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Abstract—This study introduces the Deep Normative Tractom-
etry (DNT) framework, that encodes the joint distribution of
both macrostructural and microstructural profiles of the brain
white matter tracts through a variational autoencoder (VAE). By
training on data from healthy controls, DNT learns the normative
distribution of tract data, and can delineate along-tract micro-
and macro-structural abnormalities. Leveraging a large sample
size via generative pre-training, we assess DN'T’s generalizability
using transfer learning on data from an independent cohort
acquired in India. Our findings demonstrate DN'T’s capacity to
detect widespread diffusivity abnormalities along tracts in mild
cognitive impairment and Alzheimer’s disease, aligning closely
with results from the Bundle Analytics (BUAN) tractometry
pipeline. By incorporating tract geometry information, DNT may
be able to distinguish disease-related abnormalities in anisotropy
from tract macrostructure, and shows promise in enhancing
fine-scale mapping and detection of white matter alterations in
neurodegenerative conditions.

Index Terms—tractometry, normative modeling, deep genera-
tive model, tractography, diffusion MRI

I. INTRODUCTION

Diffusion MRI (dMRI) can be used to investigate 3D
neural pathways and their microstructural properties in the
living human brain, and is collected routinely in large-scale
studies of brain aging and neurodegenerative diseases [1]—-[3].
Anisotropy and diffusivity measures computed from diffusion
tensor imaging (DTI) are often used to characterize WM mi-
crostructural properties. Prior work has identified widespread
patterns of white matter degeneration in Alzheimer’s disease
(AD) using DTI, as reflected by a regionally-specific increase
in mean diffusivity and a decrease in fractional anisotropy
[4]-[6]. In addition to computing voxel-wise microstructural
measures, tractography can be used to delineate long-range
WM pathways from the directionality of local diffusion sig-
nals, represented by collections of 3D streamlines. Tractometry
leverages both DTT and tractography by performing statistics
on microstructural scalar measures mapped onto WM tracts.
One tractometry method - Bundle Analytics (BUAN) [7] - has

been used to identify microstructural abnormalities in AD [8]
and bipolar disorder [9], [10] compared to matched controls.

White matter microstructure is widely studied using both
voxel-wise and tractometry approaches, but the joint distri-
bution of both microstructural and macrostructural properties
is less often studied. In a large multi-site cohort of elder
adults, Schilling er al. [11] found heterogeneous patterns
of age-related macrostructural changes in the brain WM
compared to the more homogeneous patterns of microstruc-
tural changes. In another study, the same authors reported
synchronous micro- and macro-structural changes across the
human lifespan [12]. Combining DTI, connectivity and tract
shape measures (length, diameter and elongation) derived with
a fusion prediction network, Liu et al. [13] showed that WM
shape measures can improve prediction of cognitive scores
in a young healthy cohort. WM micro- and macro-structure
have been studied in healthy aging, leading to interest in
how these features are independently and jointly altered in
neurogenerative conditions such as AD. In addition, given
the large number of streamlines and substantial proportion
of false positives generated from tractography [14], modeling
their joint distribution in a large cohort becomes challenging,
but may potentially be tackled using deep learning methods. In
our prior work [15], we showed that a convolutional variational
autoencoder (ConvVAE) can embed tractography streamlines
into a compact latent space and produce new bundles via
generative sampling. Autoencoder-based architectures can also
be used as a normative model (NM) [16], [17], where they
encode statistical distributions of features from a healthy
reference population. Deviations from the norm identified by
NMs can be used downstream for group difference testing or
mapping individual anomalies [18]. At inference time, data
from the patient group is passed through the network, and the
reconstruction error can be used to conduct group statistics,
or for anomaly detection. Using tractography data from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI), the
ConvVAE-based NM identified 6 WM tracts with along-
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Fig. 1. The BUAN tractometry pipeline: 1. Whole-brain tractograms are
generated from dMRI; 2. WM bundles are segmented from whole-brain
tractograms; 3. Bundle profiles are created by projecting microstructural
measures onto segmented tracts, and linear mixed models are applied to detect
group differences; 4. significant group differences are mapped onto the bundle
for visualization.

tract macrostructural anomalies in AD, including the corpus
callosum (CC) [19].

In this study, we extend our NM framework and propose
Deep Normative Tractometry (DNT) to jointly model the 3D
geometry of WM tracts and their DTI-derived microstructures.
First, we used generative pretraining to encode the complex
tract geometric features using a public multi-site dMRI dataset
of healthy subjects from Europe and North America. To test
the model’s ability to generalize to a new population, we
applied transfer learning to adapt the model to data from an
independent cohort acquired in India. We report along-tract
microstructure and macrostructure deviations computed from
DNT in mild cognitive impairment (MCI) and AD. To further
investigate the effect of incorporating WM geometry, we com-
pare microstructural findings between the BUAN tractometry
pipeline [7] and DNT.

II. DATA

We analyzed 3T diffusion MRI (dMRI) data in a sample
of 302 participants from two scanners from the NIMHANS
(National Institute of Mental Health and Neuro Sciences)
cohort (see Table I) in India. The dataset consists of neu-
roimaging data from 123 cognitively normal participants (CN),
89 diagnosed with mild cognitive impairment (MCI) and 90
with AD. Diffusion-weighted image (DWI) acquisition for the
Philips 3T Ingenia scanner was performed using a single-shot,
DWI echo-planar imaging sequence (TR=7441 ms, TE=85 ms,
TA=630 s, voxel size: 2 x 2 x 2mm?® , 64 slices, flip angle=
90°, FOV 224mm) [20]. DWI acquisition for the Siemens 3T

TABLE I
NIMHANS DATASET DESCRIPTION, BY SCANNER.

Diagnosis Sex

Scanner Total (CN/MCI/AD) Age (N/F)
Philips Ingenia 110 32/44/34 67.67 £ 7.13 66/44
Siemens Skyra 192 91/45/56 67.02 + 8.26 116/81
Total 302 123/89/90 67.26 £7.86 177/125

- A
Pretrain —— (1) Pretrain %*@ ] D W
Dataset

— () Flnetune/S\v

Normatlve Model
(3) Inferenc# [ ‘

= —/

Target

Controls
DETETT

N (4) Along-Tract

P —
”“ Anomaly Mapping
"l

Patients

Fig. 2. The Deep Normative Tractometry (DNT) framework.

Skyra was performed using a single-shot, DWI echo-planar
imaging sequence (TR=8400 ms, TE=91 ms, TA=546 s, FOV
240mm) [21], [22]. For both scanners, transverse sections
of 2-mm thickness were acquired parallel to the anterior
commissure-posterior commissure (AC-PC) line, and diffusion
weighting was encoded along 64 independent orientations,
using b-value of 1000s/mm?. Preprocessing steps for all DWI
volumes included: denoising using local principal component
analysis [23], Gibbs ringing removal [24], [25], correction of
susceptibility-induced distortion [26], eddy currents [27] and
bias field inhomogeneity [28]. Diffusion tensors were fitted
with non-linear least-squares to produce fractional anisotropy
(FA) and medial diffusivity (MD) scalar maps in the DWI
native space. Fiber orientations were reconstructed using Ro-
bust and Unbiased Model-BAsed Spherical Deconvolution
(RUMBA-SD) [29], [30]. Particle filtering tracking [31] was
using to generate whole-brain tractograms (WBT), with 8
seeds per voxel generated from the WM mask, step size of
0.2 mm, angular threshold of 30°, and the continuous map
stopping criterion.

The pre-training dataset was composed of 198 single-
shell dMRI volumes from the publicly available TractoIlnferno
training dataset [32], acquired on 3T scanners from 6 sites.
Constrained spherical deconvolution [33] and deterministic
tracking [34] were used to generate WBTs. For both the
datasets, DIPY’s [34] auto-calibrated RecoBundles [7], [35]
was used to segment thirty WM bundles in the native and
MNI (Montreal Neurological Institute) space [36].

III. METHOD
A. BUndle ANalytics (BUAN)

The BUAN tractometry pipeline was used to quantify along-
tract microstructural differences in MCI and AD from the
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Fig. 3. The number of along-tract segments out of 100 that showed significant group differences after FDR correction for both BUAN and DNT. The tracts

description can be found in [36].

NIMHANS cohort (see Figure 1). For each subject, FA and
MD scalar maps computed in the DWI native space were
mapped to all streamline vertices in 30 bundles in the same
space. Bundles extracted in the MNI space were used to create
100 along-tract segments, aligned across subjects. For each
group comparison (MCI vs. CN and AD vs. CN), we computed
group statistics using a linear mixed model (LMM), where
diagnosis, age, and sex were modeled as fixed effects, and
subject and scanner were modeled as random effects. We then
corrected for multiple comparisons using the false discovery
rate (FDR) method [37] for 100 segments on each bundle; we
report prpr < 0.05.

B. Deep Normative Tractometry (DNT)

The DNT pipeline consists of two training stages on healthy
controls to create the normative model, followed by model
inference, along-tract anomaly mapping, and statistics (see
Figure 2). Each streamline from 30 bundles in the MNI
space (from both the Tractolnferno and NIMHANS dataset)
was first resampled to 128 equidistant points; DTI-derived
FA and MD scalars were then mapped to each point on the
corresponding native space bundle to create the bundle profile.
Combined with the 3D spatial coordinates, each streamline,
of size 128 x 5, was used as input to the ConvVAE model
to jointly model both bundle geometry and microstructure.
The model had an asymmetric architecture, with a 4-layer
encoder, a 3-layer decoder, and a latent dimension of 64.
Depthwise separable convolution [38] was used in each layer
to accommodate a deeper feature space with efficient use of

model parameters. The model, containing 454,742 trainable
parameters, was pretrained for 29,000 steps, with a batch size
of 512 on the TractoInferno dataset. Fifty CN subjects from
the NIMHANS dataset, randomly selected and stratified by sex
and scanner, were then used to fine-tune the model for 5000
steps. At inference time, bundle profiles from the remaining
CN, MCI, and AD subjects were passed through the model to
obtain their point-by-point reconstruction. Each bundle and its
reconstruction were then divided into 100 along-tract segments
using the same approach described in Section III-A. The
anomaly scores are computed using the Mean Absolute Error
(MAE) for each segment, and each feature - 3D coordinates
(shape), FA, and MD. We then corrected for age, sex, and
scanner effect using linear regression. With the assumption
that the anomaly score is higher in the MCI and AD group
for all features, we conducted MCI vs. CN and AD vs. CN
group statistics on the anomaly scores using a 1-tailed Mann-
Whitney U test. We corrected for multiple comparisons using
the same FDR approach as the one used for BUAN.

IV. RESULTS

To compare results for both BUAN and DNT, we plot
the number of along-tract segments that showed significant
group differences after FDR correction for each bundle, feature
(shape, FA and MD) and diagnosis (MCI, AD) in Figure 3.
Most notably, we see widespread MD differences between
AD and CN - identified by both methods - in the commis-
sural, association, and projection tracts, followed by moderate
alignment in MD differences between MCI and CN. In bundle
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segments that show significant differences, BUAN reports
higher MD and DNT also reports higher MD anomaly scores
in both MCI and AD groups when compared to CN. In Figure
4, we plot the along-tract — log;,(prpr) values from AD vs.
CN comparisons in the commissural tracts (CC mid, forceps
major and forceps minor). DNT reveals MD abnormality
patterns similar to BUAN along the length of the tracts, even
when accounting for shape changes.

CC_ForcepsMinor CCMid

CC_ForcepsMajor

H0g10(p) , |

DNT
Mean Diffusivity (AD vs. CN)

BUAN

Fig. 4. Along-tract — log;,(prpr) from AD vs. CN comparison of MD in the
commissural tracts from both DNT and BUAN. The threshold for statistical
significance of pgpRr is plotted as a horizontal line on the colorbar.
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Fig. 5. Along-tract — log (prpr) from AD vs. CN comparison in the forceps
major (CC_ForcepsMajor) and the left occipito-pontine tract (OPT_L). The
measures shown here are shape differences reported by DNT, and FA
differences reported by both DNT and BUAN.The threshold for statistical
significance of pgpr is plotted as a horizontal line on the colorbar.

BUAN reveals more along-tract regions with significant
FA differences in both MCI and AD than DNT, with few
alignments between the two methods. However, by incorpo-
rating information on 3D spatial coordinates (i.e., the tract’s
overall geometrical shape), DNT identifies a moderate number
of tracts with significant shape differences, primarily in the
projection and commissural tracts. Here, we show examples
of the forceps major (CC_ForcepsMajor) and the left occipito-
pontal tract (OPT_L) in Figure 5. In the AD vs. CN com-
parison, BUAN identifies significant FA differences in both
bundles, whereas DNT identifies significant group differences
of FA anomalies only in OPT_L, but shape anomalies in both.
Patterns of FA group differences in OPT_L from both methods
are similar to that of the shape shown from DNT. In the forceps

major, patterns of FA differences from BUAN are aligned with
the profile of group differences in shape anomalies from DNT,
but we observe no difference in FA when the macrostructure is
jointly modeled with the microstructure. Accounting for shape
changes, FA differences in OPT_L in AD subjects may reflect
aspects of the underlying loss of fiber integrity in AD, and
FA differences in the forceps major observed in BUAN may
be attributed to disease-related macrostructural changes. Prior
work using structural MRI and fixel-based analysis identified
structural atrophy of the corpus callosum in people with AD,
possibly associated with ventricular dilation [39], [40]. Due to
the partial volume effect, particularly in the CC tracts [41],
disease-related macrostructural changes could contribute to
changes in FA when the underlying fiber geometry is not
accounted for.

We further highlight shape and MD differences detected by
DNT in both MCI and AD compared to CN in Figure 6. The
along-tract — log;,(prpr) values and Cohen’s d effect sizes are
plotted for 2 associative and 2 projections WM tracts. Both
macrostructural and diffusivity changes are more widespread
along tracts in AD - with a medium to large effect compared to
MCI, where segments with significant differences in MCI are
also identified in AD. Patterns of shape differences are more
localized along-tract, whereas patterns of MD differences are
also more widespread. MD results reported by DNT are also
consistent with those previously reported by BUAN applied to
an MCI cohort from ADNI3 [2], [8].

V. DISCUSSION

In this study, the DNT framework is compared with
the BUAN tractometry pipeline for detecting microstructural
anomalies in MCI and AD subjects. We found that effects
on MD showed widespread alignment across both methods
compared to FA in both the MCI and AD group. One surpris-
ing finding is that when accounting for bundle macrostructure,
DNT detects no difference in FA in the commissural tracts.
This could suggest that changes in FA may be confounded
by the underlying tract structural abnormalities, and our
framework could help to alleviate the partial volume effect
by integrating non-local information from streamlines. In the
current DNT framework, reconstruction error is used as a
proxy for shape anomalies, and it does not provide a detailed
characterization of structural changes, such as fiber length,
curvature, cross-section, and density. Future work will inves-
tigate advanced shape metrics to quantify multi-scale shape
differences [42].

As crossing fibers are widespread in the brain [43], [44],
both micro- and macro-structural abnormalities detected by
DNT in one WM tract could still be due, partly or fully, to
differences in another fiber population, even when accounting
for bundle geometry. Due to the underlying limitations of DTI
and tractography [45], it remains challenging to disentangle
the effect of multiple fiber populations in a single voxel or
fixel [44] from diseased-related bundle macrostructural and
microstructural changes with high specificity.
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Fig. 6. Along-tract shape and MD group differences identified by DNT in MCI, AD versus CN subjects. The four tracts shown are the left and right inferior
longitudinal fasciculus (ILF), the left fronto-pontine tract (FPT), and the right occipito-pontine tract (OPT)

Aside from directly modeling bundle geometry, DNT is
pretrained on data that BUAN has not seen, and could con-
tribute to the differences in signals detected by both methods.
The pretraining step helps the model to learn the complex
distributions of WM macrostructure and microstructure, so this
may prevent overfitting and produce better characterizations
of the target cohort after fine-tuning, especially when data is
limited in the target cohort. Tractolnferno was selected as the
pretraining dataset in this study, as it contains multi-site single-
shell acquisitions and has been carefully quality controlled.
Intuitively, knowledge transfer may be more effective when the
source and target data distributions are more similar. However,
in the context of tractography, including data from high angu-
lar resolution diffusion imaging (HARDI) acquisitions, such as
the Human Connectome Project (HCP) [46], in the pre-training
dataset may help the model better distinguish complex fiber
populations. Other single-shell metrics beyond DTI and more
advance multi-shell metrics may also provide a richer feature
set. Future work will include more advanced diffusion models
such as the tensor distribution function (TDF) [47], neurite
orientation dispersion and density imaging (NODDI) [48] and
diffusion kurtosis imaging (DKI) [49], which may be able to
evaluate AD-related abnormalities with greater sensitivity and
specificity [6], [50], [51]. In future, we will also investigate
the effect of pre-training, data sources, feature sets, sample
size, and fine-tuning techniques.

The normative tractometry framework in DNT can better
account for variability within the group, as opposed to testing

for mean differences in the traditional case-control schema.
Generative models, which explicitly model the marginal or
the joint distribution - as opposed to discriminative models
- are well-suited for normative modeling. In DNT, the VAE
model learns the joint distributions of shape, MD, and FA from
CN subjects at the training stage. To compare with the LMM
results from BUAN, we used the along-tract anomaly scores
from DNT for group difference testing. However, a normative
framework such as DNT can also be applied for single subject
anomaly detection, or regression analysis with non-imaging
phenotypes [18].

VI. CONCLUSION

In this study, we proposed the DNT framework to jointly
model the 3D geometry and microstructural profiles of WM
tracts using a deep generative model based on a convolutional
VAE. The model learns the normative distribution by training
on data from healthy controls, and can be used to map
along tract micro- and macro-structural abnormalities. DNT
leverages a large sample size using generative pretraining,
and we tested its generalizability using transfer learning on
an independent cohort. DNT was able to identify widespread
along-tract diffusivity abnormalities in MCI and AD, with high
levels of agreement with the state-of-the-art BUAN tractom-
etry pipeline. By accounting for the 3D tract geometry, DNT
may be able to disentangle disease-related group differences
in anisotropy from macrostructural abnormalities.
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