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Abstract

Machine learning (ML) has been applied to develop magnetic resonance imaging (MRI)-based
diagnostic classifiers for attention-deficit/hyperactivity disorder (ADHD). This systematic review
examines this literature to clarify its clinical significance and to assess the implications of the
various analytic methods applied. We found that, although most of studies reported the
classification accuracies, they varied in choice of MRI modalities, ML models, cross-validation
and testing methods, and sample sizes. We found that the accuracies of cross-validation
methods inflated the performance estimation compared with those of a held-out test,
compromising the model generalizability. Test accuracies have increased with publication year
but were not associated with training sample sizes. Improved test accuracy over time was likely
due to the use of better ML methods along with strategies to deal with data imbalances.
Ultimately, large multi-modal imaging datasets, and potentially the combination with other types
of data, like cognitive data and/or genetics, will be essential to achieve the goal of developing

clinically useful imaging classification tools for ADHD in the future.
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Introduction

Clinicians diagnose ADHD by evaluating symptoms of hyperactivity, impulsivity, inattention, and
impaired functioning across settings. The diagnosis of ADHD shows considerable levels of
concurrent and predictive validity in its clinical features, course, neurobiology, and treatment
response (Faraone, 2005; Faraone & Biederman, 2000). Nevertheless, concerns about
diagnostic accuracy persist. Some suggest that the current method of diagnosing ADHD is too
subjective and leads to over-diagnosing ADHD in the community (Bruchmuller, Margraf, &
Schneider, 2012; Visser et al., 2014). Psychiatric diagnoses have been called "subjective"
because they rely on clinician evaluation of responses from patients, parents, and/or informants.
Other studies have raised concerns about the under-diagnosis of ADHD (Ginsberg, Quintero,
Anand, Casillas, & Upadhyaya, 2014; The Express Scripts Lab, 2014), especially in girls and
women, which suggests biases in applying the current diagnostic algorithm. Another issue is the
misdiagnosis of ADHD as being another disorder. When this occurs, patients may be exposed
to unnecessary treatments and will continue to struggle with the many impairments associated
with ADHD. Those who have ADHD and are not diagnosed with the disorder will continue to
have impaired functioning leading to increased risks for other health and social problems
(Dalsgaard, Ostergaard, Leckman, Mortensen, & Pedersen, 2015; Franke et al., 2018; Lambert

& Hartsough, 1998; Lichtenstein et al., 2012; Reiersen & Todorov, 2013).

In response to these concerns, researchers have sought to develop objective measures to
diagnose ADHD or to monitor the course of ADHD symptoms during treatment. Much research
has examined peripheral biochemical markers in differentiating ADHD and control patients,
such as (Norepinephrine (NE), 3-Methoxy-4-hydroxyphenylethylene glycol (MHPG), monoamine
oxidase (MAQ), zinc, and cortisol (Faraone, Bonvicini, & Scassellati, 2014; Scassellati,
Bonvicini, Faraone, & Gennarelli, 2012). NE, MHPG, MAO, b-phenylethylamine, and cortisol are

also somewhat predictive of response to ADHD medications. Meta-analysis also shows that
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peripheral measures of oxidative stress differ between ADHD and control participants (Joseph,
Zhang-James, Perl, & Faraone, 2015). Electroencephalographic (EEG) (Snyder, Rugino,
Hornig, & Stein, 2015), actigraphic (Dane, Schachar, & Tannock, 2000), and eye vergence
measurements (Sole Puig et al., 2015), as well as interactive gaming behaviour (Faraone et al.,
2016) were also examined as ADHD biomarkers. Neuropsychological tests (Ritsner, 2009),
particularly continuous performance tests (CPTs) (e.g. Corkum & Siegel, 1993; Homack &
Riccio, 2006; Riccio & Reynolds, 2001) have been evaluated in many studies. In recent years,
genetic markers in the form of polygenic risk scores also have shown some predictive ability of
diagnosis and prognosis of ADHD (Demontis et al., 2019; Hamshere et al., 2013; Riglin et al.,
2016).Many of these prior studies show group differences but do not present diagnostic
accuracy statistics. A clinically useful biomarker should have at least 80% sensitivity and 80%
specificity. They should also be reliable, reproducible, inexpensive, non-invasive, easy to use,
and confirmed by at least two independent studies. These criteria were defined by work of the
task force on biological markers by the World Federation of ADHD (Thome et al., 2012). None

of the measures examined by them met these criteria for clinical utility (Thome et al., 2012).

Prior structural MRI (sMRI) studies have consistently reported alterations in frontal,
parietotemporal, cingulate, cerebellum, basal ganglia, and corpus callosum regions (Castellanos
et al., 2002; Mackie et al., 2007; Seidman, Valera, & Makris, 2005; Seidman et al., 2006; Shaw
et al., 2014; Shaw et al., 2006; Valera, Faraone, Murray, & Seidman, 2007). Studies of the
largest ADHD sMRI dataset from the Enhancing Neuro Imaging Genetics Through Meta-
Analysis (ENIGMA) consortium’s ADHD Working Group reported the significant volumetric
reductions in intracranial volume, amygdala, caudate nucleus, nucleus accumbens,
hippocampus, and cortical surface areas from many regions in children with ADHD (Hoogman
et al., 2017; Hoogman et al., 2019). These regions have also be implicated in functional MRI

(fMRI) studies showing altered brain connectivity and activation in the fronto-striatal, fronto-
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parietal and fronto-temporal-parietal circuits, as well dorsal anterior cingulate cortex in ADHD
brains (Dickstein, Bannon, Castellanos, & Milham, 2006; Smith, Taylor, Brammer, Toone, &
Rubia, 2006; Tian et al., 2006). Studies have also examined the developmental trajectories of
these anatomical and functional alterations across the lifespan finding initial delays that are
followed by apparent normalization (Castellanos et al., 2002; Shaw et al., 2014; Shaw et al.,

2006).

These findings encouraged efforts to develop objective diagnostic tools for ADHD using MRI
data. Early studies used standard statistical methods such as discriminant analysis with very
small sample sizes (Semrud-Clikeman et al., 1996; Zhu et al., 2008; Zhu et al., 2005). For
example, a discriminant analysis reported by Semrud-Clikeman et al. (1996) included 10
participants in each of three diagnostic groups: developmental dyslexia, ADHD or control. Zhu
and colleagues’ discriminant analysis classifier assessed 9 ADHD and 11 typically developing
boys. Although high predictive accuracies were reported in these studies (85~ 87%), it is
difficulty to evaluate how well those models would generalize given the small samples and lack

of replication samples.

The ADHD-200 Global Competition (Consortium, 2012) challenged researchers to develop an
MRI-based diagnostic classifier for ADHD. It provided a dataset of 776 children, adolescents
and young adults (7-21 years old, 63% healthy controls, 37% ADHD) from eight sites. Fifty
teams from around the world joined the competition with 21 final submissions. Machine learning
models predominated. Due to the large sample size, the consortium was able to set aside a test
set that was not used for model selection and development. The competition results were
judged by the performance on the test set only. This contrasts with previous studies with small
sample sizes, where a held-out test set was not available. The ADHD-200 winning team used

an ensemble model which achieved a 61% accuracy with 21% sensitivity and 94% specificity
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using both structural and resting state-fMRI data along with the demographic predictors (Eloyan
et al., 2012). The accuracy, although considerably lower than previously reported high
accuracies, was one of the first in an independent, held-out test set. Despite the modest
accuracy, the ADHD-200 competition re-kindled enthusiasm for developing imaging-based
diagnostic classifiers for ADHD. The publicly available dataset has become the main data
source driving the machine learning model development for ADHD. Since the competition in
2012, we have seen a steady increase in the number of publications applying machine learning
classifiers to ADHD. Thirty-one additional published studies have used either the whole or part

of the ADHD-200 dataset (Supplementary Figure 1 and Table 1).

This systematic review examines the prior literature applying ML to MRI data in ADHD to clarify
the clinical significance of findings and to assess the implications of the various analytic
methods applied. We discuss the progress made over the years as well as lessons and
methodological issues that we learned from this body of work. We hope to provide a roadmap
for future studies that aim to overcome these issues and achieve clinically useful models for

diagnosing ADHD.

Methods

A literature search on MRI-based diagnostic classifiers for ADHD using key words (“ADHD”
AND “MRI” AND (“Machine learning” OR “Classi*)) and examining their references identified 49
studies in total (up to June 20, 2020, Pubmed, Embase and Google). Supplementary Figure 2
shows the article selection procedure in a PRISMA diagram. The eligible studies applied
statistical or machine learning classifiers using MRI data to differentiate participants with ADHD
from controls. Table 1 lists the selected studies along with the performance of their best models.
If a study dealt with multi-class classification, for example, having ADHD, ASD and control

groups, only the two-class classification accuracies involving ADHD vs the control groups were
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examined in this review. We used percent correct (accuracy) to compare results across studies
because it was available for most of the papers. Studies that met the classifier criteria but did
not report an accuracy statistic or other metrics that can be used to compute accuracies, were
not included in our quantitative analysis. If a study reported multiple models, only the model

which had the highest accuracies was included in Table 1.

We extracted and examined study characteristics, including machine learning model types, MRI
data modality, cross-validation and testing methods, training sample size, training set class ratio
(the ratios of ADHD vs Control participants’ numbers), data source, dataset age and sex
compositions and publication years, etc. We grouped machine learning models to three
categories: support vector machine (SVM), convolutional neural networks (CNNs), and others.
We assigned studies with a training set class ratio between 0.4 ~0.6 as “balanced” (i.e., nearly
equal), and those with higher or lower ratios as “unbalanced”. Six studies used various methods
to balance demographic differences between the ADHD and control groups. These were
assigned as “balanced”, even if their original class ratio was outside of the balanced range
(Deshpande, Wang, Rangaprakash, & Wilamowski, 2015; Fair et al., 2012; Ghiassian, Greiner,
Jin, & Brown, 2016; M. N. Qureshi, B. Min, H. J. Jo, & B. Lee, 2016; Riaz, Asad, Alonso, &
Slabaugh, 2018; Wang, Jiao, Tang, Wang, & Lu, 2013). We reported the age and sex groups,
as well as the minimum and maximum age range of the dataset. For the ADHD-200 samples,
the overall age range was used if a specific subset was used but age information was not
provided. Minimum and maximum values of age were derived for studies that reported mean
and standard deviation of the ages.

We also classified studies based on the methods they used to evaluate model performance and
generalizability. Two methods were used. The held-out test set method evaluates model
performance on data that were set aside, i.e., they were not used during model estimation and

training. Because this method requires a large sample, many studies resort to cross-validation
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(CV) method to assess model performance. CV methods randomly re-sample examples to be
set aside during model fitting. The most commonly used versions are the leave-one-out CV
(LOOCYV) (Deshpande et al., 2015; Fair et al., 2012; Hart et al., 2014; lannaccone et al., 2015;
Peng, Lin, Zhang, & Wang, 2013) and K-Fold-CV (where K is often = 10, 5, or 2) (Brown et al.,
2012; Dai, Wang, Hua, & He, 2012; Du, Wang, Jie, & Zhang, 2016; M. N. I. Qureshi, B. Min, H.
J. Jo, & B. Lee, 2016). For example, in 10-fold CV, the original dataset is partitioned into 10
equal sub-samples or "folds". For each iteration of model estimation nine of the subsamples are
used to estimate model parameters and the left-out fold is used to estimate model accuracy.
The left-out fold changes from iteration to iteration. For LOOCV, one sample is left out for
testing while all the others are used for training or model fitting. In either situation, the process is
repeated until all samples have been used in both the training and test sets. The CV accuracy is
estimated by averaging over all iterations of CV accuracies. Although CV samples were not
used during the model training/fitting at each iteration, they are, nevertheless, used as training

examples in other iterations.

Our main objective was to understand how study features influenced model accuracy. We used
likelihood-ratio (LR) test assisted variable selection in combination with multivariate linear
regression to quantitatively evaluate if these features predicted model accuracy. The variable
selection algorithm implemented in STATA16's gvselect command computes both the Akaike’s
(1974) information criterion (AIC) and Schwarz’s (1978) Bayesian information criterion (BIC)
(StataCorp, 2019). We performed the variable selection and linear regression modeling for all
the studies combined, as well as separately for the K-Fold-CV, LOOCV, and held-out test
groups. Training sample size was primarily examined as a continuous variable. However, we
also classified sample sizes as small (<300) or large (>300) to compare the variability of their

accuracy estimates using Levene's robust test statistic (Levene, 1960). In addition to the
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quantitative analysis, we also qualitatively reviewed the relevant study characteristics if a

quantitative analysis was not possible.

Results

Among all the studies included, over half the studies (N=27, 55%) reported only CV results
without a held-out test set. Forty-three percent (N=21) used a held-out test sample to evaluate
classifier performance. All but one of the 21 studies used the ADHD-200 samples. Among the
studies that reported held-out test results, six also reported CV results. Figure 1 shows that the
16 studies using K-Fold-CV and the 17 studies using LOOCYV reported, on average, higher

accuracies than studies using held-out tests (F2 47) = 25.3, p < 0.001).

Accuracy estimates increased in later publication years (F¢1, 47=13.68, p=0.0006, Figure 2).
This effect was driven by the studies using held-out test sets (F¢1, 21)=11.0, p=0.003, Figure 2).
There was no significant change of reported accuracies over the years for studies using the K-

Fold-CV or LOOCV methods (Figure 2).

Training sample size significantly predicted accuracies in the K-Fold-CV group (F¢1, 15 =7.8,p
= 0.01, Figure 3 Left). Studies with large samples had lower mean accuracies than studies with
small studies (71% vs 79% mean accuracies, F¢, 15 = 6.5, p = 0.02). The sample size effect
was not significant for the LOOCV and held-out test groups, (Figure 3 Middle and Right), either
as a continuous or categorical variable. The accuracy results from small studies were more
variable than those from large studies in the held-out test group (Levene's robust test statistic
WO (4,27 = 6.68, p = 0.015). The variance differences between large and small samples were not

statistically significant for either the K-Fold-CV or LOOCV.
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Twenty-four studies (55%) used a training dataset that had severely imbalanced classes. Six of
those studies applied data balancing methods to compensate for the class imbalance and are
grouped as balanced studies. Class-balanced studies reported higher accuracies for both the K-
Fold-CV (Fu, 15y = 6.5, p=0.02) and LOOCV (F1,17) = 22.2, p = 0.0002, Supplementary Figure
3A). However, the balanced studies in the K-Fold-CV group were all small studies
(Supplementary Figure 3B); we could not differentiate whether the higher accuracy was due to
the negative relationship with sample size or the benefit of data balance. The higher accuracies
in the balanced LOOCYV group was not related to sample size. No statistical difference was
found for either accuracies or training sample size between the balanced and unbalanced

studies in the held-out test group.

Because the ADHD-200 dataset was the main data source, most studies (N=26) used resting-
state fMRI data (rs-fMRI), or rs-fMRI in combination with sMRI data (multi-modal, N=14). Only
seven studies used sMRI data, and only and two used task-based fMRI data. The sample sizes
for the multi-modal and rs-fMRI studies were significantly larger than those of the sMRI and
task-based fMRI studies (Fs, 47= 4.3, p=0.009, Supplementary Figure 4A). However, except for
the two task-based fMRI studies, which both used LOOCV and reported significantly lower
accuracies than other MRI modalities (t=-23.3, p<.0001), there was no difference in reported
classification accuracies observed among the sMRI, rs-fMRI, or multi-modal studies

(Supplementary Figure 4B).

The ADHD-200 dataset has a mix of children, adolescents and young adults (age 7-21). Ten
other studies focused only on children and/or adolescents (under age 18). Only three studies
examined classification models for older adults (Chaim-Avancini et al., 2017; Wang et al., 2013;
Yao et al., 2018). Overall, the difference in accuracy across the three types of age compositions

was not significant (F, 47y = 2.64, p= 0.08).
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Most studies used a mixture of male and female participants. Four studies only included boys
(Johnston et al., 2014; Lim et al., 2013; Yao et al., 2018; Zhu et al., 2008). These four reported
significantly higher classification accuracies than all other studies that used a mixture of males
and females (F1,47) =10.06, p = 0.003). However, all four were small studies (n=20~189). Three

reported LOOCV and one reported 10-Fold-CV accuracies.

Across all studies, the most frequently used model was the support vector machine (SVM). It
was used in 20 (41%) studies. SVM, and most other ML models cannot directly analyze images.
Instead, they analyze some transformation of images such as regional volumes or cortical
thickness. In contrast, convolutional neural networks (CNNs) can analyze images directly and
thus have access to all the information available. Only in recent years (2017-2020) have studies
applied CNN methods to MRI images (N=6). We did not find any statistically significant
differences between the accuracies reported with SVM, CNN, or other models for ADHD F 2, 4s)

=0.77, p = 0.47, Supplementary Figure 5).

Discussion and Qualitative Review

Our quantitative analysis of prediction accuracy for ADHD revealed several significant findings.
First, accuracies based on K-Fold-CV or LOOCV were significantly higher than those reported
using held-out tests, which suggests that CV methods may over-estimate model performance.
Second, we found greater variability of test accuracies reported in studies with small sample
sizes than those of larger sample sizes and an inverse relationship of sample size and K-Fold-
CV accuracies. Third, estimates of accuracy increased with publication year. This effect was
driven primarily by the held-out test accuracies. Since sample size has been roughly the same

since 2012, we believe that the increasing accuracy over time was due to several design
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features: 1) the use of more sophisticated models (such as deep neural networks and CNN
models), 2) improved methods of data balancing and data augmentation, and 3) use of feature
selection and feature space reduction methods. We found no significant effects of MRI feature
modality or type of ML model. We discuss the implications of these findings and provide further

review of some study characteristics that were not examined in our quantitative analysis.

Cross-Validation vs Held-out Test Set

In the CV approach, the validation samples used to estimate accuracy are not used during the
model training/fitting at each iteration. They are, nevertheless, used as training examples in
other iterations. Moreover, because there are many iterations, the validation set can influence
parameter estimates. In contrast, the held-out test method uses a test set that was never used
during model training. As a result, CV accuracies have been shown to overestimate test set
accuracy when both are available (Brown et al., 2012; Dai et al., 2012). Our results confirm the
inflation of accuracy by K-Fold-CV or LOOCV. Held-out test accuracy is a better indicator of

model performance with unseen samples.

More than half the studies (N=27, 55%) reported only CV results without a held-out test set. An
earlier review reported 13% of ADHD neuroimaging (including MRI and
electroencephalographic) studies consisted of “circular analysis”, where independent test sets
were not used (Pulini, Kerr, Loo, & Lenartowicz, 2019). Our results are more similar to what
Kriegeskorte et al. (2009) had estimated, 42%~56% of studies consisted of “circular analysis”,
based on all fMRI studies published in five prestigious journals (Nature, Science, Nature
Neuroscience, Neuron, Journal of Neuroscience) in 2008. Nevertheless, our review highlights
the importance of building a large dataset through collaborations and open data sharing as we
pointed out that the majority of the studies that were able to afford a held-out test were those

that used the ADHD-200 dataset.
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Sample Size

Machine learning, particularly deep learning, often requires large sample sizes due to the large
number of parameters and hyperparameters that a model needs to learn. However, many
neuroimaging studies of ADHD used very small sample sizes. In our small sample group, the
sample size ranged from 20 to 239 (average sample size 112). Small sample sizes can lead to
model overfitting and overestimates of accuracy (Brain & Webb, 1999; Wolfers, Buitelaar,
Beckmann, Franke, & Marquand, 2015) . In our review, this effect was reflected in the large
variability of accuracies in the CV studies. Indeed, some of the highest and lowest test
accuracies were reported in studies with extremely small sample sizes. None of the studies
reviewed here used a learning curve analysis to assess overfitting. This method, which
examines the relationship of model performance over various numbers of training sample sizes,
can help us to determine if a model is overfit and if it can benefit from more training examples

(Zhang-James et al., 2020).

We found a negative relationship between sample size and K-Fold-CV accuracies. Because
increasing the number of training samples typically improves performance (Bengio, Courville, &
Vincent, 2013), this suggests that the lower estimates of accuracy from the larger samples are
more likely to be correct than the higher estimates from smaller samples. Those higher
estimates were likely biased as described in the prior section. Pulini et al (2019) also reported a
negative relationship of sample size and accuracies in ADHD imaging studies and Vabalas
observed the negative relationship of sample size on reported accuracies in machine learning
classifiers of autism spectrum disorders (Vabalas, Gowen, Poliakoff, & Casson, 2019). Both
reviews were based on studies with sample sizes up to only ~1,000. Similar observations were
also made by Wolfers and colleagues when reviewing neuroimaging-based diagnostics for a

number of different psychiatric disorders (Wolfers et al., 2015).
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Sample Heterogeneity and Data Imbalance.

Although collaborative consortia, such as the ADHD-200, used relatively large samples sizes,
such collaborations raise issues about sample heterogeneity and the use of imbalanced data.
For example, like many other clinically referred samples, the ADHD-200 dataset had more boys
than girls in the ADHD group compared with the control group. The ADHD group also had lower
IQs than the control group. In addition, the demographic composition and sample acquisition
methods differed across different study sites. The problem of dataset imbalance was addressed
by several participating teams. Brown and colleagues from the University of Alberta found that
models using only demographic information including age, sex, handedness, and IQ had
sufficient statistical power to achieve a test accuracy 62.5%, higher than their models using
fMRI features (Brown et al., 2012). In the work of Colby et al. (2012), a model using only
demographic information had a higher accuracy (62.7%) than models using multimodal MRI
features (55%). Both models using only the demographic features, although not meeting the
requirements of the competition, outperformed the winning team that reported 61% accuracy
using both structural and rs-fMRI data along with the demographic predictors in an ensemble
model (Eloyan et al., 2012). An additional study by Sidhu and colleagues also reported better
accuracy using demographic information than the rs-fMRI features using the ADHD-200 dataset
(Sidhu, Asgarian, Greiner, & Brown, 2012). These observations highlight the concerns of data
imbalance, and suggest that, if not dealt with carefully, the classifiers could be learning the

neural correlates of the demographic features, rather than the diagnostic groups.

Some studies used methods to address the problem of unbalanced data. One approach is
random undersampling, i.e, removing some research participants and creating a smaller sample
size that is balanced for confounding factors (M. N. I. Qureshi et al., 2016; Wang et al., 2013).

This is in contrast to oversampling, where some random samples from the minority classes
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were duplicated to create a lager and balanced dataset. Others used regression to control
confounding factors such as age, sex, and acquisition sites, and used adjusted MRI features
(residuals) in the classification algorithms (Deshpande et al., 2015; Fair et al., 2012). Some
studies mentioned data balancing, but did not provide details on how it was done (Ghiassian et
al., 2016). Lim et al (2013) used a gaussian process classifier to discriminate 29 boys with
ADHD from 19 control boys. The limited samples sizes prohibited subsampling to balance the
data. They noted, although the boys with ADHD had significantly lower 1Q than the control boys,
the model-generated probability of having ADHD was not correlated with 1Q, age, and other
clinical features (Lim et al., 2013). In more recent studies, more sophisticated methods such as
Synthetic Minority Over-sampling Technique (SMOTE, (Chawla, Bowyer, Hall, & Kegelmeyer,
2002)) were used to generate synthetic minority samples to combat the sample imbalance

problem (Riaz, Asad, Alonso, et al., 2018).

Previous studies from other fields have shown that not all the class balancing methods work
equally well in reducing classifiers’ bias towards the majority class and guarantee good
performance (Blagus & Lusa, 2013; He & Ma, 2013). In the ADHD studies that we reviewed, we
did not find found higher held-out test accuracies in balanced studies than the unbalanced
studies. Balanced studies in the K-Fold-CV group reported higher accuracies than those with
unbalanced samples. However, they were all smaller studies than the unbalanced studies. It is
not clear, at least for the K-Fold-CV group, if balanced designs led to higher accuracies,
because sample size was a strong and negative predictor for the accuracies. Nevertheless,
higher accuracies in the balanced LOOCV group, independent of the sample size, do suggest
that sample balancing may have helped model performance to some degree. More studies and
larger sample sizes will be needed to find the appropriate class balancing methods and assess

the potential benefit.
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Classification performance metrics

When test sets (or cross-validation sets) are also imbalanced, the overall accuracy may not be
an ideal indicator of the performance of the classifier. A high accuracy can simply result from a
classifier that classifies all samples into the class that has more participants. Most studies (N=
36, 75%) addressed this concern by also reporting sensitivity (True Positive rate, TP, the
percentage of correctly identified cases (ADHD)) and specificity (True Negative rate, TN, the
percentage of correctly identified controls). Three studies reported balanced accuracy, which is
the arithmetic mean of the sensitivity and specificity; and three studies reported Youden's J-
statistic (sensitivity + specificity -1).

Compared with percent correct, a better method to evaluate the overall performance of a
classifier is the area under the Receiver Operating Characteristic curve (ROC (Fawcett, 2004)).
The ROC curve plots sensitivity over the full range of false positive rates (equivalent to 1-
specificity). The area under the ROC (AUC) measures the overall diagnostic accuracy of a
classifier. Higher AUCs indicate better discriminating power (with 1 for the perfect classifier and
0.5 for the random non-discriminative classifier). The AUC is in general less sensitive to
imbalance of a dataset compared with the percent correct measure, because AUC does not
have bias toward models that perform well on the majority class at the expense of the minority
class (He & Ma, 2013). Davis et al (2006) suggested that the area under the Precision-recall
curve (AUPRC) is superior for assessing extremely imbalanced datasets and more informative
than the ROC curve. The AUPRC plots precision (the percentage of examples classified as
positive that are true positive, also known as positive predictive value, PPV) over recall
(sensitivity). Overall, in the body of literature that we examined, no studies reported the AUPRC,

and only 13 reported the AUC.

Other popular metrics for machine learning models are F1-score and Matthew's correlation

coefficient (MCC). The F1-score is the harmonic mean of precision and recall. MCC is the
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correlation coefficient between the predicted and actual classes. Like the areas under the PRC
or ROC, both the F1-score and MCC are better indicators of model performance than the
percent correct statistic if test data classes are imbalanced. However, of the studies included in

this review, only three reported F1-scores, and only two reported MCC.

Because most studies used percent correct to measures accuracy, we could only analyze
percent correct in the current review. This may not represent the true model performance due to
the limitations of this metric. We recommend that future studies adopt ROC or PRC analysis
methods. Furthermore, inspecting the curves visually can reveal more information about how
well the models discriminate classes at different decision thresholds. We don’t recommend
metrics such as the F1-score, MCC, and J-statistics, because these scores only capture the
diagnostic matrix at a single threshold level. Furthermore, the performance metrics are
important, not only for properly interpreting test results, but also for model training. If a model
was trained by maximizing a biased metric, it will not be fully optimized to generalize to other
samples. Finally, metrics that are insensitive to class imbalance (such as AUC or AUPRC) do

not protect against biased due to feature imbalance as discussed in the prior section.

Age and Sex

Although ADHD onsets prior to age 12, two-thirds of children continue to have symptoms and
functional impairments into adulthood (Faraone, Biederman, & Mick, 2006). Longitudinal data
show that some ADHD-associated brain alterations diminish during adolescence and adulthood
(Castellanos et al., 2002; Shaw et al., 2014; Shaw et al., 2006). Consistent with this, the very
large ENIGMA ADHD study reported significant ADHD vs. control differences for children but
not for adolescents and adults (Hoogman et al., 2017; Hoogman et al., 2019). Neuroimaging
classifiers studies have focused on younger populations; only three studies developed ML

classifiers for adults. Our observation of a lack of difference in predictive accuracy between

16


https://doi.org/10.1101/2020.10.20.20216390
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.10.20.20216390; this version posted October 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

classifiers for children/adolescents vs. adults is, therefore, inconclusive due to the small
numbers of the adult studies. Few longitudinal studies have been reported for imaging in ADHD
(Castellanos et al., 2002; Shaw et al., 2014; Shaw et al., 2006). No machine learning models
have been applied to longitudinal data yet. More efforts are needed to overcome the shortage
of adult ADHD samples, as well as imaging data across the life span.

ADHD is more prevalent in boys than in girls (Faraone et al., 2015; Ottosen et al., 2019). As a
result, although the majority of the studies included samples from the both males and females, a
high percentage of ADHD samples were from males (i.e., ~80% male in ADHD-200 dataset).
However, the control samples were often balanced (i.e., 52% male in ADHD-200 dataset). If sex
is left unbalanced, it could result in erroneous prediction results, as we described in the above
sections. Furthermore, brain alterations have been found to differ between the sexes at different
ages (Almeida Montes et al., 2013; Hoogman et al., 2019; Onnink et al., 2014). The low
representation of females in available samples may prevent the classifiers from learning female-
specific brain alternations. Our quantitative analysis showed significantly higher accuracies in
four male-only studies than other studies of sex-mixed samples. However, all four were studies
with small sample sizes (<189), with three reporting LOOCV accuracies and the other reporting
10-Fold CV. Given the sample size effect and inflation by CV methods, it is inconclusive if ML

models predict ADHD better in boys than girls.

MRI Modality

Although we found no significant difference in the accuracies reported for the sMRI and rs-fMRI
studies, the small number of studies using sMRI data preclude any meaningful inferences
regarding which MRI modality is the most informative for discriminating ADHD patients from
controls. Some studies attempted to identify the most informative MRI data modality. Qureshi et
al (2017) found that sMRI features yielded the highest prediction accuracy. Colby et al. (2012)

found that combined multi-modality features performed best compared with individual data
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modalities. However, all the MRI models performed worse than a classifier using only
demographic features (Colby et al., 2012). In a later study using a three-dimensional CNN
model, Zou and colleagues extracted higher-level features from the sMRI and rs-fMRI
modalities separately. This design leveraged the relationship between the two MRI modalities,
yet still was able to extract independent features that collectively were useful for classification
(Zou, Zheng, Miao, Mckeown, & Wang, 2017). The authors also found that using multi-modal
features outperformed either data modality alone (Zou et al., 2017). Despite these individual
observations, the overall lack of statistically significant differences in accuracies across different
modalities in our review suggests that more studies are needed before we can determine which

MRI modalities or combinations thereof are most informative for diagnostic classification.

ML Classifiers.

SVM was the ML model that was used most frequently, accounting for 41% of studies. SVM,
however, is limited in handling images and relies on other preprocessing methods to extract a
tabular representation of three-dimensional brain images. In more recent years, an increasing
number of studies have used CNNs, which were developed for image analysis. We did not,
however, observe statistically significant differences between the accuracies of the SVM and
CNN models for ADHD. This finding is limited by the small number of studies using CNN
classifiers. Nevertheless, because the use of CNNs will likely increase in the future, we here

describe their current contributions to the field and their potential for the future.

Riaz et al. (2017) used a CNN-based method (FCNet) to extract the functional connectivity (FC)
of brain regions and then trained an SVM classifier using the extracted features to discriminate
ADHD from control participants. The classifier achieved a highest held-out test accuracy of
68.6% for the ADHD-200 Peking subset. In the follow up study, the team built an end-to-end

model system, DeepFMRI, which utilized multiple FCNets to extract features that were then fed
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into a deep neural network (Riaz, Asad, Arif, et al., 2018). DeepFMRI streamlined the feature
generation and selection as well as classification in one framework, and achieved a highest test
accuracy of 73.1% for the NYU subset. Using preprocessed rs-fMRI and sMRI features as
independent inputs, Zou et al. used a two-branched three-dimensional CNN to learn hierarchical
features from each unique modality in a joint learning task. The multi-modal joint learning CNN
architecture was superior to CNNs using either data modality alone (Zou et al., 2017). Aradhya
et al. (2019) also used a CNN classifier and extracted features using the Deep Transformation

Method (DTM).

Most studies, including many CNN studies, used pre-processed MRI features, such as those
anatomized to an AAL template. Mao and colleagues argued that rather than using hand-crafted
features, one should use a CNN to directly learn discriminatory features from images. Their
four-dimensional CNN classifier, designed to learn and extract spatial and temporal features
from rs-fMRI images, discriminated ADHD from control participants with an accuracy of 71.3%
(Mao et al., 2019). To increase their sample size and reduce overfitting, the authors augmented
data by transforming rs-fMRI data into many short and fixed-lengthed video clips. Despite their
promising results, they acknowledged that much work is still needed to localize the most
discriminative sequences. Interestingly, a CNN using activation correlations from individual brain
regions of the Default Mode Network (DMN) of the brain outperformed those using whole brain
features (Ariyarathne, Silva, Dayarathna, Meedeniya, & Jayarathne, 2020). Using only one
relevant brain region substantially reduced feature space and complexity. The significantly
improved model performance also suggests that current sample sizes, in relation to the number
of features available, maybe limiting the CNN models’ capacity. With more samples becoming
available in the future, and the increased datasets of publicly available raw MRI images, CNN
methods will likely to be seen in more and more studies and be explored to their full capacity for

feature extraction and classification as has been the case for computer vision (Arcadu et al.,
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2019; Bhanumathi & Sangeetha, 2019; Igbal, Ghani, Saba, & Rehman, 2018; Lin et al., 2018;

Toyonaga et al., 2017).

Building Larger Datasets

Sample size has been a major bottleneck impeding the development of more accurate and
clinically useful imaging classifiers for ADHD. The largest MRI dataset, to date, has been built
by the Enhancing Neuro Imaging Genetics Through Meta-Analysis (ENIGMA) consortium.
Under the umbrella of the ENIGMA consortium, many independent working groups for specific
diseases or phenotypes have been established, including ADHD. By implementing standardized
data processing protocols and pipelines, the ENIGMA consortium made it possible to share data
across many sites to perform within-disorder and cross-disorder studies (Boedhoe et al., 2020;
Paul M. Thompson et al., 2017; P. M. Thompson et al., 2020; P. M. Thompson et al., 2014) .
The ENIGMA ADHD Working Group has obtained over 4,100 samples of ADHD participants
and controls from 37 sites thus far. In the initial ENIGMA ADHD reports, Hoogman and
colleagues reported that, for children, ADHD was associated with significant volumetric
reductions in intracranial volume, amygdala, caudate nucleus, nucleus accumbens,
hippocampus, and cortical surface areas from many regions (Hoogman et al., 2017; Hoogman
et al., 2019). No significant differences were found for adolescents or adults. Furthermore, the
estimated effect sizes for children were small, ranging from 0.11 to 0.19. Users of the ENIGMA
ADHD dataset, however, face the same problems of data heterogeneity and imbalanced
demographic groups as those using the ADHD-200 dataset. Significant challenges remain when
using such data to build a machine learning classifier. Furthermore, the ENIGMA ADHD data is
primarily preprocessed sMRI data in tabular form. Not all sites have data on other modalities,
such as rs-fMRI or DTI, available for their samples. The ENIGMA ADHD sites have not yet

pooled raw MRI images, which is needed for CNN models.
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Conclusions

Our review of ML studies of MRI-based ADHD diagnostic classifiers has important implications
for methods development, but these studies have not yet led to clinically useful classifiers. Our
review shows that the variability of results across studies is due, in part, to differences in
methodology. Future work should use the largest samples possible and should rely on a held-
out test set, rather than cross-validation for estimating prediction accuracy. Future studies
should not rely on percent correct as a measure of accuracy in unbalanced samples. Our
analysis also highlighted the need of data from underrepresented groups, particularly females
and adults. We hope that our review provides a better understanding of the efforts invested in
developing ADHD imaging classifiers in the field and encourages more stringent model design
and data processing for future studies. In the meanwhile, the initial results from the ENIGMA
ADHD consortium should encourage more sites to participate. The lack of a very large multi-
modal dataset that include sufficient data from both sex and all ages may be the biggest

impediment to developing a clinically useful classifier for diagnosing ADHD.
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Figure Captions

Figure 1. Best prediction accuracies reported in each study for each type of the available tests:

K-Fold-CV, LOOCYV or held-out tests.

Figure 2. Accuracy in studies published over the years.

Figure 3. Accuracy vs training sample size.

Sample size <300 were labeled as triangle and >300 are labeled as circle. The fitted line

between accuracy and sample size were plotted for each test type.
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Table 1

55 e 1. ™ lachine Eearnlng Elferalure on ADHD ﬂeurolmaglng Daia.
[Trainin: (ADHD% [Test Sample IJADHD%
[Study 9 (Training |a. P °  |pata Source Ages Sex Model Features Performance Metrics [Test Type IAccuracy  [References [PMID/Conference
[Sample Size) Set) Size (Test Set)
JAradhya, 2019 871 n.a 194 In.a (Arwlgjg'}jll-)hrzggesdu'rans;tes) Children and young adults (7-21) M, F ICNN Irs-fMRI Accuracy IK-Fold-CV(K=10) 170% (Aradhya, Joglekar et al. 2019) n.a
Jariyarathne, 2020 26 ha |16 h.a ADHD-200 subset Children and young adults 8-21) | M,F  [CNN Is-iMRI AoCUTEE), D™ Heid-out Test I85% (Ariyarathne, Silva et al. 2020)  [na
Bohland, 2012 776 87% 171 45% IADHD-200 Children and young adults (7-21) M, F ISVM IsSMRI and rs-fMRI Accuracy, AUC K-Fold-CV(K=2) 74% ((Bohland, Saperstein et al. 2012) 23267318
Held-out Test 67%
[Brown MR 2012 668 136% 171 45% IADHD-200 Children and young adults (7-21) M, F  |SVM Irs-fMRI Accuracy Held-out Test 55% (Brown, Sidhu et al. 2012) 23060754
K-Fold-CV(K=10)  [71%
Accuracy, ROC AUC,
[Chaim-Avancini, 2017 |96 154% n.a In.a Clinic and commmunity Adults (18-50) M, F ISVM IsSMRI and DTI Sensitivity, Specificity, PPV, |K-Fold-CV(K=10) 74% (Chaim-Avancini, Doshi etal. 2017) [29080396
NPV
Chen, 2020 633 us%  |ha h.a JADHD-200 Children and young adults (7-21) | M,F  [BHT Irs-fMRI ACC”’S;&?;?;,“W"V' Loocv 88% (Chen, Tang et al. 2020) 32143793
Cheng W, 2012 P39 Wi  |ha h.a IADHD-200 Children and young adults (7-21) | M,F  [SVM rs-fMRI Accurgg‘gcﬁieci”t;m‘”'y’ Loocv 176% (Cheng, Ji et al. 2012) 22888314
Colby B, 2012 776 B7%  |197 h.a IADHD-200 Children and young adults (7-21) | M,F  [SVM SMRI and rs-fMRI ACC”’;;L’Cﬁieci"ti"“’"y’ Held-out Test 159% (Colby, Rudie et al. 2012) 22912605
Accuracy, Sensitivity,
Dai D, 2012 624 136% n.a n.a IADHD-200 Children and young adults (7-21) M, F MKL IsSMRI and rs-fMRI | Specificity, J-statistic, F1-  [K-Fold-CV(K=10) 68% (Dai, Wang et al. 2012) 22969710
score, ROC AUC
Held-out Test 62%
Deshpande G, 2015 1177 187% n.a n.a IADHD-200 Children and young adults (7-21) M, F FCCANN " [rs-fMRI Accuracy OOCV 100% ((Deshpande, Wang et al. 2015) 25576588
Dey, 2014 776 b7%  |a h.a IADHD-200 Children and young adults (7-21) | M.F  [SVM Irs-fMRI g;z‘;ﬁ;{y Sensitivity, [Training samples ~ [71% (Dey, Rao et al. 2014) 24982615
Held-out Test /4%
Du J, 2016 216 5%  |n.a na JADHD-200 Children and young adults (7-21) | M,F  [sVM Irs-IMRI égg‘é{ﬁ‘g{f;&%“x&yc K-Fold-CV(K=10)  [95% (Du, Wang et al. 2016) 27166430
Eloyan A, 2012 776 B7%  [194 h.a IADHD-200 Children and young adults (7-21) | M,F  |[Ensemble [oVr and rs-fMRI “Accuracy, Sensitivity, Held-out Test I61% (Eloyan, Muschelli et al. 2012) 22969709
land demographics [Specificity
K-Fold-CV (n=184
randomly chosen 178%
linternal test set)
Fair DA 2013 104 50%  |h.a h.a IADHD-200 Children and young adults (7-21) | M,F  [SVM rs-fMRI ACC”’;;&?EE}?““’"V' Loocv 183% (Fair, Nigg et al. 2012) 23382713
Ghiassian S, 2016 769 Be%  [171 5% IADHD-200 Children and young adults (7-21) | M,F  [MHPC andRLear':g;'amf‘c's ACC”’g;‘é’jfci"tim""y’ Held-out Test 170% (Ghiassian, Greiner et al. 2016) 28030565
Hao A, 2015 b16 bs% 1% P MY Children and young adults (7-21) | M,F  [DBN iMRI Aoouraey o Held-out Test ko% (Hao, He et al. 2015) ha
bs b%  [50 heve  fommone Pk | Ghitdren and young adults (7-21) | M,F  |DBN iMRI Aoouraey o Held-out Test 4%
83 7% 11 R7% :\3}}:3—)200 (KKi Children and young adults (7-21) M, F DBN IMRI Accurggy;jmimvny, Held-out Test 72%
linic and local Accuracy, ROC AUG,
Hart H, 2014 60 150% n.a In.a lommunity Children and adolescents (10-17) M, F IGPC ask-fMRI Sensitivity, Specificity, PPV, |LOOCV 77% (Hart, Chantiluke et al. 2014) 24123508
NPV
lannaccone R, 2015 [40 0% |ha ha [Outpatient dinic and Adolescents (12-16) MF  jsvm ask-MRI e oy Loocv 78% (1annaccone, Hauser et al. 2015)  [25613588
gual L, 2012 78 50%  |h.a h.a URNC database Children and adolescents (6-18) | M,F  [SVM zgﬁ'af; t:j’deus ACC”’gg‘é’cﬁiecT;mv"y’ K-Fold-CV(K=5)  [73% (lgual, Soliva et al. 2012) 02959658
[ADHD-200 (NYU - [Accuracy, ROC AUC, -
Jie, 2016 216 155% n.a In.a lsubset) Children and young adults (7-21) M, F ISVM Irs-fMRI lsensitivity, Specificity lLOOCV 83% (Jie, Wee et al. 2016) 127060621
ohnston BA, 2014 68 50%  |h.a h.a linic and local schools | Children and adolescents (8-17) M [svm SMRI ACC”’;;&?E‘;;'“V"V’ Loocv 193% (Johnston, Mwangi et al. 2014)  [24819333
IADHD-200 (KKI . ~ g IAccuracy, Sensitivity, g o, K 1. 2014
[Kuang D, 2014 83 n.a 11 n.a lsubset) Children and young adults (7-21) M, F DBM Irs-fMRI ISpecificity Held-out Test 73% ((Kuang, Guo et al. 2014) n.a
85 e 50 hese  fomaorr " P9 | Ghiloren and young adults (7-21) | M, F Held-out Test 54%
222 n.a (@1 In.a :EL':Z;ZOO (Nvu Children and young adults (7-21) M, F Held-out Test 187%
Lanka, 2019 759 B7%  [171 45% IADHD-200 Children and young adults (7-21) | M, F Zﬂffgﬂme rs-fMRI Balanced Accuracy  [Held-out Test l61% (Lanka, Rangaprakash etal. 2019) (31691160
Lim L, 2013 g 0%  |h.a h.a (Clinic Children and adolescents (10-18) GPC SMRI ACCS';:;’{i’CﬁnyCF;PS\,f",j:.'\‘;“V‘ Loocv 179% (Lim, Marquand et al. 2013) 23696841
a0, 2019 1626 [76% 162 45% JADHD-200 Children and young adults (7-21) , F 4D CNN Irs-fMRI Accuracy, ROC AUC eld-out Test 1% (Mao, Su et al. 2019) n.a
Olivetti E, 2012 923 B8% |a na JADHD-200 Children and young adults (7-21) ,F  [ERT Irs-fMRI Aceuracy, FP, FN)* TP TN, e Fold-CV(K=10)  |66% (Olivetti, Greiner et al. 2012) 23060755
Olivetti E, 2015 023 Be%  |a h.a IADHD-200 Children and young adults (7-21) | M,F  [ERT rs-fMRI Accﬁ?gz‘oxcﬁ;;(‘ggao‘;s"C’ K-Fold-CV(K=10)  [62% (Olivetti, Greiner et al. 2012) 27747500
Peng X, 2013 110 150% n.a n.a :\EL:'E{)ZOO (Peking Children and young adults (7-21) M, F ELM IsSMRI Accuracy, ROC AUC LOOCV 190% (Peng, Lin et al. 2013) 124260229
[Qureshi MN, 2016 106 150% n.a n.a IADHD-200 Children and young adults (7-21) M, F H-ELM ISMRI Accuracy IK-Fold-CV(K=10) 80% (Qureshi, Min et al. 2016) 27500640
IK-Fold-CV/(70/30
plit) [B5%
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Accuracy, Sensitivity,
[Qureshi MN, 2017 106 150% [28 50% IADHD-200 Children and young adults (7-21) M, F ELM IsSMRI and rs-fMRI Specificity, F1-score, Held-out Test 193% (Qureshi, Oh et al. 2017) 128420972
Precision, Recall
[ADHD-200
Riaz, 2017 o4 2% |5 wase  [(Neuroimaging, NYU | Children and young adults (7-21) | M,F  [Snand  [SIMRI and Accuracy Held-out Test 69% (Riaz, Asad et al. 2017) ha
land Peking subset) lemorgraphic
ADHD-200
o ((Neurolmaging, KKI, " ~ Irs-fMRI and IAccuracy, ROC AUC, o, ’
Riaz, 2018a 442 143% n.a n.a INYU and Peking Children and young adults (7-21) M, F ISVM ldemorgraphic lsensitivity, Specificity lLOOCV 87% (Riaz, Asad et al. 2018) 29137838
lsubset)
Riaz, 2018b 26 4%  |h.a h.a :i':g')zoo (Nvu Children and young adults (7-21) | M,F  [CNN rs-fMRI Accurgg‘é’cﬁieci”;"“'"y’ Held-out Test 173% (Riaz, Asad et al. 2018) h.a
Sato, 2012 759 Bew%  [171 5% |ADHD-200 Children and young adults (7-21) | M,F  |AdaBoost [rs-fMRI B e Held-out Test 5% (Sato, Hoexter et al. 2012) 23015782
[Semrud-Clikeman, 1996 |20 150% n.a In.a Clinic andcommmunity [ Children and adolescents (6-16) M, F PDA IsSMRI Accuracy raining samples 87% (ngzrg)rudrChkeman, Hooper et al. 14588457
Sen, 2018 776 B7%  [171 45% IADHD-200 Children and young adults (7-21) | M,F  [SVM SMRI and rs-fMRI gggg{,’j‘;‘yy Sf’;f:"l‘;uz Held-out Test 67% (Sen, Borle et al. 2018) 29664902
Shao, 2018 5o B |16 ST e Children and young adults (7-21) | M,F  SVM s IMRI A e |Held-out Test (Shao, Xu et al, 2018) 30009990
Sidhu, 2012 668 [36% 171 45% IADHD-200 (Children and young adults (7-21) M, F ISVM Irs-fMRI Accuracy raining samples 6% (Sidhu, Asgarian et al. 2012) 23162439
Held-out Test 67%
IADHD-200 (NYU Accuracy, AUC, sensitivity,
[Tan, 2017 215 54% n.a n.a lsubset) Children and young adults (7-21) M, F ISVM IsSMRI and rs-fMRI Specificity, Balanced IK-Fold-CV(K=10) 68% (Tan, Guo et al. 2017) 28943846
Accuracy
[Tang, 2019 633 W3%  |ha h.a IADHD-200 Children and young adults (7-21) | M,F  [BHT rs-fMRI ACC”’;;L’Cﬁieci"ti"‘v"y’ Loocv l92% (Tang, Wang et al. 2019) 30938224
rang, 2020 633 s  ha ha IADHD-200 Children and young adults (7-21) | M,F  [BHT rs-MRI Aoy ™ JLoocy 08% (Tang, Li et al. 2020) na
Wang, 2013 e 50%  |na h.a FCON_1000 Adults (18-50) M F  [sVM rs-fMRI ACC”’;;‘&?;?;"“’"V’ Loocv 180% (Wang, Jiao et al. 2013) 23684384
Wang, 2018 71 51%  |a h.a IADHD-200 subset Children and adolescents (6-18) | M,F  [SVM SMRI Ao ™ JLoocy 75% (Wang, Jiao et al. 2018) 30031733
Xiao, 2016 47 68% n.a In.a Iclinic n.a n.a Lasso ISMRI Accurggy;(ﬁ%’\;lﬂvlly, lLooCcV 81% (Xiao, Bledsoe et al. 2016) 27747592
Vao, 2018 189 59%  |na h.a linic Adults (18-34) M,F  [Ensemble [rs-fMRI g;z‘;:gKy Sensitivity, K-Fold-CV(K=10)  [80% (Yao, Guo et al. 2018) 30441383
Children and adolescents (6-14) M 186%
Yoo, 2019 l04. 150% (Clinic (Children and adolescents (6-17) M, F RF [sMRI and rs-fMRI jAccuracy, AUG, Sensitivity, ¢y, l85% (Yoo, Kim et al. 2019) 31321662
land DTI ISpecificity, PPV, NPV
[Held-out Test 169%
Izhu €z, 2008 ) Ws%  |ha h.a ommunity Children and adolescents (11-17) FDA rs-fMRI ACC”’S;‘;’C%GCR'“V"V’ Loocv l85% (Zhu, Zang et al. 2008) 18191584
|Zou, 2017 559 135% 171 45% IADHD-200 Children and young adults (7-21) M, F 3D CNN Irs-fMRI and sMRI Accuracy Held-out Test 69% (Zou, Zheng et al. 2017) n.a
70, 2019 p16 5% |ha ha Comamy 0 (Y Children and young adults (7-21) | M,F  |STM Fs-MRI Accuracy K-Fold-CV(K=10)  [65% (2u, Gao et al. 2019) 29948906
Note:

AUC, the area under the ROC curve (AUC) BHT,

Binary Hypothesis Testing

CNN, Convolutionary Neural Net;

CV, cross-validation; LOOCV, leave-one-out cross validation;

DBN, Deep Bayesian Network; DBM, Deep Belief Network;

ELM, extremelearning machine; H-ELM, hierarchical extreme learningmachine.
ERT, extremely randomized tree

FCON_1000, 1000 Functional Connectomes Project database (http://www.nitrc.org/projects/fcon_1000)

FDA, Fisher discriminative analysis

fMRI, funcitonal MRI; rs-fMRI, resting state- functional MRI; sMRI, structure MRI; DTI, diffusion tensor imaging GBM,

a gradient boosting method;
GPC, Gaussian process classifiers;

Log(By), the log of the Bayes factor for the hypothesis of dependence vs. independence;

MCC, Matthew's correlation coefficient

MHPC, the histogram of oriented gradients (HOG)-feature-based patient classification;
MKL, multi-kernellearning; FCCANN, fully connected cascade artificial neural network;

PDA, predictive discriminant analysis
PPV, Positive predictive value; NPV, Negative predictive value

RF, Random Forest

SVM, support vector machine; STM, Support tensor machine.

TP, the number of true positive diagnosis; TN, the number of true negative diagnosis; FP, the number of false positive diagnosis; FN, and the number of false negative diagnosis.

*Balanced Accuracy = (sensitivity + specificity)/2
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Figure 3

Figure 3.
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Supplementary Figure 1. Numbers of publication in each year. The top row includes studies
that used non-ADHD-200 data; the bottom row includes studies that used ADHD-200 data. The

numbers for each year are labeled beneath the bar.
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Supplementary Figure 2. PRISMA flow diagram for review and meta-analysis
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Supplementary Figure 3. A. Reported accuracies and training data balancing. B. Training
sample sizes in balanced vs unbalanced studies.
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Supplementary Figure 4. A. Mean and standard errors of the sample size for multi-modality, rs-fMRI, sMRI and task-based

fMRI studies. B. Accuracies in studies using different MRI modalities.
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