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ABSTRACT

Mixture of Experts (MoE) models have emerged as a primary solution for reducing
the computational cost of Large Language Models. In this work, we analyze their
scaling properties, incorporating an expanded range of variables. Specifically, we
introduce a new hyperparameter, granularity, whose adjustment enables precise
control over the size of the experts. Building on this, we establish scaling laws for
fine-grained MoE, taking into account the number of training tokens, model size,
and granularity. Leveraging these laws, we derive the optimal training configuration
for a given computational budget. Our findings not only show that MoE models
consistently outperform dense Transformers but also highlight that the efficiency
gap between dense and MoE models widens as we scale up the model size and
training budget. Furthermore, we demonstrate that the common practice of setting
the size of experts in MoE to mirror the feed-forward layer is not optimal at almost
any computational budget.

1 INTRODUCTION

In recent years, we have witnessed Large Language Models (LLMs) achieve exceptional performance
in tasks across numerous domains (Chowdhery et al., 2022; Yin et al., 2023; Agostinelli et al., 2023).
However, training those massive models incurs high computational costs, measured in millions
of GPU-hours (Touvron et al., 2023b), enabled only by enormous budgets (Scao et al., 2023) and
leading to non-negligible carbon footprints (Faiz et al., 2024). To combat these obstacles, the research
community has been striving to increase the efficiency of LLMs. One promising approach that has
lately been gaining visibility is the use of Mixture of Experts (MoE) methods. Models such as Switch
(Fedus et al., 2022) and Mixtral (Jiang et al., 2024) have already demonstrated that it is possible to
achieve comparable effectiveness with significantly lower computational costs.

In the context of the current trend of increasing budgets for training language models, a question
arises: will MoE models continue to be attractive in the future? This is an important issue, as other
studies have stated that the gap in efficiency between MoE and standard Transformers narrows at
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Figure 1: Mixture-of-Experts can be always considered more efficient than dense Transformers,
regardless of the model size. (a) Compute Optimal scaling curves for MoE and standard Transformers.
The dashed line represents a dense Transformer. Colors denote optimal granularity for the given
FLOPs training budget. (b) Relative number of FLOPs needed to train Transformer and Vanilla MoE
(MoE with G = 1) to achieve the performance of MoE with compute optimal G.

scale (Artetxe et al., 2022) or even that traditional dense models may outperform MoE as the size of
the models increases (Clark et al., 2022).

In this paper, we argue that previous claims lose their validity when we relax certain implicit
assumptions regarding the training process, present in previous research. In particular, we refer to the
fixed training duration and the constant size of experts in MoE models.

Our results suggest that a compute-optimal MoE model trained with a budget of 1020 FLOPs will
achieve the same quality as a dense Transformer trained with a 20× greater computing budget, with
the compute savings rising steadily, exceeding 40× when budget of 1025 FLOPs is surpassed (see
Figure 1). Importantly, we show that the standard practice of fixing the size of experts in MoE to be
the same as feed-forward layer is almost never optimal.

Our main contributions are:

1. Introducing a new hyperparameter - granularity. Adjusting this parameter allows us to
determine the optimal size of experts in MoE models, which translates into increased
efficiency.

2. Deriving new scaling laws for MoE models that incorporate variable training duration, the
number of parameters, and granularity. Such scaling laws allow us to calculate optimal
training hyperparameters for MoE models.

3. Demonstrating that, with optimal settings, MoE models can always outperform traditional
Transformers at any computing budget. This is a conclusion contrary to the results from
Clark et al. (2022).

The code used to produce the results described in this work is open-sourced at
github.com/llm-random/llm-random.

2 RELATED WORK

Mixture of Experts. In the context of language modeling, MoE was first introduced by Shazeer
et al. (2017) as a sparsely gated layer between stacked blocks of LSTM (Hochreiter & Schmidhuber,
1997). A similar technique was proposed in the context of Transformers by Shazeer et al. (2018)
and Lepikhin et al. (2020). Fedus et al. (2022) proposed to route each input to only a single expert
and designed a modified initialization scheme to reduce training instability. Numerous studies
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have proposed to modify the original routing method. Lewis et al. (2021) used a linear assignment
algorithm to postprocess token-expert mappings and ensure even expert selections. Roller et al. (2021)
suggested another approach involving deterministic hash functions. Zhou et al. (2022) proposed
expert choice routing, eliminating the need for additional load balancing losses. Puigcerver et al.
(2023) designed a fully-differentiable Soft MoE architecture.

Concurrently to our work, Dai et al. (2024) proposed to modify the MoE layer by segmenting experts
into smaller ones and adding shared experts to the architecture. Independently, Liu et al. (2023)
suggested a unified view of sparse feed-forward layers, considering, in particular, varying the size
of memory blocks. Both approaches can be interpreted as modifying granularity. However, we
offer a comprehensive comparison of the relationship between training hyperparameters and derive
principled selection criteria, which they lack.

Scaling laws. Scaling laws are empirically derived equations relating the loss of a model with
variables such as the number of parameters, training samples, or the computational budget. In the
case of dense Transformers, scaling laws were first studied by Kaplan et al. (2020), who observed
power law relationships between the final model perplexity and model and dataset size. This work
was extended by Hoffmann et al. (2022) by considering variable cosine cycle lengths and formulating
a modified functional form of the scaling equation.

Scaling laws have also been proposed for other architectures and training scenarios. Henighan
et al. (2020) studied autoregressive modeling across various modalities, while Ghorbani et al. (2021)
considered machine translation. Frantar et al. (2023) explored the impact of pruning on vision and
language Transformers, deriving optimal sparsity for a given compute budget. Clark et al. (2022)
studied the scaling of MoE when changing model size and number of experts on a fixed dataset,
concluding that routed models are more efficient only until a certain model size. In this work, we
challenge that claim by considering a variable, optimal dataset size for both model families (see
Section 6.3).

3 BACKGROUND

3.1 MODEL ARCHITECTURE

Transformer. A standard decoder-only Transformer (Radford et al., 2018a;b; Kaplan et al., 2020;
Brown et al., 2020) consists of an embedding layer, a stack of alternating attention and feed-forward
layers, and an unembedding layer. In the model, each input token is converted by the embedding
layer into a vector of size dmodel, the dimension maintained across all the layers in the residual stream.

The feed-forward component consists of two linear transformations and a nonlinearity φ in between.
It can be described as FFN(x) = φ(xW1 + b1)W2 + b2, with W1 mapping from dmodel to dff, and
W2 back to the original dmodel. It is standard (Radford et al., 2018a; Rae et al., 2022; Touvron et al.,
2023a; Jiang et al., 2023) to set the hidden dimension as dff = 4 · dmodel.

Feed-forward layers contain the majority of Transformer parameters and require the biggest computa-
tional budget counted in terms of FLOPs. Subsequently, they are the main focus of the Mixture of
Experts models considered in this work.

Mixture of Experts. The core idea behind MoE in Transformers is to replace the feed-forward
layer with a set of Nexpert experts. The size of each expert is typically (Fedus et al., 2022; Zhou et al.,
2022; 2023; Jiang et al., 2024) set to mirror the original dimensions of the layer, with the hidden
expert dimension dexpert equal to dff. Therefore, the total number of parameters in MoE scales linearly
with the number of experts. However, the computational cost remains approximately constant as each
input is routed and then processed by a subset of experts.
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Figure 2: (a) Standard MoE layer with G = 1 (b) Corresponding MoE layer with G = 2. Each of the
original experts is split into two granular ones. The split occurs in the hidden dimension of an expert.
Increasing G allows for a more precise mapping between experts and tokens. Since for granularity G,
the token is routed to G granular experts, the number of parameters activated per token is the same in
both cases.

3.2 SCALING LAWS

Dense Transformers. Large Transformer-based models are known to approximately obey the
power-law relationship between final loss L, model size N, and number of training tokens D. This
relationship is often called Chinchilla scaling laws described by Hoffmann et al. (2022) as

L(N,D) = c+
a

Nα
+

b

Dβ
. (1)

The power-law formula is composed of three distinct terms that characterize the intrinsic entropy of
data, constraints of the model, and limitations in the training data. The term c represents the minimum
possible error intrinsic to the data. The remaining two terms are suboptimality terms, which address
the limitations in function representation owing to the size of the model and in data signified by the
number of tokens. In the limit, with infinite data and model size, the loss is reduced to c.

Mixture of Experts. For MoE Transformer-based models, Clark et al. (2022) formulated the final
loss for a constant dataset size D of 130B tokens, allowing for variations in the expansion rate E, as:

L(N,E) =

(

10d/a

N

)a (
1

E

)b+c logN

. (2)

However, this result has a notable limitation as it can be applied only to the original dataset size. The
scalability and effectiveness are constrained in this scenario because it is crucial to align the number
of training samples with the available computational resources for optimal use. As per Kaplan et al.
(2020) and Hoffmann et al. (2022), maintaining a constant dataset size while scaling up the neural
network size leads to undertraining, resulting in a model that does not perform to its full potential.

4 GRANULARITY

As described in Section 3, in the standard setting, the inner dimension of each expert network, dexpert,
is equal to dff, which is the same size as the feed-forward layer of the base model.

In this work, we suggest an alternative approach where the hidden dimension of the expert is not
necessarily set to mirror that of the standard feed-forward layer. Instead, it can be adjusted to a value
that is the most effective. This approach allows the configuration of MoE to be articulated in terms
of two key hyperparameters: granularity (G) and expansion rate (E). In the following parts of this
work, we will also use the term active parameters to refer to the non-embedding parameters used to
produce output for a single token, except routing. The number of active parameters is denoted as
Nact.
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Let dexpert be the hidden dimension of a single expert. Granularity is defined as

G =
dff

dexpert

.

In other words, granularity denotes the multiplier factor for the change in the size of an expert from
the original standard model, defined as G = 1. In this work, we investigate G > 1 where experts are
smaller than in the standard layer.

Note that increasing granularity does not affect the number of active parameters. As G increases, the
number of experts that process the token grows proportionally to G. In other words, for granularity G,
a token is routed to G fine-grained experts, thereby keeping the number of active parameters constant.
See Fig. 2 for visualization.

We then define the expansion rate, which describes the increase in the number of parameters from
a standard transformer layer to a MoE layer. Given that, NMoE and Nff denote the total number of
parameters in a MoE layer excluding routing and the standard feed-forward layer, respectively. The
expansion rate E is then defined as

E =
NMoE

Nff

.

Expansion rate can also be seen as the total number of parameters in a MoE layer compared to its
active parameters.

The concept of the expansion rate is intricately linked to the number of experts through the idea
of granularity. Indeed, the definitions of both granularity and expansion rate extend and refine our
understanding of the number of experts, symbolized as Nexpert.

Nexpert = G · E (3)

For non-granular models, where G = 1, the expansion rate is equal to the number of experts.

Intuitively, increasing granularity for a given expansion rate gives the model more flexibility in
mapping datapoints to experts, potentially improving performance. We incorporate the notion of
granularity into our scaling laws in Section 5. The discussion about practical tradeoffs in changing
this parameter is given in Section 6.

5 SCALING LAWS

Granularity determines changes in the architecture of MoE. In this section, we answer a central
question of this work: whether the granular MoE models follow scaling laws and, if so, how
granularity affects them. Thus, we aim to derive a parametric scaling law for predicting the final
loss value L based on granularity G, total number of non-embedding parameters N , and number of
training tokens D.

We run over 100 experiments on the decoder-only Transformer architecture, with each feed-forward
component replaced by a Mixture of Experts layer. Those experiments involve training models with
sizes ranging from 129M to 3.7B parameters across different training durations, from 16B to 130B
tokens. We consider logarithmically spaced values of granularity between 1 and 16. To constrain the
search space, E = 64 is fixed, following the recommendations of Clark et al. (2022). In addition, we
also run experiments with dense Transformers to compare their performance with MoE. The details
of all architectures, the training procedure, and hyperparameter choices are described in detail in
Appendix A.

In the subsequent part of this paper, we will use the notation E ×Nact to describe a MoE model with
Nact active parameters and expansion rate E.
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Figure 3: (a) The effect of G on LN,D(G) for constant N and D. Both axes are in the log-scale.
The results suggest the linear relationship between log(G) and log(L − c). The given values are
N = 64 × 25M , D = 16B, const = 3.12 . The plots for additional values of N and D can be
found in Appendix F. (b) The impact of varying the number of parameters N on the loss for fixed
granularity G = 4. For other granularity values, see Appendix F. (c) The difference in the loss
between training for 16B and 65B tokens for all model sizes and granularity values. The model size
is reported as the expansion rate and the number of active parameters.

5.1 POWER LAW WITH RESPECT TO GRANULARITY

We first answer the question of whether granular models follow the scaling laws. In Figure 4(a), it
can be seen that increasing granularity results in a lower loss. The returns follow approximately an
exponential pattern, converging to a positive constant. The empirical relationship given by Figure
3(a) suggests the following power-law dependence of loss on a varying granularity for given N and
D and constants g, h and γ that may be dependent on them,

LN,D(G) =
gN,D

GγN,D
+ hN,D. (4)

5.2 SCALING THE MODEL AND DATASET SIZE

As outlined in Section 3.2, the power-law given by Eq. 1 consists of three terms that describe inherent
data entropy and limitations in function representation and data. This derivation is independent of the
architecture. In particular, the Eq. 1 also holds for constant granularity. Empirically, we observe a
power law relationship in N and D analogous to that in dense models as depicted in Figure 3(b) for
a fixed value of granularity (see also Fig. 1, Kaplan et al. (2020)). Furthermore, the validity of this
functional form is verified by fit in Section 5.4.

Since we know that separate scaling laws are valid for given granularities, in the general form, the
parameters in Eq. 1 can be dependent on the model’s granularity:

LG(N,D) = cG +
aG

NαG
+

bG

DβG
. (5)

5.3 THE FORM OF THE JOINT SCALING LAW

Following the above observation that models with constant granularity obey Chinchilla scaling
laws given by Eq. 1, the key question arises as to how the general notion of granularity G can be
incorporated into the joint scaling law. Moreover, the scaling law formula from Eq. 5 for constant
N and D has to be representable by Eq. 4. This is because the former is a more general equation,
encompassing shared hyper-parameters across all N , D, and G. It is anticipated to align with the
latter, consisting of distinct power laws, each with specific parameters for different N and D values.
Consequently, the objective is to identify a function that fulfills these criteria.
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Figure 4: Fit of the scaling laws compared to the experimental results.

L(N,D,G) = LN,D(G) = LG(N,D) (6)

=
gN,D

GγN,D
+ hN,D = cG +

aG

NαG
+

bG

DβG

In the subsequent sections, we aim to determine which of these parameters remain independent of G
and identify their functional form. Furthermore, we present some rationale for the structure of our
formula.

Lower Bound. Consider the limit of Eq. 5 for N and D growing to infinity:

lim
N→∞

D→∞

L(N,D,G) = cG. (7)

with the constant term cG dependent on granularity. This is contradictory to the fact that it captures
the inherent entropy of the dataset. Lower bound of the achievable loss when training bigger models
on more samples should not depend on the architecture, therefore parameter cG = c is constant for
all granularities.

Granularity and Number of Tokens D. As seen in Figure 3(c), the benefit of training a model on a
larger dataset is almost the same for each granularity value. This suggests that there is no interaction
between D and G. Therefore, we can assume that

bG

DβG
=

b

Dβ
. (8)

Granularity and Model Size N . We consider α to be a constant that describes how the function
scales with N . In this work, we assume polynomial functional forms that rule out the potential
dependency of α on G given the form of Eq. 4. Therefore, the only element dependent on G is aG:

L(N,D,G) = c+
( g

Gγ
+ a

) 1

Nα
+

b

Dβ
. (9)

Finally, one could consider omitting the constant a in the equation above, and it would still reduce to
4 for constant N and D. However, this would mean that a model with infinite granularity and a small
number of active parameters can achieve the perfect perplexity of the lower bound. We assume that
a sparse MoE (Mixture of Experts) model is unlikely to surpass the performance of an equivalent
dense model that has a matching total number of parameters, all of which are active. This means that
constant a can act as a marginal improvement due to granularity.

Subsequently, we fit parameters in Eq. 9 to describe the scaling of MoE. For comparison, we also
perform fitting for dense transformer given by Eq. 1. Similarly to Hoffmann et al. (2022), we use
Huber loss (Huber, 1964), with δ = 0.1. The optimization is performed using the BFGS algorithm.
We include a weight decay of 5e− 4 to enhance generalization. We start with fitting parameters in
Eq. 9 and then find architecture-dependent coefficients α, β,A and B in Eq. 1. We observe a good fit,
with RMSE = 0.015. The values are presented in Table 1. We depict the results in Figure 4.
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Figure 5: (a) Validation of the scaling laws. (b) Training loss curves for model with N = 64× 7M ,
D = 66B tokens, measured against wall-clock time on NVIDIA A100 GPU. G = 8 leads to the
best performance, as for G = 16 the routing cost dominates gains from granularity. We model the
increased cost of routing by measuring FLOPs for each configuration.

5.4 FITTING THE PARAMETRIC SCALING LAW

Table 1: Values of the fitted coefficients.

Model a α b β g γ c

MoE 18.1 0.115 30.8 0.147 2.1 0.58 0.47
Dense 16.3 0.126 26.7 0.127 - - 0.47

We validate the stability of the fit by excluding the top 20% of models with the lowest perplexity and
finding the coefficients based on the remaining experiments. We observe that the formula remains
almost unchanged in this scenario (see Table 5 in Appendix B). The validation RMSE is 0.019.
Results are depicted in Figure 5 (a).

5.5 MOE SCALING PROPERTIES

Comparing the part of the formula that approximates underfitting (that is, dependent on training
tokens) in MoE (30.8D−0.147) and Transformer (26.7D−0.127), we can infer that MoE models need
longer training to perform competitively but scale better after reaching that point. Nonetheless, this
moment may still precede the compute optimal for both models. On the other hand, we can see that
the exponent on dense models α = −0.126 scales better with a total number of parameters than the
MoE counterpart α = −0.115. This should not be surprising since dense models use all parameters
on each token contrary to MoE, which gains a computational advantage by activating only a subset of
them. Therefore, the fair comparison of the performance has to take into account FLOPs used by
each model type. In the next section, we find compute-optimal granularity for a given FLOP budget.

6 OPTIMAL ALLOCATION OF COMPUTATIONAL BUDGET

In Section 5, we show that higher granularity leads to lower loss for the same number of training
steps. This is not always the case if we consider the wall-clock time. As depicted in Figure 5 (b), in
practice for too high values of G (relative to dmodel), training can be bottlenecked by the routing cost.
Practical modeling of this situation is possible by measuring FLOPs in routing. In this section we find
optimal N,D,G for a given computational budget F by solving the following optimization problem,

minimize
N,D,G

L(N,D,G)

subject to FLOPs(N,D,G) = F.

8



6.1 COMPUTATIONAL COST OF GRANULARITY

It is important to acknowledge that increasing granularity can lead to some challenges in training the
model, namely higher computational and communication costs and a larger memory footprint. The
main component responsible for higher costs is the increase in routing operations due to a larger pool
of granular experts. This increase is proportional to the value of G. For standard, non-granular MoE
models (G = 1), the routing overhead still exists, although it has been considered negligible.

Taking into account the routing operation overhead, the number of used FLOPs F is described by the
following formula:

F = (12dmodel
2cf + dmodelEGcr) ·D · nblocks, (10)

given expansion rate E, granularity G, and constants that denote FLOPs per active parameter ratio,

respectively, within routing (cr) and within the rest of the network (cf ). The term 12dmodel
2 is the

number of active parameters within a transformer block, while dmodelEGcr is the number of active
parameters within a routing network. The in-depth analysis of constants cr and cf can be found
in Appendix E. We exclude embedding and unembedding from the FLOPs calculations, following
Hoffmann et al. (2022).

Observe that, in contrast to scenarios where routing operations are omitted, the FLOPs calculation
that incorporates routing overhead relies on both dmodel and nblocks. Consequently, an additional
condition is required to determine the scaling of dmodel and nblocks in relation to an increase in N , the
number of parameters. It is noted that minor variations in the depth-to-width ratio are not significant
(Kaplan et al., 2020). Following this analysis, we opt to adopt the assumption that dmodel = 64nblocks.

The total number of parameters in the feed-forward layer, excluding the routing matrix, is

2Edffdmodel = 8Edmodel
2, and 4dmodel

2 in attention (key, query, value, and output projection). This

results in the following formula for the total number of parameters, N = dmodel
2
· (8E + 4) · nblocks.

6.2 COMPUTE OPTIMAL FORMULA

Taking into consideration we need to solve the following optimization problem, given F ,

minimize
N,D,G

L(N,D,G)

subject to F = (12dmodel
2cf + dmodelEGcr) ·D · nblocks

N = d2model · (8E + 4) · nlayers,

dmodel = 64 · nlayers.

All these constraints are reducible to a one-dimensional optimization problem, which is, however,
hard to solve analytically. Therefore we approximate the solution using Brent’s method (Brent,
1971). The results of this optimization for varying FLOPs budgets are plotted in Figure 1 while the
optimal configurations of parameters for selected model sizes are presented in Table 2. To validate
the uncertainty of these predictions, we follow Hoffmann et al. (2022) and calculate the 10th and
90th percentiles estimated via bootstrapping data (see Appendix C for the detailed results).

6.3 MOE IS ALWAYS MORE EFFICIENT

Contrary to the results from Clark et al. (2022), in Figure 1 we can see, that Mixture-of-Experts can be
always considered more efficient than dense Transformers, regardless of the model size. According to
our previous observations from Section 5.5, MoE models scale better with optimal training. However,
for short training schedules, they may under-perform dense models. This means that for constant
training time and increasing model size, there exists a point where both models will become very
under-trained, in which scenario dense models surpass MoE. This shows why in Clark et al. (2022),
where varying the number of training tokens has not been considered, MoE was predicted to be
under-performing for models bigger than 1T . However, when all training hyper-parameters N,D,G
are properly selected to be compute-optimal for each model, the gap between dense and sparse models
only increases as we scale.

9



Table 2: Compute optimal training hyper-parameters for MoE models. Optimal N and D follow
approximately similar relation to these of Hoffmann et al. (2022) for active parameters around the
range of 1B to 10B parameters, requiring comparably longer training for smaller models and shorter
for bigger ones. Higher granularity is optimal for larger compute budgets.

N D G FLOPs Loss

64 x 100M 4.37B 8 2.95e+18 3.133
64 x 1B 28.94B 16 1.93e+20 2.491
64 x 3B 72.90B 16 1.41e+21 2.245
64 x 7B 137.60B 32 6.46e+21 2.076
64 x 70B 941.07B 32 4.16e+23 1.694

64 x 300B 2.96T 64 5.69e+24 1.503
64 x 1T 7.94T 64 4.97e+25 1.367

7 DISCUSSION

Extreme Granularity. In Section 5, we argue that model performance improves with increasing
granularity. This postulate largely aligns with the empirical findings of our study. Nonetheless, at
exceedingly high granularity levels, such as G = 64 in models characterized by dmodel = 256 and
E = 64, there is an observable decline in performance. This phenomenon is particularly evident
in scenarios where the number of parameters in the routing mechanism exceeds active parameters
in actual experts. Additionally, as described in Section 6, the utility of such high granularity is
predominantly restricted to models of substantial size. In alignment with the principles outlined by
Hoffmann et al. (2022), this research focuses more on findings that can be broadly applied rather
than delving into the specific details of these corner-case situations. However, it is hypothesized that
the efficiency of models with significantly high granularity could be potentially enhanced through
careful expert initialization or modifications to the routing algorithm. These ideas are set aside to be
investigated in future studies.

Varying Expansion Rate. In this study, due to computational resources constraint, we focus on
E = 64, as recommended by Clark et al. (2022). This value of E was also used for the largest models
in other works (Du et al., 2022; Zhou et al., 2022) and the best-performing configuration in Fedus
et al. (2022). Nonetheless, we acknowledge the importance of considering different expansion rates,
as different levels of E may be chosen based on factors like the target size of the model in memory.
Therefore, in Appendix D, we present the results of the study for E = 16 and show that the main
findings of this work are still valid in such cases.

Including E in the formula. Another possible advancement would be to unify all of the factors
N,D,G and E in one formula. While this would open the possibility of studying the relationships
between coefficients in more detail, it would also be hard to practically recommend the optimal
configuration in such a scenario using only FLOPs. This is because larger values of E typically
lead to better performance but also incur additional memory requirements. Therefore, the choice
of expansion rate may be heavily dependent on the available hardware configuration. We leave a
detailed study of these factors for future work.

Modeling the cost of granularity. It is important to note that the exact estimation of the training
cost of MoE models is dependent on the training setup, hardware, and implementation. Specifically,
increasing G can lead to higher transfer costs, depending on the adopted model of distributed training.
Therefore, the precise selection of hyperparameters should be made considering these factors. In this
work, we model the cost of operations using FLOPs, which is common in the Scaling Laws literature
(Kaplan et al., 2020; Hoffmann et al., 2022; Frantar et al., 2023). Additionally, we would like to
note that in our setup, we observe significant gains of fine-grained MoE measured as wall-clock time
needed to achieve given perplexity (see Fig. 5 (b) for an example).
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8 CONCLUSIONS

This study introduces a novel hyperparameter, granularity (G), and underscores the significance
of adjusting it for optimizing the efficiency of experts within MoE models. A central finding
of this research is that a standard granularity of G = 1 is suboptimal across a broad range of
FLOPs, leading to the recommendation of using higher granularity values to enhance MoE model
performance and efficiency. Simultaneously, this work emphasizes the importance of varying training
duration for compute-optimal settings. Consequently, both granularity and variable training length are
incorporated into new scaling laws. These laws confidently demonstrate that MoE models consistently
outperform dense transformers in terms of efficiency and scaling. This work not only sheds new light
on the scaling laws applicable to MoE models but also provides practical guidance for improving
computational efficiency in large language models. The insights are critical for the development and
optimization of large-scale language models, marking a significant advancement in the field.

9 REPRODUCIBILITY

The code used to produce the results described in this work is open-sourced and can be found at
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Ponferrada, Efrat Levkovizh, Ethan Kim, Eyal Bar Natan, Francesco De Toni, Gérard Dupont,
Germán Kruszewski, Giada Pistilli, Hady Elsahar, Hamza Benyamina, Hieu Tran, Ian Yu, Idris
Abdulmumin, Isaac Johnson, Itziar Gonzalez-Dios, Javier de la Rosa, Jenny Chim, Jesse Dodge,
Jian Zhu, Jonathan Chang, Jörg Frohberg, Joseph Tobing, Joydeep Bhattacharjee, Khalid Al-
mubarak, Kimbo Chen, Kyle Lo, Leandro Von Werra, Leon Weber, Long Phan, Loubna Ben allal,
Ludovic Tanguy, Manan Dey, Manuel Romero Muñoz, Maraim Masoud, Marı́a Grandury, Mario
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Subramonian, Aurélie Névéol, Charles Lovering, Dan Garrette, Deepak Tunuguntla, Ehud Reiter,
Ekaterina Taktasheva, Ekaterina Voloshina, Eli Bogdanov, Genta Indra Winata, Hailey Schoelkopf,
Jan-Christoph Kalo, Jekaterina Novikova, Jessica Zosa Forde, Jordan Clive, Jungo Kasai, Ken
Kawamura, Liam Hazan, Marine Carpuat, Miruna Clinciu, Najoung Kim, Newton Cheng, Oleg
Serikov, Omer Antverg, Oskar van der Wal, Rui Zhang, Ruochen Zhang, Sebastian Gehrmann,
Shachar Mirkin, Shani Pais, Tatiana Shavrina, Thomas Scialom, Tian Yun, Tomasz Limisiewicz,
Verena Rieser, Vitaly Protasov, Vladislav Mikhailov, Yada Pruksachatkun, Yonatan Belinkov,
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A ARCHITECTURE AND TRAINING SETUP

All of the models considered in this work are decoder-only Transformers trained on the C4 dataset
(Raffel et al., 2023). We use GPT2 tokenizer (Radford et al., 2018a). Each batch consists of 0.5M
tokens packed into 2048 sequences. Our optimizer is AdamW (Loshchilov & Hutter, 2019), with a
weight decay of 0.1. In each training run, we use the maximum learning rate of 2e−4, with linear
warmup for 1% steps and cosine decay to 2e−5. To improve stability, we initialize weights using the
truncated normal distribution with reduced scale, as advised in Fedus et al. (2022). The models are
trained using mixed precision; we always keep the attention mechanism and router in high precision.
We assume the infinite data regime, as the number of training tokens for any of the runs is less than
the number of tokens in the corpus. We follow Hoffmann et al. (2022) and perform our analysis on
the smoothed training loss.

In MoE, we use the Expert Choice routing algorithm, as it guarantees a balanced expert load without
tuning additional hyperparameters. To maintain compatibility with autoregressive language modeling,
we apply the recipe described in Zhou et al. (2022): tokens are grouped by position across different
sequences. The group size is always set to 256. We match the number of FLOPs for MoE and dense
models with the same dmodel (meaning we activate an average of 8d2model parameters per token in each
MoE layer). In the router, softmax is performed over the expert dimension, while we choose tokens
over the token dimension, as this leads to the best performance (as opposed to performing softmax
over the token dimension). We put an additional layer normalization before the output of MoE layer.
This gives a small improvement for standard MoE, but is crucial for the performance of models with
G > 1.

Table 3 and Table 4 list the considered architecture and training variants for dense and MoE models,
respectively.

Table 3: Architecture and training variants (MoE models).

#parameters (nonemb) dmodel nblocks nheads D (in #tokens) G

64x3M 256 4 4 16B, 33B, 66B 1, 2, 4, 8, 16
64x7M 384 4 6 16B, 33B, 66B 1, 2, 4, 8, 16
64x13M 512 4 8 16B, 33B, 66B 1, 2, 4, 8, 16
64x13M 512 4 8 130B 1, 2, 4
64x25M 512 8 8 16B, 33B, 1, 2, 4, 8, 16
64x25M 512 8 8 66B 1, 2, 4, 8
64x49M 640 10 10 16B, 33B 1, 2, 4, 8, 16
64x49M 640 10 10 66B 1, 2, 4
64x85M 768 12 12 33B 1, 2, 4

Table 4: Architecture and training variants (dense models).

#parameters (nonemb) dmodel nblocks nheads D (in #tokens)

3M 256 4 4 16B, 24B, 33B, 66B
6M 256 8 4 16B, 24B, 33B, 66B

13M 512 4 8 16B, 24B, 33B, 66B
25M 512 8 8 16B, 24B, 33B, 66B
49M 640 10 10 16B, 24B, 33B, 66B
85M 768 12 12 16B, 33B
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B VALIDATION OF THE SCALING LAW

In this section, we provide coefficients of the scaling law fitted with 20% of datapoints with the
lowest perplexity excluded for the purpose of validation.

Table 5: Values of the fitted coefficients.

Model a α b β g γ c

MoE 17.6 0.114 26.7 0.140 2.07 0.570 0.472

C RELIABILITY OF COMPUTE OPTIMAL FORMULA

In this section, we assess the stability of our predictions presented in Section 6.1. Similarly to
Hoffmann et al. (2022) we calculate the 10th and 90th percentiles estimated via bootstrapping data
(80% of the data is sampled 100 times). See Table 6 for the details.

Table 6: 10th and 90th percentiles estimated via bootstraping data.

N D G

64 x 100M (2.97B, 5.98B) (8, 8)
64 x 1B (21.17B, 40.73B) (16, 16)
64 x 3B (50.20B, 105.88B) (16, 32)
64 x 7B (101.06B, 205.40B) (32, 32)
64 x 70B (638.49B, 1.59T) (32, 64)

64 x 300B (1.99T, 5.62T) (64, 64)
64 x 1T (5.29T, 16.87T) (64, 64)

D VARYING EXPANSION RATE

In this section, we provide results for E = 16. The training procedure is the same as described in
App. A. The models considered in this part are listed in Table 7.

Table 7: Architecture and training variants (MoE models).

#parameters (nonemb) dmodel nblocks nheads D (in #tokens) G

64x3M 256 4 4 8B, 16B, 33B 1, 2, 4, 8, 16
64x7M 256 8 4 8B, 16B, 33B 1, 2, 4, 8, 16

64x13M 512 4 8 8B, 16B, 33B 1, 2, 4, 8, 16
64x13M 512 4 8 66B 1, 2, 4
64x25M 512 8 8 8B, 16B, 33B 1, 2, 4, 8, 16
64x49M 640 10 10 8B 1, 2, 4, 8, 16

We fit Eq. 9 using the same procedure as described in Section 5.4. The results are detailed in Table 8.

Table 8: Values of the fitted coefficients.

Model a α b β g γ c

MoE (E = 16) 19.64 0.124 57.07 0.169 1.18 0.986 0.472
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Using the coefficients and FLOPs calculation formulas, we can derive the compute optimal training
parameters. The results are presented in Table 9.

Table 9: 10th and 90th percentiles estimated via bootstrapping data for E = 16.

N D G

16 x 100M (10.29B, 17.73B) (8 , 16)
16 x 1B (53.74B, 103.54B) (16, 32)
16 x 3B (106.22B, 261.04B) (16, 32)
16 x 7B (177.65B, 511.43B) (16, 32)

16 x 70B (721.60B, 3.22T) (32, 64)
16 x 300B (1.73T, 10.69T) (32, 64)

16 x 1T (3.60T, 28.22T) (32, 128)

We can observe that similarly to the case when E = 64, larger compute budgets imply larger optimal
values of G. Note that the values for 10th and 90th percentiles form larger intervals in this case, as in
this part we run a smaller number of experiments and keep shorter training durations. However, we
believe that this preliminary study forms a valuable addition to the results in the main part.

E FLOPS CONSTANTS

The number of FLOPs F used in Transformer training, considering the routing operation overhead in
MoE, can be described by the following formula:

F = (12dmodel
2cf + dmodelEGcr) · ntokens · nlayers (11)

Following Hoffmann et al. (2022), we assume cf to be 6. This is interpreted as 6 FLOPs for each pair
of an active parameter (in linear projection) and a processed token. The breakdown of operations is
as follows:

• During the forward pass, 2 operations (single multiplication and single addition) are used to
compute the matrix multiplication of an input and linear projection.

• During the backward pass, 2 operations are used to compute gradients wrt. the input.

• During the backward pass, 2 operations are used to compute gradients wrt. the weights of
linear projection.

In our work, we have assumed the routing constant, cr, to be 14, with the breakdown presented below.
The exact number of operations may depend on the implementation of routing, but it will be between
6 and 20. However, our main conclusions of the paper are resistant to different assumptions of this
constant.

• During the forward pass, 2 operations are used to compute the expert logits based on an
input and “routing linear projection”.

• During the backward pass, 2 operations are used to compute gradients for “routing linear
projection” wrt. the input.

• During the backward pass, 2 operations are used to compute gradients for “routing linear
projection” wrt. the weights of linear projection.

• During the forward pass, 2 operations are used to route input tokens to chosen experts.

• During the forward pass, 2 operations are used to route expert outputs to chosen tokens and
multiply those outputs by the routing score.

• During the backward pass, 2 operations are used to route gradients from output tokens to
experts.

• During the backward pass, 2 operations are used to route gradients from experts to input
tokens.
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Similarly to the calculation of FLOPs for cf , FLOPs come in pairs as each multiplication is followed
by an addition (used to accumulate outputs or gradients).

F ADDITIONAL VISUALIZATIONS
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Figure 6: Illustration of scaling N and D for constant granularity value of: (a) G = 1 (b) G = 2 (c)
G = 8 (d) G = 16.
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Figure 7: Illustration of scaling granularity when N,D are fixed for: (a) N = 64× 25M , D = 16B,
const = 3.12 (b) N = 64 × 49M , D = 16B, const = 3.02 (c) N = 64 × 25M , D = 32B,
const = 3.03 (d) N = 64× 49M , D = 32B, const = 2.88
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