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Abstract

In this work, we develop a machine learning (ML) strategy to map molecular structure to
condensed-phase charge transfer (CT) properties including CT rate constants, energy levels,
electronic couplings, energy gaps, reorganization energies, and reaction free energies, which
are called CT fingerprints. The CT fingerprints of selected landmark structures covering the
conformation space of an organic photovoltaic molecule dissolved in an explicit solvent are
computed and used to train ML models using kernel ridge regression. The ML models show
high predictive power with R? > 0.97, and both mean absolute error and root mean square error
within chemical accuracy. The CT landscape for millions of molecular dynamics sampled
structures is thus constructed, which allows for instant prediction of CT rate properties given
any conformation of the molecule. We demonstrate some immediate utilities of CT landscape
such as calculating the ensemble-averaged CT rate constant and interpreting the effects of
molecular structural features on the CT rate. The unprecedented CT landscape will be useful
for investigating real-time CT dynamics in nanoscale and mesoscale condensed-phase systems,

and the optimal fabrication design for homogeneous and heterogeneous optoelectronic devices.

1. Introduction

Organic semiconductor (OSC) attracts a great deal of attention owing to its immediate and
increasingly demanded applications in organic photovoltaics (OPV),'™ organic light emitting
diodes (OLED),!? molecular electronics,® biotechnology,” and quantum teleportation.® For
example, recently discovered OPV solar cells with non-fullerene acceptors have reached a new
record of the power conversion efficiency 19.6%.° For a given set of functional molecules such
as the donor (D) and acceptor (A) in OPV bulk heterojunction solar cells, the nanostructure or
morphology has been shown to significantly affect the device charge transport performance. %11
The mesoscopic morphology can be tailored through careful material synthesis and advanced

fabrication techniques.'> However, the rational design for attaining optimal device performance

is no trivial task, which is typically expensive, time-consuming, and often involves copious



experimental trials and errors. On the microscopic level, the morphology is a direct manifestation
of the molecular packing arrangement throughout the bulk of the material. Therefore, establishing
a quantitative structure-property relationship (QSPR) would provide insights that guide the
exploration of the high-dimensional molecular structural space more efficiently and is effective
in accelerating the discovery of high-performance OSC materials.>~1%-13

Unlike the gas-phase D/A molecules or molecular segments, the nanostructure of the D/A
interface in the condensed phase could have considerable static and dynamic disorders: the
static disorder arises from the time-independent inhomogeneous environments of different D/A
pairs, and the dynamic disorder arises from the time-dependent thermally driven conformational
fluctuations and is related to the electron-vibration interactions.'*!> Due to the richness in the
molecular conformations in bulk materials, multiscale modeling has been employed to incorporate
these disorders in the morphology in studying charge transfer (CT) properties of OSC materials, '
and we recently showed that different D/A geometries give rise to CT rate constants that can
differ by orders of magnitude.!” The classic Marcus theory is used widely for estimating the CT
rate constant in a variety of condensed-phase systems. !® Traditionally, molecular dynamics (MD)
simulations are used to sample molecular structures from a thermal equilibrated bulk material, and
then these MD-sampled geometries of D/A molecules will be used for ab initio quantum chemistry
calculations to obtain energy levels and electronic couplings.'*!> However, ab initio calculation is
only feasible for small systems (e.g. up to a few hundred of atoms) and could generate the energy
levels and electronic couplings between the excitonic state and CT state for the chosen D/A pair
only, and it cannot account for the disordered environment in an atomistic manner. Moreover,
the internal reorganization energy computed with the D/A pair does not include the contribution
from the environment like the solvent explicitly,'® whose fluctuations and reorganization are
believed to be the most relevant in condensed-phase charge transfer described by the classic
Marcus theory. 18 For instance, in the famous aqueous ferrous-ferric electron transfer, 20 there is
no internal reorganization energy for the two ions and the reorganization energy comes solely from

the surrounding solvent. So it is essential to consider the explicit surrounding molecules when



modeling realistic condensed-phase charge transfer.

Recently, we proposed a systematic way to account for the motion of the environment by
performing the all-atom MD simulations for the entire system with explicit environment after
ab initio calculation of MD-sampled structures.!”?! The CT rate constant was derived from the
linearized semiclassical Fermi’s golden rule (LSC FGR), whose Marcus level of approximation is

given by??
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where I is the electronic coupling between the donor (initial) and acceptor (final) electronic states,
7i is the reduced Planck’s constant, (U) and 012] are the ensemble average and corresponding
variance of the donor-acceptor energy gap U(R) = Vp(R) — V4(R), respectively. Here, Vp 4(R)
is the donor or acceptor-state potential energy surface (PES) and R is the nuclear configuration of
the entire system. In fact, the rate constant in Eq. 1 can be expressed using the Marcus parameters

as below
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where the reorganization energy E, = 07 /(2kgT) = —AE — (U), and AE is the donor-to-acceptor
reaction free energy which is negative for spontaneous reaction, kp is the Boltzmann constant, and
T is temperature. The activation energy is then E, = kgT (U)?/(207). It should be noted that
(U) < 0 corresponds to the Marcus normal regime (—AE < E,), whereas (U) > 0 corresponds to

the Marcus inverted regime (—AE > E,). 23

Even if we have implemented the automated calculation
of the CT rate constant using Eq. 1 in CTRAMER (Charge-Transfer RAtes from Molecular
dynamics, Electronic structure, and Rate theory) package,’* the computational cost primarily due
to the condensed-phase MD simulation is still very high for more than a few D/A geometries.

Machine learning (ML) have recently emerges as a powerful technique for obtaining highly

accurate prediction about physical properties with significantly reduced computational cost. >



In the OPV field alone, many fruitful works have been reported for the prediction of molecular

5,16,28-31 32,33 34-37

properties such as electronic coupling, reorganization energy, energy gap, as
well as device-level properties such as power conversion efficiency, open-circuit voltage, short-
circuit current density, and fill factor.>3%3° However, an ML model for directly predicting CT rate
in the condensed phase based on bottom-up atomistic description is still missing.

In this work, we aim to construct ML models that maps molecular structure to CT rate
properties for condensed-phase systems. To facilitate the discussion, the CT properties for a given
conformation of the functional molecule including CT rate constant, electronic coupling, average
and variance of the donor-acceptor energy gap, reorganization energy, and reaction free energy are

defined as the CT fingerprint (CTFP). So the ML model for a certain CT pathway D — A is the

mapping from OPV molecular conformation, r, to CTFP:
Conformation r —& {kp=a, I, (U), Glzj, E., AE}. 3)

It should be noted that {(U),03} and {E,,AE} are equivalent, which means knowing either set
would be complete, but we keep {E,,AE} here for straightforward comparison with traditional
Marcus parameters. We define a CT landscape as a rendering of the CT rate constant kp_,4 or
other CT properties as a function of molecular conformation, following the similar concept as the
energy landscape. Once the ML model is constructed, one can look up the CT properties given a
molecular configuration instantly.

We demonstrate our proposed strategy by constructing the CT landscape of a prototypical
carotenoid-porphyrin-fullerene molecular triad (CPCg) of the donor-bridge-acceptor type, and
it is dissolved in explicit tetrahydrofuran (THF) solvent. The triad has many direct applications
such as in artificial light-harvesting,** OPV,*!*3 molecular wire,** and quantum teleportation.®
We recently found that different conformations of the triad exhibit significantly different CT rate

constants as well as nonequilibrium phenomena in the photoinduced CT process giving rise to time-

dependent instantaneous Marcus theory (IMT) CT rate coefficients.*>*¢ In the photoinduced CT



processes, two typical pathways are present: 17.19

after the triad is photoexcited to the P-localized
excitonic wx* state, CP*Cg, there can be a nonradiative electronic transition to the excited P-to-
Ceo CT state, CPTCg, which is denoted as CT1: CPCgj by, CP*Cgo(nm*) — CP*Cg,(CT1), or
transition from the excitonic w7* state to the excited C-to-Cgy charge separated state, C+PCgO,
which is denoted as CT2: CPCg hv, CP*Cgp(nm*) — CTPC(CT2). In what follows, we
consider the CT rate constants and other CT properties for these two pathways: 7z* — CT1 and

arn* — CT2.

2. Methodology

To construct the CT landscape, we propose a five steps strategy as illustrated in Fig. 1: (1)
MD simulations for sampling molecular structures, (2) Extraction of a small set of landmark
structures that are representative of the configuration r-space, (3) CT rate constant calculation using
CTRAMER including the electronic structure and MD simulation to obtain the CTFP database
{r; kp_a, T, (U), 612], E,, AE} for the landmark structures, (4) ML feature engineering to get
molecular structural descriptors, X, from the configuration, r, and (5) ML model training based on
the descriptor features, X, and the CTFP reference labels, y = {kp_4, I, (U), 65, E,, AE}, and

then use the ML model to construct the CT landscape for millions of structures.

2.1. MD simulations for sampling molecular structures

To obtain a large number of triad conformations, we first performed equilibrium MD simulations
in the canonical ensemble (constant NVT). The simulated system is a 100 A x 100 A x 100 A
periodic cubic box containing a single ground-state molecular triad CPCgg (207 atoms) and 6741
THF solvent molecules, amounting to a condensed phase system with 87840 atoms, where all
molecules are flexible and allowed to move freely throughout the whole simulation. We performed
12 parallel simulations with a duration of 100 ns each using MD time step 0 = 2 fs. A total

of 1.2 us long MD trajectories were sampled every 1 ps, leading to a collection of 1,200,000
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Figure 1: Schematic illustration of the machine learning model construction for charge transfer
(CT) landscape of organic photovoltaic molecule in condensed phase. (1) MD simulations for
sampling of molecular structures , (2) Extraction of landmark structures, (3) CT rate constant calcu-
lation using CTRAMER to obtain CT fingerprint (CTFP) database {r, kp_.4, I, (U), 65, E,, AE},
(4) ML feature engineering to get descriptors, and (5) Machine learning model training and
construct CT landscape.



triad configurations that serve as the conformation database. To ensure that the MD conformation
sampling converges, we had performed a convergence analysis for the MD conformation sampling
based on the free energy distribution and is detailed in the Supporting Information. The MD

047

simulation was performed using AMBER 2020%" with GPU acceleration.

2.2. Extraction of landmark structures

Finding a small number of representative structures—Ilandmark structures—to represent the
conformation space visited throughout the MD simulation is crucial to reduce the computational
cost of the subsequent conformation-specific ab initio and MD calculations. Proper selection
of landmark structures is important for ML model building since ML works the best when
interpolating between the known data points, so the diversity of the selected landmark structures
should properly represent that of the original MD-sampled conformation r-space. To this end, we
select a total of 16 order parameters (OPs), the first 10 of which are geometric descriptors based
on chemical knowledge about the triad molecule, and the rest 6 OPs are obtained by performing
dimension reduction using 3 different methods and then take the top two leading components.
As shown in Fig. 2(a), the first 10 geometric descriptors D1-D10 are various global distances,
angles, dihedrals of the constituent fragments of the triad, along with the radius of gyration, solvent
accessible surface area, and root mean square deviation (RMSD) from two reference structures of
energetic or entropic significance (Conf. I and II in Fig. 2(a)). These descriptors are translational
and rotational invariant.

The rest of 6 OPs are from three dimension reduction methods’ top two leading components:
principal component analysis (PCA)*® on the raw Cartesian coordinates leading to PC1_XYZ and
PC2_XYZ descriptors, PCA on D1-D10 leading to PC1 and PC2, as well as the t-distributed
stochastic neighbor embedding (t-SNE)*® on D1-D10 leading to Z1 and Z2. These 16 OPs are
calculated for all structures in the conformation database. Our landmark structure extraction
strategy is stochastic sampling around grid points obtained from the equipartition of sequenced

order parameter feature spaces.
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Figure 2: (a) Sketch of geometric descriptors for triad. (b) Pearson correlation between geometric
descriptor pairs. (c) Sorted geometric, reduced, and aggregated descriptors for 1.2 million
conformations with grid lines and node points used for landmark structure sampling. (d) 528
grid-sampled landmark structures rendered on the first (Z1) and second (Z2) axis of the t-SNE
representation, and typical conformations and the reference conformation I and II are highlighted.
All the descriptors are in unit of A) except for D3, D4, and D7 that are in unit of (°).



2.3. CT rate constant calculation

The CT rate constant calculation implemented in this work was performed using CTRAMER
package:?* (1) For each landmark structure, a gas-phase time-dependent density functional
theory (TD-DFT) calculation with the range separated hybrid Baer-Neuhauser-Livshits (BNL)>°
is performed with Q-Chem 4.4°! and the electronic coupling I is obtained with the fragment
charge difference (FCD) scheme.”? (2) Quantitatively analyze the charge transfer character of the
25 lowest excited states and assign the ground, 77", CT1, and CT2 states based on pre-designed
automated heuristics. The algorithm developed for the automated analysis is described in algorithm
1 given in the Supporting Information. (3) Perform all-atom MD simulation for the triad on the
wr* state dissolved in 2700 THF solvent molecules, where the partial charges of the triad atoms
for different electronic states are obtained from the TD-DFT calculation and all other interaction
parameters are the same across different electronic states. For each landmark structure, a total of
100,000 MD snapshots are harvested every 5 fs. The detailed MD procedures and parameters, as
well as the trajectory convergence analysis, were further elaborated in the Supporting Information.
(4) From the MD trajectories, the average and variance of the donor-acceptor energy gap U, i.e.,
{(U), 0} }, are obtained, which lead to the Marcus-level CT rate constant via Eq. 1. Thus, we
obtain the CTFP {kp_,, I, (U), 67, E,, AE} for all landmark structures and the corresponding
CT landscape that maps a set of geometric descriptors to CT properties such as kp_, 4.

It is noted that two kinds of MD simulation are employed: in the first step MD simulation was
used to sample different triad conformations, and in the current CT rate constant calculation step,
following TD-DFT calculation, the MD simulation of a specific landmark structure was used to

obtain the energy gap statistics, i.e., (U) and 6(2] that depend on the triad conformation.

2.4. Feature engineering

To prepare the input features for ML model, we transform the atomic positions of a triad
conformation into a feature vector X, which has desirable translational, orientational, and

permutation invariances. In this work, we consider three commonly used feature representations
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for constructing ML-model applied on molecular system, namely, smooth overlap of atomic
orbitals (SOAP),>? atom centered symmetry function (ACSF),>* and coulomb matrix (CM).>?
The conversion from a raw coordinate file to the desired feature representation was performed
using the DScribe package. ® We have tested all the above three feature representations and found
only the CM could give promising predictive power when screened using various ML algorithms
we considered.

The diagonal CM elements are defined as Cj; = 0.5Zi2‘4 and the off-diagonal elements are C;; =
ZZ;/|Iri—rj| (i # j), where Z; and r; are the charge and position of the i-th atom. Note that we
leave the CM as is, i.e., no further normalization or sorting is performed, so there is no permutation
invariance. This is justified and performs well since we work within the conformation space of a
single type of molecule with the same number and order of atoms. We also tested that in our
case sorting the CM matrix elements will diminish the model’s predictive power since the order
of atoms is useful structural information for learning, especially with a small dataset. Actually,
if working within a chemical space where different molecules are explored, sorting is necessary
to preserve the permutation invariance and will be beneficial to improve model performance. In
principle, if provided with big and diverse enough dataset, sorting the CM elements should provide

sufficient information for training ML models in conformation space.

2.5. Machine learning for CT landscape

We begin with screening possible combinations of feature representation and ML algorithm
for constructing the ML model for the CT landscape. Here, we considered ML algorithms
such as kernel ridge regression (KRR), random forest, lasso regression, and ElasticNet. The
implementation of the above ML algorithm were performed using the scikit-learn package.”’ After
preliminary screening, we decided to focus on the use of KRR algorithm and chose four kernel
functions commonly used throughout the literature, viz. the linear, polynomial, Gaussian (or the
radial basis function), and Laplacian.>>>® For validation of the developed models, we use the 5-

Fold cross-validation scheme, where only 80% of training data are used in each training iteration
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and the other 20 % is used for performance evaluation. This procedure is then repeated five times
by randomly shuffling the training and test data sets in each iteration. In each training iteration,
a grid search for finding the best model hyperparameters was performed. Details related to the
hyperparameters grid search is given in the Supplementary Information.

To evaluate the model performance, we employ three scoring metrics: the mean absolute error

(MAE = %Z;’ |yML — yi|), the root mean squared error <RMSE = \/ % Yy (y%VIL — yi)z) and the
coefficient of determination <R2 =1-yr (M- y,-)2 /X (yME— (y>)2> , where yML and y; are
the ML predicted value and the reference value of the i-th structure and n is the total number of
instance in the CTFP database. More details for the KRR implementation, the explicit functional
form of the kernel function, and the model screening results were supplied in the Supporting

Information.

2.6. Computational overhead

We shall briefly describe the computational overhead demanded in each step of the proposed
strategy using Intel Xeon Gold 6132 @ 2.60 GHz (28 cores) CPU and Nvidia GeForce RTX
2080 Ti GPU. The first is MD simulation for conformation sampling that costs about 1200 GPU
hours in total. The second is the conformation data processing and landmark structures extraction,
which costs less than a single CPU core hour and is negligible. The third is the CTRAMER
calculation, which includes the TD-DFT calculation that costs about 96 CPU core hours, and the
subsequent MD simulation with explicit solvent that costs 1 GPU hour and 100 CPU core hours
for each conformation. In total, we have performed CTRAMER calculations for more than 500
conformations that yield an overall cost of about 500 GPU hours and 97000 CPU core hours. The
fourth is the feature engineering for all the 1.2 million conformations, which costs less than 2
CPU core hours for each feature representation (SOAP, ACSF, and CM), and is negligible. The
fifth is the ML model screening and training, which costs less than 100 CPU core hours for all
combinations of feature representations and ML algorithms considered in this work. The last is

using the ML model to construct CT Landscape, which only takes a few minutes in a single-core

12



CPU.

All in all, the computational overhead for the implementation of the 5 steps of constructing
CTFP database is about 1700 GPU hours and 97000 CPU core hours. We note that all simulations
were performed in a massively parallel high-performance computing (HPC) platform and thus
can be implemented in time efficient manner. Importantly, we have also employed a convergence
analysis that allows us to make decision that reduced the bottleneck CTRAMER calculation cost
by a factor of 100 with minimum trade-off. Details on the convergence analysis is provided in the

Supplementary Information.

3. Results and Discussion

3.1. Extraction of landmark structures

In Fig. 2(b), we present the Pearson correlation for D1-D10 OPs (the full correlations between
all 16 OPs are given in Supporting Information). We first check the Pearson correlation between
all the OPs to ensure they reflect enough diversity for representing the conformation space. It
is apparent that most of these OPs are largely uncorrelated and diverse with a notable exception
between D10 and {D1, D2, D3}, which shows either highly correlated or anticorrelated, but we
still keep D10 for direct chemical insights.

Next, we sort all the structures based on different OPs in ascending order and obtain 16
sorted OP data spaces, where the grid sampling could be performed as shown in Fig. 2(c). In
our implementation, the grid sampling has three main parameters that can be tuned: we use grid
spacing of N/11 with N being the total number of structures, the cutoff of stochastic sampling
around grid nodes as +100 data points, and randomly sample 3 points near each node. Finally,
a total of 528 landmark structures were obtained with the stochastic grid sampling approach and
their distribution represented on the t-SNE components Z1 and Z2 is shown in Fig. 2(d) with
some representative conformations. Projection of all the 528 landmarks structures on each of the

individual OP is given in the Supporting Information.
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3.2. CTRAMER calculation to obtain CTFP database

With the landmark structures that faithfully represent the triad conformation space, we calculate
their CTFP using development version of the CTRAMER package, which nowadays can auto-
matically analyze CT-state characteristics based on the one electron density matrix quantitative
analysis. >0

Table 1 shows the CTFP for three example triad conformations, Conf #0 (fold), Conf #32
(linear), and Conf #364 (bent), in addition the natural transition orbital (NTO) diagrams exhibit
the localization of hole and electron, which is expected since £z* state has a localized excitation
on porphyrin, CT1 state has a CT from porphyrin to Cgg, and CT2 state has a CT from carotenoid to
Ceo. The result of CTRAMER calculation is consistent with the previously reported experimental

data*'*3 and numerical calculations, '7-1946

which show the excitation energies for the CT1 states
are within the range of 1.6 — 2.6 eV and for CT2 states to be between 2.1 — 2.7 V.52 Moreover,
the CT rate constant k for 7z* — CT1 transition varies from 8.1 x 10? s~! in the fold Conf #0 to
1.2 x 10" s~ ! in the bent Conf #364, as well as for 7x* — CT2 transition k varies from 8.2 x
10° s~ in the linear Conf #32 to 8.0 x 103 s~! in the bent Conf #364. These results clearly
show that CT rate constant differs by 5 orders of magnitude in different conformations, which can
be traced back to the fact that spatial arrangements of molecular segments affects the electronic
structures (I', (U)) and the fluctuations of the surrounding solvents ((U), 0'5).

It turns out that 495 out of 528 landmark structures have well-defined n#7*, CT1, CT2 excited
states. The criterion for defining excitonic and CT states are detailed in the Supporting Information.
Figure 3 presents the probability distribution and scatter matrix for the key CT properties of the
495 landmark structures, including logarithm with base 10 of CT rate constant log(k/s~!), T, (U),
and o}. Several trends can be observed. At first glance, the slope of (U) versus log(k/s™!) is
negative for the CT1 case and positive for the CT2 case, which seems to indicate anticorrelation
and correlation between the two quantities. However, this is a statistical pitfall for misinterpreting

without looking at the physics, since the exponential term exp [—(U )2/ (207 )] in Eq. 1 dictates that

when (U) is closer to zero the CT rate is larger. Similarly, larger coupling strength I leads to larger

14



Table 1: Charge transfer properties for three triad conformations. The upper panel shows
the natural transition orbital (NTO) diagrams of the localization of hole, h* (red-blue) and

electron, e~ (green-orange).

The bottom table shows the excitation energy for state c,

Eq (o0 = nw*, CT1, CT2) in (eV), CT fingerprints including CT rate constant, k in (s~ '),
electronic coupling I' in (eV), reaction free energy AF in (eV), average donor-acceptor energy
gap (U) in (eV), and its variance Glzj in (eV?) for both 771* — CT1 and n* — CT2 transitions.

8 ht

Excitation (a) Conf #0 (b) Conf #32 (c) Conf #364
Enn 2.58 1.74 2.67
Ecti 1.87 2.04 1.49
Ecta 2.01 2.65 2.53
Transition | nn* — CT1 7#nn* —-CT2 #nn*—-CTl =#an*—CT2 nn*— CTl rn* — CT2
k(s7h 8.12x10°  441x10° 556x10°  8.16x10°  1.21x10™ 8.03 x 10°
CeV) | —268x107° 201x107° 547x1072 —-720x107> 6.58x1072 —4.64x10°*
(U) (eV) 0.559 0.2064 —0.124 —0.835 0.000150 —0.440
of (eV?) 0.0594 0.0726 0.0177 0.0785 0.0186 0.0723
E, (eV) 1.15 1.40 0.341 1.52 0.360 1.40
AE (eV) ~1.71 —-1.61 —0.217 —0.681 —0.360 —0.958
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Figure 3: Scatter matrix and probability distribution of the CT properties for 495 landmark
structures undergoing (a) tn* — CT1 and (b) nn* — CT2 transitions. The data shown are
logarithmic base 10 of the CT rate constant, log(k/s~!), electronic coupling I" in (eV), average
donor-acceptor energy gap (U) in (eV), and its variance 6{2} in (eV?), the data are color coded
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CT rate is seen. The coupling in z7* — CT?2 transition is typically small and narrowly distributed,
which is the main reason for a much smaller CT rate compared with the 7zz* — CT1 transition. The
variance Glzj or the equivalent reorganization energy does not have a monotonous correlation with
CT rate, since it enters both competing terms of the prefactor term and the exponential term in Eq.
1. It is surprising that the span of the CT rate constants can be as large as 12—15 orders of magnitude
in these transitions. Therefore, it is absolutely necessary to have conformation-dependent CT rate

ML model in order to understand and rationalize their contributions to the macroscopic CT rate.

3.3. Machine Learning for CT landscape

Now, we build ML models to predict the CTFP using the CM features as input. The selected
495 landmark structures’ CTFP database was used for training and validation with regularization
to avoid overfitting. The challenge here is to predict many CT properties while constrained to
work with rather small dataset. Kernel ridge regression (KRR) has been shown to have versatile
performance for constructing models using limited amount of training data, though typically still
on the order of ~ 10* instances.®*~% Here, we made the attempts to implement KRR with only
~ 10? instances. For the KRR algorithm, we have tested different kernel functions such as linear,

polynomial, Gaussian (radial basis function), and Laplacian,55’58

and found that only the linear
and polynomial kernel works well for all CT properties. In this work, we choose to use the third
order polynomial kernel function. The validation of the model were performed via the 5-fold
cross validation. For each transition, a total of 6 best ML models are constructed for the 6 CTFP
properties {kp_4, I, (U), Glzj, E., AE}.

In Fig. 4, we present the cross-validation results from direct ML modeling for log(k/s~!), T,
(U), and o7, as well as the calculated rate constant using the ML predicted {T', (U), o} using
Eq. 1. It is observed that R?> > 0.97 is achieved for all direct ML learned properties (Fig. 4(a-h))
and both MAE and RMSE errors are close within the chemical accuracy of ~ 1kgT (or ~ 0.03

eV), where kp is the Boltzmann constant and the temperature 7 = 300 K. The developed direct

ML models thus enables us to directly perform a QSPR mapping and reproduce the CT landscape
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Figure 4: Performance of kernel ridge regression with 5-fold cross validation for transitions 77w —
CT1 (left panels) and 7w — CT2 (right panels). (a,b) directly predicted logarithm of CT rate
constant, log(k/s~1) (blue), (c,d) electronic coupling I" in (eV) (black), (e,f) average energy gap
(U) in (eV) (dark cyan), and (g,h) variance of energy gap o7 in (eV?) (red), and (i,j) log(k/s™1)
calculated via Eq. 1 (orange) using the predicted parameters, as compared with the CT fingerprint
reference values.



of the CTFP database (Fig. 5(a,b)). However, the calculated log(k/ sfl) using Eq. 1 (Fig. 4(i,)))
seems to have noticeably worse performance compared with the directly ML learned log(k/s~!)
(Fig. 4(a,b)). The R? score of the £7* — CT1 transition decreases to 0.9, and for the 77* — CT2
transition R? score is disastrous —0.44. The cause of the failure for the calculated log(k/s~!) could
be ascribed to the fact that I for this transition are narrowly distributed close to zero and hence the
propagated errors from the (U) and 6(2/ become rather significant. In addition, the failure is also a
result of insensitivity of the calculated k(s~!) obtained in the linear scale when used to predict for
structure with CT rate many order of magnitude smaller, the error due to this insensitivity become
blatantly exposed when the prediction result was projected to the logarithmic space to obtain the
calculated log(k/s~!). This provide useful insight that means if one directly learn the CT rate
constant k in the linear scale, only the k with the large order of magnitude will be learned, which
will give inaccurate predictions in the case of low k values. Therefore, it is important to train ML
model to directly predict the logarithm of the rate constant log(k/s~!) so as to have high predictive
power.

The ML models we obtained using the CM representation with the KRR model is non-trivial.
As such, given a training set of the same small size, other combinations of feature representations
and models we tested in the model screening process cannot achieve the same level of predictive
power for all CTFP properties considered. Moreover, although the combination of CM and KRR
has been previously reported for constructing ML model for predicting electronic couplings or

energies for gas-phase small molecules with about 10* instances,>>?>>

it is impractical to obtain
such a large dataset for the current condensed-phase system that involves hundreds of atoms in the
quantum chemistry calculation and tens of thousands of atoms in the MD simulations.

Now, we are ready to construct the CT landscape for the entire conformation space using
the ML model for logarithm of CT rate constant log(k/s~!). This allows us to better explore
the mapping between the conformation space and CT properties space. Figure 5 depicts the CT

landscapes rendered on the geometric descriptors D1 and D9 for both #x* — CT1 and nn* —

CT2 transitions. The ML predicted log(k/s~!) in Fig. 5(b) reproduces the reference log(k/s~ 1)
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Figure 5: CT landscapes rendered on D1 and D9 feature space with log(k/ s_l) shown on z-axis
for (a) the landmark structures in CTFP database, (b) the landmark structures reconstructed with
the ML model, (c) the entire 1.2 million conformations predicted by the ML model.
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from CTRAMER calculation in Fig. 5(a). Our final result is the CT landscape for the 1.2 million
conformations as shown in Fig. 5(c), which for the first time establishes a QSPR relationship
between molecular structure and the CT rate constant in realistic condensed-phase system. It is
noted that the CT landscape is built on 207 x 207-dimensional CM feature space, and but plotted
in a reduced two-dimensional geometric descriptor space. In general, the CT landscape is based
on the full-dimensional conformation space, i.e. k(X(r)) = k(r), similar to the energy landscape
V(r), where the energy is replaced by the rate constant in terms of log(k/s~'), or other CTFP
properties like I', (U), Glzj, etc.

In fact, the CT landscape is informative and can provide the molecular insights of the QSPR in
the CT properties of the triad. For example, we show some immediate utilities of the CT landscape
based on the CTFP database as follows. In Fig. 6, we present the CT rate constant log(k/s~!)
distribution atop of the 2-dimensional free energy landscape obtained from the conformation
database of 1.2 million structures rendered on the PC1_XYZ and PC2_XYZ feature space. We first
calculate and extract the Helmholtz free energy, F; = —kgT In[Prob.(D;)], for the i-th landmark
structure, where Prob.(D;) is the probability of finding the structure that is described by the OP
pair of the i-th structure D;, which in this case is {PC1_XYZ, PC2_XYZ}. We then calculate the
Boltzmann weight, W;, as W; = e BFEi / Y e‘ﬁFi, where 7 is the number of sampled structures and
B = 1/kgT is the inverse temperature with 7 = 300K. The ensemble-averaged CT rate constant is

thus given by

n
(kpa) = Z Wi kp—a.i, “4)
i—1

i=
where kp_.4; is the CT rate constant for the i-th landmark structure. The ensemble-averaged
CT rate constant for the transition 77* — CT1 obtained via the CTFP database of the landmark
structures is (0.824:0.23) x 10! s~1, and the ensemble average obtained from randomly sampling
770 structures from the ML-based CT landscape of 1.2 million structures is (5.941.0) x 10! s~ 1,

Experimental measurements are available for two similar triad molecules dissolved in 2-
Methyl-THF at 292 K: the first one corresponds to replacing the porphyrin segment with

octaalkylporphyrin,*> and the second has a longer alkyl chain compared to the first one.*!
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Figure 6: Distribution of the CT rate constant log(k/s~!) for 495 landmark structures undergoing
(a) tw* — CT1 and (b) mn* — CT2 transitions rendered atop of the two-dimensional free energy
landscape in terms of PC1_XYZ and PC2_XYZ order parameters. The free energy landscape were

obtained from the 1.2 million MD sampled configurations.
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The experimental values for these two similar triad molecules are 1 X 10 and 3.3 x 10'1,
respectively.*1*? Thus, the theoretical ensemble averages based on first principles agree with the
experimental measurements of similar triad molecules on the order of magnitude. We also note that
having the Boltzmann weighting is essential to reflect the physical distribution of conformations,

whose ensemble average is measured experimentally.
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Figure 7: Pearson correlation between CTFP properties undergoing transitions [1]: zx* — CT1
and [2]: 7" — CT2 and the geometric descriptors, D1-D10. All the descriptors are in unit of (4)
with exception of D3, D4, and D7 that are in unit of (°).

Another application of the CT landscape is to provide interpretability for understanding the
effects of molecular structures on the CT rate. Here, we show a correlation analysis between the
CTFP properties (log(k/s~!), T, (U), and 67) and the geometric descriptors (D1-D10) for the
CTFP database in Fig. 7. We highlight our observation into the following three points. First, all
the geometric descriptors are less correlated with the CT properties of the transition 77* — CT1
than those of the transition t* — CT2. This is expected, since for the same set of structures, the
CTFP properties of the 7z* — CT1 transition is more diverse than those in the 7z* — CT2 case
(cf. Fig. 3). Second, the descriptors D1-D4 and D8-D10 have strong correlation or anticorrelation
with CT properties emphasizing the importance of the relative distance and orientation between the
carotenoid and the fullerene. Third, the descriptors D5—D7 that exclusively describe the local shape
of the carotenoid was found to be almost uncorrelated to any of the CTFP properties, indicating

that the CTFP properties are less sensitive to the the carotenoid local structure. We note that the
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quantitative insights obtained via the correlation studies can also be used to serve as an optimization
metrics to perform a data-driven search for highly predictive and physically meaningful geometric
descriptors.

To better visualize the CT landscape from all possible combinations of geometric descriptors,
we implemented an interactive web interface called the CT landscape explorer, and the code
is available from https://github.com/xiangsunlab/ct_landscape. The CT landscape
explorer is capable of showing the high-dimensional conformation space in terms of user-selected
geometric descriptors in 3 dimensions (like in Fig. 5) and instant displaying the molecular
conformation and its CT properties for a chosen data point just a click away (see snapshot in
Fig. S9 in the Supporting Information). The entire CTFP database has been integrated into the web
interface.

Finally, we envisage that the developed ML modeling strategy is extremely useful for
estimating the effects of the static and dynamics disorders to the CT rate in homogeneous or
heterogeneous environments, and could also give a time-dependent IMT CT rate coefficient as the
molecular structure evolves in time. We will report these immediate applications in our subsequent
works. Moreover, the ML-based QSPR models connecting CT properties with the global and
local geometric descriptors could be used to reverse search and design the nanostructure or
device morphology with desired properties, to achieve high-throughput virtual screening for OPV
materials. Optimized data-driven correlation analysis we presented can also be further develop
for extracting interpretable molecular insights. Insights gained from both forward and reverse CT

landscape exploration could then be use to guide further experimentation and validation.

4. Conclusion

In conclusion, we have developed ML models based on kernel ridge regression that establish the
structure—CT rate properties mapping relations for a prototypical OPV molecule in the condensed

phase for the first time. It is important to have a good ML algorithm, but the quality and diversity of
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the training dataset is the most crucial factor in the model prediction accuracy. We thereby select a
small set of landmark structures that are representative of the conformation space using stochastic
grid sampling according to their sorted geometrical descriptors. ML models are trained and cross-
validated with the landmark structures and their CTFP database computed via ab initio calculation
and MD simulations with explicit solvent, which includes CT rate constant, electronic coupling,
average donor-acceptor energy gap, and its variance, along with the traditional reorganization
energy and reaction free energy. In contrast to the previous ML approaches where only the gas-
phase CT parameters like electronic coupling and reorganization energy are trained, in this work,
we demonstrated that the condensed-phase CT rate constant should be directly trained utilizing the
log(k/s~!) as the target. The developed ML models can accurately predict the CTFP with R? score
larger than 0.97, and MAE and RMSE within chemical accuracy (~ 1 kgT'). The CT landscape for
the entire conformation space containing 1.2 million MD-sampled structures is constructed with
the ML models, allowing extremely efficient exploration of the high-dimensional conformation
space by looking up the CT properties for a specific structure instantly. The ML-based CT
landscape opens the door to the bottom-up study of charge transport properties on nanoscale or
even mesoscale bulk homogenous or heterogeneous OSC materials, where static and dynamic
structural disorders and the time-dependent CT phenomena can be addressed. Furthermore, the
reverse search for the nanostructure or morphology enables the optimization of fabrication design

for optoelectronic devices.

Supporting Information

Convergence analysis of MD conformation sampling; Pearson correlation heat map for all
order parameters; landmark structure distribution on order parameter feature spaces; CTRAMER
calculation details; algorithm for the automatic CT state analysis; details on ML model building;

snapshot of the CT landscape explorer; coordinates for the triad Conf. 364.
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