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Abstract

Edwardsiella ictaluri is a Gram-negative facultative intracellular pathogen causing enteric septicemia of channel catfish (ESC).
The disease causes considerable economic losses in the commercial catfish industry in the United States. Although
antibiotics are used as feed additive, vaccination is a better alternative for prevention of the disease. Here we report the
development and characterization of novel live attenuated E. ictaluri mutants. To accomplish this, several tricarboxylic acid
cycle (sdhC, mdh, and frdA) and one-carbon metabolism genes (gcvP and glyA) were deleted in wild type E. ictaluri strain 93-
146 by allelic exchange. Following bioluminescence tagging of the E. ictaluri AsdhC, Amdh, AfrdA, AgcvP, and AglyA
mutants, their dissemination, attenuation, and vaccine efficacy were determined in catfish fingerlings by in vivo imaging
technology. Immunogenicity of each mutant was also determined in catfish fingerlings. Results indicated that all of the E.
ictaluri mutants were attenuated significantly in catfish compared to the parent strain as evidenced by 2,265-fold average
reduction in bioluminescence signal from all the mutants at 144 h post-infection. Catfish immunized with the E. ictaluri
AsdhC, Amdh, AfrdA, and AglyA mutants had 100% relative percent survival (RPS), while E. ictaluri AgcvP vaccinated catfish
had 31.23% RPS after re-challenge with the wild type E. ictaluri.
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Introduction E. ictalur 1s considered a facultative intracellular pathogen, and
it is capable of surviving inside channel catfish neutrophils and

Channel catfish, Ictalurus punctatus, farming is the largest macrophages [11,12]. Although E. ictaluri is effectively phagocy-
aquaculture industry in the United States, and enteric septicemia tosed by catfish neutrophils, it is only killed by neutrophils to a

of catfish (ESC), caused by Edwardsiella iwctalur, is the most limited extent [11,13]. A recent study by Karsi et al. [14] showed
prevalent disease affecting this industry. Although Romet® 30,

Terramycin®, and Aquaflor® are approved antibiotics to treat
infections in commercial catfish by oral delivery in medicated feed,
effectiveness is limited because fish develop anorexia at early stages
of the infection. Also, antibiotic resistant E. ictaluri strains can
emerge [1]. Therefore, vaccination is the preferred method for
prevention of ESC.

Live attenuated vaccines can provide effective protection against

that genes encoding tricarboxylic acid (T'CA) cycle enzymes,
glycine cleavage system, a sigmak regulator, the SoxS oxidative
response system, and a plasmid-encoded type III secretion system
(T'TSS) effector are important for survival in neutrophils [14]. The
same study discovered that some neutrophil-susceptible E. wtaluri
strains were highly attenuated and demonstrated very good
potential as live attenuated vaccines. In particular, strains with
insertion mutations in genes encoding TCA cycle enzymes
certain diseases if they can express protective antigens without succinate dehydrogenase (sdhC) (EAKMut5) and malate dehydro-

causing disease in the host [2]. In E. ictaluri, some candidate live genase (mdh) (EiAKMutl2) generated better protection than the
attenuated vaccines that have been developed include chondroi-

X X available commercial vaccine when juvenile catfish were vacci-
tinase [3] and auxotrophic (ared and purd) [4,5] mutants.

nated by immersion [14]. Similarly, E. ictaluri glycine dehydroge-

However, none of these vaccine candidates are in commercial nase (gcoP) mutants (EAKMut02 and EAKMut08) were also
production. The commercial vaccine Aquavac-ESC (RE-33) was

developed by selecting for rifampin resistance [6]. However,
antibiotic resistance is not a desired trait for a vaccine. In addition,
the genetic basis for attenuation in RE-33 is undefined [7],

completely attenuated and had better vaccine efficacy than the
commercial vaccine [14]. Glycine dehydrogenase is part of the
glycine cleavage system pathway, which is part of one-carbon (C1)
metabolism. Therefore, the objective of this research was to

although it is known that RE-33 expresses shortened LPS O side introduce in-frame deletions in . wtaluri sdhC, mdh, and frd4 genes
chains [8]. Despite the availability of Aquavac-ESC, ESC is still

(encoding enzymes in the TCA cycle) and gewP and ghyd genes
the most prevalent disease in the catfish industry [9,10].
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(encoding C1 metabolism proteins) to determine their roles in E.
wtalurt virulence.

Materials and Methods

Ethics statement

All fish experiments were conducted in accordance with a
protocol approved by the Institutional Animal Care and Use
Committee (IACUC) at Mississippi State University.

Bacterial strains, plasmids, and growth conditions

Bacterial strains and plasmids used in this work are listed in
Table 1. E. ictaluri was grown at 30°C using brain heart infusion
(BHI) broth and agar (Difco, Sparks, MD). Escherichia coli were
grown at 37°C using Luria-Bertani (LB) broth and agar (Difco). E.
coli CC118 Apir and SM10 Apir/S17-1 Apir were used for cloning
gene deletions into suicide plasmid pMEG-375 and transferring
recombinant pMEG-375 or pAKgfplux1 into E. ictalur. Ampicillin
was used at 100 pg/ml to maintain pMEG-375 and pAKg/pluxl.
Colistin was used at 12.5 ug/ml for counter selection against £. coli
SM10 Apir following conjugation. E. ictaluri strains were cultivated
for 18 h (stationary phase) for all fish challenges.

Construction and bioluminescence tagging of in-frame
deletion mutants

The method of overlap extension PCR [15] was used to
generate in-frame deletions of E. ictalur: sdhC, mdh, frdA, gevP, and
ghA. Four primers were designed for each gene including forward
(flp), internal-reverse (lfrp), internal forward (rflp), and reverse
primers (rfrp) (Table 2). Restriction sites were included in forward
and reverse primers. Genomic DNA was isolated from E. wtaluri
using a Wizard Genomic DNA Kit (Promega, Madison, WI) and
used as template in PCR. Upper fragments were amplified by
forward and internal-reverse primer sets while reverse and
internal-forward primer sets were used to amplify lower fragments.

Edwardsiella ictaluri Vaccines

The resulting upper and lower PCR products were gel extracted
using a QIAquick Gel Extraction Kit (Qiagen, Valencia, CA),
mixed in a 1:1 ratio, and then re-amplified using the forward and
reverse primers. The resulting in-frame deleted fragment was
purified by using a QIAquick Gel Extraction Kit (Qiagen,
Valencia, CA). The purified PCR product was digested with
appropriate restriction enzymes (Promega) (Table 1) and cleaned
using a Wizard SV Gel and PCR Clean-Up Kit (Promega).

The suicide plasmid pMEG-375 was purified from an overnight
E. coli culture by a QIAprep Spin Miniprep Kit (Qiagen) and cut
with restriction enzymes respective to the inserts, producing
compatible ends. The purified PCR product with in-frame
deletion was ligated into pMEG-375 vector using T4 DNA Ligase
(Promega) at 4°C overnight, generating pEidsdhC, pEidmdh,
pEidfidA, pEidgewP, and pEidglyAd (Table 1). Insert in each
plasmid was confirmed by restriction enzyme digestion as well as
sequencing.

The suicide plasmids with in-frame deleted genes were
transferred into E. coli SM10 Apir/S17-1 Mpir by electroporation
and mobilized into E. iwlalure 93-146 by conjugation [16]. The
recipient bacteria were spread on BHI plates containing colistin
(12.5 ug/ml) and ampicillin (100 ug/ml) to select E. ictalur: with
integrated vector by single crossover through allelic exchange.
Ampicillin resistant colonies were propagated on BHI plates to
allow for the second crossover allelic exchange, followed by
streaking on BHI plates with 5% sucrose, 0.35% mannitol, and
colistin to select for loss of pMEG-375 with sacB gene. Potential
mutant colonies were tested for ampicillin sensitivity to ensure loss
of the plasmid. Deleted regions were amplified from the resulting
ampicillin sensitive colonies and confirmed by sequencing. After
confirmation, EiAsdhC, EiAmdh, EiAfidA, EidgcP, and EilghA
mutants were labeled with bioluminescence using pAKgfpluxl as
described in Karsi and Lawrence [16].
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Table 1. Bacterial strains and plasmids.

Strain Relevant Characteristics References
Edwardsiella ictaluri

93-146 Wild type; pEIT*; pEI2*; Col [32]
EiAfrdA 93-146 derivative; pEl1"; pEI2*; Col’; AfrdA This study
EiAgcvp 93-146 derivative; pEl1"; pEI2*; Col’; AgcvP This study
EiAglyA 93-146 derivative; pEl1"; pEI2*; Col’; AglyA This study
EiAsdhC 93-146 derivative; pEl1*; pEI2*; Col'; AsdhC This study
EiAmdh 93-146 derivative; pEl1"; pEI2*; Col; Amdh This study
Escherichia coli

CC118 Apir Alara-leu); araD; AlacX74; galE; galK; phoA20; thi-1; rpsE; rpoB; argE(Am); recAl; ApirR6K [33]

SM10 Apir thi; thr; leu; tonA; lacY; supE; recA; :RP4-2-Tc:Mu; Km'; ApirR6K [34]

S17-1 Apir RP4-2 (Km::Tn7, Tc:Mu-1), AuidA3:pir*, recAl, endA1, thi-1,hsdR17, creC510 [35]
Plasmids

pMEG-375 8142 bp, Amp', Cm", lacZ, R6K ori, mob incP, sacR sacB [36]
pEiAfrdA 10242 bp, AfrdA, pMEG-375 This study
pEiAgcvp 12231 bp, AgcvP, pMEG-375 This study
pEiAglyA 14276 bp, AglyA, pMEG-375 This study
pEiAsdhC 16295 bp, AsdhC, pMEG-375 This study
pEiAmdh 18350 bp, Amdh, pMEG-375 This study
doi:10.1371/journal.pone.0065973.t001
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Mutant virulence and ability to protect against E. ictaluri
infection

Experimental infections were conducted in 40-L challenge tanks
supplied with flow-through dechlorinated municipal water. Water
temperature was maintained at 25°C (*2) throughout the
experiments. Twenty-eight specific pathogen free (SPT) catfish
fingerlings (14.2%£0.35 cm, 25.45%1.82 g) were randomly allocat-
ed into seven groups (4 fish/group). Five treatments were injected
with E. ictaluri mutants, one group was injected with wild type F.
wialurt strain 93-146, and the last group served as negative control
(phosphate-buffered saline (PBS). Fish were anesthetized in water
containing 100 mg/L MS222 and injected with approximately
1x10* colony forming units (CFU) in 100 ul PBS.

Bioluminescent imaging (BLI) was conducted using an IVIS 100
Imaging System to measure number of photons emitted by
bioluminescent bacteria in fish [17]. Briefly, catfish were
anesthetized in water containing 100 mg/L MS222 and trans-
ferred immediately to the photon collection chamber for image
capture. Total photon emissions from the whole fish body were
collected at an exposure time of one min. Following BLI imaging,
fish were returned to well-acrated water for recovery. BLI was
conducted at 2, 4, 8, and 24 h post-infection, and subsequent daily
mtervals until 168 h. Bioluminescence was quantified from the fish
images using Living Image Software v 2.5 (Caliper Corporation.,
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Table 2. Primers with restriction enzyme used for the construction of the E. ictaluri mutants.
Genes Primer ID Primer Sequence ((5'—3')* RE®
frdA EifrdAlflp AAGAGCTCTCGTCCACTTCATTCATCAGAC Sacl
EifrdAlfrp GTGGAAGTGGAAATCGAAAGA
EifrdArflp TCTTTCGATTTCCACTTCCACGAAGCTCAGGAAGCCAAGAAG
EifrdArfrp AATCTAGAGCAGGGAGATGATATTGAGGAC Xbal
EifrdA01S CCTCAACTGAAGATTGCCTTA
gcvP EigcvPIflp AATCTAGACCTTTGGCGTGGAGATATGC Xbal
EigcvPlfrp AGCATCACTGTTTTCAAGCTG
EigcvPrflp CAGCTTGAAAACAGTGATGCTGTAAAGCGCCTGGACGATGT
EigcvPrfrp AAGAGCTCCGGACAGAGACATACCACCAA Sacl
Eigcvp01S GGCCTTTTGGTATGATTTGC
glyA EiglyAlflp AAGAGCTCGGGCATGGGTCAGTGAATAC Sacl
EiglyAlfrp CCACAGCTCGGTATCGTAATC
EiglyArflp GATTACGATACCGAGCTGTGGGTGAACGTCTTCCGGTCTATG
EiglyArfrp AACCCGGGGCCTAGACGATGTCTCCTTGA Smal
EiglyA01S GGGCCAGATTTACTCAAAACC
sdhC EisdhClflp AAGAGCTCCAGCCTCCTTTGGTACTGCTA Sacl
EisdhClfrp GCAAATCCAGATTGACAGGTCT
EisdhCrflp AGACCTGTCAATCTGGATTTGCGGGTATGGTAAGCAACGCATC
EisdhCrfrp AACCCGGGCCCCATCATGTAGTGACAGGT Smal
EisdhC01S CTCAGTCTCGTGGGATTTGC
mdh Eimdhlflp AAGAGCTCGGCTTTATAATGGCGTGTGG Sacl
Eimdhlfrp AGGCAGCTGAGTCTTAAGCAG
Eimdhrflp CTGCTTAAGACTCAGCTGCCTCTGGGCGAAGACTTTATCAAT
Eimdhrfrp AACCCGGGGGAGCAGGCCCTACAAGACT Smal
Eimdh01S CAGCTCGCAATCTGAGTGTT
?RE: restriction enzyme sequence added to the 5’ end of the primer sequence.
bBold letters at the 5’ end of the primer sequence represent RE site. AA nucleotides were added to the end of each primer containing a RE site to increase the efficiency
of enzyme cut. Underlined bases in internal primer (rflp) indicate reverse complemented internal primer (Ifrp) sequence.
doi:10.1371/journal.pone.0065973.t002

Hopkinton, Massachusetts), and mean photon counts for each
treatment were used in statistical analysis.

To determine the ability of mutants to protect against . ictalur
infection, the juvenile catfish vaccinated with mutants (virulence
challenge) were immersion challenged [14] with 4.8x107 biolu-
minescent wild type E. ictaluri at 4 weeks post-vaccination. Photon
emissions from fish were collected at 2, 4, 8, 24, 48, 72, and 96 h
post-infection using an IVIS 100 as described above, and statistical
analysis was performed on the mean photon counts.

Mutant ability to protect against ESC induced mortalities

Approximately 420 eight-month-old SPF channel catfish
fingerlings (17.61%£0.63 cm, 47.47%5.31 g) were stocked into 21
tanks at a rate of 20 fish/tank. Each treatment had three replicate
tanks. Treatments consisted of EiAsdhC, EiAmdh, EiAfrdd, EiAglyA
and EilgeoP (vaccination), wild type E. ictaluri (positive control), and
BHI (sham control). Channel catfish were vaccinated by immer-
sion in water containing approximately 4.3 x10” CFU/ml of water
for 1 h, followed by gradual removal of bacteria. Mortalities were
recorded for 21 days following vaccination. At 21 days post-
vaccination, both vaccinated and non-vaccinated treatments were
immersion exposed to wild type parent E. ictaluri 93-146
(approximately 3.06x107 CFU/ml), and fish mortalities were
recorded daily for 14 days. Relative percent survival (RPS) was
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calculated according to the following formula: RPS=[1—(%
mortality of vaccinated fish/% mortality of non-vaccinated

fish)] x100 [18].

Statistical analysis

Photon counts were transformed by taking the base 10
logarithm to improve normality. One-way ANOVA was conduct-
ed using SPSS V19 (IBM Corp., Armonk, NY) to compare mean
photon counts at each time point (p<<0.03). Pairwise comparison of
the means was done using Tukey procedure. Data was then
retransformed for interpretation.

Results

Construction of the E. ictaluri in-frame deletion mutants

Five in-frame mutants (EiAsdhC, Eilmdh, EiAfrdA, EidgeoP, and
EiAglyA) were obtained successfully (Fig. 1) by deleting on average
over 90% of each gene (Table 3).

Mutant virulence and ability to protect against E. ictaluri
infection

BLI results revealed that bioluminescence (quantified as photon
counts) from the catfish infected with EiAsdhC, EiAmdh, FEiAfrdA,
EilgcoP, and EilAglyAd mutants were low at 2, 6, and 12 h post-
infection. However, bioluminescence for mutants EiAmdh, EiAfrdA,
and EilgeoP increased from 24 h to 72 h and then decreased
thereafter. Bioluminescence for EiAsdhC followed the same pattern
as the other mutants, except the signal peaked at 120 h. However,
in mutant EiAglyA, very low bioluminescence was detected at all
time points. In fish infected with wild type E. ictaluri, biolumines-
cence increased until all fish died (Fig. 2). Average photon counts
in the fish infected with 93-146 at 72 h post-infection were
approximately 7-fold higher than the average of all fish infected
with mutant strains, and it was 2,265-fold higher at 144 h. At this
time point, fish infected with wild type E. wtaluri strain died, while
bioluminescence from fish infected with mutant strains was in
decline (Fig. 2). Photon counts were 118- and 5,329-fold higher in
wild type E. ictaluri compared to EilglyA at 72 h and 144 h post-
infection, respectively (Fig. 2). In the wild type infected treatment,
two fish died at 144 h post-infection, and the remaining two fish

EiWT EiAgevP

1Ko+ oevP)  (AgevP)

(frdA)

EiWT EiAfrdA EiWT Eilmdh
(AfrdA) (madh)

Edwardsiella ictaluri Vaccines

died at168 h. Mean photon counts between all mutants (except
EiAfrd4) and wild type E. ictaluri were significantly different (p<<0.5)
at 24 h and thereafter. Mean photon counts for wild type . iwtaluri
were significantly higher than FidfrdA at 48 h and thereafter.
When mutant challenged fish were immersion exposed to wild
type E. wtaluri at 4 weeks post-vaccination, photon counts were
significantly lower ($<<0.5) at each time point for the vaccinated
fish compared to the sham-vaccinated control (Fig. 3). Average
photon counts in sham-vaccinated fish at 6 h post-infection were
4-fold higher than the average of all five mutant-vaccinated fish
treatments, which increased to 14-fold at 96 h. At this time,
bioluminescence in EiAsdhC and EiAmdh vaccinated fish was
declining, while bioluminescence in EiAfrdd, EilgeoP, and EiAglyA
vaccinated fish was increasing (Fig. 3).At 96 h post-infection, all
fish in the sham vaccinated group died. In summary, BLI
demonstrated that all mutants are significantly attenuated
compared to wild type E. ictaluri, and all mutants except FEidglyA
provided significant protection against . «taluri infection.

Mutant ability to protect against ESC induced mortalities

Vaccination of channel catfish with EiAsdhC, EiAmdh, EilfidA,
and EiAglyA provided complete protection (100% survival) against
wild type E. ictaluri 93-146 while the EiAgeoP mutant showed lower
efficacy (68.89% survival) (Fig. 4). Survival in EiAsdhC, EiAmdh,
EiAfrdA4, and EiAglyA vaccinated groups was 1.96-fold higher than
that of the non-vaccinated group when re-challenged with wild
type E. wtaluri (100% vs 51.11%).

Discussion

The primary objective of this study was to construct live
attenuated F. ictaluri strains based on mutations in genes encoding
enzymes in the TCA cycle (mdh, schC, and frdd) and enzymes
involved in Cl metabolism (gcoP and ghAd). Additional aims
included assessing the mutant strains’ virulence in catfish and
ability to protect against wild type E. italuri infection. We
constructed in-frame deletion mutants to avoid polar effects of the
mutations and to avoid insertion of antibiotic resistance genes,
which is undesirable in vaccine strains. Splicing overlap extension
combined with allelic exchange is an effective method for gene
deletion in E. ictalur: and has been reported previously [19,20].

EiWT EinsdhC EiWT EinglyA
(sdhC) (AsdhC) (glyA) (AglyA)

(Amah)

Figure 1. Genotypic confirmation of the E. ictaluri gcvP, frdA, mdh, sdhG and glyA mutants. Genomic DNAs was amplified from the E. ictaluri
wild type and mutants using the two outside primers (Iflp and rfrp) and separated on 1% agarose gel.

doi:10.1371/journal.pone.0065973.g001
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Table 3. Properties of the E. ictaluri TCA cycle and C1 metabolism genes and percentage of gene deleted.

Remaining
Gene Locus Product ORF (bp/aa) (bp/aa) % Deletion
sdhC NTO1EI_2872 Succinate dehydrogenase, cytochrome b556 subunit, putative 390/129 57/18 86.05
mdh NTO1EI_0446 Malate dehydrogenase, NAD-dependent, putative 939/312 99/32 89.74
frdA NTO1EI_0392 Fumarate reductase, flavoprotein subunit, putative 1800/899 126/41 95.44
gcvP NTO1EI_3351 Glycine dehydrogenase, putative 2884/960 114/37 96.15
glyA NTO1EI_3190 Serine hydroxymethyltransferase, putative 1254/417 75/24 94.24

doi:10.1371/journal.pone.0065973.t003

We utilized bioluminescence imaging to assess virulence of
mutants, which allows better quantification compared to percent
mortalities. It also enables sensitive detection of subclinical
infection and mutants’ abilities to invade and establish infection.
Mutant strains EiAsdhC, EiAmdh, EiAfrdd, and EiAgcwP were

clearly able to establish infection because bioluminescence was
detected after 12 h post-infection. However, channel catfish
injected with the mutant strains started clearing the bacteria after
72 h post-infection. Thus, our results showed that although
EiNsdhC, EiAmdh, EiAfrdA, and EigcoP do not cause mortalities,

A 6h 24h 72h 96 h 144 h

A [0
P : ‘L
| (7]
L o
EiAgcvP ir ‘ 40 £
; - 2 S
- [ X @
; - 2
Einmdh 4 - =
' - 2
L o
EiAsdhC y @0
10
EiAglyA
B 1.00E+10 - _’;_
« /1 EMWT
1.00E+09 - Vit EirfrdA
}, EiAmdh
L 1.00E+08 - + o —4=—EiAgcvP
o * p =
< + =X == EjASdhC
2  1.00E+07 - -Xm==EiAglyA
o
(=]
=
o — 2
1.00E+06 - s X X e K
X
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Figure 2. Bioluminescent imaging of vaccination/attenuation in

live catfish after intraperitoneal injection. A, BLI imaging of catfish. B,

Total photon emissions from each fish. Each data point represents the mean photon emissions from four fish. Two of the four channel catfish injected
with wild type died at 144 h post-infection. The remaining two died at 168 h post-infection. Star indicates significant difference between wild type E.

ictaluri and other mutants, except for EidfrdA at 24 h.
doi:10.1371/journal.pone.0065973.g002
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Figure 3. Bioluminescence imaging of juvenile catfish after immersion exposure to wild type E. ictaluri. Fish were challenged with E.
ictaluri mutants as described in the virulence trial, and at 4 weeks post-vaccination they were challenged with bioluminescent wild type E. ictaluri. A,
BLI imaging of catfish. B, Total photon emissions from each fish. Each data point represents the mean photon emissions from four fish. Star indicates

significant difference between the E. ictaluri mutants and wild type.
doi:10.1371/journal.pone.0065973.9003

they are able to invade and establish infection before being
cleared. Because of mutants’ abilities to survive and replicate in
fish up to 72 h post-infection, we expected them to generate an
immune response and protection against wild type E. ictaluri. On
the other hand, the EiAglyA mutant did not replicate well in the
host, and we anticipated much less systemic protection from this
mutant. By contrast, wild type E. italuri increased in quantity until
mortality occurred. Our current study corroborated an earlier
study showing that 1x10” photons ™' cm™? steradian~ ' seems to
be a critical threshold for bacterial tissue concentrations where
mortality is imminent [21].

Ultimately, prevention of mortalities is used as a common
measure of vaccine efficacy. Thus, we used percent survival to
evaluate efficacy of our candidate vaccines in catfish fingerlings
using immersion exposure, which is a practical route of
vaccination of catfish fry in catfish production systems. Results
for mutant strains EiAsdhC, EidAmdh and EiAgcoP were similar to
our previous study that evaluated vaccine efficacy of E. ictaluri

PLOS ONE | www.plosone.org

sdhC, mdh, and geoP transposon insertion mutants [21]. In our
previous study, sé¢hC and mdh insertion mutants gave 100%
protection against E. ictaluri infection, and a gevP insertion mutant
gave 89.15% survival in catfish fingerlings. Our current results
with deletion mutants show that attenuation is not due to polar
effects of the insertion mutations. The deletion mutants have an
additional advantage in that they do not carry antibiotic resistance
genes. The current study is the first to report vaccine efficacy of E.
iclaluri EiAglyA and EiAfidA mutants; both provided significant
protection against mortalities by immersion vaccination.

We also evaluated vaccine efficacy of our candidate mutant
strains using a more sensitive measure than percent survival;
namely, we evaluated the ability of the mutant strains to prevent
invasion of virulent . ictaluri as monitored using BLI. Vaccination
in this trial was by injection, which is not a practical route of
vaccination for commercial catfish production, but it does allow
accurate vaccine dose delivery. Protection results by injection
vaccination were very similar to results obtained by immersion

June 2013 | Volume 8 | Issue 6 | €65973
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Figure 4. Percent survival of immersion vaccinated catfish. Catfish fingerlings were immersion vaccinated with the EiAmdh, EiAsdhC, EiAfrdA,
EidglyA, and EidgcvP mutants and challenged with wild type E. ictaluri strain 93-146. Data points represent the mean percent survival of 20 fish per

tank for each treatment.
doi:10.1371/journal.pone.0065973.9g004

vaccination, except that FEiAglyd vaccination provided better
protection by immersion vaccination than injection (Fig. 4). It is
possible that immersion vaccination using EiAglyAd may activate
mucosal Immunity better, preventing wild type E. ctaluri
septicemia. We saw the opposite trend when fish were vaccinated
with the FEiAgewP mutant, which protects fish better when
vaccination is applied by injection rather than immersion.

Succinate dehydrogenase (SDH) is part of the aerobic respira-
tory chain in the TCA cycle, oxidizing succinate to fumarate while
reducing ubiquinone to ubiquinol [22]. It is closely related to
fumarate reductase, which catalyzes the reverse reaction. Succi-
nate dehydrogenase and fumarate reductase can replace each
other [22,23]. Although SdhC has similar function, hydrophobic-
ity, and protein size to the membrane-binding subunit fumarate
reductase (FrdC), sdhC and frdC do not share significant sequence
identity [24]. The organic acids formate and succinate have a
protective effect in stationary phase cells against killing effects of
antimicrobial peptide BPI, which appears to disrupt the bacterial
respiratory chain [25]. Maintenance of protective levels of formate
and succinate requires the activity of formate dehydrogenase and
succinate dehydrogenase, respectively.

In E. coli and Salmonella, succinate dehydrogenase is known to
contribute to pathogenicity. Recently, it was shown that a full
TCA cycle is required for Salmonella enterica virulence, and a
sdhDCA mutant is attenuated in an oral mouse infection model
[26], which is similar to our finding. In Helicobacter pylori, fumarate
reductase was found to be essential for colonization of mouse
gastric mucosa [27]. In Salmonella enterica, deletion of sdhCDA
caused partial attenuation, and complete attenuation was achieved
when both sdhCDA and fidABCD were deleted [28]. Our results
indicated that deletion of only the E. ictaluri sdhC gene and deletion
of only fidd resulted in full attenuation in catfish fingerlings.
However, our previous results showed that catfish fry are more
sensitive to F. ictaluri than catfish fingerlings (unpublished data), so
further testing in catfish fry is warranted. Regardless, the data
show that succinate dehydrogenase and fumarate reductase play
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an important role in pathogenesis. The other mutant that was
tested in this study was mdh, which encodes malate dehydrogenase.
Our results show that mdh is also important in E. wtaluri virulence,
which was consistent with findings in Salmonella using the mouse
oral challenge model, where a mdh mutant was found to be highly
attenuated [26].

The glycine cleavage system is a loosely associated four subunit
enzyme complex that catalyzes the reversible oxidation of glycine
to form 5, and 10-methylenetetrahydrofolate, which serves as a
one carbon donor. It is one of two sources of Cl units; serine
hydroxymethyltransferase is another source, and it is considered a
more important source. Expression of the glycine cleavage enzyme
system is induced by glycine [29,30], and gco mutants are unable to
use glycine as a Cl source and excrete glycine [31]. We have
previously shown that E. ictaluri gcvP is required for virulence [14].
This is the first report that gly4 is required for E. wtaluri, virulence,
and to our knowledge, this is the first report that serine
hydroxymethyltransferase is associated with virulence in any
bacterial species.

Although BLI for real-time monitoring of E. wlalur: infection in
live fish was shown by our group [17], this is the first time we
report the use of BLI to quantify the degree of E. italuri
attenuation in channel catfish. It appears that BLI could be used
for vaccine evaluation by using a relatively low number of fish
(four fish in this work). Also, use of BLI provides a more sensitive
measure of vaccine protection than percent mortalities.

In summary, our results showed that the FEidsdhC, Eidmdh,
FEidfrdA, EidgeoP, and EidglyA mutants were significantly attenu-
ated and provided protection against ESC under controlled
laboratory conditions. Thus, EidsdhC, Eidmdh, EidAfrdA, and
EidgevP mutants have potential for use as live attenuated vaccines
for catfish fingerlings. The E. ictaluri AglyA mutant was found to be
incapable of persisting in catfish when injected, which might be the
reason for lower protection than when it is used in immersion
vaccination. Based on these results, testing of these vaccine
candidates in catfish fry is warranted.
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