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Abstract—This study introduces the Deep Normative Tractom-
etry (DNT) framework, that encodes the joint distribution of
both macrostructural and microstructural profiles of the brain
white matter tracts through a variational autoencoder (VAE). By
training on data from healthy controls, DNT learns the normative
distribution of tract data, and can delineate along-tract micro-
and macro-structural abnormalities. Leveraging a large sample
size via generative pre-training, we assess DNT’s generalizability
using transfer learning on data from an independent cohort
acquired in India. Our findings demonstrate DNT’s capacity to
detect widespread diffusivity abnormalities along tracts in mild
cognitive impairment and Alzheimer’s disease, aligning closely
with results from the Bundle Analytics (BUAN) tractometry
pipeline. By incorporating tract geometry information, DNT may
be able to distinguish disease-related abnormalities in anisotropy
from tract macrostructure, and shows promise in enhancing
fine-scale mapping and detection of white matter alterations in
neurodegenerative conditions.

Index Terms—tractometry, normative modeling, deep genera-
tive model, tractography, diffusion MRI

I. INTRODUCTION

Diffusion MRI (dMRI) can be used to investigate 3D

neural pathways and their microstructural properties in the

living human brain, and is collected routinely in large-scale

studies of brain aging and neurodegenerative diseases [1]–[3].

Anisotropy and diffusivity measures computed from diffusion

tensor imaging (DTI) are often used to characterize WM mi-

crostructural properties. Prior work has identified widespread

patterns of white matter degeneration in Alzheimer’s disease

(AD) using DTI, as reflected by a regionally-specific increase

in mean diffusivity and a decrease in fractional anisotropy

[4]–[6]. In addition to computing voxel-wise microstructural

measures, tractography can be used to delineate long-range

WM pathways from the directionality of local diffusion sig-

nals, represented by collections of 3D streamlines. Tractometry

leverages both DTI and tractography by performing statistics

on microstructural scalar measures mapped onto WM tracts.

One tractometry method - Bundle Analytics (BUAN) [7] - has

been used to identify microstructural abnormalities in AD [8]

and bipolar disorder [9], [10] compared to matched controls.

White matter microstructure is widely studied using both

voxel-wise and tractometry approaches, but the joint distri-

bution of both microstructural and macrostructural properties

is less often studied. In a large multi-site cohort of elder

adults, Schilling et al. [11] found heterogeneous patterns

of age-related macrostructural changes in the brain WM

compared to the more homogeneous patterns of microstruc-

tural changes. In another study, the same authors reported

synchronous micro- and macro-structural changes across the

human lifespan [12]. Combining DTI, connectivity and tract

shape measures (length, diameter and elongation) derived with

a fusion prediction network, Liu et al. [13] showed that WM

shape measures can improve prediction of cognitive scores

in a young healthy cohort. WM micro- and macro-structure

have been studied in healthy aging, leading to interest in

how these features are independently and jointly altered in

neurogenerative conditions such as AD. In addition, given

the large number of streamlines and substantial proportion

of false positives generated from tractography [14], modeling

their joint distribution in a large cohort becomes challenging,

but may potentially be tackled using deep learning methods. In

our prior work [15], we showed that a convolutional variational

autoencoder (ConvVAE) can embed tractography streamlines

into a compact latent space and produce new bundles via

generative sampling. Autoencoder-based architectures can also

be used as a normative model (NM) [16], [17], where they

encode statistical distributions of features from a healthy

reference population. Deviations from the norm identified by

NMs can be used downstream for group difference testing or

mapping individual anomalies [18]. At inference time, data

from the patient group is passed through the network, and the

reconstruction error can be used to conduct group statistics,

or for anomaly detection. Using tractography data from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI), the

ConvVAE-based NM identified 6 WM tracts with along-
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Fig. 1. The BUAN tractometry pipeline: 1. Whole-brain tractograms are
generated from dMRI; 2. WM bundles are segmented from whole-brain
tractograms; 3. Bundle profiles are created by projecting microstructural
measures onto segmented tracts, and linear mixed models are applied to detect
group differences; 4. significant group differences are mapped onto the bundle
for visualization.

tract macrostructural anomalies in AD, including the corpus

callosum (CC) [19].

In this study, we extend our NM framework and propose

Deep Normative Tractometry (DNT) to jointly model the 3D

geometry of WM tracts and their DTI-derived microstructures.

First, we used generative pretraining to encode the complex

tract geometric features using a public multi-site dMRI dataset

of healthy subjects from Europe and North America. To test

the model’s ability to generalize to a new population, we

applied transfer learning to adapt the model to data from an

independent cohort acquired in India. We report along-tract

microstructure and macrostructure deviations computed from

DNT in mild cognitive impairment (MCI) and AD. To further

investigate the effect of incorporating WM geometry, we com-

pare microstructural findings between the BUAN tractometry

pipeline [7] and DNT.

II. DATA

We analyzed 3T diffusion MRI (dMRI) data in a sample

of 302 participants from two scanners from the NIMHANS

(National Institute of Mental Health and Neuro Sciences)

cohort (see Table I) in India. The dataset consists of neu-

roimaging data from 123 cognitively normal participants (CN),

89 diagnosed with mild cognitive impairment (MCI) and 90

with AD. Diffusion-weighted image (DWI) acquisition for the

Philips 3T Ingenia scanner was performed using a single-shot,

DWI echo-planar imaging sequence (TR=7441 ms, TE=85 ms,

TA=630 s, voxel size: 2 × 2 × 2mm3 , 64 slices, flip angle=

90◦, FOV 224mm) [20]. DWI acquisition for the Siemens 3T

TABLE I
NIMHANS DATASET DESCRIPTION, BY SCANNER.

Scanner Total
Diagnosis

(CN/MCI/AD)
Age

Sex
(N/F)

Philips Ingenia 110 32/44/34 67.67± 7.13 66/44
Siemens Skyra 192 91/45/56 67.02± 8.26 116/81

Total 302 123/89/90 67.26± 7.86 177/125

Fig. 2. The Deep Normative Tractometry (DNT) framework.

Skyra was performed using a single-shot, DWI echo-planar

imaging sequence (TR=8400 ms, TE=91 ms, TA=546 s, FOV

240mm) [21], [22]. For both scanners, transverse sections

of 2-mm thickness were acquired parallel to the anterior

commissure-posterior commissure (AC-PC) line, and diffusion

weighting was encoded along 64 independent orientations,

using b-value of 1000s/mm2. Preprocessing steps for all DWI

volumes included: denoising using local principal component

analysis [23], Gibbs ringing removal [24], [25], correction of

susceptibility-induced distortion [26], eddy currents [27] and

bias field inhomogeneity [28]. Diffusion tensors were fitted

with non-linear least-squares to produce fractional anisotropy

(FA) and medial diffusivity (MD) scalar maps in the DWI

native space. Fiber orientations were reconstructed using Ro-

bust and Unbiased Model-BAsed Spherical Deconvolution

(RUMBA-SD) [29], [30]. Particle filtering tracking [31] was

using to generate whole-brain tractograms (WBT), with 8

seeds per voxel generated from the WM mask, step size of

0.2 mm, angular threshold of 30◦, and the continuous map

stopping criterion.

The pre-training dataset was composed of 198 single-

shell dMRI volumes from the publicly available TractoInferno

training dataset [32], acquired on 3T scanners from 6 sites.

Constrained spherical deconvolution [33] and deterministic

tracking [34] were used to generate WBTs. For both the

datasets, DIPY’s [34] auto-calibrated RecoBundles [7], [35]

was used to segment thirty WM bundles in the native and

MNI (Montreal Neurological Institute) space [36].

III. METHOD

A. BUndle ANalytics (BUAN)

The BUAN tractometry pipeline was used to quantify along-

tract microstructural differences in MCI and AD from the
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Fig. 3. The number of along-tract segments out of 100 that showed significant group differences after FDR correction for both BUAN and DNT. The tracts
description can be found in [36].

NIMHANS cohort (see Figure 1). For each subject, FA and

MD scalar maps computed in the DWI native space were

mapped to all streamline vertices in 30 bundles in the same

space. Bundles extracted in the MNI space were used to create

100 along-tract segments, aligned across subjects. For each

group comparison (MCI vs. CN and AD vs. CN), we computed

group statistics using a linear mixed model (LMM), where

diagnosis, age, and sex were modeled as fixed effects, and

subject and scanner were modeled as random effects. We then

corrected for multiple comparisons using the false discovery

rate (FDR) method [37] for 100 segments on each bundle; we

report pFDR < 0.05.

B. Deep Normative Tractometry (DNT)

The DNT pipeline consists of two training stages on healthy

controls to create the normative model, followed by model

inference, along-tract anomaly mapping, and statistics (see

Figure 2). Each streamline from 30 bundles in the MNI

space (from both the TractoInferno and NIMHANS dataset)

was first resampled to 128 equidistant points; DTI-derived

FA and MD scalars were then mapped to each point on the

corresponding native space bundle to create the bundle profile.

Combined with the 3D spatial coordinates, each streamline,

of size 128 × 5, was used as input to the ConvVAE model

to jointly model both bundle geometry and microstructure.

The model had an asymmetric architecture, with a 4-layer

encoder, a 3-layer decoder, and a latent dimension of 64.

Depthwise separable convolution [38] was used in each layer

to accommodate a deeper feature space with efficient use of

model parameters. The model, containing 454,742 trainable

parameters, was pretrained for 29,000 steps, with a batch size

of 512 on the TractoInferno dataset. Fifty CN subjects from

the NIMHANS dataset, randomly selected and stratified by sex

and scanner, were then used to fine-tune the model for 5000

steps. At inference time, bundle profiles from the remaining

CN, MCI, and AD subjects were passed through the model to

obtain their point-by-point reconstruction. Each bundle and its

reconstruction were then divided into 100 along-tract segments

using the same approach described in Section III-A. The

anomaly scores are computed using the Mean Absolute Error

(MAE) for each segment, and each feature - 3D coordinates

(shape), FA, and MD. We then corrected for age, sex, and

scanner effect using linear regression. With the assumption

that the anomaly score is higher in the MCI and AD group

for all features, we conducted MCI vs. CN and AD vs. CN

group statistics on the anomaly scores using a 1-tailed Mann-

Whitney U test. We corrected for multiple comparisons using

the same FDR approach as the one used for BUAN.

IV. RESULTS

To compare results for both BUAN and DNT, we plot

the number of along-tract segments that showed significant

group differences after FDR correction for each bundle, feature

(shape, FA and MD) and diagnosis (MCI, AD) in Figure 3.

Most notably, we see widespread MD differences between

AD and CN - identified by both methods - in the commis-

sural, association, and projection tracts, followed by moderate

alignment in MD differences between MCI and CN. In bundle
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segments that show significant differences, BUAN reports

higher MD and DNT also reports higher MD anomaly scores

in both MCI and AD groups when compared to CN. In Figure

4, we plot the along-tract − log
10
(pFDR) values from AD vs.

CN comparisons in the commissural tracts (CC mid, forceps

major and forceps minor). DNT reveals MD abnormality

patterns similar to BUAN along the length of the tracts, even

when accounting for shape changes.

Fig. 4. Along-tract − log10(pFDR) from AD vs. CN comparison of MD in the
commissural tracts from both DNT and BUAN. The threshold for statistical
significance of pFDR is plotted as a horizontal line on the colorbar.

Fig. 5. Along-tract − log10(pFDR) from AD vs. CN comparison in the forceps

major (CC ForcepsMajor) and the left occipito-pontine tract (OPT L). The
measures shown here are shape differences reported by DNT, and FA
differences reported by both DNT and BUAN.The threshold for statistical
significance of pFDR is plotted as a horizontal line on the colorbar.

BUAN reveals more along-tract regions with significant

FA differences in both MCI and AD than DNT, with few

alignments between the two methods. However, by incorpo-

rating information on 3D spatial coordinates (i.e., the tract’s

overall geometrical shape), DNT identifies a moderate number

of tracts with significant shape differences, primarily in the

projection and commissural tracts. Here, we show examples

of the forceps major (CC ForcepsMajor) and the left occipito-

pontal tract (OPT L) in Figure 5. In the AD vs. CN com-

parison, BUAN identifies significant FA differences in both

bundles, whereas DNT identifies significant group differences

of FA anomalies only in OPT L, but shape anomalies in both.

Patterns of FA group differences in OPT L from both methods

are similar to that of the shape shown from DNT. In the forceps

major, patterns of FA differences from BUAN are aligned with

the profile of group differences in shape anomalies from DNT,

but we observe no difference in FA when the macrostructure is

jointly modeled with the microstructure. Accounting for shape

changes, FA differences in OPT L in AD subjects may reflect

aspects of the underlying loss of fiber integrity in AD, and

FA differences in the forceps major observed in BUAN may

be attributed to disease-related macrostructural changes. Prior

work using structural MRI and fixel-based analysis identified

structural atrophy of the corpus callosum in people with AD,

possibly associated with ventricular dilation [39], [40]. Due to

the partial volume effect, particularly in the CC tracts [41],

disease-related macrostructural changes could contribute to

changes in FA when the underlying fiber geometry is not

accounted for.

We further highlight shape and MD differences detected by

DNT in both MCI and AD compared to CN in Figure 6. The

along-tract − log
10
(pFDR) values and Cohen’s d effect sizes are

plotted for 2 associative and 2 projections WM tracts. Both

macrostructural and diffusivity changes are more widespread

along tracts in AD - with a medium to large effect compared to

MCI, where segments with significant differences in MCI are

also identified in AD. Patterns of shape differences are more

localized along-tract, whereas patterns of MD differences are

also more widespread. MD results reported by DNT are also

consistent with those previously reported by BUAN applied to

an MCI cohort from ADNI3 [2], [8].

V. DISCUSSION

In this study, the DNT framework is compared with

the BUAN tractometry pipeline for detecting microstructural

anomalies in MCI and AD subjects. We found that effects

on MD showed widespread alignment across both methods

compared to FA in both the MCI and AD group. One surpris-

ing finding is that when accounting for bundle macrostructure,

DNT detects no difference in FA in the commissural tracts.

This could suggest that changes in FA may be confounded

by the underlying tract structural abnormalities, and our

framework could help to alleviate the partial volume effect

by integrating non-local information from streamlines. In the

current DNT framework, reconstruction error is used as a

proxy for shape anomalies, and it does not provide a detailed

characterization of structural changes, such as fiber length,

curvature, cross-section, and density. Future work will inves-

tigate advanced shape metrics to quantify multi-scale shape

differences [42].

As crossing fibers are widespread in the brain [43], [44],

both micro- and macro-structural abnormalities detected by

DNT in one WM tract could still be due, partly or fully, to

differences in another fiber population, even when accounting

for bundle geometry. Due to the underlying limitations of DTI

and tractography [45], it remains challenging to disentangle

the effect of multiple fiber populations in a single voxel or

fixel [44] from diseased-related bundle macrostructural and

microstructural changes with high specificity.
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Fig. 6. Along-tract shape and MD group differences identified by DNT in MCI, AD versus CN subjects. The four tracts shown are the left and right inferior
longitudinal fasciculus (ILF), the left fronto-pontine tract (FPT), and the right occipito-pontine tract (OPT)

Aside from directly modeling bundle geometry, DNT is

pretrained on data that BUAN has not seen, and could con-

tribute to the differences in signals detected by both methods.

The pretraining step helps the model to learn the complex

distributions of WM macrostructure and microstructure, so this

may prevent overfitting and produce better characterizations

of the target cohort after fine-tuning, especially when data is

limited in the target cohort. TractoInferno was selected as the

pretraining dataset in this study, as it contains multi-site single-

shell acquisitions and has been carefully quality controlled.

Intuitively, knowledge transfer may be more effective when the

source and target data distributions are more similar. However,

in the context of tractography, including data from high angu-

lar resolution diffusion imaging (HARDI) acquisitions, such as

the Human Connectome Project (HCP) [46], in the pre-training

dataset may help the model better distinguish complex fiber

populations. Other single-shell metrics beyond DTI and more

advance multi-shell metrics may also provide a richer feature

set. Future work will include more advanced diffusion models

such as the tensor distribution function (TDF) [47], neurite

orientation dispersion and density imaging (NODDI) [48] and

diffusion kurtosis imaging (DKI) [49], which may be able to

evaluate AD-related abnormalities with greater sensitivity and

specificity [6], [50], [51]. In future, we will also investigate

the effect of pre-training, data sources, feature sets, sample

size, and fine-tuning techniques.

The normative tractometry framework in DNT can better

account for variability within the group, as opposed to testing

for mean differences in the traditional case-control schema.

Generative models, which explicitly model the marginal or

the joint distribution - as opposed to discriminative models

- are well-suited for normative modeling. In DNT, the VAE

model learns the joint distributions of shape, MD, and FA from

CN subjects at the training stage. To compare with the LMM

results from BUAN, we used the along-tract anomaly scores

from DNT for group difference testing. However, a normative

framework such as DNT can also be applied for single subject

anomaly detection, or regression analysis with non-imaging

phenotypes [18].

VI. CONCLUSION

In this study, we proposed the DNT framework to jointly

model the 3D geometry and microstructural profiles of WM

tracts using a deep generative model based on a convolutional

VAE. The model learns the normative distribution by training

on data from healthy controls, and can be used to map

along tract micro- and macro-structural abnormalities. DNT

leverages a large sample size using generative pretraining,

and we tested its generalizability using transfer learning on

an independent cohort. DNT was able to identify widespread

along-tract diffusivity abnormalities in MCI and AD, with high

levels of agreement with the state-of-the-art BUAN tractom-

etry pipeline. By accounting for the 3D tract geometry, DNT

may be able to disentangle disease-related group differences

in anisotropy from macrostructural abnormalities.
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