]. The carbon footprint of the global com-
munications network was estimated at 2% in 2007 and is
expected to increase to 4% by 2020. By choosing efficient and
environmentally friendly hardware and software, you can
reduce your carbon footprint, save money, and increase the
reuse of utility poles. A lot of research has been done around
the world to promote and optimize people’s productivity at
the industry level. With the goal of creating a sustainable
industry for future generations, reducing carbon dioxide
emissions, and developing sustainable energy, it is necessary
to measure, model, and predict the energy consumption of
institutions with different computing resources and re-
sources [8]. The planet is very sensitive to climate change,
and the impact of climate-related natural disasters will in-
crease. By 2050, nearly 70% of the world’s population will
live in cities, and climate flexibility policies will become
increasingly important. According to selected case studies,
energy efficiency, low-carbon green urban design, and as-
sessment of the impact of urbanization on the environment
and climate change are considered complementary tools for
addressing climate resilience. By combining climate-friendly
economic policies, sustainable cities, and traditional low-
carbon green approaches with climate-flexible and smart
city development, cheap carbon can deliver greater benefits
at lower prices [9]. This paper analyzes the CO2 emissions of
China’s secondary industry from 2000 to 2015 and uses CO2
emissions as the environmental impact assessment standard.
Research on the secondary industry shows that carbon
emissions account for a large proportion of total carbon
emissions, but the growth rate has slowed down. From the
stock model, the elastic carbon emission factor is estimated
by time series analysis, indicating that technology has a
significant impact on reducing energy intensity, that is,
reducing energy consumption per unit of added value will
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have a positive impact on reducing carbon emissions. The
GM secondary industry emission model (1.1) is used for
analysis and prediction from 2016 to 2020, to analyze the
growth links of CO2 emissions, and to provide a scientific
basis for economic decision-making [10]. Based on system
dynamics, environmental approaches, CO2 trends, CO2
concentrations, and temperature changes over the next 50
years are simulated using a macroscopic approach. Em-
pirical analysis finds that anthropogenic carbon dioxide
emissions are the main factor influencing these trends. The
results suggest that the proposed Paris Agreement could
achieve —3.2% CO2 reduction. From there, future global
carbon reductions and their investments are calculated and
described, and reports are provided to relevant authorities
on carbon reduction plans [11]. The response grey analysis
analyzes the relationship between Beijing’s economic
growth, energy consumption structure, industrial structure,
population size, urbanization and pollution intensity, and
carbon dioxide emissions from 2003 to 2012. If the relevant
factors remain at the current level, carbon dioxide emissions
will continue to increase in the future. Finally, significant
changes in industrialization structure, industrial density,
urbanization, economic development, population size and
corresponding factors, emission reduction measures, and
recommendations are presented [12]. Through correlation
and regression analysis, a comprehensive relationship be-
tween carbonate emissions and runoff factors was estab-
lished, and the main factors were successfully developed
from 16 preferred factors such as GDP, total population,
total energy consumption, and industrial production. Then,
the least-squares parameters of the support vector machine
are optimized using the subgroup algorithm. By using an
optimized predictive model, passenger aircraft parameter
selection overcomes the difficulties of least squares support,
increasing the overall speed of learning and investigation.
The results show that the accuracy of CO2 emission pre-
diction is indeed improved [13]. This paper takes Qingdao as
a research institution to discuss carbon footprint and its
factors affecting production, transportation, construction,
and total emissions. Based on the analysis of the relationship
between Qingdao’s populations, economy, industrial de-
mand, and carbon dioxide emissions, the globalization
theory is used to predict the trend of carbon dioxide
emissions under three different scenarios [14]. Based on
previous research, 12 factors affecting China’s construction
industry have been identified as being related to carbon
emissions. Taking the indicator data from 2000 to 2016 as an
example, the strong correlation effects of 8 factors are filtered
according to the initial grey relational analysis. The CO2
model combined with the BP neural network provides a
network prediction model for the Chinese construction
industry. Neural networks are used to predict CO2 drivers,
forecasting projected CO2 emissions from 2017 to 2020.
Research shows that sample predictions are consistent with
the situation itself, indicating that training the network
generically is effective. Some influencing factors appear to
have a large impact on building CO2 emissions and can be
used to predict building CO2 emissions. This predictive

model improves the training speed of neural networks and
provides a new tool for predicting CO2 emissions [15].

2. The Carbon Cycle Process of Smart Cities

2.1. Smart City Ecosystem. The urban ecosystem is mainly
composed of green plants and humans as producers, other
animal species and humans as consumers, various microor-
ganisms and small animals as decaying matter, and the
government and residents as security coordinators. As shown
in Figure 1, in the composition of the urban ecosystem,
governments at all levels and residents play an important role
in providing the structure, function, and service functions of
the urban ecosystem and are an important factor in ensuring
the harmonious development of the city. Of course, urban
ecosystems are different from natural ecosystems and have
obvious characteristics: First, urban ecosystems are ecosystems
with man-made environments as their main components. It is
people with human intelligence who create cities through
work, and the development of urban ecosystems is inseparable
from human control and behavior. In contrast to natural
ecosystems, the main organs of their living systems are
humans, not other animals, plants, and microorganisms.
Frequent human activities promote the well-being of urban
ecosystems but also alter the natural environment by con-
suming large amounts of energy and materials, making cities
the most polluted places. Second, the urban ecology is not
perfect. The natural ecosystems of cities are gradually being
replaced by artificial ecosystems. Animals, plants, and mi-
croorganisms in natural ecosystems have lost their natural
habitats to survive in cities, urban biomes are shrinking, and
urban ecosystems are severely flawed. The number of green
plants in the “producers” of urban ecosystems is decreasing,
and their role in cities has become to beautify the urban
landscape, purify the air, and reduce pollution. Third, the
urban ecosystem is an open, diverse, and dependent ecosys-
tem. The urban ecosystem cannot provide all the energy and
materials it needs, and the materials and energy produced by
producers are far from meeting the needs of consumers and
are completely dependent on the input of external systems.

2.2. Carbon Cycle Characteristics of Smart City Eco-economic
System. The carbon cycle process in the urban eco-eco-
nomic system is obviously different from that in the natural
ecosystem. Therefore, it is necessary to understand the
characteristics of the carbon cycle process in the green urban
economic system as a whole. As a complex and interde-
pendent socio-economic system, the carbon cycle in a green
urban economy is characterized by high complexity, un-
certainty, and spatiality. The main manifestations of het-
erogeneity are as follows: first, there is a large-scale carbon
exchange between the urban green economic system and the
outside world. Carbon cycle processes cover parts of the
urban footprint and even affect biogeochemical processes in
larger areas. The spatial extent of the impact depends pri-
marily on the city’s coal flow and transportation modes.
Secondly, the urban carbon cycle includes natural processes
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FIGURE 1: The main components of the smart city ecosystem.

and man-made processes, mainly man-made processes; the
carbon cycle of the artificial part of the city is mainly affected
by human factors while the carbon cycle of the natural part is
mainly driven by natural processes. The carbon cycle con-
sists of horizontal and vertical carbon flows. Among them,
the horizontal carbon flow is dominated by human-made
processes, and the vertical carbon flow includes both hu-
man-made and natural processes. Fourth, the carbon cycle
of the urban eco-economic system exhibits great spatial
heterogeneity. The intensity, quantity, and speed of urban
carbon flow depend on the type and level of urban social
development, urban function, industrial type, economic
structure, energy structure, and social factors such as energy
efficiency, human activities, and anthropogenic carbon
storage such as carbon storage in vegetation and soil and
carbon dioxide storage in public buildings and dwellings
(wood, furniture and carbon storage, books) as shown in
Figure 2.

(1) The urban ecological economic system has a huge
carbon exchange with the outside world, and the
spatial scope of its impact mainly depends on the
urban carbon metabolism flux and the mode of
transportation.

(2) The urban carbon cycle process includes natural
processes and man-made processes, with man-made
processes as the main process; the carbon cycle
process in the artificial part of the city is mainly
affected by human factors while the carbon cycle
process in the natural part is mainly controlled by
natural processes.

(3) The carbon cycle of the urban ecological economic
system includes two parts: horizontal and vertical
carbon flux.

(4) The carbon cycle of the urban ecological and eco-
nomic system has great spatial heterogeneity. The
intensity, scope, and rate of urban carbon flux de-
pend on the mode and level of urban social devel-
opment, urban functions, industrial types, economic
structure, and energy structure and energy social
factors such as usage efficiency.

(5) Affected by human activities, the urban ecological
economic system also has a certain anthropogenic
carbon pool, such as the carbon storage of urban
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green vegetation and soil and the carbon storage of
urban buildings and households.

2.3. The Impact of Smart Cities on the Carbon Cycle Process.
As a region where human economic activities are concen-
trated and fossil fuels are burned, the human economic
activities and energy consumption of cities lead to a large
amount of carbon dioxide emissions. Meanwhile, compared
with natural ecosystems, the carbon cycle of the urban green
economy is a complex system involving natural and an-
thropogenic processes, horizontal and vertical processes,
and economic and chemical processes. Due to gender and
spatial heterogeneity, urban carbon cycle processes are more
complex and diverse. So far, research on the carbon cycle has
mainly focused on natural ecosystems such as forests,
grasslands, and soils. From the perspective of human ac-
tivities affecting global climate change, urban systems are
undoubtedly one of the most important links in the global
carbon cycle. The effectiveness of the circulation mechanism
is directly related to the depth and magnitude of human
impacts on climate change. China is in a stage of rapid
economic development. With the acceleration of urbani-
zation in my country and the proliferation and expansion of
cities, the impact of the urban carbon cycle (especially an-
thropogenic carbon dioxide emissions) on global and re-
gional climate change is discussed. Studying the carbon cycle
process in China’s urban system can not only provide a
decision-making basis for formulating a national low-car-
bon city strategy but also provide new methods and ap-
proaches for reflecting and reimagining China’s urban
development model. This is a period of rapid industriali-
zation and urbanization, the economy is growing, but en-
vironmental concerns are of paramount importance. In
addition, heavy chemical cities, mainly metallurgy and
petrochemical, have a large demand for raw materials and
energy and are expected to emit high carbon dioxide
emissions. Therefore, in the process of economic develop-
ment, it is also faced with huge resource and environmental
constraints.

As a region where human economic activities are con-
centrated and fossil fuel burning is concentrated, urban
human economic activities and energy consumption have
brought a large amount of carbon emissions. It is in the
period of rapid industrialization and urbanization. The
economy is developed, but the environmental problems are
prominent. Moreover, cities with heavy chemical industries,
mainly metallurgical and petrochemical industries, have a
large demand for resources and energy and thus have a large
carbon emission expectation. Therefore, in the process of
economic development, it is also faced with huge resource
and environmental constraints.

2.4. Low-Carbon Development of Smart Cities. In recent
years, the global greenhouse effect caused by anthropogenic
carbon emissions has become a hot topic in the international
academic community and governments. China is one of the
world’s largest carbon dioxide emitters and faces enormous
pressure to reduce carbon emissions in international climate
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FIGURE 2: The relationship between the functions, patterns, and roles of smart city systems and carbon emissions.

negotiations. Therefore, reducing carbon dioxide emissions
and sustainable economic and social development have
become important topics in my country’s economic de-
velopment, and developing a low-carbon economy has
become an inevitable choice for the current economic and
social transformation. The first is to explain the connotation
of a low-carbon city, explain the concept of a low-carbon
city, and scientifically define the boundaries between urban
development and land and energy efficiency. The second is
to formulate a low-carbon city index quantification system
and evaluation standard based on the regional environ-
mental constraint index system and combine it with the
urban planning evaluation system. Third, scientific urban
planning is the first step in building a low-carbon city. Due
to the rigidity of urban planning in my country, it is difficult
to change urban planning once it is formulated and
implemented. Therefore, low-carbon urban planning and
design must ensure dynamic urban development, clean
environmental quality, and environmental comfort. Trans-
portation systems, green buildings, and clean and efficient
low-carbon energy can lead to a healthy and reasonable
lifestyle. Fourth, the industrial development of low-carbon
cities requires a low-carbon cycle. Cities are centers of
economic growth, and new industrial areas can stimulate
economic development and create jobs in cities. Establishing
a circular economy and clean manufacturing are the prin-
ciples and guidelines that should be followed in building a
low-carbon city. Fifth, build an environment-friendly
transportation system, advocate, and implement public
transportation and transportation-oriented transportation
methods. Transportation strategies for low-emission cities
can be implemented in two ways: controlling the number of
clean transportation trips, reducing carbon dioxide emis-
sions, and personal transportation. Sixth, upgrade green
buildings. Green building refers to maximizing resource
conservation (energy saving, soil protection, water source

protection, and material protection) throughout the entire
life cycle of a building, protecting the environment, reducing
pollution, and providing healthy, useful, and efficient spaces
that live in harmony with nature.

(1) It is necessary to clarify the connotation of low-
carbon city, define the concept of low-carbon city,
scientifically define the boundary of urban devel-
opment, and use land and energy efficiently.

(2) On the basis of the regional environment and re-
source constraints leading index system, establish a
quantitative low-carbon city index system and
evaluation standard and incorporate it into the urban
planning system and evaluation system.

(3) Scientific urban planning is the first step in building a
low-carbon city.

(4) The industrial layout of low-carbon cities should be
low-carbon and circular.

(5) Constructing a green transportation system, advo-
cating, and implementing public transportation
priority and leading transportation modes.

3. Green Computing Models

3.1. Problem Analysis. The layout and current state of the
virtual machine need to be considered when scheduling jobs
for the correct type of virtual machine. In the resource al-
location model, the predicted and control values of various
tasks are first obtained through appropriate prediction al-
gorithms and control strategies, and a reasonable initial
allocation of resources is made in combination with the
current distribution and status of various types of tasks. To
simplify problem analysis, the following reserved definitions
are created: for all sets of physical hosts:
<host; > = (host;, host,,---, host;, hosty) and sets of



virtual machines: <VM;> = (VM{,VM,,---
,VM;,---,VM,,), define an M XN state statistics matrix
Apixy- Element Ay in matrix a;; is defined as the total
number of virtual machines of type host; running on VM;.
The statistics matrix of the virtual machine is as follows.

Scheduling tasks to the corresponding type of virtual
machine needs to take into account the distribution and
current state of the virtual machine. In the resource allo-
cation model, the predicted and control values of various
tasks are first obtained through appropriate prediction al-
gorithms and control strategies, and a reasonable pre-
configuration of resources is made in combination with the
current distribution and status of the corresponding types of
virtual machines.

an - AN

Apn =| 1 @y sinti€{l,--, M}, je{l,---,N}

M, - ayy
(1)

For the set of all physical hosts: ¢host;) and the set of
task types: (task;), define the average speed matrix U -
Element u;; in the matrix is defined as the average speed at
which tasks of class task; are executed on host; (average
execution time is 1/u;;). The average rate matrix is as
follows:

Uy - WN
Upyun = : U yinmie{l,...,M},J€{l,...,N}L
Unpn UpmN
(2)
Start;, Start; 5
Starty;n = Start;; : ,
Starty, Starty,
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The overall quantity of physical main engine in the
bunch is N. For #n (n < N) running physical main engine, the
overall quantity of replicas of different types of fictitious
machines running on each physical main engine (hostj) is
q;> responsible for running their respective task types and
virtual machines in active/sleep state. Define the size of state
Ry to indicate whether a virtual machine (type V. M;) on the
physical host is performing the correct type of task, that is, as
follows:

1)
Ry = { 0
(3)

By analyzing the bunch status and allocation and their
corresponding VM types, combined with appropriate pre-
diction algorithms, appropriate premonitoring behaviors
can be performed, which can improve the utilization of
cloud computing platform resources, lower power depletion,
and improve actual performance simultaneously. Improve
system response and stability. The control behavior is now
defined as follows.

For the set of all physical hosts: (host]-) and the set of
virtual machines: V.M, define a power MxN on the control
matrix Start,, . Element Start;; in the matrix is defined as:
host; to Start;; starting from virtual machines of type V.M.
The open control matrix Start;; becomes the following
representation:

Isrunning
innie{l,...,Mhke{l,...,q;}
Inidle state

(4)

{ non — 0, Start Start;; virtual machines of type VM, on host;
Start;;
j

0, There is no need to start Start;; virtual machines of type V.M; onhost; .

For all physical main engine sets: ¢host;) and fictitious
machine type sets: V. M;, define a M x N shutdown control

Shut,, Shut, 5
Shut; i : R

Shut,,y

Shuty,, v =

Shut,,,

matrix Shut,, . An element Shut;; in the array is defined as
shutdown the virtual machine type on host;. The closing
stroke control matrix is expressed as follows:

(5)

{ non — 0, Close Start;; virtual machines of type V.M, on host;
Start;; =
j

0, There is no need to close Start;; virtual machines of type V.M; on host; .
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In the cloud computing system model proposed in this
chapter, for all sets of physical hosts: <host;) and VM;, the
overall quantity of fictitious machines that need to be
controlled to be shifted on or off during a certain resource
provisioning process is delimited as
respectively.

! /
yi,start’ Yishut

Vistart = ZStartU Vishut = ZShutl] (6)
j=1

3.2. Many Goals Constrained Majorization Model. From the
above discussion, it can be concluded that the power con-
sumption of a cloud computing platform mainly depends on
the quantity of powered main engine and fictitious ma-
chines, and frequent power on and oft will also cause huge
additional strength consumption. Thus, the energy depletion
of the cloud computing platform can be expressed as

E= E(n, )+E(AV AH). (7)

Below E(n,a;;) shows the stable power consumption
generated by the host and the driven virtual machine,
E(AV,AH) shows the additional control power consump-
tion caused by switching between the virtual machine and
the physical host, AV shows the control worth of the virtual
machine, and AH shows the control worth of the host.
Allocating the necessary resources to as few hosts as possible
improves energy efliciency and reduces power consumption.
In this chapter, you can disable and, if necessary, enable
redundancy when modifying virtual machines to improve
the overall energy efficiency of the bunch.

The useable resources of each physical main engine are
abstracted as a two-dimensional vector:
host;;: (MIPs;emm'n, Mem;emai"); MIPs;emain, and Mem;emai“ are
host;’s available CPU resources and available disk space, re-
spectively. A vector space analysis looks like this:

MIPpSTemain represents the available CPU resources to
host;, and Mem remain shows the memory airspace useable to
host

The host storage space (memory, mem) determines the
number of virtual machines that the host can run simulta-
neously, i.e., if there is not enough memory, no more virtual
machines can be started. The sum of the memory allocated to
all virtual machines cannot exceed the physical host’s memory
limit. Host CPU cores are shared by all virtual machines. This
chapter modifies the time-sharing policy kernel of virtual
machines to assign time slots to each virtual machine. All
virtual machines run at a CPU peak that does not exceed the
capacity of the host. This chapter uses MIPS (Million In-
structions Per Second) to measure CPU performance; the sum
of MIPS allocated to all virtual machines cannot exceed the
MIPS limit of the physical host CPU. Therefore, a two-di-
mensional vector is chosen: host] (MIPSremaln Mem?ema‘“) as
the source space of the physical host. Each virtual machine
also selects a two-dimensional vector: VM;: (mips;, men;) if
the demand for virtual machine resources, ie,
hostj: (MIPS;.emain, Memz.emai“), VM;: (mips;, men;). In
summary, the studied problem has been established as a

multicriteria optimization model with constraints, and its
mathematical form is as follows:

N
na) = Y o+

j=1

M
g; % p;’”] Xt,q; = Z“ij' (8)
in1

In Equation (8), E(n,a; j) shows the stable strength
consumption generated by activated main engine and fic-
titious machines, which is proportional to the total quantity
of activated main engine in cluster # and the sum of different
types of fictitious machines activated on each host.

E(n,a;;) represents the stable energy consumption
generated by the main engine and fictitious machines that
are turned on, which is proportional to the total quantity of
main engine # that are revolved on in the cluster and the
total quantity of fictitious machines that are turned on in
each host g;, p;“’“ and p7" represent the strength con-
sumption of the main engine host;, and each virtual machine
turned on requires increased power consumption.

N M
_ vmStart vsStart
E(AV,AH) = ) ) Start;; x Ap! x At
j=li=1
+ Z Z Shutl % Apvatart vsStart
j
j=1i=1 (9)

hostStart hostStart

+ Z A p;
hostShut hostShut

+ z A P;

In Equation (9), E(AV, AH) represents the extra control
power consumption caused by sw1tch1ng between the virtual
machine and the physical host, Z M Start;; x A p"““St"‘rt X
Atvsstart is equal to the extra control power consumptlon
cauised by the virtual machine opening process,
¥ i | Y, Shut;; x ApymSart x AFFS s equal to the extra
control power consumpt10n caused by the switching, and the
virtual machine shutdown process is generated;
YA phOStStart X Ath"“s“*rt is equal to the host that started the
process. The additional control power
YA ph"s‘Sh‘lt X At?"StSh“t produced is equal to the additional
control power produced by shutting down the host process.
ApymSart, AFSI A pumSart and AfSR represent the instant
startup performance of the virtual machine, the startup time
of the virtual machine, the instant shutdown performance of
the virtual machine, and the shutdown time of the virtual
machine on the host machine, AphoStrt, Aghostsart and
A p?”StSh”t, respectively, represent the instant startup of the
performance host, when the host was turned on or off.

AP}/mStart AtvsStart Apvatart’ and AtvsStart’ respectlvely,
represent the 1nstantaneous power of opemng the virtual
machine, the time of opening the virtual machine, the in-
stantaneous power of closing the virtual machine, and the
time of closing the virtual machine on the host host;;
ApjostStart AthostStart AP?OStShut and AthostShut represent the
instantaneous power of opening the host host;, the opening
time, the instantaneous power of closing the main engine,
and the time of closing the main engine, separately.



N
Z Startij = yi,star;' (10)

i=1

Constraint (10) states that the overall quantity of open
fictitious machines of the corresponding type is fair to the
quantity of open fictitious machines.

N
Z Shut;; = ¥; e (11)
i=1

Constraint (11) means that the total number of virtual
machines of the corresponding type to be shut down is equal
to the number of virtual machines to be shut down;

N
Z [Startij X memi] < Mem[™, (12)
i1

™M=

Il
—

[Start;; x mips; | < MIPS}™", (13)

1

Constraints (12) and (13), respectively, specify the
constraints on virtual machines by the available CPU and
Mem resources of physical hosts in the cluster.

3.3. Prognostication and Control. So as to enable resource
allocation to continuously satisfy the resource demands of
various tasks and avoid the problem that resource allocation
lags behind user requests, it is necessary to predict the arrivals
of various tasks in the next cycle. For different task types,
forecast periods, and application scenarios, different fore-
casting algorithms need to be selected, such as exponential
smoothing, period analysis, trend extrapolation, and Markov
forecasting models. This chapter adopts the cubic exponential
smoothing algorithm to predict the size of the corresponding
type of load. The small prediction period should depend on
the implementation time of the task, the algorithm time-
consuming, the power-on/off time of the physical host and
the virtual machine, and other factors. If the selected prog-
nostication period is too brief, it will have a great impact on
the stability of the system, and at the same time, it will increase
the cost of system control energy consumption. Cloud
computing service providers can reasonably choose the size of
the forecast period in the light of different situations.

Assuming that the system is currently in the kth cycle,
the predicted worth x!(k+1) of the k+1th cycle task is
expressed as

X (k+1) = @ (k) + b, (k) + & (k). (14)

The parameters a; (k), b; (k), and c; (k) are, respectively,
as follows:

aj (k) = 3p; (k) - 3p; (k) + 3p; (k),

b, (k) = (6 - 5a)p; —2(5—4a)p; (k) + (4 - 3a)p; (k)],

L[
2(1-a)? (15)

2

vy =2 00+ 9l )

=34

Computational Intelligence and Neuroscience

In the formula, p} (k) is the first smoothing value, p? (k)
is the second smoothing value, p? (k) is the third smoothing
value, and the calculation formula is as follows:

p (k) = ax; (k) + (1 —a)p; (k- 1), (16)
p; (k) = ax; (k) + (1 - a)p; (k- 1), (17)
P (k) = ax; (k) + (1 - a)p; (k- 1). (18)

Equations (16)-(18) are the first smoothing process, the
second smoothing process, and the third smoothing process
separately, where x; (k) is the practical workload value of the
task; task type in the kth cycle, which is the smoothing
coefficient, namely, between (0.1). To perform a cubic ex-
ponential smoothing method, pay attention to the choice of
primary values p} (0), p?(0), and p; (0). It can usually be
replaced by the average of the previous measurements, or it
can be replaced directly by the first cycle reading, which in
this chapter can be replaced by the first cycle reading. The
analysis shows that any smoothed predicted value is ob-
tained by correcting the original predicted value for the
prediction error. Size indicates the size of the correction. The
larger the value, the wider the correction range, and vice
versa.

4. Analysis and Prediction of the Influence
Factors of Green Computing on the Carbon
Cycle Process in Smart Cities

4.1. Analysis of Carbon Storage in Smart Cities. From the
view of the composition of carbon storage, smart city
carbon pools can be divided into two categories: natural
carbon pools and anthropogenic carbon pools, of which
natural carbon pools account for about 85% of the total
carbon stock, and anthropogenic carbon pools account for
a relatively small proportion, accounting for only 15%. It
can be found out from Figure 3 that the increase in overall
carbon storage is relatively slow, from 67.82 million tons in
2007 to 70.05 million tons in 2019, and the natural carbon
pool increases from 2007 to 2019. There is no significant
difference in the total amount of savings, which has been
around 60 million tons; it can be found out from Figure 4
that the amount of anthropogenic carbon storage has been
increasing year by year, from 7.82 million tons in 2007 to
9.98 million tons in 2019. The proportion is also rising
slowly, from 11.53% in 2007 to 14.25% in 2019, which
shows that although the total amount of anthropogenic
carbon storage is not large, with the development of ur-
banization, a large amount of carbon-containing sub-
stances contribute, especially the carbon storage capacity of
buildings and green cities gradually increases, producing
anthropogenic carbon in preparation for further accu-
mulation. The results suggest that, in addition to the
naturally important carbon storage, anthropogenic carbon
storage is an important way of storing carbon in urban
systems, which is partly affected by global warming as
shown in Figures 3 and 4.
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Ficure 3: Changes in trend of total carbon storage in smart city eco-economic system.
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FIGURE 4: Changes in anthropogenic carbon pools and their proportions in smart cities over the years.

From Table 1, it can be seen that in the composition of
carbon pools, soil accounts for the largest proportion, ac-
counting for about 82% of the total, followed by housing
construction, accounting for about 5% of the total, forest land
accounting for about 4.6% of the total, and urban greening
about 3.80% of the total, commercial buildings about 2.7% of
the total, others about 1% of the total, furniture about 0.56%
of the total, and books about 0.34% of the total.

4.2. Analysis of Influence Factors of Green Computing on
Carbon Cycle Process in Smart City. From Table 2 and Fig-
ure 5, it can be found out that the overall contribution value of

each factor (10* tC) is the largest in 2018-2019, the value of AC
is 1635.06 = 10* tC, and the dedication value of the industrial
carbon emission intensity factor is —346.7 * 10* tC, the ded-
ication value of the industrial structure effect factor is
23.63 * 10* tC, the dedication value of the economic growth
element is 1716.24 = 10* tC, and the contribution value of the
population factor is 241.89 * 10* tC; the smallest is 2009-2010,
AC is 1.5% 10* tC, the contribution value of the industrial
carbon emission intensity factor is —84.09 * 10* tC, the ded-
ication value of the industrial structure effect factor is
—19.29 % 10* tC, and the dedication value of the economic
growth element is 90.16 * 10* tC. The contribution value of the
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TaBLE 1: Composition analysis of smart city carbon pool.

Constitute Soil (%) Construction (%) Woodland (%) City %l;:)e mng Commerg/z;; building Books (%) Furniture (%) O(E;:;:r
Proportion 82 5 4.60 3.80 2.70 0.34 0.56 1.00

population factor is 14.71  10* tC. The largest contribution
factor is the economic development factor, and the smallest
factor is the industrial carbon emission intensity factor. The
overall contribution rate of each factor is the largest in
2018-2019. The value of D is 2.65, the industrial carbon in-
tensity index contribution index is 0.92, the industrial
structure effect index contribution index is 0.98, the economic
development index contribution index is 1.1, and the pop-
ulation index contribution index is 1.02. The proportion of
factors is 0.81, the industrial structure effect factor is 1.01, the
economic development factor is 2.78, and the population
factor is 1.16. The main positive factors affecting the significant
increase in carbon dioxide emissions from smart cities from
2010 to 2019 are economic development factors and demo-
graphic factors, of which economic development factors,
namely, GDP per capita, have the greatest impact on the
increase in carbon dioxide emissions. The total emissions are
less than the increase in the overall CO2 emissions, and the
remaining years are greater than the total changes in CO2
emissions. This suggests that the total increase in CO2
emissions from smart cities could have been greater if eco-
nomic development had not had a dampening effect on CO2
emissions from other factors. Demographic factors have a
positive (long-term) influence on the increase in annual CO2
emissions, but overall, the contribution is not of much value.

The main positive elements for the substantial increase in
carbon emissions in smart cities from 2010 to 2019 are
economic development factors and population factors.
Among them, the economic development factor, namely,
GDP per capita, has the greatest driving influence on the
development of carbon emissions. The contribution of total
emissions was lower than the increase in overall carbon
emissions, and the rest of the years were higher than the
overall change in carbon emissions.

Figure 6 shows that the trend line for economic devel-
opment factors was consistently higher than other factors from
2011 to 2019. From 2011 to 2015, the contribution rate of
economic factors to the change of carbon dioxide emissions
was lower than that of the overall carbon dioxide emissions,
and carbon dioxide increased first and then decreased, so the
change rate of economic factors to carbon dioxide emissions
development factors exceeded the overall indicators for
2015-2018. The industrial CO2 emission index, industrial
structure effect, and population index are always at the low end
of the total value. Since the total efficiency is the product of the
contribution factors of each factor, the contribution factor of
each factor is greater than 1, indicating that it contributes to the
increase in CO2 emissions; if the premium is less than 1, it is an
inhibitory factor. It can be seen that the economic development
factor has the greatest impact on the increase of carbon dioxide
emissions, and its share is even greater than the overall change
rate of carbon dioxide emissions.

It can be seen in Table 3 that at the 5% significant level,
the P values between GDP (100 million yuan), population
(10,000 people), built-up area (km?), and carbon emissions
are all less than 0.05, indicating that the path of variables and
carbon emissions has a significant impact. R* =0.972, and
through the 1% significance test, the results show that it is
more in line with the relationship between CO2 emissions
and influencing factors. The main determinants of CO2
emissions are the growth of economic scale, the growth of
the average daily population, and the increase of built-up
space. Overall, economic growth stimulates industrial pro-
duction and energy consumption, mainly through fossil
fuels, as the main driver of growth in CO2 emissions;
population growth increases CO2 emissions from food,
household energy needs, energy consumption for passenger
transport, and construction on the ground. In the process,
the expansion of the construction industry has increased the
energy demand and CO2 emissions of the building industry,
which have become the main drivers of urban CO2 emis-
sions. In addition, the equation can be used to predict total
smart CO2 emissions.

In the adaptation index, the fitting value of CMIN/DF is
2, and the critical value is less than 5, so the judgment result
is in line; the fitting value of GFI is 0.98, the fitting value of
AGFI is 1.01, and the fitting value of RFI is 1.12, all meet the
critical value greater than 0.9, so the judgment result is
consistent; the PNFI external fitting value is 1.89, and the
critical value is greater than 0.5, so the judgment result is
consistent; the RMSEA fitting value is 0.42, and the critical
value is less than 0.08, so the judgment result is in line. It
shows that the model fitting effect is good, and the model is
established as shown in Table 4.

4.3. Prediction of Carbon Cycle Process by Green Computing in
Smart Cities. It can be seen from Figure 7 that the difference
between the actual value trend line and the predicted value
trend line is not large, indicating that the error between the
actual value and the predicted value is small, and the pre-
dicted result is reliable. In 2011, the actual value of carbon
emissions was 68.8 million tons, and the predicted value was
68.01 million tons; in 2012, the actual value of carbon
emissions was 69.02 million tons, and the predicted value
was 69.2 million tons; in 2013, the actual value of carbon
emissions was 69.2 million tons. In 2014, the actual value of
carbon emissions was 69.26 million tons, and the predicted
value was 69 million tons; in 2015, the actual value of carbon
emissions was 69.46 million tons and the predicted value was
69.50 million tons. In 2016, the actual value of carbon
emissions was 69.69 million tons, and the predicted value
was 70 million tons; in 2017, the actual value of carbon
emissions was 69.8 million tons, and the predicted value was
69.78 million tons; in 2018, the actual value of carbon



TaBLE 2: Elements decomposition analysis of changes in overall carbon emissions in smart cities.

Contribution of each factor (10* tC) Each factor index

Year Indus.trial. carb(?n Industrial Economic Population Indus:trial_ carb(?n Industrial Economic Population
emission intensity development Overall ~ emission intensity development Overall
structure effect factor structure effect factor
factors factors factors factors
AC, AC,; AC, AC, AC D, D, D, D, D

2009-2010 -84.09 —19.29 90.16 14.71 1.5 0.92 0.98 1.1 1.02 1
2010-2011 —48.48 -11.77 104.18 18.76 52.69 0.95 0.99 1.11 1.02 1.06
2011-2012 31.95 15.08 143.36 18.21 208.35 1.03 1.01 1.13 1.02 1.2
2012-2013 1.01 42.67 194.5 27.27 265.47 1 1.03 1.15 1.02 1.21
2013-2014 145.03 21.94 208.73 35.7 411.22 1.08 1.01 1.13 1.03 1.27
2014-2015 —141.55 7.48 242.87 38.23 147.03 0.93 1 1.13 1.02 1.08
2015-2016 -124.11 28.51 277.38 35.62 217.38 0.94 1.01 1.14 1.02 1.1
2016-2017 —-153.71 -35.15 236.09 27.38 74.71 0.93 0.99 1.11 1.01 1.03
2017-2018 9.31 -37.33 253.58 21.16 246.71 1 0.96 1.11 1.01 1.1
2018-2019 —346.7 23.63 1716.24 241.89 1635.06 0.81 1.01 2.78 1.16 2.65
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Ficure 5: Contributions of various factors to changes in carbon emissions in smart cities over the years.
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TABLE 3: Regression parameter analysis of influencing factors of carbon emissions.

Standardized estimates Standard deviation Critical ratio P value
GDP (100 million yuan) -0.144 0.2 12.34 0.02
Population (10,000 people) 32.12 0.3 23.14 0.06
Built-up area (km?) -1.05 0.12 26.45 0.05

emissions is 69.88 million tons, and the predicted value is
69.91 million tons; in 2019, the actual value of carbon
emissions is 70.05 million tons, and the predicted value is
70.21 million tons.

From Table 5, it can be found out that the forecasted
carbon emission value from 2020 to 2028 is slowly adding
year by year. The predicted value of CO2 emissions in 2022 is
13.82 million tons, the predicted value of CO2 emissions in
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TaBLE 4: Overall model fitting results.
Adaptation indicator CMIN/DF GFI AGFI RFI PNFI RMSEA
Critical value <5 >0.9 >0.9 >0.9 >0.5 <0.08
Fitted value 2 0.98 1.01 112 1.89 0.42
Judgment result Meets Meets Meets Meets Meets Meets
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FiGure 7: Comparison of actual and predicted smart city values.

TaBLE 5: 2020-2028 CO2 emission forecast.

Year Predicted value (10,000 tons)
2020 1220
2021 1327
2022 1382
2023 1427
2024 1468
2025 1503
2026 1562
2027 1573
2028 1592

2023 is 14.27 million tons, the predicted value of CO2
emissions in 2024 is 14.68 million tons, the predicted value
of CO2 emissions in 2025 is 14.68 million tons, and The
predicted value of CO2 emissions in 2026 is 15.62 million
tons, the predicted value of CO2 emissions in 2027 is 15.73
million tons, and the forecasted value of CO2 emissions in
2028 is 15.92 million tons.

5. Conclusion

For the progress of human society, “low carbon” must be
“relatively low carbon” to ensure development rather than
“reducing carbon emissions” regardless of cost or expense.
Therefore, future development should take into account the
“total” land use and evaluate the comprehensive benefits of
land use and their regulation: on the one hand, ecological
benefits and the effect of reducing CO2 emissions from land
use, and on the other hand, it should consider improving

people’s lives, society, and economic benefits, which require
further evaluation and consideration to find the best
combination. Create an ecologic civilization publicity and
education system, strengthen publicity and education, en-
hance social consciousness of ecological environmental
conservation, and increase the enthusiasm of society to
participate in ecological environmental protection. Advo-
cate green and low-carbon life, accelerate the transformation
of lifestyle and consumption patterns to uncomplicated,
alleviative, green and low-carbon, civilized and healthy; they
advocate green travel, green consumption, low-carbon, and
moderate consumption and oppose debauchery and waste.
Please pay attention to garbage disposal when eating, ad-
vocate garbage sorting and recycling, and do not pollute the
environment. Carry out the creation of green brands, for
example, green schools, green institutions, green hotels,
green hospitals, and green communities; use brands to at-
tract public opinion; improve environmental awareness and
the concept of ecological civilization; and consciously shape
social trends to care for and protect the environment.
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