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Abstract

Drug discovery is adapting to novel technologies such as data science, informatics, and artificial
intelligence (Al) to accelerate effective treatment development while reducing costs and animal
experiments. Al is transforming drug discovery, as indicated by increasing interest from investors,
industrial and academic scientists, and legislators. Successful drug discovery requires optimizing
properties related to pharmacodynamics, pharmacokinetics, and clinical outcomes. This review
discusses the use of Al in the three pillars of drug discovery: diseases, targets, and therapeutic
modalities, with a focus on small molecule drugs. Al technologies, such as generative chemistry,
machine learning, and multi-property optimization, have enabled several compounds to enter
clinical trials. The scientific community must carefully vet known information to address the
reproducibility crisis. The full potential of Al in drug discovery can only be realized with sufficient
ground truth and appropriate human intervention at later pipeline stages.
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1. Introduction

Drug discovery is a systematic scientific process that aims to identify, design, and develop novel
therapeutic agents to cure, ameliorate or prevent diseases and medical conditions. Drug
discovery is often called a ‘pipeline,” which suggests a unidirectional transition from hit/lead to
candidate and marketed drug, supported by basic and clinical research (1). The process is, in fact,
iterative in nature, multi-faceted, and complex; for example, small-molecule drug discovery
requires a) basic science research and target identification; b) target pharmacology and
biomarker development; c) lead identification; d) lead optimization, candidate selection, IND
(Investigational New Drug)-enabling studies and scale-up for manufacturing; e) clinical research
and development; f) regulatory review; g) post-marketing and h) medical practice deployment
(2). Two drug discovery, development, and deployment maps (4DM) that depict key steps in the
drug development lifecycle, one for small molecules and one for biologics, illustrate the
interdependencies and complexities of this process and are available for download at the
National Center for Advancing Translational Sciences (NCATS) website
(https://ncats.nih.gov/translation/maps). Drug discovery scientists use various techniques and

methodologies, such as computational modeling, medicinal chemistry, high-throughput
screening (HTS), and biological assays, to identify promising compounds and evaluate their
safety, efficacy, and pharmacokinetics.

As therapeutic modalities continue to evolve (3), the drug discovery process is adapting by
incorporating novel data science, informatics, and artificial intelligence (Al) methodologies,
among other technologies, to improve efficiency, and reduce costs and animal experiments, thus
accelerating the development of novel, effective treatments. The impact of big data and Al in
drug discovery, the subject of a 2020 review in this journal (4), continues to attract significant
interest: Investors (5, 6), industrial (7, 8) and academic scientists (9, 10), and legislators
(https://bit.ly/40LRAIip) discuss the impact of Al for drug discovery (Al4DD). As of July 3, 2023,
“Artificial intelligence in drug discovery” is in the title of 63 publications since 2019, according to
Google Scholar (https://bit.ly/3FWk3dH).

Successful drug approval requires concurrently optimizing multiple properties related to
pharmacodynamics, pharmacokinetics, and clinical outcomes. Pharmacodynamic properties are
related to drug-target interactions and efficacy; appropriate pharmacokinetics include
absorption, distribution, metabolism, excretion, toxicity (ADMET), and drug safety; clinical
outcomes include the therapeutic intent, as detailed on the list of drug indications and off-label
uses, as well as undesired outcomes such as side effects or adverse drug reactions. Thus, a
successful drug discovery launch relies on three pillars: Diseases, targets, and therapeutic
modalities. Al impacts most therapeutic modalities, including targeted protein degradation (11),
antibodies (12), gene therapy (13), and oligonucleotide (14) and vaccine (15) design. In this
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review, we explore the impact of Al4DD on these three pillars, primarily focused on small
molecule drugs as therapeutic modality. Its impact on regulatory science and some caveats of
Al4DD are also included.

2. Emergence of artificial intelligence for drug discovery

The knowledge deficit. One of the main challenges human investigators and Al systems face in
drug discovery is harnessing large volumes of heterogeneous data of varying quality. The rapid
expansion of data and computing power has been described as justifying “a fourth paradigm,"
a.k.a, "data-intensive scientific discovery (16). Specifically for the “why” and “what if” types of
guestions, relevant, preferably reliable data must be identified, inferred when absent, and
connected through evidence-based reasoning, illustrated by the metaphor "connecting the dots"
(17). It is increasingly clear that modern drug discovery requires computer-based systems that
can intelligently reason and recognize patterns, i.e., Al. These Al systems must be able to weigh
data elements and aggregate instances of those patterns to assess confidence and justification.
Automated systems that digest large sets of data using named entity recognition, NER (18), are
an integral part of public domain databases, for example, DISEASES for gene-disease associations
(19); STRING for protein-protein interactions (20); and OpenTargets (21) and Pharos (22) for
complex disease-protein-drug annotations, to name a few. Combined with Al-based systems that
predict protein structures, such as AlphaFold (23) and RoseTTafold (24), these resources are
poised to accelerate Al4DD.

An incomplete history of Al for small molecule drug design: The general notion that, at some
point, an Al platform will drive drug discovery has probably been formulated in the early days of
science fiction. For example, TV shows like Star Trek have featured medicine-specialized
holograms (Al entities) solving medical emergencies. As early as 1981, the idea of “designing
drugs with computers” was motivating scientists at Washington University in St. Louis (25) and
Merck Research Laboratories (26). The Journal of Computer-Aided Drug Design was founded in
1987, and in almost every decade since the 1980s, the notion of “Al in drug discovery” has
captured our imagination.

Machine learning (ML) models that discriminate “drugs” from “non-drugs” emerged in 1998,
when scientists from Vertex (27) and BASF (28) independently proposed models to estimate
“drug-likeness,” showing that it is possible to train ML models based on chemical features to
discriminate “drugs” (specifically, compounds that medicinal chemists have proposed for
biological testing) from “non-drugs” (compounds lacking pharmaceutical use). The challenge
faced by ML models of drug-likeness is illustrative of the general challenge in drug discovery
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(specifically, small molecule drugs): The “drug” quality is not an intrinsic property of chemicals
since regulatory agencies and, implicitly, humans approve compounds for medicinal use (29).
Furthermore, drug approval is subject to revision and can be withdrawn over time. While most
market withdrawals are caused by drug toxicity (30), lack of efficacy or economic reasons can
also result in withdrawal. Despite these caveats, ML-based drug-likeness quantification is an
integral part of the drug discovery process, with nearly 20 independent papers dedicated to drug-
likeness discussed elsewhere (29).

Current impact in drug discovery. An in-depth scientometric analysis (31) of Al4DD showed a
steep rise in publications, from 49 in 2011 to 333 in 2020. The number of Al-based drug discovery
platforms is anticipated to increase in the near future. There is frequently a synergistic
relationship between the pharmaceutical and biotech industries, which propel Al-driven drug
discovery towards commercial use, and academic institutions, which often spearhead the
development of algorithms and methods. Over the past two decades, Al and machine learning
have shifted from being peripheral technologies to occupying a central role in the drug discovery
process. Today, we are closer than ever to achieving this long-sought goal.

3. Al applications in various stages of drug discovery

3.1. Diseases and therapy selection

Diseases and healthcare: The last decade has witnessed significant computational advances in
disease diagnosis, with ten or more publications describing the use of Al in dermatology,
tuberculosis, Alzheimer’s disease, diabetes, hypertension, and cancer, reviewed elsewhere (32).
The potential influence of Al in healthcare professions, such as radiology (33), pathology (34),
clinical pharmacology (35) and COVID drug repurposing (36), has been a topic of discussion.
Recently, ChatGPT, a large language model (LLM) from OpenAl (https://chat.openai.com/),

achieved a notable milestone by scoring 60% proficiency on the United States Medical Licensing
Exam, USMLE (37). Al has the potential to impact healthcare management in areas like
diagnostics, imaging analytics, patient-provider interactions, hospital and nursing home
management, population wellness using social determinants, and real-world evidence collection
and analysis (38). As of 30 March 2023, the general opinion is that Al will support healthcare
professionals but is not expected to replace them in the near future.

Image-based Al. Al systems based on image analysis have been developed in various medical
fields, including radiology, pathology, and dermatology. Pathology is evolving into digital
pathology, which involves digitizing histopathology, immunohistochemistry, and cytology slides
and training Al systems on this digital data (39). Computational pathology aims to reduce
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diagnostic and classification errors while accelerating biomarker discovery, pathophysiology
evaluations, animal research, and toxicological assessments (40). In radiology, Al can assist
radiologists in improving diagnoses and enhancing patient care by analyzing chest X-rays,
magnetic resonance images, and computed tomography scans (41). However, a systematic
framework may be needed for comparing human and Al perception in medical diagnosis (42). An
ML model based on convolutional neural networks (CNN) has demonstrated near-physician
accuracy in diagnosing atopic dermatitis. Furthermore, this CNN model performs well in
differentiating atopic dermatitis from other skin conditions such as impetigo, mycosis fungoides,
herpes simplex, and Kaposi varicelliform eruption (43).

Nosology. Nosology, the ability to classify, recognize, cross-reference, and reconcile disease
terms, poses significant challenge for healthcare Al systems. While numerous disease and
phenotype ontologies exist (44), the Monarch Disease Ontology (Mondo) is emerging as a
comprehensive, community-driven, and computationally-driven resource (45). A systematic
analysis of resources integrated into Mondo revealed nearly 10,500 unique rare diseases, in
contrast to the commonly cited 7,000 figure (46). The successful combination of human and
machine learning (Bayesian) curation employed by Mondo serves as a clear example of how
human and computer intelligence can collaborate in understanding diseases.

Drug indications and therapeutic intent: A critical aspect of drug discovery involves
understanding the relationship between drugs and diseases, as specified on the drug label or
drug indication, typically listed in the "indications and usage" section. Uses not stated on the
package inserts are called "off-label" uses. As of January 2023, the DrugCentral database contains
2331 FDA-approved human drugs associated with 2644 drug indications and 866 off-label uses
(47). Therapeutic intent, the rationale behind choosing a therapy and the context in which it is
prescribed, is vital to medical practice. Although DrugCentral maps drug uses to existing
terminologies like SNOMED-CT and MeSH, two global standards for health terms, capturing
therapeutic intent computationally is challenging (48). Therapeutic intent encompasses disease
concepts and contextual factors such as pre-existing conditions, co-prescribed medications,
specific genotypes, and various phenotypic, anatomical, or temporal parameters. The state-of-
the-art in drug indication curation from text was expanded through InContext (49), which
includes therapeutic context information about drug usage, especially for antineoplastic and
cardiovascular drugs. However, appropriately capturing and validating "off-label medical uses"
still requires manual curation (50). Developing Al systems capable of processing, corroborating,
and cross-mapping disease terminologies and therapeutic intent is a significant goal for
automated drug discovery and repurposing in silico.
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3.2. Target identification and validation

Knowledge Graphs. A crucial early step in modern drug discovery is target identification. This
process involves discovering and validating the clinical relevance of a biomolecule that serves as
mode-of-action for the therapeutic modality (51). Although novel drug targets are typically
identified through genomic, proteomic or phenotypic experiments, machine learning is
increasingly being explored as target identification technology (52), often by means of knowledge
graphs (53). A knowledge graph (KG) is a knowledge base that uses graph-structured data models
or topology to integrate data. Drug discovery KGs store interlinked descriptions of nodes — genes,
phenotypes, or compounds — while also encoding the underlying relationships (edges). KG data
projection enables network-based analytical algorithms, thus turning complex drug discovery
data into ML-ready files. Biological system networks are heterogeneous with multiple node and
edge types (Fig 1). Developments in heterogeneous (54) relationship predictions (55) introduced
and formalized a new framework that takes into account network heterogeneity by defining type-
specific node-edge paths or meta-paths (56).

A meta-path encodes type-specific network topology between the source node (e.g., Protein
target) and the destination node (e.g., Disease or Function). Type-specific meta-paths are: (Target
— (member of) - Protein-Protein Interaction (PPI) Network ¢ (member of) — Protein —
(associated with) = Disease) and (Target — (expressed in) = Tissue ¢ (localized in) — Disease).
Type-specific meta-path counts can be combined using, e.g., degree-weighted paths (55) to
dampen the effect of highly connected nodes. By assembling heterogeneous data types such as
those included in Pharos (22), an ML-ready KG can capture data from major areas specific for
human protein-coding genes: phenotype and disease, pathways, and interactions. Each area has
appropriate levels of data, e.g., expression, association, membership, treatments, localization,
and gene signatures. Each instance of a meta-path represents a specific chain of evidence of
associations between a source and a destination node.

Novel targets for Alzheimer’s disease. The meta-path framework can be applied in conjunction
with various classification algorithms. In this case, XGBoost, a form of extreme gradient boosting
(67), was utilized to identify novel genes associated with Alzheimer's disease (68). By integrating
the comprehensive Pharos dataset, a web-based interface for data collected by the Illuminating
the Druggable Genome initiative, into XGBoost, an AD-focused model was developed, which
included 53 positive (AD-associated) and 3,952 negative (non-AD-associated) genes. The model's
validity was assessed using the top 20 and bottom 10 genes across three biologically distinct AD
model systems (68). This approach uncovered five previously unassociated gene targets related
to immunity in AD: FRRS1, CTRAM, SCGB3A1, CIBAR2, and TMEFF2. These genes demonstrated
significant differences between AD and control samples. The model identified key variables
associated with inflammatory processes and oxidative stress. Although constrained by input data
that lacked non-human information, the AD-specific XGBoost model emphasized the role of
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infection as a critical factor in AD pathology. There is a growing body of evidence supporting the
hypothesis that brain infection may be the primary cause of AD (69).

Novel genes for autophagy. Autophagy (ATG) is an intracellular physiological degradation
process responsible for eliminating protein aggregates, pathogens, and other cargo by delivering
them to lysosomes for degradation (70). Although the number of known genes involved in ATG
is increasing (71), a systematic experimental method for identifying ATG-related genes has yet to
be established (72). Given the complexity of ATG-associated genomic datasets, an ATG-specific
XGBoost machine learning model was developed to aid in designing relevant experiments (73).
The ATG-specific meta-path XGBoost model used 103 ATG-associated (positive) genes and 3468
negatives (not ATG-associated genes), collating data from Pharos. Among the top 251 genes
predicted to have ATG associations, 43 genes were already in the Autophagy Database, and
another 15 had potential ATG associations. However, 193 genes (77%) did not have any apparent
connection to ATG. These 193 genes could be considered "ATG dark genes." A literature review
of newly published experimental reports was used to validate 7 of the top 20 and 2 of the bottom
predicted ATG dark genes (73).
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Figure 1. Knowledge Graph representation of phenotype-protein associations. Nodes (main entities) are
related by edges (arrows). Centered on the main node, “Target”, nodes listed clockwise are as follows:
Tissue; Cell_type; Panther, Protein Analysis Through Evolutionary Relationships, a protein classification
scheme(57); Reactome, a pathways database (58); Jensen DISEASES (19); OMIM, Online Mendelian
Inheritance in Man database(59); HPO, human phenotype ontology (60); Homolog (which lists proteins
with common evolutionary origin), further linked to IMPC (International Mouse Phenotype Consortium)
mouse phenotype database (61); CCLE, cancer cell line encyclopedia (62); Transcript, Protein and
unreviewed_protein — various types of UniProt (63) entries; GO, Gene Ontology (64) consortium terms;
Ramilowski_subcellular_location, a specific experimental resource for subcellular protein localization
(65). Nodes are associated to “Target” through a variety of arrows. GO tems, for example, feature several
protein properties, whereas STRING (20) loops protein protein interactions (PPIs) for “Targets”; other
resources such as HPA, the Human Protein Atlas (66), informs a variety of nodes regarding tissue, cell type
and subcellular location and expression.

KG-based ML model interpretation. The AD and ATG XGBoost meta-path models exhibit external
predictivity, as some of the top 20 genes predicted by each model have demonstrated valid
associations. Some valid associations were also found among the bottom-ranked genes in each
model. Since the XGBoost algorithm generates a gradient (probability) output and input labels
are binary (1 for positives and 0 for negatives), examining both top- and bottom-ranked genes is
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a logical approach. Three of the bottom-ranked genes displayed signals for both AD and ATG. It
is advisable to consider both top- and bottom-ranked genes because machine learning output is
not absolute. The distinction between top-predicted and bottom-predicted genes is more
evident in their similarity network. Top genes are more likely to be associated with AD or ATG,
while the bottom-ranked genes seem less organized, as indicated by STRING enrichment
analyses. Both models used an arbitrary set of over 3,000 negative-label genes; however, no
experiments have confirmed these genes as true negatives for either ATG or AD. The absence of
a "ground truth" (verified true positives and true negatives) likely contributes to the increased
complexity and variance observed in KG-based ML research.

One potential complication in knowledge graph-based machine learning models is "data leakage"
(74), which can occur inadvertently due to the complexity of the dataset. In the context of the
ATG-based ML model, the inclusion of gene ontology (GO) (64) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) (75) terms can introduce information directly related to the research
guestion. Both GO and KEGG contain terms associated with autophagy. Post-ML queries for ATG
dark genes led to the exclusion of one bottom-ranked and two top-ranked genes, as they were
annotated with ATG-related GO terms. Data leakage has a significant impact, and Kapoor and
Narayanan describe it as a reproducibility crisis in ML science (76). In their analysis, data leakage
was detected in 15 of the 20 subject areas associated with biology or medicine.

3.3. Hit generation and lead optimization

Bioactivity and ADMET property ML. QSAR (Quantitative Structure-Activity Relationships) is a
fundamental aspect of computer-aided drug design and has been increasingly incorporated into
artificial intelligence in drug discovery, including generative chemistry and multi-property
optimization (MPO). Developed from the work of Hansch and Fujita in the 1960s (77), QSAR was
the first systematic application of machine learning to design small molecules with desired
properties (78). QSAR can cover all aspects of "drug property," ranging from target-based
bioactivity to ADMET properties, such as solubility, permeability, and other physico-chemical
parameters. QSAR methods are algorithm-agnostic and use descriptors (features) derived from
molecular structures (objects) (79) to explain the relationship between changes in molecular
structure and the molecular property of interest. QSAR has applications in fields like synthesis
planning, materials science, nanotechnology, and clinical informatics (80). QSAR technologies
are an integral part of the technologies deployed to hunt for anti-COVID-19 therapies (81). QSAR
methodologies can be automatically deployed against thousands of target bioactivities (82).
Recent lessons shared by scientists at AstraZeneca (83), Bayer (84), Merck (85) and GSK (86)
highlight the complexities of ADMET property prediction (87).
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Traditionally, QSARs and other small-molecule property ML models use chemical structures as
input, often encoded as SMILES (Simplified Molecular Input Line Entry System) (88). A recent
development is the concept of Graph Convolutional Neural Networks (GCNNs) introduced in
2015 (89). GCNNs have been used to model drug combinations (90), drug-target interactions (91),
and multiple property predictions (92). Rigorous analyses suggest that GCNNs do not improve
predictive performance compared to “classical QSAR” fingerprints (92).

Generative chemistry. With the foundational role of QSAR in computer-aided drug design and
its wide range of applications, the field has continued to evolve and incorporate more advanced
techniques, such as generative chemistry (93). The development of ultra-large chemical libraries
(94) and generative chemistry methods, particularly those based on Generative Adversarial
Networks (GANs), have significantly expanded the possibilities for hit generation and drug
discovery. GANs (95), inspired by game theory and deep learning, have found applications in
chemistry, such as the first deep learning GAN used in anti-cancer compound design (96). This
application employed a 7-layer adversarial autoencoder architecture with growth inhibition
percentage as the discriminator. The ML step in this workflow used NCI-60 data
(https://bit.ly/nci60), Glso (growth inhibition of 50%), and compound log concentration (LCONC)
data for 6252 compounds profiled on the MCF-7 cell line, focusing the GAN on better Glsp at
lower LCONC. Using 32 probability vectors, 72 million compounds from PubChem (97) were

screened, with a maximum of 10 hits per vector. Over one-third of the selected compounds
demonstrated activity in cancer assays or were patented for their anti-cancer potential (96).
Building upon this method, a GAN was trained to generate JAK3-selective molecules using an
entangled conditional adversarial autoencoder (98). This led to the identification of a low-
micromolar JAK3 inhibitor, which was considerably less potent on JAK2, BRAF, and RAF1.
Additional generative chemistry platforms are described below.

Multi-property optimization. Mathematical modeling of multi-objective decision-making has
been prevalent since the 1960s (99). At that time, the process of evaluating alternatives based
on predefined objectives or criteria was represented as n-dimensional vectors, which were
subject to Pareto optimization, aiming to find non-dominant solutions. Hopfinger (100) framed
this discussion in terms of computer-aided drug design in 1985. Pareto optimization has emerged
as the preferred method for MPO, as it allows for the identification of trade-offs between
objectives, leading to the discovery of non-dominant solutions (101). This is particularly useful
when evaluating drug properties that are anti-correlated. For instance, increasing drug
permeability by one log unit can lead to a decrease in water solubility of up to two log units (102).
Therefore, finding non-maximal solutions for each drug property is often necessary when
optimizing drug properties.

The use of computers for MPO of drug starting points such as hits and leads, at industrial scale
began to gain traction two decades ago (103). The first automated drug discovery
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implementation was disclosed in 2012 (104), which later became the founding technology of
ExScientia, an Al-based drug design company. This particular MPO platform encodes target and
off-target bioactivities, ADMET properties, and other criteria. It uses a Laplacian-modified (105)
Bayesian classifier (106) trained for polypharmacology profiling and employs a vector
scalarization procedure (107) for Pareto-based adaptive optimization. TorchDrug is an open-
source Al4DD platform (108) built on PyTorch (109), which leverages the power of deep learning
to identify novel drugs. It supports property prediction, pretrained molecular representations
(110), generative chemistry, and biomedical knowledge graph reasoning (111). Another platform,
REINVENT (112), supports MPO by combining reinforcement learning for the generative
chemistry model with diversity filters (113) and a flexible scoring function (114). REINVENT relies
on PyTorch and RDKit (115) as a chemistry engine, uses predictive ML models implemented in
the scikit-learn library (116), and utilizes Tensorboard's implementation (117) in PyTorch for
detailed documentation of chemical space navigation processes.

HE
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Compound 1 (CID: 139030530) Compound 2 (CID: 156115626)
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Figure 2. Chemical structure of two epithelial discoidin domain-containing receptor inhibitors
(compounds 1 and 2), developed using the GENTRL (118) generative chemistry approach. Their chemical
similarity with ponatinib (bottom left) is discussed in the text. The structure and bioactivity of
MMV1803022, one of the community-driven anti-malarial Al competition compounds, is shown bottom
center. Pfal summarizes the in vitro growth inhibition of asexual blood-stage P. falciparum (3D7) parasite
maturation; PfATP4 indicates confirmed on-target biochemical (cytosolic [Na+] increase) inhibition.
Halicin is on the bottom right (see text for details). Bioactivities were extracted from (118) for Compounds
1 and 2, from DrugCentral (47) for ponatinib, and from (119) for the anti-malarial compound. CIDs are
PubChem compound identifiers.
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GENTRL (Generative Tensorial Reinforcement Learning) is a GAN method that was used to
generate DDR1 and DDR2 inhibitors (118). DDR (discoidin domain-containing receptor) kinases 1
and 2 are collagen receptors (120). DDR1 plays roles in tumorigenesis, metastasis (121), and
fibrosis (122), which makes it an attractive drug target. GENTRL was trained on the “clean leads”
subset of the ZINC database (123), enriched with known active and inactive kinase inhibitors from
ChEMBL (124). Additionally, it was trained on patented chemical structures, structural (X-ray)
data, and DDR1/DDR2-specific pharmacophores. The initial output from GENTRL consisted of
30,000 compounds, which were filtered and prioritized to eliminate undesirable scaffolds,
reactive groups, and compounds unlikely to be kinase inhibitors. This process resulted in six novel
compounds predicted to be DDR1 and DDR2 inhibitors. After synthesis and experimental testing
for inhibitory activity, two compounds, Compound 1 and Compound 2, were found to be potent
(nM range) inhibitors of DDR1 and DDR2, respectively (Fig 2). The entire process, from
nominating DDR1 to generating Compound 6, took only 35 days. Further experiments
demonstrated that Compound 1 is orally bioavailable in mice, with a half-life of 3.5 hours after a
15 mg/kg dose (118).

Community engagement. Therapeutic Data Commons (TDC, https://tdcommons.ai/) hosts

multiple ML-ready datasets to advance Al4DD technologies systematically (125). TDC features
leaderboards for 22 ADMET properties, 5 drug combination benchmarks, one docking, and one
drug-target-interaction dataset (29 in total), building on earlier benchmarks for molecular
machine learning (126). For example, the MolE deep learning foundational model (127)
demonstrates superior performance in 9 of the 22 ADMET property datasets. The QSAR
community widely uses OCHEM (ochem.eu), an online platform for ML model development and
storage (128). OCHEM provides a uniform interface for multi-task learning (129), a method that
promises improved prediction performance (130). Some target-based multi-property ML models
are  available on-line:  NCATS  Predictor features 1180  different  models
(https://predictor.ncats.io/) (131), while REDIAL-2020 (http://drugcentral.org/Redial) estimates
twelve properties to evaluate compounds active against COVID (132). For ADMET, one could
consider the ADME@NCATS (https://opendata.ncats.nih.gov/adme/) portal (133) or ADMETlab
2.0 (https://admetmesh.scbdd.com/), which includes not only ADMET properties, but also

parameters that may aid medicinal chemists (134). Multiple academic and industrial teams
participated in an open Al4DD anti-malarial drug competition (119) by targeting PfATPA4, the
essential P-type ATP-ase from Plasmodium falciparum. MMV1803022, a PfATP4 inhibitor, causes
cytosolic alkalinization (via [Na+] increase) and is active against P. falciparum (119). See Fig 2.

The output of generative chemistry necessitates human supervision. Following the generative
step, active filters are needed to remove potentially reactive and chemically unfeasible species
and compounds that fall outside the desired property space (135). Even Al-designed compounds
that have been successfully tested can face criticism due to their lack of novelty. For example,
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Compound 1 (Fig 2) has been criticized for its similarity to the approved kinase inhibitor,
ponatinib (136). An Al-designed antibiotic, "halicin" (Fig 2), disclosed in 2020 (137), has twelve
"active" reports in PubChem BioAssays (https://bit.ly/halicinAssays), including an "active"

antibiotic result against Mycobacterium tuberculosis from 2017. According to Chemical &
Engineering News, researchers “chose not to pursue [halicin] because of its similarity to a
compound that the US Food and Drug Administration was already evaluating” (138). These cases
highlight the need for improved Al-generated compound novelty in drug discovery. These
examples underscore the importance of enhancing the novelty of Al-generated compounds in
drug discovery.

3.4. Drug Safety: The road to clinical trials

Predictive toxicology. Small molecule MPO design (discussed earlier) includes toxicity prediction
of in vitro outputs related to organ toxicities such as cytotoxicity and mitochondrial toxicity, or
representative assays for predicting off-target toxicities, as well as genotoxicity (139). New
advancements include analyses of novel data types such as gene expression data and data from
cell imaging experiments, in combination with chemical structure information, to predict in vivo
toxicity-related effects (140). Using biological fingerprints, either alone or in combination with
structural fingerprints, can better relate compounds to in vivo phenotypes, sometimes with
superior predictivity (141). Including a biological matrix has the advantage of better identifying
the subtle differences in phenotype not fully captured by structural similarity alone (142) and can
be further facilitated by the inclusion of imputed values in the biological matrix. An example is
the application of a neural network applied to fill a sparse kinase binding matrix (143). An
important aspect of predictive toxicology is toxicity in context of exposure and understanding the
safety threshold. Bayesian ML approaches have proved useful for predicting clinical outcomes
from mechanistically relevant in vitro data combined with animal exposure (144). Furthermore,
Al-augmented Clinical Pharmacology approaches can impact dose recommendation, drug-drug
interaction prediction, and adverse drug reaction prediction (145) by utilizing digital data sources
such as electronic health records, biomarker data, and patient genomics data. KG-based MLs that
incorporate side effect information from package inserts, target information, and indication
information have shown promise in predicting adverse events (146).

Regulatory applications. Regulatory agencies are showing increasing interest in Al4DD and its
uses. The application of computational tools to evaluate the carcinogenic potential of drug-
related impurities has led to the inclusion of structure-activity predictions as part of regulatory
submissions (147). In 2018, the European Medicines Agency published a reflection paper
discussing the use of in silico tools for assessing risks related to non-mutagenic impurities when
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experimental data is unavailable (148). The use of Al in regulatory applications introduces a new
aspect, requiring models to be transparent enough for Health Authorities to assess their usability
and reliability. Cross-industry consortia have been working towards formalizing the use of in silico
tools, including Al/ML models, to ensure transparency in data set origins and quality, as well as
algorithms, in order to gain regulatory acceptance (149, 150).

Al is gaining traction in various applications, such as chemical risk assessment related to
occupational toxicology, transportation of chemicals, and medical devices, where endpoints like
skin sensitization, irritation, and rat acute oral toxicity are commonly included (151, 152). In the
area of Modeling and Simulation (M&S), which is now a standard tool used to demonstrate
effects on physiology or safety when expanding to other clinical populations or indications,
efforts are being made to define criteria for model evaluation (153). The National Center for
Toxicological Research (NCTR), in collaboration with the Center for Drug Evaluation and Research
(CDER), has launched the "SafetAl" initiative to develop Al models for toxicological endpoints
crucial for assessing drug safety, potentially playing a role in the IND review process (154). This
project focuses on developing deep learning-based models for hepatotoxicity, carcinogenicity,
nephrotoxicity, among others. It utilizes various in vitro data sources, such as high-throughput
transcriptomics, in addition to chemical representation to predict in vivo outcomes.

4. Brief overview of Al-driven drug discovery successes

The first Al-designed compound is DSP-1181, a potent and long-acting 5HT1a receptor agonist
(https://www.exscientia.ai/dsp-1181). DSP-1181 was designed using ExScientia’s MPO approach,

Centaur Chemist, in less than 12 months. Sumitomo Dainippon Pharma progressed DSP-1181 into
phase | clinical studies for obsessive-compulsive disorder in January 2020. The chemical structure
of DSP-1181 has not been disclosed (155). Chemical Abstracts Service analysts suggested DSP-
1181 is similar to haloperidol (https://bit.ly/3KePr9u). Since haloperidol is a weak 5HTia
antagonist (data not shown), we suggest it is similar to gepirone, a low-efficacy 5HT1a agonist.

Another Al-designed compound, DSP-0039, is a dual 5-HT1a agonist and 5-HT2a antagonist with
no dopamine D2 receptor activity (156). Sumitomo Dainippon Pharma progressed to phase |
clinicals for treatment of Alzheimer’s disease psychosis in May 2021. See Fig 3 for details.

Page | 15


https://www.exscientia.ai/dsp-1181
https://bit.ly/3KePr9u

C. Hasselgren & T.I. Oprea, Ann Rev Pharm Tox 2024

HiC gepirone (CID: 55191 CAS RN 2244686-21-1 (CID: 142429260)

5HT, 5 Ki=12.9nM 5HT, 4 ECqp < 10 1M, Emﬂax 96%
(low efficacy agonist) Dy ECSU 1 1 8nM, Emax 67%
D, Ki = 57.5 M (antagonist) NERG IC4q = 2500 M
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CAS RN 2410053-86-8
5HT, , ECqy = 17 N, Emax 96%

S5HTZA IC50 = 73 nM (antagonist)
D, 1C5, =601 nM (antagonist)
hERG ICgq = 112300 nM

Figure 3. Examples of compounds reported in ExScientia patents. Gepirone (top left) shares the
pharmacological profile of Example 1 (CAS RN 2244686-21-1; top right). Example 109 (CAS RN 2410053-
86-8; bottom) does not share chemical similarity with known drugs. Bioactivity data for patented
examples is from (155), (156) and DrugCentral for gepirone (47). CIDs are PubChem compound identifiers.

ExScientia has made significant Al-driven advancements in functional precision oncology. A
single-cell functional precision medicine (scFPM) platform successfully guided treatment
selection and enhanced patient outcomes in a prospective clinical study (157). Utilizing the scFPM
approach, 139 drugs were tested on samples from 143 patients with hematologic malignancies.
Out of the 56 patients treated based on scFPM results, 30 (54%) experienced over 1.3-fold
increased progression-free survival compared to their previous therapy. Additionally, 12 (40% of
responders) had exceptional responses lasting three times longer than expected for their
respective diseases (157). Compared to patients receiving physician-chosen therapy, those
treated with scFPM demonstrated a notable overall survival benefit.

Insilico Medicine's ISM01-055 (also known as ISM018-055) may be the first Al-designed
compound to enter phase Il clinical trials in June 2023 (https://bit.ly/46BpZ7m). Designed using
the PandaOmics (158) and Chemistry42 (159) platforms, ISM018-055, which may be covered by
this patent (160), targets NCK-interacting protein kinase, TNIK (http://bit.ly/insmhkexal) and is
indicated for the treatment of idiopathic pulmonary fibrosis.

Relay Therapeutics, an Al4DD company focused on molecular dynamics, disclosed RLY-1971 (Fig
4), an orally bioavailable allosteric PTPN11 (SHP2) inhibitor. RLY-1971 blocks wild-type PTPN11
(ICs0 <1nM) and the E76K activating mutant (ICso <250nM) and is in phase | clinical trials for the
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treatment of RTK/RAS driven solid tumors (161). RLY-1971 was licensed by Genentech in
December 2020 (https://bit.ly/3NW?zarS). RLY-4008, a highly selective, potent and irreversible
FGFR2 inhibitor, is effective in cholangiocarcinoma (162). See also Fig 4.

Migeprotafib (RLY-1971; CID: 139512018) Lirafugratinib (RLY-4008; CID: 155309155)
PTPN11 wild type IC4y < 10 N

PTPMN11 ETEK mutant ICgy < 250 nvl

Figure 4. Chemical structures of RLY-1971 (migoprotafib or GDC-1971) and RLY-4008 (lirafugratinib), two
compounds progressed into phase | clinical studies by Relay Therapeutics. While the exact bioactivity of
RLY-4008 has not been disclosed, it lacks potency against FGFR1 and FGFR4 (163), which in turn may
eliminate unwanted side-effects. CIDs are PubChem compound identifiers.

5. Challenges and limitations of Al in drug discovery

"Artificial intelligence in drug discovery" might give the impression that Al is successfully
employed in early drug discovery. While there is some truth to this statement, it's important to
note that no medicines approved by regulatory agencies can be attributed to Al in the same way
Al has achieved victories in chess, Go, Jeopardy! autonomous vehicles, or poetry generation. Drug
discovery is a complex, multifaceted process, as captured by the 4DM charts. Robot Scientist
Adam independently conducted genomic experiments (164), and Robot Scientist Eve performed
an HTS campaign to identify anti-malarial compounds (165). Although computer-aided processes
have been used for compound selection and optimization, no Al-driven Robot Scientist or digital
equivalent currently exists that can execute fully automated drug discovery. Automated Al-driven
drug discovery remains an aspirational goal (166). Most success stories to date have relied on
machine learning, cheminformatics, bioinformatics software, natural language processing, or
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other computational platforms that support human decision-making. In summary, drug discovery
has yet to benefit from a comprehensive Al system.

One of the weak aspects of Al4DD for small molecules is the training of ML models that encode
chemical features (often referred to as QSARs), such as those derived from chemical structures.
Bohacek et al. estimated (167) the number of 'drug-like' chemicals to be up to 108°, and virtual
screening libraries have already exceeded 30 billion compounds (94). The logistical and practical
challenges of virtually screening 30 billion compounds, considering an estimated 10-50
conformers per molecule, amounting to nearly 500 billion objects, are immense and beyond the
scope of this review. Instead, our focus is on the practical issues related to the applicability
domain (168) and external predictivity validation (169). Both validation and applicability are
challenges faced by target-based KG machine learning models, as mentioned earlier.

Machine learning models commonly used in Al4DD are often trained on tens of thousands of
compounds or less, which raises questions about their effectiveness in sampling the chemical
space of 30 billion compounds. Can we confidently assume that such comparatively small training
sets effectively represent the chemical space of 30 billion? Are such predictions trustworthy?
Both the applicability domain (a representational issue in ML feature space) and chemical
diversity (unseen scaffolds are less likely to produce reliable predictions even within the
applicability domain) raise concerns about the predictivity of ML models for the unexplored
"chemical universe." Ideally, Al4DD practitioners would want to systematically sample chemical
space using adequately trained ML models. This becomes imperative during lead optimization,
where progress depends on the accurate representation of relevant chemical scaffolds in the ML
space.

Target identification in drug discovery is also impacted by the so-called reproducibility crisis
(170). Bayer (171) and Amgen (172) have reported low reproducibility rates (33% and 11%,
respectively) of high-impact publications, and many biomedical publications are false (173). From
an Al perspective, filtering out false data requires a coordinated community effort. Lessons (174)
from elife's Reproducibility Project, which focused on cancer biology, highlight issues like
weaker-than-previously-published (175) effects and inaccurate protocol descriptions (176),
among others. The possibility of indexing fabricated publications (177) or those generated by
"research paper mills" (178) further increases the likelihood of false information in the field.
These challenges with experimental data compound the issues of ML model accuracy and the ML
science reproducibility crisis (76). For Al4DD to be effective, it needs to be anchored in truth.

Another subtle risk involves the education of scientists in using Al4DD models effectively.
Questions about when, how, and in what order to deploy ML models are crucial. The proper use
of ML models depends on the specific requirements of each unique drug discovery project. For
some projects, target selectivity and appropriate in-tissue delivery might be more important than

Page | 18



C. Hasselgren & T.I. Oprea, Ann Rev Pharm Tox 2024

absolute affinity or systemic toxicity. In contrast, other projects might focus on mitigating on-
target toxicity, low permeability, or scaffold similarity to competitor patents. Each issue demands
different computational solutions, ranging from filters and lead hopping to sequential ML model
deployment. Proper training in using Al4DD models is critical to ensure that scientists can
effectively navigate these complexities and make informed decisions based on the specific needs
of their drug discovery projects.

The human component of drug discovery is another crucial aspect. In many academic and
industrial settings, decision-making falls to medicinal chemists who typically rely on their
judgment to propose compounds for the design-make-test (DMT) cycle rather than depending
solely on Al. Compounds may be thoroughly evaluated by the project team, with members voting
on the order in which chemicals should be synthesized and tested. In Al-integrated companies,
Al may influence this process, but chemists are still likely to veto compounds that don't meet
specific criteria, even if computational chemists or toxicologists find no issues. It is reasonable to
assume that user expertise, bias, and time constraints play a significant role in early drug
discovery, often more so than Al. The Pfizer "rule of 5" (Ro5 or Lipinski rules) serves as an early
example (179) of attempts to integrate informatics and data science into the early stages of drug
discovery. The Ro5 criteria, assessing hydrogen bonding capacity, the calculated octanol/water
partitioning coefficient (logP), and molecular weight have been employed world-wide to narrow
down the chemical solution space. It is undeniable that Ro5 criteria have had a significant impact
on medicinal chemistry (180). However, the influence of these criteria is gradually diminishing
over time (181).

6. Conclusions and future outlook

Given the knowledge deficit caused by the constantly-increasing volume of information, Al
systems capable of independent reasoning are becoming a necessity. Al has making significant
advances in disease diagnosis and healthcare professions, such as radiology, pathology, and
clinical pharmacology. Although nosology remains a challenge for both humans and Al systems,
resources like the Monarch Disease Ontology demonstrate the potential for human and
computer collaboration. In target identification, KG-based machine learning can structure,
process, and evaluate large scale datasets, with many potential applications in biomedicine.
However, KG-based ML models face challenges like data leakage and the absence of ground
truth, which may contribute to increased variance in research. Integrating generative chemistry,
ML and MPO techniques like Pareto optimization are emerging as integral components of Al
methods for hit and lead discovery, with strong support from community-based platforms that
provide datasets and resources for Al4DD technologies. Significant advances are taking place in
predictive toxicology, and regulatory agencies are positioning themselves to benefit from Al
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technologies. We also discussed several Al-designed compounds that have entered phase |
clinical trials. These success stories rely on computational platforms to support human decision-
making, and Al has yet to deliver a comprehensive system for fully automated drug discovery.
Machine learning models used in Al4DD face challenges related to applicability domain, external
predictivity validation, and chemical diversity. Proper training in using Al4DD models is crucial to
ensure effective navigation of complexities and informed decision-making in drug discovery
projects, with human expertise playing a significant role.

The reproducibility crisis - both for experiments and ML models - suggests that the scientific
community is responsible for laying down the foundations of verity and carefully vetting what is
known. Modern science has no “we hold these truths to be self-evident” basis. Biology does not
appear to lend itself to an axiomatically built foundation. But managing Al4DD systems implies
knowledge and model update, and we collectively share the responsibility of sifting truthful
science from questionable results. The true strength of any Al4DD system lies in its ability to
process and comprehend sparse data more efficiently and effectively than humans. Computers
are better suited to process and interpret complex molecular and knowledge graph
representations compared to humans. However, this strength can only be revealed when “true
data” is provided. The adage, “garbage in, garbage out,” is a stark reminder of the need for
“ground truth” across all data types and relationships in drug discovery.

One of the potential dangers is the misguided use of Al4DD tools. The prevailing notion is that
feeding ML models with massive data can produce actionable results. This approach, destined to
fail, needs rethinking. A better scenario is to allow Al to steer the entire drug discovery process,
particularly in structure-based projects or when there is a wealth of bioactivity data. Human
intervention could occur only at the very late stages of the pipeline. By fully leveraging the
potential of Al, the drug discovery process can be significantly optimized and revolutionized.

7. Epilogue

ChatGPT, the conversational Al that has passed the US medical licensing board, has the potential
“to revolutionize research practices and publishing” (182). The GPT-4 technical report from
March 14, 2023, demonstrates how GPT-4 could be used to create new drugs, among other
applications (183). In one use-case scenario, Andrew White, a member of OpenAl's "red team,"
prompted GPT-4 with the name Dasatinib, a kinase inhibitor drug. GPT-4 was asked to modify the
drug and find novel, non-patented molecules with a similar mode of action, locate chemical
vendors selling the compound, and purchase it. If custom synthesis was needed, GPT-4 was to
email a contract research organization to order the compound. The prompt, instructions and
compound chosen by GPT-4 can be found on page 59 of the OpenAl manuscript.
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Notable observations from the experiment include: 1) GPT-4 generated a valid chemical structure
(SMILES (88)) output, indicating its ability to perceive and modify chemical structures correctly;
2) the molecule is available in the ZINC database (123), meaning it is synthetically feasible; 3) the
proposed molecule is desmethyl-imatinib, an N-dealkylated piperidine metabolite of imatinib,
another protein kinase inhibitor drug. GPT-4 successfully modified the molecule while retaining
its kinase inhibitor properties. Experimental validation is needed to confirm if the GPT-4-
generated molecule shares the same mode of action as Dasatinib. It is essential to remember
that GPT-4 has general expertise and is not specifically tailored for drug discovery. By providing
access to external chemistry tools, White et al. have designed ChemCrow, a GPT-4 based tool
that demonstrates how appropriate technologies can significantly enhance LLM effectiveness in
chemistry-related tasks (184). If more external resources are integrated with GPT-4 or its
successors, LLMs could become a valid approach.

In the Dreamworks animated movie “Shrek”, Donkey keeps asking: "Are we there yet?" and Shrek
and Fiona keep saying "No!". To those waiting for Al4DD: We're not there yet but we are on our
way!
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