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Abstract 

 

Machine learning (ML) has been applied to develop magnetic resonance imaging (MRI)-based 

diagnostic classifiers for attention-deficit/hyperactivity disorder (ADHD).  This systematic review 

examines this literature to clarify its clinical significance and to assess the implications of the 

various analytic methods applied. We found that, although most of studies reported the 

classification accuracies, they varied in choice of MRI modalities, ML models, cross-validation 

and testing methods, and sample sizes. We found that the accuracies of cross-validation 

methods inflated the performance estimation compared with those of a held-out test, 

compromising the model generalizability. Test accuracies have increased with publication year 

but were not associated with training sample sizes. Improved test accuracy over time was likely 

due to the use of better ML methods along with strategies to deal with data imbalances. 

Ultimately, large multi-modal imaging datasets, and potentially the combination with other types 

of data, like cognitive data and/or genetics, will be essential to achieve the goal of developing 

clinically useful imaging classification tools for ADHD in the future. 
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Introduction 

Clinicians diagnose ADHD by evaluating symptoms of hyperactivity, impulsivity, inattention, and 

impaired functioning across settings. The diagnosis of ADHD shows considerable levels of 

concurrent and predictive validity in its clinical features, course, neurobiology, and treatment 

response (Faraone, 2005; Faraone & Biederman, 2000). Nevertheless, concerns about 

diagnostic accuracy persist. Some suggest that the current method of diagnosing ADHD is too 

subjective and leads to over-diagnosing ADHD in the community (Bruchmuller, Margraf, & 

Schneider, 2012; Visser et al., 2014). Psychiatric diagnoses have been called "subjective" 

because they rely on clinician evaluation of responses from patients, parents, and/or informants. 

Other studies have raised concerns about the under-diagnosis of ADHD (Ginsberg, Quintero, 

Anand, Casillas, & Upadhyaya, 2014; The Express Scripts Lab, 2014), especially in girls and 

women, which suggests biases in applying the current diagnostic algorithm. Another issue is the 

misdiagnosis of ADHD as being another disorder.  When this occurs, patients may be exposed 

to unnecessary treatments and will continue to struggle with the many impairments associated 

with ADHD. Those who have ADHD and are not diagnosed with the disorder will continue to 

have impaired functioning leading to increased risks for other health and social problems 

(Dalsgaard, Ostergaard, Leckman, Mortensen, & Pedersen, 2015; Franke et al., 2018; Lambert 

& Hartsough, 1998; Lichtenstein et al., 2012; Reiersen & Todorov, 2013).  

In response to these concerns, researchers have sought to develop objective measures to 

diagnose ADHD or to monitor the course of ADHD symptoms during treatment. Much research 

has examined peripheral biochemical markers in differentiating ADHD and control patients, 

such as (Norepinephrine (NE), 3-Methoxy-4-hydroxyphenylethylene glycol (MHPG), monoamine 

oxidase (MAO), zinc, and cortisol (Faraone, Bonvicini, & Scassellati, 2014; Scassellati, 

Bonvicini, Faraone, & Gennarelli, 2012). NE, MHPG, MAO, b-phenylethylamine, and cortisol are 

also somewhat predictive of response to ADHD medications. Meta-analysis also shows that 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 23, 2020. ; https://doi.org/10.1101/2020.10.20.20216390doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.20.20216390
http://creativecommons.org/licenses/by-nc/4.0/


3 

peripheral measures of oxidative stress differ between ADHD and control participants (Joseph, 

Zhang-James, Perl, & Faraone, 2015). Electroencephalographic (EEG) (Snyder, Rugino, 

Hornig, & Stein, 2015), actigraphic (Dane, Schachar, & Tannock, 2000), and eye vergence 

measurements (Sole Puig et al., 2015), as well as interactive gaming behaviour (Faraone et al., 

2016) were also examined as ADHD biomarkers. Neuropsychological tests (Ritsner, 2009), 

particularly continuous performance tests (CPTs) (e.g. Corkum & Siegel, 1993; Homack & 

Riccio, 2006; Riccio & Reynolds, 2001) have been evaluated in many studies. In recent years, 

genetic markers in the form of polygenic risk scores also have shown some predictive ability of 

diagnosis and prognosis of ADHD (Demontis et al., 2019; Hamshere et al., 2013; Riglin et al., 

2016).Many of these prior studies show group differences but do not present diagnostic 

accuracy statistics. A clinically useful biomarker should have at least 80% sensitivity and 80% 

specificity. They should also be reliable, reproducible, inexpensive, non-invasive, easy to use, 

and confirmed by at least two independent studies. These criteria were defined by work of the 

task force on biological markers by the World Federation of ADHD (Thome et al., 2012). None 

of the measures examined by them met these criteria for clinical utility (Thome et al., 2012).  

Prior structural MRI (sMRI) studies have consistently reported alterations in frontal, 

parietotemporal, cingulate, cerebellum, basal ganglia, and corpus callosum regions (Castellanos 

et al., 2002; Mackie et al., 2007; Seidman, Valera, & Makris, 2005; Seidman et al., 2006; Shaw 

et al., 2014; Shaw et al., 2006; Valera, Faraone, Murray, & Seidman, 2007). Studies of the 

largest ADHD sMRI dataset from the Enhancing Neuro Imaging Genetics Through Meta-

Analysis (ENIGMA) consortium’s ADHD Working Group reported the significant volumetric 

reductions in intracranial volume, amygdala, caudate nucleus, nucleus accumbens, 

hippocampus, and cortical surface areas from many regions in children with ADHD (Hoogman 

et al., 2017; Hoogman et al., 2019). These regions have also be implicated in functional MRI 

(fMRI) studies showing altered brain connectivity and activation in the fronto-striatal, fronto-
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parietal and fronto-temporal-parietal circuits, as well dorsal anterior cingulate cortex in ADHD 

brains (Dickstein, Bannon, Castellanos, & Milham, 2006; Smith, Taylor, Brammer, Toone, & 

Rubia, 2006; Tian et al., 2006). Studies have also examined the developmental trajectories of 

these anatomical and functional alterations across the lifespan finding initial delays that are 

followed by apparent normalization (Castellanos et al., 2002; Shaw et al., 2014; Shaw et al., 

2006).   

 

These findings encouraged efforts to develop objective diagnostic tools for ADHD using MRI 

data. Early studies used standard statistical methods such as discriminant analysis with very 

small sample sizes (Semrud-Clikeman et al., 1996; Zhu et al., 2008; Zhu et al., 2005). For 

example, a discriminant analysis reported by Semrud-Clikeman et al. (1996) included 10 

participants in each of three diagnostic groups: developmental dyslexia, ADHD or control. Zhu 

and colleagues’ discriminant analysis classifier assessed 9 ADHD and 11 typically developing 

boys. Although high predictive accuracies were reported in these studies (85~ 87%), it is 

difficulty to evaluate how well those models would generalize given the small samples and lack 

of replication samples.  

 

The ADHD-200 Global Competition (Consortium, 2012) challenged researchers to develop an 

MRI-based diagnostic classifier for ADHD. It provided a dataset of 776 children, adolescents 

and young adults (7-21 years old, 63% healthy controls, 37% ADHD) from eight sites. Fifty 

teams from around the world joined the competition with 21 final submissions. Machine learning 

models predominated. Due to the large sample size, the consortium was able to set aside a test 

set that was not used for model selection and development. The competition results were 

judged by the performance on the test set only. This contrasts with previous studies with small 

sample sizes, where a held-out test set was not available. The ADHD-200 winning team used 

an ensemble model which achieved a 61% accuracy with 21% sensitivity and 94% specificity 
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using both structural and resting state-fMRI data along with the demographic predictors (Eloyan 

et al., 2012). The accuracy, although considerably lower than previously reported high 

accuracies, was one of the first in an independent, held-out test set. Despite the modest 

accuracy, the ADHD-200 competition re-kindled enthusiasm for developing imaging-based 

diagnostic classifiers for ADHD. The publicly available dataset has become the main data 

source driving the machine learning model development for ADHD. Since the competition in 

2012, we have seen a steady increase in the number of publications applying machine learning 

classifiers to ADHD. Thirty-one additional published studies have used either the whole or part 

of the ADHD-200 dataset (Supplementary Figure 1 and Table 1).  

 

This systematic review examines the prior literature applying ML to MRI data in ADHD to clarify 

the clinical significance of findings and to assess the implications of the various analytic 

methods applied. We discuss the progress made over the years as well as lessons and 

methodological issues that we learned from this body of work. We hope to provide a roadmap 

for future studies that aim to overcome these issues and achieve clinically useful models for 

diagnosing ADHD.  

 

Methods  

A literature search on MRI-based diagnostic classifiers for ADHD using key words (<ADHD= 

AND <MRI= AND (<Machine learning= OR <Classi*)) and examining their references identified 49 

studies in total (up to June 20, 2020, Pubmed, Embase and Google). Supplementary Figure 2 

shows the article selection procedure in a PRISMA diagram. The eligible studies applied 

statistical or machine learning classifiers using MRI data to differentiate participants with ADHD 

from controls. Table 1 lists the selected studies along with the performance of their best models. 

If a study dealt with multi-class classification, for example, having ADHD, ASD and control 

groups, only the two-class classification accuracies involving ADHD vs the control groups were 
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examined in this review. We used percent correct (accuracy) to compare results across studies 

because it was available for most of the papers. Studies that met the classifier criteria but did 

not report an accuracy statistic or other metrics that can be used to compute accuracies, were 

not included in our quantitative analysis. If a study reported multiple models, only the model 

which had the highest accuracies was included in Table 1.  

 

We extracted and examined study characteristics, including machine learning model types, MRI 

data modality, cross-validation and testing methods, training sample size, training set class ratio 

(the ratios of ADHD vs Control participants’ numbers), data source, dataset age and sex 

compositions and publication years, etc. We grouped machine learning models to three 

categories: support vector machine (SVM), convolutional neural networks (CNNs), and others. 

We assigned studies with a training set class ratio between 0.4 ~0.6 as <balanced= (i.e., nearly 

equal), and those with higher or lower ratios as <unbalanced=. Six studies used various methods 

to balance demographic differences between the ADHD and control groups. These were 

assigned as <balanced=, even if their original class ratio was outside of the balanced range 

(Deshpande, Wang, Rangaprakash, & Wilamowski, 2015; Fair et al., 2012; Ghiassian, Greiner, 

Jin, & Brown, 2016; M. N. Qureshi, B. Min, H. J. Jo, & B. Lee, 2016; Riaz, Asad, Alonso, & 

Slabaugh, 2018; Wang, Jiao, Tang, Wang, & Lu, 2013). We reported the age and sex groups, 

as well as the minimum and maximum age range of the dataset. For the ADHD-200 samples, 

the overall age range was used if a specific subset was used but age information was not 

provided. Minimum and maximum values of age were derived for studies that reported mean 

and standard deviation of the ages.    

We also classified studies based on the methods they used to evaluate model performance and 

generalizability. Two methods were used. The held-out test set method evaluates model 

performance on data that were set aside, i.e., they were not used during model estimation and 

training. Because this method requires a large sample, many studies resort to cross-validation 
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(CV) method to assess model performance. CV methods randomly re-sample examples to be 

set aside during model fitting. The most commonly used versions are the leave-one-out CV 

(LOOCV) (Deshpande et al., 2015; Fair et al., 2012; Hart et al., 2014; Iannaccone et al., 2015; 

Peng, Lin, Zhang, & Wang, 2013) and K-Fold-CV (where K is often = 10, 5, or 2) (Brown et al., 

2012; Dai, Wang, Hua, & He, 2012; Du, Wang, Jie, & Zhang, 2016; M. N. I. Qureshi, B. Min, H. 

J. Jo, & B. Lee, 2016). For example, in 10-fold CV, the original dataset is partitioned into 10 

equal sub-samples or "folds". For each iteration of model estimation nine of the subsamples are 

used to estimate model parameters and the left-out fold is used to estimate model accuracy. 

The left-out fold changes from iteration to iteration. For LOOCV, one sample is left out for 

testing while all the others are used for training or model fitting. In either situation, the process is 

repeated until all samples have been used in both the training and test sets. The CV accuracy is 

estimated by averaging over all iterations of CV accuracies. Although CV samples were not 

used during the model training/fitting at each iteration, they are, nevertheless, used as training 

examples in other iterations.  

 

Our main objective was to understand how study features influenced model accuracy. We used 

likelihood-ratio (LR) test assisted variable selection in combination with multivariate linear 

regression to quantitatively evaluate if these features predicted model accuracy. The variable 

selection algorithm implemented in STATA16's gvselect command computes both the Akaike’s 

(1974) information criterion (AIC) and Schwarz’s (1978) Bayesian information criterion (BIC) 

(StataCorp, 2019). We performed the variable selection and linear regression modeling for all 

the studies combined, as well as separately for the K-Fold-CV, LOOCV, and held-out test 

groups. Training sample size was primarily examined as a continuous variable. However, we 

also classified sample sizes as small (<300) or large (>300) to compare the variability of their 

accuracy estimates using Levene's robust test statistic (Levene, 1960). In addition to the 
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quantitative analysis, we also qualitatively reviewed the relevant study characteristics if a 

quantitative analysis was not possible. 

 
Results 

Among all the studies included, over half the studies (N=27, 55%) reported only CV results 

without a held-out test set. Forty-three percent (N=21) used a held-out test sample to evaluate 

classifier performance. All but one of the 21 studies used the ADHD-200 samples. Among the 

studies that reported held-out test results, six also reported CV results. Figure 1 shows that the 

16 studies using K-Fold-CV and the 17 studies using LOOCV reported, on average, higher 

accuracies than studies using held-out tests (F(2, 47) = 25.3, p <  0.001).  

 

Accuracy estimates increased in later publication years (F(1,    47)=13.68, p=0.0006, Figure 2). 

This effect was driven by the studies using held-out test sets (F(1,    21)=11.0, p=0.003, Figure 2). 

There was no significant change of reported accuracies over the years for studies using the K-

Fold-CV or LOOCV methods (Figure 2).  

 

Training sample size significantly predicted accuracies in the K-Fold-CV group (F(1,    15) = 7.8, p 

= 0.01, Figure 3 Left). Studies with large samples had lower mean accuracies than studies with 

small studies (71% vs 79% mean accuracies, F(1,    15) = 6.5, p = 0.02). The sample size effect 

was not significant for the LOOCV and held-out test groups, (Figure 3 Middle and Right), either 

as a continuous or categorical variable. The accuracy results from small studies were more 

variable than those from large studies in the held-out test group (Levene's robust test statistic 

W0 (1, 27) = 6.68, p = 0.015). The variance differences between large and small samples were not 

statistically significant for either the K-Fold-CV or LOOCV. 
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Twenty-four studies (55%) used a training dataset that had severely imbalanced classes. Six of 

those studies applied data balancing methods to compensate for the class imbalance and are 

grouped as balanced studies. Class-balanced studies reported higher accuracies for both the K-

Fold-CV (F(1, 15) =   6.5, p = 0.02) and LOOCV (F(1, 17) =   22.2, p = 0.0002, Supplementary Figure 

3A). However, the balanced studies in the K-Fold-CV group were all small studies 

(Supplementary Figure 3B); we could not differentiate whether the higher accuracy was due to 

the negative relationship with sample size or the benefit of data balance. The higher accuracies 

in the balanced LOOCV group was not related to sample size. No statistical difference was 

found for either accuracies or training sample size between the balanced and unbalanced 

studies in the held-out test group.    

 

Because the ADHD-200 dataset was the main data source, most studies (N=26) used resting-

state fMRI data (rs-fMRI), or rs-fMRI in combination with sMRI data (multi-modal, N=14). Only 

seven studies used sMRI data, and only and two used task-based fMRI data. The sample sizes 

for the multi-modal and rs-fMRI studies were significantly larger than those of the sMRI and 

task-based fMRI studies (F(3, 47)= 4.3, p=0.009, Supplementary Figure 4A). However, except for 

the two task-based fMRI studies, which both used LOOCV and reported significantly lower 

accuracies than other MRI modalities (t=-23.3, p<.0001), there was no difference in reported 

classification accuracies observed among the sMRI, rs-fMRI, or multi-modal studies 

(Supplementary Figure 4B).  

 

The ADHD-200 dataset has a mix of children, adolescents and young adults (age 7-21).  Ten 

other studies focused only on children and/or adolescents (under age 18). Only three studies 

examined classification models for older adults (Chaim-Avancini et al., 2017; Wang et al., 2013; 

Yao et al., 2018). Overall, the difference in accuracy across the three types of age compositions 

was not significant (F(2, 47) =  2.64, p= 0.08).  
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Most studies used a mixture of male and female participants. Four studies only included boys 

(Johnston et al., 2014; Lim et al., 2013; Yao et al., 2018; Zhu et al., 2008). These four reported 

significantly higher classification accuracies than all other studies that used a mixture of males 

and females (F(1, 47) =10.06, p = 0.003). However, all four were small studies (n=20~189). Three 

reported LOOCV and one reported 10-Fold-CV accuracies.  

 

Across all studies, the most frequently used model was the support vector machine (SVM). It 

was used in 20 (41%) studies. SVM, and most other ML models cannot directly analyze images. 

Instead, they analyze some transformation of images such as regional volumes or cortical 

thickness. In contrast, convolutional neural networks (CNNs) can analyze images directly and 

thus have access to all the information available. Only in recent years (2017-2020) have studies 

applied CNN methods to MRI images (N=6). We did not find any statistically significant 

differences between the accuracies reported with SVM, CNN, or other models for ADHD F(2, 48) 

= 0.77, p = 0.47, Supplementary Figure 5).  

 

Discussion and Qualitative Review 

 

Our quantitative analysis of prediction accuracy for ADHD revealed several significant findings. 

First, accuracies based on K-Fold-CV or LOOCV were significantly higher than those reported 

using held-out tests, which suggests that CV methods may over-estimate model performance. 

Second, we found greater variability of test accuracies reported in studies with small sample 

sizes than those of larger sample sizes and an inverse relationship of sample size and K-Fold-

CV accuracies. Third, estimates of accuracy increased with publication year. This effect was 

driven primarily by the held-out test accuracies. Since sample size has been roughly the same 

since 2012, we believe that the increasing accuracy over time was due to several design 
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features: 1) the use of more sophisticated models (such as deep neural networks and CNN 

models), 2) improved methods of data balancing and data augmentation, and 3) use of feature 

selection and feature space reduction methods. We found no significant effects of MRI feature 

modality or type of ML model. We discuss the implications of these findings and provide further 

review of some study characteristics that were not examined in our quantitative analysis. 

 

Cross-Validation vs Held-out Test Set  

In the CV approach, the validation samples used to estimate accuracy are not used during the 

model training/fitting at each iteration. They are, nevertheless, used as training examples in 

other iterations. Moreover, because there are many iterations, the validation set can influence 

parameter estimates. In contrast, the held-out test method uses a test set that was never used 

during model training. As a result, CV accuracies have been shown to overestimate test set 

accuracy when both are available (Brown et al., 2012; Dai et al., 2012). Our results confirm the 

inflation of accuracy by K-Fold-CV or LOOCV. Held-out test accuracy is a better indicator of 

model performance with unseen samples.   

 

More than half the studies (N=27, 55%) reported only CV results without a held-out test set. An 

earlier review reported 13% of ADHD neuroimaging (including MRI and 

electroencephalographic) studies consisted of <circular analysis=, where independent test sets 

were not used (Pulini, Kerr, Loo, & Lenartowicz, 2019). Our results are more similar to what 

Kriegeskorte et al. (2009) had estimated, 42%~56% of studies consisted of <circular analysis=, 

based on all fMRI studies published in five prestigious journals (Nature, Science, Nature 

Neuroscience, Neuron, Journal of Neuroscience) in 2008. Nevertheless, our review highlights 

the importance of building a large dataset through collaborations and open data sharing as we 

pointed out that the majority of the studies that were able to afford a held-out test were those 

that used the ADHD-200 dataset. 
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Sample Size 

Machine learning, particularly deep learning, often requires large sample sizes due to the large 

number of parameters and hyperparameters that a model needs to learn. However, many 

neuroimaging studies of ADHD used very small sample sizes. In our small sample group, the 

sample size ranged from 20 to 239 (average sample size 112). Small sample sizes can lead to 

model overfitting and overestimates of accuracy (Brain & Webb, 1999; Wolfers, Buitelaar, 

Beckmann, Franke, & Marquand, 2015) . In our review, this effect was reflected in the large 

variability of accuracies in the CV studies. Indeed, some of the highest and lowest test 

accuracies were reported in studies with extremely small sample sizes. None of the studies 

reviewed here used a learning curve analysis to assess overfitting. This method, which 

examines the relationship of model performance over various numbers of training sample sizes, 

can help us to determine if a model is overfit and if it can benefit from more training examples 

(Zhang-James et al., 2020).   

 

We found a negative relationship between sample size and K-Fold-CV accuracies. Because 

increasing the number of training samples typically improves performance (Bengio, Courville, & 

Vincent, 2013), this suggests that the lower estimates of accuracy from the larger samples are 

more likely to be correct than the higher estimates from smaller samples. Those higher 

estimates were likely biased as described in the prior section. Pulini et al (2019) also reported a 

negative relationship of sample size and accuracies in ADHD imaging studies and Vabalas 

observed the negative relationship of sample size on reported accuracies in machine learning 

classifiers of autism spectrum disorders (Vabalas, Gowen, Poliakoff, & Casson, 2019). Both 

reviews were based on studies with sample sizes up to only ~1,000. Similar observations were 

also made by Wolfers and colleagues when reviewing neuroimaging-based diagnostics for a 

number of different psychiatric disorders (Wolfers et al., 2015). 
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Sample Heterogeneity and Data Imbalance.  

Although collaborative consortia, such as the ADHD-200, used relatively large samples sizes, 

such collaborations raise issues about sample heterogeneity and the use of imbalanced data. 

For example, like many other clinically referred samples, the ADHD-200 dataset had more boys 

than girls in the ADHD group compared with the control group. The ADHD group also had lower 

IQs than the control group. In addition, the demographic composition and sample acquisition 

methods differed across different study sites. The problem of dataset imbalance was addressed 

by several participating teams. Brown and colleagues from the University of Alberta found that 

models using only demographic information including age, sex, handedness, and IQ had 

sufficient statistical power to achieve a test accuracy 62.5%, higher than their models using 

fMRI features (Brown et al., 2012). In the work of Colby et al. (2012), a model using only 

demographic information had a higher accuracy (62.7%) than models using multimodal MRI 

features (55%). Both models using only the demographic features, although not meeting the 

requirements of the competition, outperformed the winning team that reported 61% accuracy 

using both structural and rs-fMRI data along with the demographic predictors in an ensemble 

model (Eloyan et al., 2012). An additional study by Sidhu and colleagues also reported better 

accuracy using demographic information than the rs-fMRI features using the ADHD-200 dataset 

(Sidhu, Asgarian, Greiner, & Brown, 2012). These observations highlight the concerns of data 

imbalance, and suggest that, if not dealt with carefully, the classifiers could be learning the 

neural correlates of the demographic features, rather than the diagnostic groups.  

 

Some studies used methods to address the problem of unbalanced data. One approach is 

random undersampling, i.e, removing some research participants and creating a smaller sample 

size that is balanced for confounding factors (M. N. I. Qureshi et al., 2016; Wang et al., 2013). 

This is in contrast to oversampling, where some random samples from the minority classes 
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were duplicated to create a lager and balanced dataset. Others used regression to control 

confounding factors such as age, sex, and acquisition sites, and used adjusted MRI features 

(residuals) in the classification algorithms (Deshpande et al., 2015; Fair et al., 2012). Some 

studies mentioned data balancing, but did not provide details on how it was done (Ghiassian et 

al., 2016). Lim et al (2013) used a gaussian process classifier to discriminate 29 boys with 

ADHD from 19 control boys. The limited samples sizes prohibited subsampling to balance the 

data. They noted, although the boys with ADHD had significantly lower IQ than the control boys, 

the model-generated probability of having ADHD was not correlated with IQ, age, and other 

clinical features (Lim et al., 2013). In more recent studies, more sophisticated methods such as 

Synthetic Minority Over-sampling Technique (SMOTE, (Chawla, Bowyer, Hall, & Kegelmeyer, 

2002)) were used to generate synthetic minority samples to combat the sample imbalance 

problem (Riaz, Asad, Alonso, et al., 2018). 

 

Previous studies from other fields have shown that not all the class balancing methods work 

equally well in reducing classifiers’ bias towards the majority class and guarantee good 

performance (Blagus & Lusa, 2013; He & Ma, 2013). In the ADHD studies that we reviewed, we 

did not find found higher held-out test accuracies in balanced studies than the unbalanced 

studies. Balanced studies in the K-Fold-CV group reported higher accuracies than those with 

unbalanced samples. However, they were all smaller studies than the unbalanced studies. It is 

not clear, at least for the K-Fold-CV group, if balanced designs led to higher accuracies, 

because sample size was a strong and negative predictor for the accuracies. Nevertheless, 

higher accuracies in the balanced LOOCV group, independent of the sample size, do suggest 

that sample balancing may have helped model performance to some degree. More studies and 

larger sample sizes will be needed to find the appropriate class balancing methods and assess 

the potential benefit. 
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Classification performance metrics 

When test sets (or cross-validation sets) are also imbalanced, the overall accuracy may not be 

an ideal indicator of the performance of the classifier. A high accuracy can simply result from a 

classifier that classifies all samples into the class that has more participants. Most studies (N= 

36, 75%) addressed this concern by also reporting sensitivity (True Positive rate, TP, the 

percentage of correctly identified cases (ADHD)) and specificity (True Negative rate, TN, the 

percentage of correctly identified controls). Three studies reported balanced accuracy, which is 

the arithmetic mean of the sensitivity and specificity; and three studies reported Youden's J-

statistic (sensitivity + specificity -1).  

Compared with percent correct, a better method to evaluate the overall performance of a 

classifier is the area under the Receiver Operating Characteristic curve (ROC (Fawcett, 2004)). 

The ROC curve plots sensitivity over the full range of false positive rates (equivalent to 1- 

specificity). The area under the ROC (AUC) measures the overall diagnostic accuracy of a 

classifier. Higher AUCs indicate better discriminating power (with 1 for the perfect classifier and 

0.5 for the random non-discriminative classifier). The AUC is in general less sensitive to 

imbalance of a dataset compared with the percent correct measure, because AUC does not 

have bias toward models that perform well on the majority class at the expense of the minority 

class (He & Ma, 2013). Davis et al (2006) suggested that the area under the Precision-recall 

curve (AUPRC) is superior for assessing extremely imbalanced datasets and more informative 

than the ROC curve. The AUPRC plots precision (the percentage of examples classified as 

positive that are true positive, also known as positive predictive value, PPV) over recall 

(sensitivity). Overall, in the body of literature that we examined, no studies reported the AUPRC, 

and only 13 reported the AUC.  

 

Other popular metrics for machine learning models are F1-score and Matthew's correlation 

coefficient (MCC). The F1-score is the harmonic mean of precision and recall. MCC is the 
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correlation coefficient between the predicted and actual classes. Like the areas under the PRC 

or ROC, both the F1-score and MCC are better indicators of model performance than the 

percent correct statistic if test data classes are imbalanced. However, of the studies included in 

this review, only three reported F1-scores, and only two reported MCC.  

 

Because most studies used percent correct to measures accuracy, we could only analyze 

percent correct in the current review. This may not represent the true model performance due to 

the limitations of this metric. We recommend that future studies adopt ROC or PRC analysis 

methods. Furthermore, inspecting the curves visually can reveal more information about how 

well the models discriminate classes at different decision thresholds. We don’t recommend 

metrics such as the F1-score, MCC, and J-statistics, because these scores only capture the 

diagnostic matrix at a single threshold level. Furthermore, the performance metrics are 

important, not only for properly interpreting test results, but also for model training. If a model 

was trained by maximizing a biased metric, it will not be fully optimized to generalize to other 

samples. Finally, metrics that are insensitive to class imbalance (such as AUC or AUPRC) do 

not protect against biased due to feature imbalance as discussed in the prior section. 

 

Age and Sex 

Although ADHD onsets prior to age 12, two-thirds of children continue to have symptoms and 

functional impairments into adulthood (Faraone, Biederman, & Mick, 2006).  Longitudinal data 

show that some ADHD-associated brain alterations diminish during adolescence and adulthood 

(Castellanos et al., 2002; Shaw et al., 2014; Shaw et al., 2006). Consistent with this, the very 

large ENIGMA ADHD study reported significant ADHD vs. control differences for children but 

not for adolescents and adults (Hoogman et al., 2017; Hoogman et al., 2019).  Neuroimaging 

classifiers studies have focused on younger populations; only three studies developed ML 

classifiers for adults. Our observation of a lack of difference in predictive accuracy between 
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classifiers for children/adolescents vs. adults is, therefore, inconclusive due to the small 

numbers of the adult studies. Few longitudinal studies have been reported for imaging in ADHD 

(Castellanos et al., 2002; Shaw et al., 2014; Shaw et al., 2006). No machine learning models 

have been applied to longitudinal data yet.  More efforts are needed to overcome the shortage 

of adult ADHD samples, as well as imaging data across the life span.  

ADHD is more prevalent in boys than in girls (Faraone et al., 2015; Ottosen et al., 2019). As a 

result, although the majority of the studies included samples from the both males and females, a 

high percentage of ADHD samples were from males (i.e., ~80% male in ADHD-200 dataset). 

However, the control samples were often balanced (i.e., 52% male in ADHD-200 dataset). If sex 

is left unbalanced, it could result in erroneous prediction results, as we described in the above 

sections. Furthermore, brain alterations have been found to differ between the sexes at different 

ages (Almeida Montes et al., 2013; Hoogman et al., 2019; Onnink et al., 2014). The low 

representation of females in available samples may prevent the classifiers from learning female-

specific brain alternations.  Our quantitative analysis showed significantly higher accuracies in 

four male-only studies than other studies of sex-mixed samples. However, all four were studies 

with small sample sizes (<189), with three reporting LOOCV accuracies and the other reporting 

10-Fold CV. Given the sample size effect and inflation by CV methods, it is inconclusive if ML 

models predict ADHD better in boys than girls.  

 
MRI Modality 

Although we found no significant difference in the accuracies reported for the sMRI and rs-fMRI 

studies, the small number of studies using sMRI data preclude any meaningful inferences 

regarding which MRI modality is the most informative for discriminating ADHD patients from 

controls. Some studies attempted to identify the most informative MRI data modality. Qureshi et 

al (2017) found that sMRI features yielded the highest prediction accuracy. Colby et al. (2012) 

found that combined multi-modality features performed best compared with individual data 
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modalities. However, all the MRI models performed worse than a classifier using only 

demographic features (Colby et al., 2012). In a later study using a three-dimensional CNN 

model, Zou and colleagues extracted higher-level features from the sMRI and rs-fMRI 

modalities separately. This design leveraged the relationship between the two MRI modalities, 

yet still was able to extract independent features that collectively were useful for classification 

(Zou, Zheng, Miao, Mckeown, & Wang, 2017). The authors also found that using multi-modal 

features outperformed either data modality alone (Zou et al., 2017). Despite these individual 

observations, the overall lack of statistically significant differences in accuracies across different 

modalities in our review suggests that more studies are needed before we can determine which 

MRI modalities or combinations thereof are most informative for diagnostic classification.  

 

ML Classifiers.  

SVM was the ML model that was used most frequently, accounting for 41% of studies. SVM, 

however, is limited in handling images and relies on other preprocessing methods to extract a 

tabular representation of three-dimensional brain images. In more recent years, an increasing 

number of studies have used CNNs, which were developed for image analysis. We did not, 

however, observe statistically significant differences between the accuracies of the SVM and 

CNN models for ADHD. This finding is limited by the small number of studies using CNN 

classifiers. Nevertheless, because the use of CNNs will likely increase in the future, we here 

describe their current contributions to the field and their potential for the future.  

 

Riaz et al. (2017) used a CNN-based method (FCNet) to extract the functional connectivity (FC) 

of brain regions and then trained an SVM classifier using the extracted features to discriminate 

ADHD from control participants. The classifier achieved a highest held-out test accuracy of 

68.6% for the ADHD-200 Peking subset. In the follow up study, the team built an end-to-end 

model system, DeepFMRI, which utilized multiple FCNets to extract features that were then fed 
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into a deep neural network (Riaz, Asad, Arif, et al., 2018). DeepFMRI streamlined the feature 

generation and selection as well as classification in one framework, and achieved a highest test 

accuracy of 73.1% for the NYU subset. Using preprocessed rs-fMRI and sMRI features as 

independent inputs, Zou et al. used a two-branched three-dimensional CNN to learn hierarchical 

features from each unique modality in a joint learning task. The multi-modal joint learning CNN 

architecture was superior to CNNs using either data modality alone (Zou et al., 2017). Aradhya 

et al. (2019) also used a CNN classifier and extracted features using the Deep Transformation 

Method (DTM).  

 

Most studies, including many CNN studies, used pre-processed MRI features, such as those 

anatomized to an AAL template. Mao and colleagues argued that rather than using hand-crafted 

features, one should use a CNN to directly learn discriminatory features from images. Their 

four-dimensional CNN classifier, designed to learn and extract spatial and temporal features 

from rs-fMRI images, discriminated ADHD from control participants with an accuracy of 71.3% 

(Mao et al., 2019). To increase their sample size and reduce overfitting, the authors augmented 

data by transforming rs-fMRI data into many short and fixed-lengthed video clips. Despite their 

promising results, they acknowledged that much work is still needed to localize the most 

discriminative sequences. Interestingly, a CNN using activation correlations from individual brain 

regions of the Default Mode Network (DMN) of the brain outperformed those using whole brain 

features (Ariyarathne, Silva, Dayarathna, Meedeniya, & Jayarathne, 2020). Using only one 

relevant brain region substantially reduced feature space and complexity. The significantly 

improved model performance also suggests that current sample sizes, in relation to the number 

of features available, maybe limiting the CNN models’ capacity. With more samples becoming 

available in the future, and the increased datasets of publicly available raw MRI images, CNN 

methods will likely to be seen in more and more studies and be explored to their full capacity for 

feature extraction and classification as has been the case for computer vision (Arcadu et al., 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 23, 2020. ; https://doi.org/10.1101/2020.10.20.20216390doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.20.20216390
http://creativecommons.org/licenses/by-nc/4.0/


20 

2019; Bhanumathi & Sangeetha, 2019; Iqbal, Ghani, Saba, & Rehman, 2018; Lin et al., 2018; 

Toyonaga et al., 2017). 

 

Building Larger Datasets 

Sample size has been a major bottleneck impeding the development of more accurate and 

clinically useful imaging classifiers for ADHD. The largest MRI dataset, to date, has been built 

by the Enhancing Neuro Imaging Genetics Through Meta-Analysis (ENIGMA) consortium. 

Under the umbrella of the ENIGMA consortium, many independent working groups for specific 

diseases or phenotypes have been established, including ADHD. By implementing standardized 

data processing protocols and pipelines, the ENIGMA consortium made it possible to share data 

across many sites to perform within-disorder and cross-disorder studies (Boedhoe et al., 2020; 

Paul M. Thompson et al., 2017; P. M. Thompson et al., 2020; P. M. Thompson et al., 2014) . 

The ENIGMA ADHD Working Group has obtained over 4,100 samples of ADHD participants 

and controls from 37 sites thus far. In the initial ENIGMA ADHD reports, Hoogman and 

colleagues reported that, for children, ADHD was associated with significant volumetric 

reductions in intracranial volume, amygdala, caudate nucleus, nucleus accumbens, 

hippocampus, and cortical surface areas from many regions (Hoogman et al., 2017; Hoogman 

et al., 2019). No significant differences were found for adolescents or adults. Furthermore, the 

estimated effect sizes for children were small, ranging from 0.11 to 0.19. Users of the ENIGMA 

ADHD dataset, however, face the same problems of data heterogeneity and imbalanced 

demographic groups as those using the ADHD-200 dataset. Significant challenges remain when 

using such data to build a machine learning classifier. Furthermore, the ENIGMA ADHD data is 

primarily preprocessed sMRI data in tabular form. Not all sites have data on other modalities, 

such as rs-fMRI or DTI, available for their samples. The ENIGMA ADHD sites have not yet 

pooled raw MRI images, which is needed for CNN models.  
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Conclusions 

 

Our review of ML studies of MRI-based ADHD diagnostic classifiers has important implications 

for methods development, but these studies have not yet led to clinically useful classifiers. Our 

review shows that the variability of results across studies is due, in part, to differences in 

methodology. Future work should use the largest samples possible and should rely on a held-

out test set, rather than cross-validation for estimating prediction accuracy. Future studies 

should not rely on percent correct as a measure of accuracy in unbalanced samples. Our 

analysis also highlighted the need of data from underrepresented groups, particularly females 

and adults. We hope that our review provides a better understanding of the efforts invested in 

developing ADHD imaging classifiers in the field and encourages more stringent model design 

and data processing for future studies. In the meanwhile, the initial results from the ENIGMA 

ADHD consortium should encourage more sites to participate. The lack of a very large multi-

modal dataset that include sufficient data from both sex and all ages may be the biggest 

impediment to developing a clinically useful classifier for diagnosing ADHD.  
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Figure Captions 
 
 
Figure 1. Best prediction accuracies reported in each study for each type of the available tests: 

K-Fold-CV, LOOCV or held-out tests.  

 

Figure 2. Accuracy in studies published over the years. 

 

Figure 3. Accuracy vs training sample size.   

Sample size <300 were labeled as triangle and >300 are labeled as circle. The fitted line 

between accuracy and sample size were plotted for each test type. 
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Table 1 

Table 1. Machine Learning Literature on ADHD Neuroimaging Data. 

 
Study 

Training 

Sample Size) 

ADHD% 

(Training 
Set) 

Test Sample 

Size 

ADHD% 

(Test Set) 

 
Data Source 

 
Ages 

 
Sex 

 
Model 

 
Features 

 
Performance Metrics 

 
Test Type 

 
Accuracy 

 
References 

 
PMID/Conference 

Aradhya, 2019 371 n.a 94 n.a 
ADHD-200 subset 
(right-handed males) Children and young adults (7-21) M, F CNN rs-fMRI Accuracy K-Fold-CV(K=10) 70% (Aradhya, Joglekar et al. 2019) n.a 

Ariyarathne, 2020 26 n.a 16 n.a ADHD-200 subset Children and young adults (8-21) M, F CNN rs-fMRI 
Accuracy, Sensitivity, 

Specificity Held-out Test 85% (Ariyarathne, Silva et al. 2020) n.a 

Bohland, 2012 776 37% 171 45% ADHD-200 Children and young adults (7-21) M, F SVM sMRI and rs-fMRI Accuracy, AUC K-Fold-CV(K=2) 
Held-out Test 

74% 
67% 

(Bohland, Saperstein et al. 2012) 23267318 

Brown MR 2012 668 36% 171 45% ADHD-200 Children and young adults (7-21) M, F SVM rs-fMRI Accuracy Held-out Test 

K-Fold-CV(K=10) 

55% 

71% 

(Brown, Sidhu et al. 2012) 23060754 

 
Chaim-Avancini, 2017 

 
96 

 
54% 

 
n.a 

 
n.a 

 
Clinic and commmunity 

 
Adults (18-50) 

 
M, F 

 
SVM 

 
sMRI and DTI 

Accuracy, ROC AUC, 

Sensitivity, Specificity, PPV, 
NPV 

 
K-Fold-CV(K=10) 

 
74% 

 
(Chaim-Avancini, Doshi et al. 2017) 

 
29080396 

Chen, 2020 633 43% n.a n.a ADHD-200 Children and young adults (7-21) M, F BHT rs-fMRI 
Accuracy, Sensitivity, 

Specificity LOOCV 88% (Chen, Tang et al. 2020) 32143793 

Cheng W, 2012 239 41% n.a n.a ADHD-200 Children and young adults (7-21) M, F SVM rs-fMRI 
Accuracy, Sensitivity, 

Specificity LOOCV 76% (Cheng, Ji et al. 2012) 22888314 

Colby JB, 2012 776 37% 197 n.a ADHD-200 Children and young adults (7-21) M, F SVM sMRI and rs-fMRI 
Accuracy, Sensitivity, 

Specificity Held-out Test 59% (Colby, Rudie et al. 2012) 22912605 

 
Dai D, 2012 

 
624 

 
36% 

 
n.a 

 
n.a 

 
ADHD-200 

 
Children and young adults (7-21) 

 
M, F 

 
MKL 

 
sMRI and rs-fMRI 

Accuracy, Sensitivity, 

Specificity, J-statistic, F1- 

score, ROC AUC 

 
K-Fold-CV(K=10) 

 
Held-out Test 

 
68% 

 
62% 

 
(Dai, Wang et al. 2012) 

 
22969710 

Deshpande G, 2015 1177 37% n.a n.a ADHD-200 Children and young adults (7-21) M, F FCCANN rs-fMRI Accuracy LOOCV 90% (Deshpande, Wang et al. 2015) 25576588 

Dey, 2014 776 37% n.a n.a ADHD-200 Children and young adults (7-21) M, F SVM rs-fMRI 
Accuracy, Sensitivity, 

Specificity 
Training samples 

Held-out Test 

71% 

74% 

(Dey, Rao et al. 2014) 24982615 

Du J, 2016 216 55% n.a n.a ADHD-200 Children and young adults (7-21) M, F SVM rs-fMRI 
Accuracy, Sensitivity, 
Specificity, ROC AUC K-Fold-CV(K=10) 95% (Du, Wang et al. 2016) 27166430 

Eloyan A, 2012 776 37% 194 n.a ADHD-200 Children and young adults (7-21) M, F Ensemble 
sMRI and rs-fMRI 

and demographics 

Accuracy, Sensitivity, 

Specificity 
Held-out Test 

K-Fold-CV (n=184 

randomly chosen 

internal test set) 

61% 

 

78% 

(Eloyan, Muschelli et al. 2012) 22969709 

Fair DA 2013 104 50% n.a n.a ADHD-200 Children and young adults (7-21) M, F SVM rs-fMRI 
Accuracy, Sensitivity, 

Specificity LOOCV 83% (Fair, Nigg et al. 2012) 23382713 

Ghiassian S, 2016 769 36% 171 45% ADHD-200 Children and young adults (7-21) M, F MHPC 
sMRI and rs-fMRI 
and demographics 

Accuracy, Sensitivity, 
Specificity Held-out Test 70% (Ghiassian, Greiner et al. 2016) 28030565 

Hao A, 2015 216 55% 41 71% 
ADHD-200 (NYU 
subset) Children and young adults (7-21) M, F DBN fMRI 

Accuracy, Sensitivity, 
Specificity Held-out Test 49% (Hao, He et al. 2015) n.a 

85 28% 50 46% 
ADHD-200 (Peking 
subset) Children and young adults (7-21) M, F DBN fMRI 

Accuracy, Sensitivity, 
Specificity Held-out Test 54% 

83 27% 11 27% 
ADHD-200 (KKI 
subset) Children and young adults (7-21) M, F DBN fMRI 

Accuracy, Sensitivity, 
Specificity Held-out Test 72% 

 
Hart H, 2014 

 
60 

 
50% 

 
n.a 

 
n.a 

clinic and local 

community 

 
Children and adolescents (10-17) 

 
M, F 

 
GPC 

 
task-fMRI 

Accuracy, ROC AUC, 

Sensitivity, Specificity, PPV, 
NPV 

 
LOOCV 

 
77% 

 
(Hart, Chantiluke et al. 2014) 

 
24123508 

Iannaccone R, 2015 40 50% n.a n.a 
Outpatient clinic and 
local schools Adolescents (12-16) M, F SVM task-fMRI 

Accuracy, ROC AUC, 
sensitivity, Specificity LOOCV 78% (Iannaccone, Hauser et al. 2015) 25613588 

Igual L, 2012 78 50% n.a n.a URNC database Children and adolescents (6-18) M, F SVM 
sMRI of the 
caudate nucleus 

Accuracy, Sensitivity, 
Specificity K-Fold-CV(K=5) 73% (Igual, Soliva et al. 2012) 22959658 

Jie, 2016 216 55% n.a n.a 
ADHD-200 (NYU 
subset) Children and young adults (7-21) M, F SVM rs-fMRI 

Accuracy, ROC AUC, 
sensitivity, Specificity LOOCV 83% (Jie, Wee et al. 2016) 27060621 

Johnston BA, 2014 68 50% n.a n.a clinic and local schools Children and adolescents (8-17) M SVM sMRI 
Accuracy, Sensitivity, 

Specificity LOOCV 93% (Johnston, Mwangi et al. 2014) 24819333 

Kuang D, 2014 83 n.a 11 n.a 
ADHD-200 (KKI 
subset) Children and young adults (7-21) M, F DBM rs-fMRI 

Accuracy, Sensitivity, 

Specificity 
Held-out Test 73% (Kuang, Guo et al. 2014) n.a 

85 28% 50 46% 
ADHD-200 (Peking 
subset) Children and young adults (7-21) M, F Held-out Test 54% 

222 n.a 41 n.a 
ADHD-200 (NYU 
subset) Children and young adults (7-21) M, F Held-out Test 37% 

Lanka, 2019 759 37% 171 45% ADHD-200 Children and young adults (7-21) M, F 
ensemble 
and ELM rs-fMRI Balanced Accuracy Held-out Test 61% (Lanka, Rangaprakash et al. 2019) 31691160 

Lim L, 2013 48 60% n.a n.a Clinic Children and adolescents (10-18) M GPC sMRI 
Accuracy, AUC, Sensitivity, 

Specificity, PPV, NPV LOOCV 79% (Lim, Marquand et al. 2013) 23696841 

Mao, 2019 626 46% 162 45% ADHD-200 Children and young adults (7-21) M, F 4D CNN rs-fMRI Accuracy, ROC AUC Held-out Test 71% (Mao, Su et al. 2019) n.a 

Olivetti E, 2012 923 38% n.a n.a ADHD-200 Children and young adults (7-21) M, F ERT rs-fMRI 
Accuracy, FP, FN, TP, TN, 

Log(B10) K-Fold-CV(K=10) 66% (Olivetti, Greiner et al. 2012) 23060755 

Olivetti E, 2015 923 38% n.a n.a ADHD-200 Children and young adults (7-21) M, F ERT rs-fMRI 
Accuracy, MCC, J-statistic, 

F1-score, Log(B10) K-Fold-CV(K=10) 62% (Olivetti, Greiner et al. 2012) 27747500 

Peng X, 2013 110 50% n.a n.a 
ADHD-200 (Peking 
subset) Children and young adults (7-21) M, F ELM sMRI Accuracy, ROC AUC LOOCV 90% (Peng, Lin et al. 2013) 24260229 

Qureshi MN, 2016 106 50% n.a n.a ADHD-200 Children and young adults (7-21) M, F H-ELM sMRI Accuracy K-Fold-CV(K=10) 

K-Fold-CV(70/30 
split) 

80% 

85% 

(Qureshi, Min et al. 2016) 27500640 
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Qureshi MN, 2017 

 
106 

 
50% 

 
28 

 
50% 

 
ADHD-200 

 
Children and young adults (7-21) 

 
M, F 

 
ELM 

 
sMRI and rs-fMRI 

Accuracy, Sensitivity, 

Specificity, F1-score, 
Precision, Recall 

 
Held-out Test 

 
93% 

 
(Qureshi, Oh et al. 2017) 

 
28420972 

 
Riaz, 2017 

 
464 

 
52% 

 
65 

 
44% 

ADHD-200 

(NeuroImaging, NYU 
and Peking subset) 

 
Children and young adults (7-21) 

 
M, F 

CNN and 

SVM 

rs-fMRI and 

demorgraphic 

 
Accuracy 

 
Held-out Test 

 
69% 

 
(Riaz, Asad et al. 2017) 

 
n.a 

 

Riaz, 2018a 

 

442 

 

43% 

 

n.a 

 

n.a 

ADHD-200 

(NeuroImaging, KKI, 
NYU and Peking 

subset) 

 

Children and young adults (7-21) 

 

M, F 

 

SVM 

 
rs-fMRI and 

demorgraphic 

 
Accuracy, ROC AUC, 

sensitivity, Specificity 

 

LOOCV 

 

87% 

 

(Riaz, Asad et al. 2018) 

 

29137838 

Riaz, 2018b 226 54% n.a n.a 
ADHD-200 (NYU 
subset) Children and young adults (7-21) M, F CNN rs-fMRI 

Accuracy, Sensitivity, 
Specificity Held-out Test 73% (Riaz, Asad et al. 2018) n.a 

Sato, 2012 759 36% 171 45% ADHD-200 Children and young adults (7-21) M, F AdaBoost rs-fMRI 
Sensitivity, Specificity, 
Balanced Accuracy Held-out Test 55% (Sato, Hoexter et al. 2012) 23015782 

Semrud-Clikeman, 1996 20 50% n.a n.a Clinic and commmunity Children and adolescents (6-16) M, F PDA sMRI Accuracy training samples 87% 
(Semrud-Clikeman, Hooper et al. 
1996) 14588457 

Sen, 2018 776 37% 171 45% ADHD-200 Children and young adults (7-21) M, F SVM sMRI and rs-fMRI 
Accuracy, Sensitivity, 
Specificity, J-statistic Held-out Test 67% (Sen, Borle et al. 2018) 29664902 

Shao, 2018 50 36% 16 36% 
ADHD-200 (KKI 
subset) Children and young adults (7-21) M, F SVM rs-fMRI 

Accuracy, Sensitivity, 
Specificity, MCC Held-out Test 

 
(Shao, Xu et al, 2018) 30009990 

Sidhu, 2012 668 36% 171 45% ADHD-200 Children and young adults (7-21) M, F SVM rs-fMRI Accuracy training samples 76% (Sidhu, Asgarian et al. 2012) 23162439 
Held-out Test 67% 

 
Tan, 2017 

 
215 

 
54% 

 
n.a 

 
n.a 

ADHD-200 (NYU 

subset) 

 
Children and young adults (7-21) 

 
M, F 

 
SVM 

 
sMRI and rs-fMRI 

Accuracy, AUC, sensitivity, 

Specificity, Balanced 
Accuracy 

 
K-Fold-CV(K=10) 

 
68% 

 
(Tan, Guo et al. 2017) 

 
28943846 

Tang, 2019 633 43% n.a n.a ADHD-200 Children and young adults (7-21) M, F BHT rs-fMRI 
Accuracy, Sensitivity, 

Specificity LOOCV 92% (Tang, Wang et al. 2019) 30938224 

Tang, 2020 633 43% n.a n.a ADHD-200 Children and young adults (7-21) M, F BHT rs-fMRI 
Accuracy, Sensitivity, 

Specificity LOOCV 98% (Tang, Li et al. 2020) n.a 

Wang, 2013 46 50% n.a n.a FCON_1000 Adults (18-50) M, F SVM rs-fMRI 
Accuracy, Sensitivity, 

Specificity LOOCV 80% (Wang, Jiao et al. 2013) 23684384 

Wang, 2018 71 51% n.a n.a ADHD-200 subset Children and adolescents (6-18) M, F SVM sMRI 
Accuracy, Sensitivity, 

Specificity LOOCV 75% (Wang, Jiao et al. 2018) 30031733 

Xiao, 2016 47 68% n.a n.a clinic n.a n.a Lasso sMRI 
Accuracy, Sensitivity, 

Specificity LOOCV 81% (Xiao, Bledsoe et al. 2016) 27747592 

Yao, 2018 189 59% n.a n.a clinic Adults (18-34) M, F Ensemble rs-fMRI 
Accuracy, Sensitivity, 

Specificity 
K-Fold-CV(K=10) 80% (Yao, Guo et al. 2018) 30441383 

Children and adolescents (6-14) M 86%  

Yoo, 2019 94 50% 
  

Clinic Children and adolescents (6-17) M, F RF 
sMRI and rs-fMRI 

and DTI 

Accuracy, AUC, Sensitivity, 

Specificity, PPV, NPV 
LOOCV 85% (Yoo, Kim et al. 2019) 31321662 

 Held-out Test 69% 

Zhu CZ, 2008 20 45% n.a n.a community Children and adolescents (11-17) M FDA rs-fMRI 
Accuracy, Sensitivity, 

Specificity LOOCV 85% (Zhu, Zang et al. 2008) 18191584 

Zou, 2017 559 35% 171 45% ADHD-200 Children and young adults (7-21) M, F 3D CNN rs-fMRI and sMRI Accuracy Held-out Test 69% (Zou, Zheng et al. 2017) n.a 

Zu, 2019 216 55% n.a n.a 
ADHD-200 (NYU 
subset) Children and young adults (7-21) M, F STM rs-fMRI Accuracy K-Fold-CV(K=10) 65% (Zu, Gao et al. 2019) 29948906 

 
 

Note: 

AUC, the area under the ROC curve (AUC) BHT, 

Binary Hypothesis Testing 

CNN, Convolutionary Neural Net; 

CV, cross-validation; LOOCV, leave-one-out cross validation; 

DBN, Deep Bayesian Network; DBM, Deep Belief Network; 

ELM, extreme learning machine; H-ELM, hierarchical extreme learning machine. 

ERT, extremely randomized tree 

FCON_1000, 1000 Functional Connectomes Project database (http://www.nitrc.org/projects/fcon_1000) 

FDA, Fisher discriminative analysis 

fMRI, funcitonal MRI; rs-fMRI, resting state- functional MRI; sMRI, structure MRI; DTI, diffusion tensor imaging GBM, 

a gradient boosting method; 

GPC, Gaussian process classifiers; 

Log(B10), the log of the Bayes factor for the hypothesis of dependence vs. independence; 

MCC, Matthew's correlation coefficient 

MHPC, the histogram of oriented gradients (HOG)-feature-based patient classification; 

MKL, multi-kernellearning; FCCANN, fully connected cascade artificial neural network; 

PDA, predictive discriminant analysis 

PPV, Positive predictive value; NPV, Negative predictive value 

RF, Random Forest 

SVM, support vector machine; STM, Support tensor machine. 

TP, the number of true positive diagnosis; TN, the number of true negative diagnosis; FP, the number of false positive diagnosis; FN, and the number of false negative diagnosis. 

 
*Balanced Accuracy = (sensitivity + specificity)/2 
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